成比例线段2.1.2成比例线段
初中数学_成比例线段教学设计学情分析教材分析课后反思

《成比例线段》教学设计一、教学目标:1、知识目标:借助几何直观了解线段的比、比例线段的概念,会辨认比例式中的“项”,会判断已知线段是否成比例。
掌握比例的基本性质及其简单应用。
2、数学思考与问题解决能力:通过现实情境,进一步发展从数学的角度发现问题、提出问题、解决问题的能力,培养学生数学应用意识,体会数学与自然、社会的紧密联系;培养学生的观察、归纳、探索和主动获取知识的能力,体会类比、数形结合的思想。
3、情感、态度与价值观:在合作学习及相互交流中,培养学生团队精神;在解决问题中接受挑战、战胜困难,增强学习数学的兴趣;通过观察、欣赏,进一步体验生活中处处有数学,生活离不开数学,同时感受数学之美。
二、教学重点:线段的比、成比例线段的概念,比例的基本性质及应用。
教学难点:概念的理解及基本性质的应用。
三、教法与学法:教学中应贯彻落实数学课程标准,建立新的数学教学理念,实施课程教学的民主化,促进开放式教学的深入研究。
要充分发挥教师的主导作用和学生的主体作用,注重知识的发生、发展过程。
教师要给学生提供探究和交流的空间,紧紧抓住“数学思维活动的过程”这条主线,鼓励学生大胆联想、主动探索并获取知识,将面向全体、因生施教落到实处,培养学生的创新精神和实践能力。
本节课我选用的是自学辅导教学法和引导发现教学法相结合的手段,充分运用课件的演示、操作、观察、激发学生学习兴趣,引发思维碰撞;自学辅导法,让每个学生都动手、动口、动脑积极思维,进行“创造性”的学习,培养应用意识发展数学能力。
学习数学的过程不只是计算的过程,还要能够在推理、思考的过程中学会合作和交流,在本节课的教学中,安排了学生用观察、猜想、自主探究、合作交流等学法,让学生及时反馈获得的数学信息,实现信息共享,提高学生对比、分析概括归纳的能力。
四、评价设计:1、关注过程评价,随时对学生的发现和想法进行鼓励与评价,有利于丰富学生的数学体验,有利于激发学生学习数学的内驱力。
成比例线段教案

成比例线段教案教学目标:1、知识目标:要求学生掌握线段的比、成比例线段等基本概念,掌握比例的基本性质,能运用比例的基本性质推导出比例的其余性质或进行简单的变形;会判断已知线段是否成比例。
2、能力目标:培养学生的观察、归纳、探索和主动获取知识的能力。
3、情感目标:在学生解决问题的过程中,激发学生的创新意识,培养学生坚忍不拔、勇于探索的学习品质;在合作学习及相互交流中,培养学生团队精神。
教学重点:线段的比、成比例线段的概念,比例的基本性质。
教学难点:能运用比例的基本性质推导出比例的其余性质。
教学方法:引导启发、自主探索、合作交流教学手段:课件教学教学过程:(“导学互动”教学模式)一、自学指导1出示提纲,学生自学相关知识链接:线段与比例的概念。
2.小组合作,师生互动1)、两条线段的比:在同一单位下两条线段长度的比,叫做这两条线段的比。
自主探索:两条线段的比有什么特点?结论:1)线段的比是一个无单位的数。
2)线段的比值是一个正数。
3)两条线段长度单位不同时,要先统一单位。
4)只要两条线段单位一样,线段的比与所采用的单位无关。
2)、成比例线段对于四条线段a、b、c、d,如果其中两条线段的长度的比等于另外两条线段的比,如(或a∶b=c∶d),那么,这四条线段叫做成比例线段,简称比例线段,也称这四条线段成比例.3)、比例的项:已知线段,a,b,c,d 满足a:b=c:d则a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段d叫做a,b,c的第四比例项。
4)、比例中项:如果作为比例内项的是两条相同的线段b,那么,线段b叫做线段a 和线段c的比例中项。
合作互动例1判断下列线段a、b、c、d是否是成比例线段:(1)a=4,b=6,c=5,d=10;(2)a=2,b=6,c=3,d=9.解(1)∵4:6=2:3,5:10=1:2,∴4:6≠5:10,∴线段a、b、c、d不是成比例线段.(2)∵2:6=1:3,3:9=1:3,∴2:6=3:9,∴线段a、b、c、d是成比例线段.教你一招:方法1:统一单位后,从小到大排列,若第一与第二,第三与第四条线段数量的比相等,则这四条线段成比例。
人教版九年级下册数学:第27章 总第2课时 27.1.2《成比例线段》

(4)若四条线段满足;,则有ad=bc。
典例精析
【例1】.一张桌面的长a=1.25 m,宽b=0.75 m,
那么长与宽的比是多少?
a:b=5:3 或 a 5
b3
a.如果a=125 cm,b=75 cm,那么长与宽的比
是多少?
a:b=5:3
或a 5 b3
b.如果a=1250 mm,b=750 mm,那么长与宽的
★★★★课堂练习 1.如图所示的两个三角形相似吗?为什么?
相似,由已知条件可知它们的角分别 相等,边成比例.
合作探究 知识点3 相似多边形性质的应用
由相似多边形的性质可知,相似多边 形的对应角相等,对应边成比例。
典例精析
【例2】如图,四边形ABCD和EFGH相似,求角α,
β的大小和EH的长度x.
总第2课时
情景 引入
合作 探究
课堂 练习
归纳 小结
达标 测试
学习目标
1
理解比例线段的概念。
2
会根据相似多边形的特征识别两
个多边形是否相似,并会运用其性质
进行有关的计算。
复习回顾
1.形状相同的图形叫做相似图形。 注意:相似图形的大小不一定相同;
全等图形是相似图形的特殊情况。 2.图形的相似具有传递性。 3.两个图形相似,其中一个图形可以看作由另一 个图形放大或缩小得到。即:利用相似放大或缩小 图形。
DE= DF2 EF2 22 1.52 =2.5 ∵ AB BC AC
DE EF DF
∠A=∠D,∠B=∠E,∠C=∠F=90° ∴△ABC与△DEF相似.
1 两个边数相同的多边形,如果它们的角对 应相等,边成比例,那么这两个多边形相似。
九年级数学上册《成比例线段》教案、教学设计

(5)课堂小结:对本节课的主要内容进行总结,强调成比例线段的重要性。
3.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、问题解决能力等方面,给予积极的评价和鼓励;
(2)终结性评价:通过课后作业、阶段测试等形式,了解学生对成比例线段知识的掌握情况,及时发现问题并进行针对性的辅导。
(四)课堂练习,500字
为了巩固学生对成比例线段知识的掌握,我将设计以下课堂练习:
1.基础练习:给出一些成比例线段的判定题,让学生独立完成;
2.提高练习:设计一些实际问题,让学生运用成比例线段知识解决;
3.拓展练习:给出一些复杂几何问题,如相似三角形中的成比例线段问题,让学生尝试解决。
在练习过程中,我会及时给予学生反馈,指导他们纠正错误,提高解题能力。
4.教学策略:
(1)关注学生的个体差异,提供个性化的辅导,使每个学生都能在原有基础上得到提高;
(2)注重培养学生的几何直观能力,引导学生通过观察、分析、归纳等方法探索几何规律;
(3)鼓励学生提问和质疑,培养学生的批判性思维和创新意识;
(4)整合现代教育技术,如多媒体、网络资源等,丰富教学手段,提高教学效果。
5.通过实际操作,培养学生的观察能力、空间想象能力和逻辑思维能力。
(二)过程与方法
在本章节的教学过程中,教师应注重以下过程与方法:
1.创设情境,引导学生自主探究成比例线段的概念;
2.通过实际例子,让学生感受成比例线段在生活中的应用,培养学生学以致用的意识;
3.采用问题驱动的教学方法,引导学生主动发现、提出和解决问题;
四、教学内容与过程
成比例线段

2、小明认为: a c a c (1)、如果 (a b 0,c d 0) .那么 b d ba d c ab cd a c (2)、如果 .那么 . b d b d 这两个结论正确吗?为 什么?
第五环节:巩固提高:
1、若 x y 17 x , 则 _____ y 9 y a 1 3a b 2、若 , 则 的值为 ____ b 4 2b a b c 3、已知: . 3 5 7 a bc a 2b 3c 求( 1 ) 的值(2) 的值 b ac
已知,a,b,c,d,e,f 六个数。
如果 a c a b cd a b cd , 那么 和 成立吗?为什么? b d b d b d
AB BC CD AD , , , HE EF FG HG
(2)
如B BC CD AD HE EF FG HG 的值又是多少?在求解过程中, 你有什
第四章
图形的相似
1.成比例线段(二)
1. 知识目标: 了解线比例线段的基本性质;理解并掌握比例的基本性 质及其简单应用;发展学生从数学的角度提出问题、分析问
教 学 目 标
题和解决问题的能力。 2.能力目标: 经历运用线段的比解决问题的过程,在观察、计算、讨 论、想象等活动中获取知识。 3.情感与价值观要求 通过本节课的教学,培养学生的数学应用意识,体会数 学与现实生活的密切联系
么发现?
已知,a,b,c,d,e,f 六个数。
a c e ace a 如果 (b d f 0), 那么 成立吗?为什么? b d f bd f b
a c ab cd 合比性质:如果 , 那么 . b d b d a c m a c m a 等比性质:如果 (b d n 0), 那么 . b d n b d n b
中考数学专题复习 专题20 相似三角形问题(学生版)

中考专题20 相似三角形问题一、比例1.成比例线段(简称比例线段):对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a =(或a :b=c :d),那么,这四条线段叫做成比例线段,简称比例线段。
如果作为比例内项的是两条相同的线段,即cbb a =或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项。
2.黄金分割:用一点P 将一条线段AB 分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。
这种分割称为黄金分割,分割点P 叫做线段AB 的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
3.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
4.两条直线被一组平行线所截,所得的对应线段成比例。
5.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
二、相似、相似三角形及其基本的理论1. 相似:相同形状的图形叫相似图形。
相似图形强调图形形状相同,与它们的位置、大小无关。
2.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。
相似多边形对应边的比叫做相似比。
3.三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。
(3)两个三角形相似的判定定理判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。
《成比例线段 成比例线段与比例的基本性质》 教案

《成比例线段成比例线段与比例的基本性质》教案一、教学目标:知识与技能:1. 理解成比例线段的定义和判定方法。
2. 掌握比例的基本性质,并能运用其解决实际问题。
过程与方法:1. 通过观察和操作,培养学生发现和解决问题的能力。
2. 培养学生运用成比例线段和比例解决实际问题的能力。
情感态度价值观:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生勇于尝试、克服困难的精神。
二、教学重点:成比例线段的判定方法比例的基本性质三、教学难点:成比例线段的实际应用比例解决实际问题的方法四、教学准备:教师准备PPT,包括成比例线段的图片、判定方法、比例的基本性质等。
学生准备教材、笔记本、尺子、铅笔等。
五、教学过程:1. 导入(5分钟)教师通过展示一些成比例线段的图片,引导学生观察和思考,让学生初步感知成比例线段的概念。
2. 新课导入(10分钟)教师引导学生学习成比例线段的定义和判定方法,通过示例和练习,让学生理解和掌握成比例线段的判定方法。
3. 知识拓展(10分钟)教师引导学生学习比例的基本性质,通过示例和练习,让学生理解和掌握比例的基本性质。
4. 课堂练习(10分钟)教师布置一些有关成比例线段和比例的实际问题,让学生运用所学知识解决,巩固所学内容。
5. 小结与作业布置(5分钟)教师对本节课的内容进行小结,布置一些有关成比例线段和比例的实际问题,供学生课后思考和练习。
六、教学活动设计:活动1:观察和发现教师展示一系列成比例的线段图片,让学生观察并指出哪些线段是成比例的。
学生分组讨论,分享他们的发现,并尝试用自己的语言描述成比例线段的特征。
活动2:操作和实践学生使用尺子和铅笔,在纸上绘制自己的成比例线段。
教师引导学生通过折叠、比较等方式,验证他们的线段是否成比例。
活动3:问题解决教师提供一些实际问题,如“一个长方形的长是10cm,宽是5cm,请问长方形的对角线是否成比例?”学生独立思考或小组合作,运用成比例线段的性质解决问题。
初中数学_成比例线段教学设计学情分析教材分析课后反思

《成比例线段》教学设计一、教学目标:1、知识目标:借助几何直观了解线段的比、比例线段的概念,会辨认比例式中的“项”,会判断已知线段是否成比例。
掌握比例的基本性质及其简单应用。
2、数学思考与问题解决能力:通过现实情境,进一步发展从数学的角度发现问题、提出问题、解决问题的能力,培养学生数学应用意识,体会数学与自然、社会的紧密联系;培养学生的观察、归纳、探索和主动获取知识的能力,体会类比、数形结合的思想。
3、情感、态度与价值观:在合作学习及相互交流中,培养学生团队精神;在解决问题中接受挑战、战胜困难,增强学习数学的兴趣;通过观察、欣赏,进一步体验生活中处处有数学,生活离不开数学,同时感受数学之美。
二、教学重点:线段的比、成比例线段的概念,比例的基本性质及应用。
教学难点:概念的理解及基本性质的应用。
三、教法与学法:教学中应贯彻落实数学课程标准,建立新的数学教学理念,实施课程教学的民主化,促进开放式教学的深入研究。
要充分发挥教师的主导作用和学生的主体作用,注重知识的发生、发展过程。
教师要给学生提供探究和交流的空间,紧紧抓住“数学思维活动的过程”这条主线,鼓励学生大胆联想、主动探索并获取知识,将面向全体、因生施教落到实处,培养学生的创新精神和实践能力。
本节课我选用的是自学辅导教学法和引导发现教学法相结合的手段,充分运用课件的演示、操作、观察、激发学生学习兴趣,引发思维碰撞;自学辅导法,让每个学生都动手、动口、动脑积极思维,进行“创造性”的学习,培养应用意识发展数学能力。
学习数学的过程不只是计算的过程,还要能够在推理、思考的过程中学会合作和交流,在本节课的教学中,安排了学生用观察、猜想、自主探究、合作交流等学法,让学生及时反馈获得的数学信息,实现信息共享,提高学生对比、分析概括归纳的能力。
四、评价设计:1、关注过程评价,随时对学生的发现和想法进行鼓励与评价,有利于丰富学生的数学体验,有利于激发学生学习数学的内驱力。
初中数学教程成比例线段

23.1 成比例线段第1课时教学目标1.知道线段的比的概念,会计算两条线段的比;2.理解成比例线段的概念;3.掌握成比例线段的判定方法.教学重难点【教学重点】线段的比的概念,成比例线段的概念,会计算两条线段的比.【教学难点】成比例线段的判定方法.课前准备无教学过程一、情景导入请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?这些例子都是形状相同、大小不同的图形.它们之所以大小不同,是因为它们图上对应的线段的长度不同.二、合作探究探究点一:线段的比【类型一】求线段的比已知线段AB=2.5m,线段CD=400cm,求线段AB与CD的比.解析:要求AB和CD的比,只需要根据线段的比的定义计算即可,但注意要将AB和CD的单位统一.解:∵AB =2.5m =250cm , ∴AB CD =250400=58. 方法总结:求线段的比时,首先要检查单位是否一致,不一致的应先统一单位,再求比.【类型二】 比例尺在比例尺为1:50 000的地图上,量得甲、乙两地的距离是3cm ,则甲、乙两地的实际距离是 m.解析:根据“比例尺=图上距离实际距离”可求解. 设甲、乙两地的实际距离为x cm ,则有1:50 000=3:x ,解得x =150 000. 150 000cm =1500m.故答案为1500.方法总结:理解比例尺的意义,注意实际尺寸的单位要进行恰当的转化.探究点二:成比例线段【类型一】 判断线段成比例下列四组线段中,是成比例线段的是( )A.3cm ,4cm ,5cm ,6cmB.4cm ,8cm ,3cm ,5cmC.5cm ,15cm ,2cm ,6cmD.8cm ,4cm ,1cm ,3cm解析:将每组数据按从小到大的顺序排列,前两条线段的比和后两条线段的比相等的四条线段成比例.四个选项中,只有C 项排列后有25=615.故选C. 方法总结:判断四条线段是否成比例的方法:(1)把四条线段按从小到大顺序排好,计算前两条线段的比和后两条线段的比,看是否相等做出判断;(2)把四条线段按从小到大顺序排好,计算前后两个数的积与中间两个数的积,看是否相等作出判断.【类型二】 由线段成比例求线段的长已知:四条线段a 、b 、c 、d ,其中a =3cm ,b =8cm ,c =6cm.(1)若a 、b 、c 、d 是成比例线段,求线段d 的长度;(2)若b 、a 、c 、d 是成比例线段,求线段d 的长度.解析:紧扣成比例线段的概念,利用比例式构造方程并求解.解:(1)由a 、b 、c 、d 是成比例线段,得a b =c d ,即38=6d,解得d =16. 故线段d 的长度为16cm ;(2)由b 、a 、c 、d 是成比例线段,得b a =cd ,即83=6d ,解得d =94. 故线段d 的长度为94cm. 方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.已知三条线段长分别为1cm ,2cm ,2cm ,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x :1=2:2,则x =22;若1:x =2:2,则x =2;若1:2=x :2,则x =2;若1:2=2:x ,则x =2 2. 所以所添加的线段的长有三种可能,可以是22cm ,2cm ,或22cm. 方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.三、板书设计成比例线段⎩⎪⎪⎨⎪⎪⎧线段的比:如果选用同一长度单位量得两条线 段AB ,CD 的长度分别是m ,n ,那么 这两条线段的比就是它们长度的比, 即AB :CD =m :n ,或写成AB CD =m n 成比例线段:四条线段a ,b ,c ,d ,如果a 与b 的比 等于c 与d 的比,即a b =c d ,那么这 四条线段a ,b ,c ,d 叫做成比例线段, 简称比例线段四、教学反思从丰富的实例入手,引导学生进行观察、发现和概括.在自主探究和合作交流过程中,适时引入新知识,并通过引导学生建立新的数学模型,开拓思维,提升学生认知能力.。
成比例线段

成比例线段教学目标1.掌握比例线段的相关概念与比例的性质。
2.掌握比例线段的有关定理。
知识回顾知识点1 有关相似形的概念 (1) 图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的 ,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做 (相似系数).知识点2 比例线段的相关概念(1)两条线段的比 注:在求线段比时,线段单位 。
(2)比例线段 .注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =.②()a c a b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
(3)黄金分割:注:黄金三角形:顶角是360的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:(2)合、分比性质.(3)等比性质:注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. 由DE ∥BC 可得:注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.E A B C D2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得 等. 注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的例1、1.若4x=5y,则x ∶y = . 2.若3x =4y =5z ,则yz y x +-∶x x z y -+= . 3.已知13y x -=7y ,则y y x +的值为 . 4.已知b a =43,那么bb a += . 5.若b a =dc =fe =3,且b+d+f =4,则a+c+e = . 变式练习6.若(x+y)∶y =8∶3,则x ∶y = .7.若b a b +=53,那么b a = . 8.等腰直角三角形中,一直角边与斜边的比是 .9.已知△ABC 和△A ′B ′C ′,''B A AB =''C B BC =''A C CA =23,且A ′B ′+B ′C ′+C ′A ′=16cm.则AB+BC+AC = .10.若a =8cm ,b =6cm ,c =4cm ,则a 、b 、c 的第四比例项d = cm ; a 、c 的比例中项x = cm.11.已知3∶x =8∶y ,求yx = 12. 已知b b a 23+=27,求b a = 13. 若2x =3y ,求y y x += 14. 如果x ∶y ∶z =1∶3∶5,那么z y x z y x +--+33=15. 正方形对角线的长与它的边长的比是16.在1∶5000000的福建省地图上,量得福州到厦门的距离约为60cm ,那么福州到厦门的实际距离约为 km.17、在一张地图上,甲、乙两地的图上距离是3 cm,而两地的实际距离为1500 m ,那么这张地图的比例尺为_______.18.已知b a =d c =52 (b+d ≠0),则d b c a ++= 19、若43x x =,则x 等于 19.已知35=y x ,则=-+)(:)(y x y x 20.如果32=b a ,且3,2≠≠b a ,那么=-++-51b a b a F E DC B A21.已知a b a 3)(7=-,则=b a 22.如果2===c z b y a x ,那么=+-+-c b a z y x 3232例2、1、已知:5y-4x =0,求(x+y)∶(x-y)2、已知c b a +=a c b +=b a c +=x ,求x3、如图5.1-2,D 、E 分别在△ABC 的边AB 、AC 上,AB AD =AC AE =BC DE =32,且△ABC 与△ADE 的周长之差为15cm ,求△ABC 与△ADE 的周长.4、如图,DE ∥BC ,DF ∥AC ,AD=4 cm ,BD=8 cm ,DE=5 cm ,求线段BF 的长.课堂练习一、选择题(共8小题)1、(2011•肇庆)如图,已知直线a ∥b ∥c ,直线m 、n 与直线a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC=4,CE=6,BD=3,则BF=( )A 、7B 、7.5C 、8D 、8.52、(2011•泰安)如图,点F 是平行四边形ABCD 的边CD 上一点,直线BF 交AD 的延长线与点E ,则下列结论错误的是( )A 、错误!未找到引用源。
成比例线段教案

教学目的:1.结合现实情境,感受学习线段的比的必要性,理解线段的比和成比例线段.2.借助几何直观,掌握比例的性质及其简朴应用.3.通过现实情境,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生的数学应用意识,体会数学与自然、社会的亲密联系.教学重、难点:重点:理解线段的比和成比例线段的概念,理解比例的基本性质及其应用.难点:理解线段的比和成比例线段的概念.课前准备:制作多媒体课件.教学过程:一、美图观赏,情境导入导语:同窗们,色彩斑谰的世界中有许多美丽的图形,它们有的形状、大小都相似,这就是我们前面学过和全等形(多媒体出示图1);有的只有形状相似,这就是相似图形(多媒体出示图 2).你知如何刻画图形的相似吗?你懂得如何鉴定两个三角形相似吗?你懂得如何将一种图形放大或缩小吗?从今天开始,我们学习第四章,本章将研究图形的相似,探索三角形相似的条件,理解相似三角形的性质,并运用图形的相似解决某些简朴的实际问题.本节课就让我们一起从“成比例线段”开始学习本章.【板书课题:4.1 成比例线段(1)】图1 图2 解决方式:学生观看生活中的存在的全等形及相似形,体会数学来源于生活,在全等形的基础上感知相似图形.设计意图:通过用幻灯片展示生活的的图片,引入本章的学习内容—相似图形.初步感知相似图形,引发学生思考相似图形的特性,激发学生的求知欲及学习爱好.为新课的学习做好情感铺垫.二、探究学习,获取新知活动 1:两条线段的比1.考考你的眼力(多媒体出示)你能在下面的这些图形中找出形状相似的图形吗?这些形状相似的图形有什么不同?解决方式:学生先自主观察这些图形的特点,然后在小组内交流自已的见解,交流后借助多媒体展示自己的成果.教师在学生交流展示时可作下列引导:(1)图中形状相似的图形,大小有什么不同?(2)形状相似的图形其中的一种如何由另一种得到?(多媒体动画演示图形的放大与缩小)(3)形状相似的图形对应的线段如何变化的?(4)形状相似而大小不同的两个图形,你认为如何来描述它们的大小关系?设计意图:通过以上引导性问题引导学生共同总结出:对于形状相似而大小不同的两个图形,能够用对应线段长度的比来描述它们的大小关系.适时引出两条线段的比的概念.2.引入线段的比(多媒体出示)如果选用同一种长度单位量得两条线段AB,CD 的长度分别是m,n,那么这两条线段的比(ratio )就是它们的长度比,即 AB ∶CD =m ∶n ,或写成 AB = m.其中,线段 AB ,CD 分CD n别叫做这个线段比的前项和后项.如果把 m 表达成比值 k ,那么 AB= k ,或 AB =k ·CD .两n CD 条线段的比事实上就是两个数的比.解决方式:教师运用多媒体出示两条线段的比的定义.强调有关要点,明确两条线段的比事实上就是两个数的比.接着出示下面实例进一步加深学生对两条线段的比的认识.(多媒体出示)五边形 ABCDE 与五边形 A ′B ′C ′D ′E ′形状相似, AB =5cm , A ′B ′=3cm. AB ∶A ′B ′=5 : 3,就是线段 AB 与线段 A ′B ′的比.这个比值刻画了这两个五边形的大小关系.设计意图:通过两个五边形对应边的比,具体阐明线段的比的意义,进一步巩固对概念的理解.3. 想一想(1) 在计算两条线段的比时我们要注意什么?(2) 两条线段长度的比与所采用的长度单位有无关系?(3) 两条线段的比成果有单位吗?解决方式:学生思考并在小组内交流以上问题,举例阐明自己的理由.教师适时点拨引导,共同归纳出:在计算两条线段的比时我们要统一长度单位;两条线段长度的比与所采用的长度单位无关;两条线段的比成果没有单位,是一种数.设计意图:通过想一想使学生进一步加深对两条线段的比的认识.体会:两条线段长度的比与所采用的长度单位无关.但要采用同一种长度单位.活动 2:成比例线段(多媒体出示)如图,设小方格的边长为 1,四边形 ABCD 与四边形 EFGH 的顶点都在格点上,那么 AB , CD ,EF ,EH 的长度分别是多少?分别计算 AB , AD , AB , EF的值,你发现了什么?EF EH AD EH解决方式:引导学生结合图形分析题意,明确图中两四边形的四条边的长度能够通过观察或勾股定理得出.给学生充足的时间计算AB,AD,AB,EF的值,在计算的过程中体会EF EH AD EHAB=AD,AB=EF.教师借助多媒体展示解题思路及解题过程,规范学生的解题环节EF EH AD EH的书写.完毕后追问:你发现了什么?从而引出成比例线段的概念.强调:上图中AB,EF,AD,EH 是成比例线段,AB,AD,EF,EH 也是成比例线段.四条线段a,b,c,d 中,如果a 与b 的比等于c 与d 的比,即a/b=c/d,那么这四条线段a,b,c,d 叫做成比例线段,简称比例线段.(多媒体出示)设计意图:通过方格纸上两个四边形对应边的比值的计算,引导学生发现这四组对应线段的比相等,进而引出比例线段的概念.跟踪练习:判断下列四条线段与否成比例.(1)a = 2, b= 5, c = 15, d = 23;(2)a =2, b= 3, c = 2, d =3;(3)a = 4, b= 6, c = 5, d =10;(4)a =12, b= 8, c =15, d =10.解决方式:学生先自主判断,然后再在全班展示交流.共同总结出:四条线段成比例与这四条线段的次序有关.设计意图:通过练习巩固学生对概念的理解.活动 3:比例的基本性质议一议如果a,b,c,d 四个数成比例,即a/b=c/d,那么ad=bc 吗?反过来如果ad=bc,那么a,b,c,d 四个数成比例吗?与同伴交流.3 3 解决方式:第一种问题可引导学生从两方面加以阐明,首先根据等式的基本性质,在 a=bc 两边同时乘 bd ,得到 ad =bc ;另首先能够介绍引入比值 k 的办法:设 a = c=k ,那么 d b da =bk ,c = d k ,因此 ad = bk·d =b·kd =bc .第二个问题,要注意条件.通过学生的展示,共同总结出比例的基本性质:如果 a = c,那么 ad =bc .如果 ad =bc (a ,b ,c ,d 都不等于零),b d那么 a = c .b d设计意图:通过对两个问题的讨论引出比例的基本性质. 三、例题解析,应用新知例 1 如图,一块矩形绸布的长 AB =a m ,AD =1m ,按照图中所示的方式将它裁成相似的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比 与原绸布的长与宽的比相似,即 AE = AD ,那么 a 的值应当是多ADAB少?解决方式:引导学生阅读、理解题意,自己尝试解答,教师运用实物投影展示学生的做题状况,借助多媒体展示解题过程,规范学生的书写,强调知识的应用.解:根据题意可知,AB =a m ,AE = 1a m ,AD =1m .3 1 a由 AE = AD ,得 3 = 1 ,即 1 a 2 = 1. AD AB ∴a 2=3.1 a 3 开平方,得 a = ( a =- 舍去).设计意图:通过例题提供应用比例基本性质的一种具体情境,加深学生对比例基本性质的理解.让学生运用所学的知识来解决实际生活中的问题.想一想:生活中尚有哪些运用线段比的事例?你能举例吗?学生举例:房屋装修平面图,手机模型,汽车模型,深圳世界之窗,建筑物的效果图等等.设计意图:进一步让学生体会线段的比在生活中的应用. 四、回想反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些办法?先想一想,再分享给大家.解决方式:学生畅谈自己的收获!教师强调:1)线段的比的概念、表达办法;前项、后项及比值 k;2)两条线段的比是有序的;与采用的单位无关,但要选用同一长度单位;3)两条线段的比在实际生活中的应用.4)比例的基本性质:如果a=c,那么ad=bc.如果ad=bc (a,b,c,d 都不等于零),b d那么a=c.b d设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、达标检测,反馈提高活动内容:通过本节课的学习,同窗们的收获真多!收获的质量如何呢?请完毕导学案中的达标检测题.(同时多媒体出示)1.一条线段的长度是另一条线段长度的5 倍,则这两条线段之比是_.32.一条线段的长度是另一条线段长度的,则这两条线段之比是.53.已知a、b、c、d 是成比线段,a=4cm,b=6cm,d=9cm,则c=__ .x4.如果2x=5y,那么y =.5.把mn=pq 写成比例式,写错的是()A.m=p; B.p=n; C.q=n; D. m =p .q n m q m p n q6.已知a∶b∶c=2∶3∶4,且a+b+c=15,则a=,b=,c= .解决方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题状况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握状况,并最大程度地调动全体学生学习数学的主动性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达成全方面提高的目的.六、布置作业,课堂延伸必做题:课本79 页习题4.1 第1 题、第2 题.选做题:课本79 页习题4.1 第3 题.板书设计:。
成比例线段PPT课件

第3章 图形的相似
3.1 比例线段
3.1.2 成比例线段
新知笔记 1比 2 5-1
2
提示:点击 进入习题
1B 2C 3D 4 3∶1 5 2∶1
答案显示
6C 7C 8 8 cm 9 见习题 10 B
11 A 12 C 13 见习题 14 见习题 15 见习题
答案显示
1.在四条线段中,如果其中两条线段的比等于另外两 条线段的____比____,那么这四条线段叫作成比例线
【答案】乙;909
课堂导练
【点拨】空气湿度过大时,有的用电器或插座处会出现漏 电现象。
【答案】D
课后训练
17.(中考·广安)仔细观察家里电饭锅、洗衣机等所用的插 头,我们会发现有一根插头E要长些,如图所示。那 么,较长的那根插头E接的是__地__线____(填“火线”“零线 ” 或 “ 地 线 ”) ; 你 认 为 这 根 插 头 做 长 点 的 主 要 目 的 是 _插__入__时__先__接__通__地___线__,__断__开__时__后__断__开__地__线__(_或__确__保__用__电__ _安__全__)___。
4.火线和零线:进户线有火线和零线之分,通常用 _试__电__笔___来辨别。在使用试电笔时,用手接触笔尾金属 体,笔尖接触电线,如果氖管___发__光___,表示接触的是 火线。
习题链接
13 见习题 14 见习题 15 见习题 16 见习题
17 见习题 18 会;44 19 乙;909
答案呈现
课堂导练
条线段与它们组成成比例线段,求另外一条线段的长. 解:设另外一条线段的长为 x cm,则有三种情况: ①1×2= 2x,解得 x= 2;
《成比例线段(2)》教学设计

第九章图形的相似1.成比例线段(二)一、学生知识状况分析学生的知识技能基础:这节课是“成比例线段”的第二课时,学生已经通过第一节课的学习,观察了大量的图片,列举了许多现实生活中的情境,认识了线段的比的知识,知道了选用同一单位长度量线段的长度,从而求出两条线段的比。
也学会了运用比例线段的基本性质解决实际问题,并通过图片创设的问题情境,重现了现实生活中的比例模型,初步掌握了解决有关比的问题的方法。
在这个基础上,进一步来学习成比例线段的有关性质,学生不会感到陌生,反而容易接受本节课的继续学习。
学生活动经验基础:上一节课,学生已经收集了一些相似图形的图片,如大小不同的两张中国地图、国旗,同底相片等。
已经感受了数学知识源于生活,用于生活。
各小组展示并讨论过线段比的事例,具有了一定的合作交流的基础和能力。
难点处理:比例的基本性质的推理是本节课的难点,教学中要尽量让学生发扬小组合作的精神,在小组中展开讨论,教师参与指点。
二、教学任务分析教科书在学生认识线段的比的基础上,进一步提出了本节课的具体要求:理解并掌握比例的基本性质及其简单应用。
学好了本节课,既承接了全等三角形的内容,又为本章的后续学习相似三角形和相似多边形奠定了基础。
在知识技能方面,要求学生了解线段的比和成比例线段;理解并掌握比例的基本性质及其简单应用;发展学生从数学的角度提出问题、分析问题和解决问题的能力。
学生经历运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识。
通过本节课的教学,培养学生的数学应用意识,体会数学与现实生活的密切联系。
教学目标:(一)知识目标:了解线比例线段的基本性质;理解并掌握比例的基本性质及其简单应用;发展学生从数学的角度提出问题、分析问题和解决问题的能力。
(二)能力目标:经历运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识。
(三)情感与价值观目标:通过本节课的教学,培养学生的数学应用意识,体会数学与现实生活的密切联系。
人教版九年级下册第二十七章相似图形及成比例的线段

新知小结
求线段的长度比,先看单位是否统一,不统一的要 化为同一单位,再把数值进行化简化成最简整数比.
巩固新知
1 在比例尺为1:10 000 000的地图上,量的甲乙两地 的距离是30cm,求两地的实际距离. 解: 3000km.
2 在1 : 1 000 000的地图上,A,B两点之间的距离
是5 cm,则A,B两地的实际距离是( B )
【答案】C
3.观察下列各组图形,其中不.相.似.的是( A )
4.对于四条线段 a,b,c,d,如果其中两条线段的__比______(即 它们_长__度__的__比___)与另两条线段的__比____相等,如ab=dc,我们 就说这四条线段成比例.
5.在比例尺为 1∶38 000 的城市交通地图上,某条道路的长为 5
a :b = c :d
们的形状不相同.图(6)“拉长”而不是整体放大变成
2 m,b=8 cm,则a∶b=________.
B中的
,它
D.所有的圆都相似
利用比例的性质求代数式值的方法:当一个题中
D.5
例2 若a=0.2 m,b=8 cm,则a∶b=__5_∶__2___. 导引:a=0.2 m=20 cm,a∶b=20∶8=5∶2.
判断线段是否成比例,其基本方法是先排序,后求 比值,再看比值是否相等.
巩固新知
1 下列四组线段中,是成比例线段的是( C ) A.3 cm,4 cm,5 cm,6 cm B.4 cm,8 cm,3 cm,5 cm C.5 cm,15 cm,2 cm,6 cm D.8 cm,4 cm,1 cm,3 cm
巩固新知
1
(中考·东营)若 y 3 ,则 x y 的值为(
x4
x
4.1第1课时成比例线段-2024-2025学年九年级上册数学(北师大版)

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与成比例线段相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示成比例线段的基本原理。
其次,在新课讲授环节,我尝试通过案例分析和实验操作,让学生掌握成比例线段的判定方法。然而,在实践过程中,我发现有些学生在运用判定方法时仍然感到困惑。针对这个问题,我打算在接下来的课程中增加一些针对性的练习,以帮助学生巩固这一知识点。
此外,在小组讨论环节,学生们围绕成比例线段在实际生活中的应用展开了热烈的讨论。我注意到,有的小组能够很好地将所学知识运用到实际问题中,而有的小组则在这一过程中遇到了困难。这说明学生们在知识运用方面的能力存在一定差距。为了缩小这种差距,我计划在后续教学中加强对学生的个别辅导,帮助他们更好地将理论知识与实际应用结合起来。
3.成比例线段的应用
-解答与成比例线段相关的问题
-实际生活中成比例线段的运用案例
4.练习与拓展
-完成教材中的习题,巩固成比例线段的知识
-探究成比例线段与其他数学知识的联系,提高拓展能力
二、核心素养目标
1.培养学生的逻辑推理能力:通过探究成比例线段的定义与性质,使学生能够运用逻辑推理,理解和掌握成比例线段的基本概念,提高分析问题和解决问题的能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“成比例线段在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
成比例线段的八种形式

成比例线段的八种形式成比例线段是指两个线段的比值相等。
在几何学中,成比例线段有八种形式,分别是:1. 相等线段:当两个线段的长度相等时,它们是成比例线段的一种形式。
例如,AB和CD两个线段的长度相等,即AB = CD。
2. 同向线段:当两个线段的方向相同,并且它们的长度之比相等时,它们是成比例线段的一种形式。
例如,AB和CD两个线段的方向相同,并且它们的长度之比为k,即AB/CD = k。
3. 反向线段:当两个线段的方向相反,并且它们的长度之比相等时,它们是成比例线段的一种形式。
例如,AB和CD两个线段的方向相反,并且它们的长度之比为k,即AB/CD = k。
4. 互补线段:当两个线段的长度之和为常数,并且它们的长度之比相等时,它们是成比例线段的一种形式。
例如,AB和CD两个线段的长度之和为常数m,且它们的长度之比为k,即AB/(m-AB) = CD/(m-CD) = k。
5. 互逆线段:当两个线段的长度之积为常数,并且它们的长度之比相等时,它们是成比例线段的一种形式。
例如,AB和CD两个线段的长度之积为常数n,且它们的长度之比为k,即AB/CD = n/k。
6. 平方线段:当两个线段的长度之比等于它们的平方之比时,它们是成比例线段的一种形式。
例如,AB和CD两个线段的长度之比为k,且它们的平方之比为k^2,即AB^2/CD^2 = k^2。
7. 立方线段:当两个线段的长度之比等于它们的立方之比时,它们是成比例线段的一种形式。
例如,AB和CD两个线段的长度之比为k,且它们的立方之比为k^3,即AB^3/CD^3 = k^3。
8. 平方根线段:当两个线段的长度之比等于它们的平方根之比时,它们是成比例线段的一种形式。
例如,AB和CD两个线段的长度之比为k,且它们的平方根之比为√k,即√(AB/CD) = √k。
这八种形式的成比例线段在几何学中具有重要的应用价值,可以用于解决各种与线段长度相关的问题。
2022年华师大版《成比例线段》公开课教案

第23章图形的相似成比例线段【知识与技能】1.了解成比例线段的意义,会判断四条线段是否成比例.2.会利用比例的性质,求出未知线段的长.【过程与方法】培养学生灵活解题及合作探究的能力.【情感态度】感受数学逻辑推理的魅力.【教学重点】成比例线段的定义;比例的根本性质及直接运用.【教学难点】比例的根本性质的灵活运用,探索比例的其他性质.一、情境导入,初步认识挂上两张照片,问:1.这两个图形有什么联系?它们都是平面图形,它们的形状相同,大小不相同,是相似图形.2.这两个图形是相似图形,为什么有些图形是相似的,而有的图形看起来相像又不会相似呢?相似的两个图形有什么主要特征呢?为了探究相似图形的特征,本节课先学习线段的成比例.二、思考探究,获取新知〔1〕回忆什么叫两个数的比,怎样度量线段的长度,怎样比拟两线段的大小.如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比AB ∶CD=m ∶n ,或写成ABCD=n m ,其中,线段AB 、CD 分别叫做这两个线段比的前项和后项. 如果把n m 表示成比值k ,那么CDAB =k 或AB=k ·CD. 注意:在量线段时要选用同一个长度单位.〔2〕做一做量出数学书的长和宽〔精确到〕,并求出长和宽的比.改用m 作单位,那么长为,宽为∶0.148=211∶148.只要是选用同一单位测量线段,不管采用什么单位,它们的比值不变. 〔3〕求两条线段的比时要注意的问题①两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;②两条线段的比没有长度单位,它与所采用的长度单位无关;③两条线段的长度都是正数,所以两条线段的比值总是正数.问:两条线段长度的比与所采用的长度单位有没有关系?〔学生讨论〕 〔答:线段的长度比与所采用的长度单位无关〕.2.成比例线段的定义四条线段a 、b 、c 、d 中,如果其中两条线段的长度之比等于另外两条线段的长度之比,如d c b a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.3.比例的根本性质两条线段的比实际上就是两个数的比.如果a 、b 、c 、d 四个数满足d c b a =,那么ad=bc 吗?反过来,如果说ad=bc ,那么d c b a =吗?与同伴交流. 如果dc b a =,那么ad=bc. 假设ad=bc(a 、b 、c 、d 都不等于0〕,那么d c b a =. 例1 在某市城区地图〔比例尺1∶9000)上,新安大街的图上长度与光华大街的图上长度分别是16cm 、10cm.〔1〕新安大街与光华大街的实际长度各是多少米?〔2〕新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?解:〔1〕1440米,900米. 〔2〕8∶5,8∶5.例2如图,d c b a ==3,求bb a +和d dc +;解:b b a +=4, dd c +=4.三、运用新知,深化理解【教学说明】分组讨论完成并展示.四、师生互动,课堂小结1.注意点:〔1〕两线段的比值总是正数;〔2〕讨论线段的比时,不指明长度单位;〔3〕对两条线段的长度一定要用同一长度单位表示.2.比例尺:图上长度与实际长度的比.3.熟记成比例线段的定义.4.掌握比例的根本性质,并能灵活运用.1.布置作业:从教材相应练习和“习题”中选取.2.完成《创优作业》中本课时练习的“课时作业〞局部.本课时从生活实例情境引入线段的比及成比例线段的概念,并引导学生探究比例的根本性质及其应用,通过互动交流加强对知识的理解,培养学生的合作意识.第2课时百分率和配套问题教学目标1.学会运用二元一次方程组解决百分率和配套问题;2.进一步经历和体验方程组解决实际问题的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘教版九年级上册数学导学案
3.1.2 成比例线段
【学习目标】
【知识与技能】1.掌握比例线段的概念及其性质. 2.会求两条线段的比及判断四条线段是否成比例.3.知道黄金分割的定义,会判断某一点是否为一条线段的黄金分割点.
【过程与方法】能够灵活运用比例线段的性质解决问题.
【情感态度】感知知识的实际应用,增强对知识就是力量的客观认识,进一步加强理论联系实际的学习方法.
【教学重点】能够灵活运用比例线段的性质解决问题.
【教学难点】掌握黄金分割的概念,并能解决相关的实际问题.
【预习导学】
预习教材P64—P66的内容,完成下列问题.
;
2. 比例基本性质的相关结论.
【探究展示】
1.比例线段
如图,在方格纸上(设小方格边长为单位1)△ABC 和△ ,它们的顶点都在格点上.试求出线段AB
,BC ,AC ,A ’B ’,B ’C ’,A ’C ’ 的长度,并计算AB 与A ’B ’,BC 与B ’C ’,AC 与A ’C ’ 的长度的比值.
(方法与过程:首先学生动手量出所要求线段的长度,再求出其比值,进行对比比较) 方法总结:通过操作,计算比较,得出:
在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫作成比例线段,简称为比例线段.
=='',或 k AB kA B ::=''='',或 AB A B m n A B n
c d
=线段d 叫做a .b .c . 如果作为比例内项的是两条相同的线段,即
c b b a =(或a :b =b :c ),那么线段b 叫做线段a 和c 的 ..
BC B C ==''''''''B ,B C ,A C 对例3 已知四条线段a ,b ,c ,d 的长度分别为0.8 cm , 2 cm , 1.2 cm , 3 cm ,
问a ,b ,c ,d 是比例线段吗?
(方法与过程:学生自主 学习,然后分组展示.质疑.点评)
对应练习:
1. 已知四个数a,b,c,d 成比例.
(1)若a = 0.8 cm ,b = 1 cm ,c= 1 cm ,求d ;
(2)若a = 12 cm ,c = 3cm ,d=15 cm ,求b ;
(3)若a = 5 cm ,b = 4 cm ,d=8 cm ,求c .
例4 等比性质:证明 如果
n m d c b a =⋅⋅⋅==(0≠+⋅⋅⋅++n d b ),那么n d b m c a +⋅⋅⋅+++⋅⋅⋅++=b
a . 2. 黄金分割比
问题情境引入:古希腊数学家.天文学家欧多克塞斯(Eudoxus ,约公元前400—前347)提出一个问题:能否将一条线段AB 分成不相等的两部分,使较短线段CB 与较长线段AC 的比等于线段AC 与原线段AB 的比?
即使得CB AC =
.阅读课本66页 ,通过阅读提高学生学习的兴趣,感受“黄金分割比”的生活艺术效果.
【知识梳理】
以”本节课我们学到了什么?”启发学生谈谈本节课的收获.
1.本节课重点有掌握的知识是什么?
2. 在学习的过程中你的困惑是什么?
3.你对自己本节课的表现满意的地方在哪里?
(说明:学生独立总结出本节知识点,小组内讨论交流,互相补充完善,教师及时给与指导,形成正确的知识归纳.)
【当堂检测】
1.若m是
2.
3.8的第四比例项,则m=;
2.若x是a.b的比例中项,且a=3,b=27,则x=;
若线段x是线段a.b的比例中项,且a=3,b=27,则x=;
3. 把长为7cm的线段进行黄金分割,则分成的较短线段的长度为()
4.人的正常体温是36°C~37°C,对大多数人来说,体温最舒适的温度是
22~23°C,你能解释吗?
【学后反思】
通过本节课的学习,
1.你学到了什么?
2.你还有什么样的困惑?。