《平方差公式》的优秀教学设计

合集下载

平方差公式-优秀教案

平方差公式-优秀教案

平方差公式-优秀教案【教学目标】1. 理解平方差公式的含义和应用2. 学会运用平方差公式化简一元二次方程3. 培养学生运用公式解决实际问题的能力【教学重点】理解平方差公式的含义和应用,学会运用公式化简一元二次方程【教学难点】运用平方差公式化简一元二次方程【教学内容】1. 平方差公式的含义和应用2. 运用平方差公式化简一元二次方程3. 实际问题解析【教学过程】一、引入1. 教师通过提示,让学生回忆二次方程的解法以及解法的局限性,引出平方差公式。

2. 展示平方差公式的公式表达式,让学生观察该公式的形式和含义。

3. 将一个简单的二次方程转化为标准形式,使用平方差公式求解,让学生理解和掌握该公式的具体应用。

二、知识讲解1. 平方差公式的含义和应用(1)平方差公式的定义:在代数学中,平方差公式用于将二次多项式写成一个平方项和一个差项的和的形式。

(2)平方差公式的公式表达式:(a+b)² = a²+2ab+b²和(a-b)² = a²-2ab+b²。

(3)平方差公式的应用:主要用于化简一元二次方程和求解两个数的平方之差等问题。

2. 运用平方差公式化简一元二次方程(1)将一元二次方程转化为标准形式:ax²+bx+c=0;(2)将公式中的a、b、c代入平方差公式;(3)化简得二次方程的解。

(4)特别地,当二次方程中有平方项且系数a=1时,可以直接使用平方差公式。

三、练习与实际问题解析1. 练习题:练习一元二次方程的化简和求解2. 实际问题解析:通过实际问题的分析与计算,激发学生的兴趣,帮助学生理解和掌握平方差公式的应用。

【教学总结】通过本节课的学习,学生可以理解平方差公式的含义和应用,掌握平方差公式化简一元二次方程的方法,并能够通过实际问题的解析,运用所学知识解决实际问题。

同时,本节课旨在培养学生的问题解决能力,提高学生的数学素养与实际应用能力。

《平方差公式》教学设计郗晓春(大全5篇)

《平方差公式》教学设计郗晓春(大全5篇)

《平方差公式》教学设计郗晓春(大全5篇)第一篇:《平方差公式》教学设计郗晓春《平方差公式》教学设计教材依据人民教育出版社义务教育课程标准实验教科书《数学》(八年级上册)15.2 乘法公式(第一课时).设计思路一、指导思想在教学设计时,我以布鲁纳认知发现学习理论的实质——主动的形成认知结构为指导思想,结合新课标“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展.”的教育理念,设计了平方差公式这节课。

二、设计理念基于这种指导思想和教育理念,根据学生的认知特点和所学知识的特征,我在教学过程中重点运用我校的三段两重心教学模式:揭示目标,突破目标,检测目标。

使学生经历数学知识的形成与应用过程,以达到促进学生有效学习的目的。

这就需要我们在教学的过程中,利用教师的智慧,对教材和资源进行重新整合,并根据具体的学生的环境和接受能力,对课堂教学内容进行合理设计,从而提高课堂教学的效率.三、教材分析本节属于《数学课程标准》(2011年)中“数与代数”领域的内容,是学生在已经学习了多项式乘法的基础上,再一次应用乘法公式对多项式乘法进行简便运算的知识.平方差公式不仅是对乘法公式的进一步补充,它还为后面因式分解学习奠定了基础.课标要求:掌握平方差公式,能推导(a+b)(a-b)=a2-b2,了解公式的几何背景,运用平方差公式进行多项式的乘法运算及简便运算.四、学情分析学生刚过多项式的乘法,学生在解题时由于思维定势,往往还是用多项式乘法的方法来作这节课的题目,因此在教学中要让学生体验应用平方差公式计算多项式乘法的简便性.通过学生自主合作学习,能够分析出平方差公式的结构特征,会利用数形结合思想,理解平方差公式,在运算中的作用,了解公式中字母的广泛含义。

教学目标知识与技能目标:经历探究平方差公式的推导过程,了解平方差公式及几何意义,理解平方差公式的结构特征,并能运用平方差公式进行运算。

过程与方法目标:在探究平方差公式的过程中,体验从“特殊到一般”的研究数学问题的方法;通过对平方差公式的几何意义的了解,体会代数与几何的内在统一。

《平方差公式》的优秀教学设计

《平方差公式》的优秀教学设计
助学生举一反三。
整合相关内容
将平方差公式与其他相关知识点 (如完全平方公式、二次根式等) 进行整合,形成完整的知识体系。
网络资源筛选和推荐
1 2 3
筛选优质资源 从海量网络资源中筛选出与平方差公式紧密相关、 质量上乘的学习资料、视频教程等。
推荐学习网站 向学生推荐一些专业的数学学习网站,如“数学 之家”、“数学乐园”等,方便学生进行自主学 习和拓展。
生活联系起来,增强学生的数学应用意识和实践能力。
03
教学方法与手段
启发式教学法在平方差公式中应用
通过提问、引导等方式,激发 学生思考,自主探索平方差公 式的推导过程。
鼓励学生提出疑问,针对问题 进行深入剖析,培养学生的问 题解决能力。
结合实际例子,引导学生理解 平方差公式的应用场景和意义。
互动式讨论,提高课堂参与度
通过平方差公式的应用,让学生 感受到数学的实用性和美感。
培养学生的团队合作精神和勇于 探索的精神。
教学重点与难点
教学重点
平方差公式的理解和应用,以及代数运算技能的培养。
教学难点
平方差公式在实际问题中的应用,以及学生自主学习和合作学习能力的培养。 为了突破难点,教师可以采用多种教学方法和手段,如引导发现、讲解示范、 练习巩固等,同时注重学生的个体差异和因材施教义
平方差公式是指两个数的平方差 可以表示为这两个数的和与差的
乘积。
公式形式
$a^2 - b^2 = (a + b)(a - b)$, 其中$a$和$b$是任意实数。
公式特点
形式简洁,易于记忆,应用广泛。
公式推导及证明过程展示
01
02
03
推导方法
通过多项式乘法法则进行 推导,将$(a + b)(a - b)$ 展开得到$a^2 - b^2$。

平方差公式优秀教案

平方差公式优秀教案
三小结与作业
完成教学任务后,我引导学生进行自我小结,把本节课中自己最得意的部分展示给大家,继而结束了本课。对于本课的作业我采用分层布置和自由选择相结合的办法,激发了学生的积极性,提高了学生的参与意识,突出了学生的主体地位。
教后反思
平方差公式是初中数学的核心公式之一,它是特殊的整式的乘法,运用这一公式,可以迅速而简捷地计算出符合公式特征的多项式乘法结果。我想要学好这个公式,首先是让学生学会判断,哪些乘法算式能用平方差公式,运用公式计算时一定要看是否符合公式的特征,其次我知道培养学生数形结合思想方法和能力的重要性,通过几何意义说明平方差方式的探究过程,学生可以切实感受到两者之间的联系,学会一些探究的基本方法与思路,并体会到数学证明的灵巧间法与和谐美。
教学
目标
(一)教学知识点
1.经历探索平方差公式的过程.
2.会推导平方差公式,并能运用公式进行简单的运算.
(二)能力训练要求
1.在探索平方差公式的过程中,培养符号感和推理能力.
2.培养学生观察、归纳、概括的能力.
(三)情感与价值观要求
在计算过程中发现规律,并能用符号表示,从而体会数学的简洁美.
重点
平方差公式的推导和应用.
练习二:
2.运用平方差公式计算.

(四)综合拓展:
1.计算:
2.请你利用平方差公式求出 的值.
(五)课堂小结:
1.平方差公式是特殊的多项式乘法,要理解并掌握公式的结构特征.
2.在混合运算中,用平方差公式直接计算所得的结果可以写在一个括号里,以免发生符号错误.
3.我们还学到一种数学思想方法——从特殊到一般和学以致用的方法
难点
理解平方差公式的结构特征,灵活应用平方差公式.

平方差公式教案平方差公式优秀教案

平方差公式教案平方差公式优秀教案
对于优秀学生,应注重拓展学生的视野和提高学生的数学素养, 引导学生探究平方差公式的本质和内涵,鼓励学生提出自己的见 解和思考,培养学生的创新精神和探究能力。
06
教学评价与反馈
设计评价策略
课堂表现观察
观察学生在课堂上的参与度、积 极性和互动情况,以评估他们对
平方差公式的理解程度。
练习题完成情况
检查学生完成课堂练习和课后作业 的情况,了解他们是否掌握了平方 差公式的应用方法。
引导学生认识数学在现实生活 中的应用价值,培养学生的数 学应用意识。
02
教学内容与步骤
导入新课
回顾旧知
首先回顾之前学过的完全平方公 式和多项式乘法,为学习平方差 公式打下基础。
引入新课
通过具体的数学问题,如计算两 个数的平方差,引出平方差公式 的概念和重要性。
探究新知
公式理解
解释平方差公式的含义和应用条件, 帮助学生理解并掌握公式。
学生对平方差公式的理解不够深入,容易混淆公式中 的各项,导致计算错误。
学生在解决复杂问题时,缺乏综合分析能力和解决问 题的能力,需要加强训练和指导。
针对不同层次学生教学策略
对于基础较差的学生,应注重基础知识的教学和训练,通过大量 的练习和反复强调,帮助学生熟练掌握平方差公式的基本运用。
对于中等水平的学生,应注重提高学生的思维能力和解题技巧, 引导学生通过观察、比较、分析等方法发现数学规律,培养学生 的创新意识和实践能力。
公式应用
通过举例和练习,让学生熟悉平方差 公式的应用,如因式分解、化简求值 等。
巩固练习
01
02
03
基础练习
给出一些简单的计算题, 让学生运用平方差公式进 行计算,加深对公式的理 解和记忆。

《平方差公式》的优秀教学设计

《平方差公式》的优秀教学设计

《平方差公式》的优秀教学设计一、教学内容本节课的教学内容选自人教版小学数学五年级上册第五章《因数与积》中的平方差公式。

平方差公式是指两个数的平方差可以表示为它们的和与差的乘积的二倍,即a^2 b^2 = (a + b)(a b)。

二、教学目标1. 学生能够理解平方差公式的意义,并能够运用平方差公式进行计算。

2. 学生能够通过平方差公式,解决实际问题,提高解决问题的能力。

3. 学生能够培养合作交流的能力,提高学习的兴趣。

三、教学难点与重点1. 教学难点:平方差公式的推导过程和运用。

2. 教学重点:平方差公式的记忆和运用。

四、教具与学具准备1. 教具:黑板、粉笔、课件。

2. 学具:笔记本、练习本、铅笔。

五、教学过程1. 实践情景引入:让学生拿出自己的身高和座位距离,计算自己的座位面积。

2. 例题讲解:教师通过讲解一个简单的平方差问题,引导学生发现平方差公式的规律。

3. 随堂练习:学生独立完成一些平方差公式的练习题,巩固所学知识。

4. 小组合作:学生分组讨论,探索平方差公式的推导过程,并互相交流心得。

六、板书设计平方差公式:a^2 b^2 = (a + b)(a b)七、作业设计1. 题目:计算下列各题的平方差。

1) 9^2 4^22) 8^2 5^23) 7^2 3^22. 答案:1) 81 16 = 652) 64 25 = 393) 49 9 = 40八、课后反思及拓展延伸1. 课后反思:教师应反思本节课的教学效果,看学生是否掌握了平方差公式,是否能够运用到实际问题中。

2. 拓展延伸:教师可以引导学生进一步研究平方差公式的应用,如解决更复杂的实际问题,或者探索其他数学公式。

重点和难点解析:一、教学内容重点关注细节1. 平方差公式的推导过程:教师需要引导学生通过具体的例子,逐步推导出平方差公式,让学生理解并掌握公式的来源。

2. 平方差公式的运用:教师需要给出一些实际问题,让学生运用平方差公式进行计算,巩固所学知识。

平方差公式的优秀教案

平方差公式的优秀教案

平方差公式的优秀教案平方差公式的优秀教案平方差公式的优秀教案篇一:平方差公式的教案编者按:由中国教育部国际交流司与师范司,以及东芝公司共同举办的首届“东芝杯·中国师范大学师范专业理科大学生教学技能创新实践大赛”2008年11月30日在北京落下帷幕。

在参加数学模拟授课、教案评比、即席演讲三项决赛的12所师范大学中,华南师范大学的林佳佳夺得冠军(三项均列第一),北京师范大学的郗鹏获亚军,南京师范大学的朱嘉隽获季军。

三名获奖选手每人除了获奖励高级笔记本电脑一台之外,并获得免费赴日进行短期访学。

本刊刊登获得第一名的教案,以飨读者.【课题】 15.2.1 平方差公式【教材】人教版八年级数学上册第151页至153页. 【课时安排】1个课时. 【教学对象】八年级(上)学生.【授课教师】华南师范大学林佳佳. 【教学目标】 ? 知识与技能(1)理解平方差公式的本质,即结构的不变性,字母的可变性;(2)达到正用公式的水平,形成正向产生式:“﹙□+△﹚﹙□–△﹚”→“□2 –△2”.过程与方法(1)使学生经历公式的.独立建构过程,构建以数的眼光看式子的数学素养;(2)培养学生抽象概括的能力;(3)培养学生的问题解决能力,为学生提供运用平方差公式来研究等周问题的探究空间。

? 情感态度价值观纠正片面观点: ?数学只是一些枯燥的公式、规定,没有什么实际意义!学了数学没有用!?体会数学源于实际,高于实际,运用于实际的科学价值与文化价值。

【教学重点】1.平方差公式的本质的理解与运用;2.数学是什么。

【教学难点】平方差公式的本质,即结构的不变性,字母的可变性。

【教学方法】讲练结合、讨论交流。

【教学手段】计算机、PPT、flash。

【教学过程设计】二、教学过程设计第 2 页第 3 页第 4 页篇二:平方差公式优秀教案教学目标:一、知识与技能1、参与探索平方差公式的过程,发展学生的推理能力2、会运用公式进行简单的乘法运算。

《平方差公式》教学设计教学设计

《平方差公式》教学设计教学设计

《平方差公式》教学设计教学设计平方差公式教学设计一、教学目标1. 理解平方差公式的定义和含义;2. 掌握平方差公式的应用方法;3. 发展学生的逻辑思维和推理能力。

二、教学内容1. 平方差公式的概念和定义;2. 平方差公式的推导过程;3. 平方差公式的应用。

三、教学过程导入:1. 通过问答的方式引入平方差公式的概念,如:你们知道平方差公式是什么吗?它有什么作用?2. 引导学生回顾平方差公式之前所学过的知识,如平方根等。

知识讲解:1. 讲解平方差公式的定义和含义,如:平方差公式是指两个数的平方差等于这两个数的和与差的乘积。

用数学符号表示为:(a+b)(a-b)=a^2-b^2。

2. 讲解平方差公式的推导过程,通过具体的例子展示如何由(a+b)(a-b)=a^2-b^2推导出这一公式。

实例演示:1. 通过给出一些具体的数值例子,让学生进行演算,进一步加深对平方差公式的理解。

2. 提供一些实际问题,引导学生运用平方差公式解决实际问题。

练习巩固:1. 在教师的指导下,学生进行平方差公式的相关练习,如计算等。

2. 留出时间让学生进行自主练习,提高他们的巩固能力。

拓展应用:1. 鼓励学生思考更多的数学问题和应用,提高他们的数学思维能力。

2. 提供一些深入的扩展问题,让学生进行探索和研究。

四、教学评价1. 结合教学过程中的课堂练习和自主练习,收集学生的练习作业,进行评价和反馈。

2. 参考学生对平方差公式的掌握情况,对教学过程进行评估,并对下一步的教学进行调整。

五、教学资源1. 平方差公式的定义和推导过程的讲解材料;2. 平方差公式的练习题和答案;3. 相关的课件和教学工具。

六、教学反思本次教学设计主要围绕平方差公式展开,通过引导学生认识和理解平方差公式的概念和定义,提供具体的推导过程,并通过实例演示和练习巩固,达到对平方差公式的掌握和灵活运用。

同时,通过拓展应用和思考更多的数学问题,培养学生的数学思维和解决问题的能力。

2.1平方差公式一等奖创新教学设计

2.1平方差公式一等奖创新教学设计

2.1平方差公式一等奖创新教学设计14.2乘法公式14.2.1 平方差公式教学设计【教材分析】本节课选自人教版八年级上册第14章2.1乘法公式的第一课时《平方差公式》.它是继多项式乘以多项式之后的重要教学内容,是对多项式乘法中出现的特殊的算式的归纳总结,又是今后学习因式分解、分式化简、根式的分母有理化、解一元二次方程等代数运算及变形的前提基础;同时,它也是初中数学系统学习的第一个乘法公式,是学生初步认识公式结构,逐步形成符号意识,开始产生模型思想,进一步强化求简意识的经典范例,是代数运算以及解决许多数学问题的重要基础。

在此基础上掌握有特殊规律的式子结构并记住这一特殊式子结构为运算提高速度,增强学生自信心,所以引导学生掌握和善于发现事物规律是有趣的,也很有用的。

【学情分析】学生已经具备了整式加、减、乘等数式运算基础,以及小学学习过的正方形、矩形等图形基础.已经较熟练地掌握了多项式乘法,为验证平方差公式做了知识准备;并且通过日常的课堂教学的培养,学生已经具备了一定的小组合作能力、探究能力、归纳分析能力,能通过合作交流完成一定的学习任务。

【教学目标】1.理解平方差公式的推导过程,了解平方差公式的几何背景;2.掌握平方差公式的结构特征,会运用平方差公式进行简单运算;3. 经历平方差公式的探索过程,领悟平方差公式的变式应用,能创作平方差公式的变式题目.【教学重点、难点】1.教学重点:探究平方差公式,剖析平方差公式的结构,灵活运用平方差公式.2.教学难点:掌握公式在运用中的变化规律,深层次理解公式结构,自主创作变式题目.【课前准备】多媒体课件、卡纸、练习草稿等。

【教学方法】用找搭档方式,使两个式子相乘可以用平方差公式直接计算。

运用开放式教学策略组织课堂教学。

【教学构思】从生活中的情境导入→产生计算高手→抛出疑问(什么公式)→复习引入→新知探究→变式应用→思维拓展→总结升华→课后拓展→课时检测 .【教学过程设计】第一环节:创设情境,导入新课(PPT)【设计意图】老师从身边的神算手实景引入,从而引发学生好奇心和求知欲。

平方差公式优秀教学设计

平方差公式优秀教学设计

平方差公式优秀教学设计教学设计:平方差公式一、设计背景分析:二、教学目标:1.知识目标:了解平方差公式的定义和基本概念,掌握平方差公式的推导过程。

2.能力目标:能够根据给定的一元二次方程,运用平方差公式求解方程的根。

3.情感目标:培养学生解决数学问题的主动性和创造性,增强对数学的兴趣。

三、教学内容与方法:1.教学内容:平方差公式的定义、基本概念和推导过程。

2.教学方法:讲授法、示例法、合作学习法。

四、教学过程设计:1.导入(5分钟)教师通过提问引入课题:“大家知道一元二次方程吗?什么样的方程是一元二次方程?这些方程用途广吗?我们来看一个例子:2x²+4x+3=0,如何求解这个方程?”学生回答问题。

2.发现问题(10分钟)教师给出一元二次方程x²+2px+q=0,要求学生找出p、q与方程两根的关系。

学生思考一段时间后进行交流,得出结论:方程的两个根是-p,-q。

3.引入平方差公式(15分钟)教师通过数学推导的方式引入平方差公式:由(x-p)²=0得出x²-2px+p²=0,得到x= p±√(p²-q)。

教师详细讲解平方差公式的定义和基本概念,引导学生理解公式的含义。

4.案例演示(20分钟)教师给出一些实际问题,通过具体的案例演示平方差公式的应用:案例1:x²-5x+6=0教师引导学生使用平方差公式求解该方程,并进行步骤详细解释。

案例2:4y²-12y+9=0同样,教师引导学生使用平方差公式求解该方程,并进行步骤详细解释。

5.合作学习(20分钟)学生分成小组,自由讨论以下问题:问题1:解方程x²-12x+32=0问题2: 对于一元二次方程ax²+bx+c=0,如何根据平方差公式判断方程有几个解,并且说明理由。

6.总结(10分钟)教师对本节课的内容进行总结,强调平方差公式的重要性和应用。

五、教学评价方式:1.参与度评价:观察学生在课堂上的表现,是否积极参与讨论和回答问题。

平方差公式教案(共5篇)

平方差公式教案(共5篇)

平方差公式教案(共5篇)第一篇:平方差公式教案学习周报专业辅导学生学习第七节平方差公式(一)学习目的:1、通过经历探索平方差公式的过程,进一步发展符号感和推理能力。

2、会推导平方差公式、理解平方差公式的特点,并能运用公式进行简单的计算。

3、通过对平方差公式结构的认识,体会数学中的结构美、简约美。

学习重点:理解平方差公式的特点,会运用平方差公式计算学习难点:会推导平方差公式,并能灵活运用公式进行计算学习过程:一、复习探究1、请写出多项式与多项式相乘的法则:2、计算下列各题(1)(x+2)(x-2);(2)(1+3a)(1-3a)(3)(x+5y)(x-5y);(4)(y+3z)(y-3z)解:3、通过以上计算,你发现了什么规律?能不能猜想出一个一般性的结论?规律:结论:二、学习新课1、推导公式:现在要对大家提出的猜想进行证明,请试着写出证明过程:证明:我们经历了由发现——猜测——证明的过程,最后得出一个公式性的结论,根据它的特点,我们给它取个容易记的名字,就叫做平方差公式学习周报专业辅导学生学习即:(a+b)(a-b)=a-b两个数的和与这两个数的差相乘,它们的积就等于这两个数的平方差.你知道公式中的a、b表示什么?请同学们分析公式的结构并记忆。

2、应用公式例1、用平方差公式计算:(1)(5+6x)(5-6x);(2)(x-2y)(x+2y)分析:要利用平方差公式解题,必须找到相同的项和互为相反数的项,结果为相同项的平方减互为相反数的项的平方.解:(1)(5+6x)(5-6x)=5-(6x)=25-36x(2)(x-2y)(x+2y)=x-(2y)=x-4y 例2、利用平方差公式计算(1)(-m+n)(-m-n);(2)(-2x-5y)(5y-2x);222222222(3)(ab+8)(-ab+8)分析:注意找准相同项与互为相反数的项.解:(1)(-m+n)(-m-n)=(-m)-n=m-n(2)(-2x-5y)(5y-2x)=(-2x)2-(5y)2=4x2-25y2(3)(ab+8)(-ab+8)=82-(ab)2=64-a2b2 现在让我们来试试吧!练习1:下列各题能否用平方差公式来进行计算?若能,请写出结果。

平方差公式教学设计(优秀10篇)

平方差公式教学设计(优秀10篇)

平方差公式教学设计(优秀10篇)平方差公式说课课件篇一平方差公式教学反思本节课采用情景—探究的方式,以猜想、实验、论证为主要探究方式,得出平方差公式,应用逆向思维的方向,演绎出平方差公式,对公式的应用首先提醒学生要注意其特征,其次要做好式子的变形,把问题转化成能够应用公式的方面上来,应用公式法因式分解的过程,实际上就是转化和化归的过程。

在解决认识平方差公式的`结构时候,重点突出学生自我思想的形成,能够充分地不公式用自己的语言来叙述,在整个教学设计中,教师只作为了一个点拨者和引路人。

然后应用有梯度的典型例题加以巩固,在学生头脑中形成一个清晰完整的数学模型,使学生在今后的练习中游刃有余。

不足之处:教学中时间把握还是不足,在设计的题目中不怎么合理,应按题目的难度从易到难。

有些题目的归纳可放手给学生讨论后由学生说出,而不是教师代替。

小组评价做的不够,没有足够的小组的活动,没有小组的竞赛。

教学语言还太随意,数学的语言应该严谨。

在语调上应该有所变化。

平方差公式篇二2.运用公式要注意什么?(1)要符合公式特征才能运用平方差公式;(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.四、作业1.运用平方差公式计算:(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);(5)(2x3+壹五)(2x3-壹五);(6)(0.3x-0.l)(0.3x+l);2.计算:(1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).热门文章青少年思想道德建设当前我国作文教学改革的新趋势古诗三首(墨梅竹石石灰吟)一场雪Unit2Look at me第五课时植物妈妈有办法威尼斯的小艇等比数列的前n项和相关文章・多项式的乘法・单项式与多项式相乘・单项式的乘法・幂的乘方与积的乘方(二)・幂的乘方与积的乘方・同底数幂的乘法(二)・同底数幂的乘法・一元一次不等式组和它的解法平方差公式教学课件篇三平方差公式教学课件教学目的:1、使学生会推导平方差公式,并掌握公式特征。

平方差公式优秀教案(多场景)

平方差公式优秀教案(多场景)

平方差公式优秀教案一、教学目标1.知识与技能目标:使学生理解平方差公式的概念,掌握平方差公式的推导过程,并能熟练运用平方差公式进行计算。

2.过程与方法目标:通过自主探究、合作交流,培养学生运用平方差公式解决问题的能力,提高学生的逻辑思维和推理能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生主动探索、积极参与的精神,增强学生的团队合作意识。

二、教学内容1.平方差公式的定义:平方差公式是指两个数的平方差可以表示为两个数的和与差的乘积。

2.平方差公式的推导:通过具体的例子,引导学生观察、分析,发现平方差公式,并运用多项式乘法进行验证。

3.平方差公式的应用:解决实际问题,如计算平方差、因式分解等,培养学生运用平方差公式解决问题的能力。

三、教学重点与难点1.教学重点:平方差公式的推导和应用。

2.教学难点:平方差公式的理解和灵活运用。

四、教学过程1.导入新课:通过实际生活中的例子,如计算土地面积、求解速度问题等,引出平方差的概念。

2.自主探究:让学生观察具体的平方差例子,如\(a^2b^2\),引导学生发现平方差公式。

3.合作交流:分组讨论,让学生互相分享自己的发现,共同推导平方差公式。

4.课堂讲解:对学生的发现进行总结,给出平方差公式的定义,并进行推导。

5.案例分析:通过具体的例题,讲解平方差公式的应用,如计算平方差、因式分解等。

6.练习巩固:布置相关练习题,让学生独立完成,巩固平方差公式的运用。

7.课堂小结:总结本节课的主要内容,强调平方差公式的推导和应用。

8.课后作业:布置课后作业,让学生运用平方差公式解决实际问题。

五、教学评价1.过程评价:观察学生在课堂上的参与程度、合作交流的表现,评价学生在自主探究、合作交流中的表现。

2.练习评价:检查学生在练习中的完成情况,评价学生对平方差公式的理解和运用能力。

3.课后作业评价:批改课后作业,评价学生对平方差公式的掌握程度,以及运用平方差公式解决问题的能力。

平方差公式教学教案【优秀9篇】

平方差公式教学教案【优秀9篇】

平方差公式教学教案【优秀9篇】平方差公式教学设计篇一《平方差公式》教学反思学生已经掌握了多项式与多项式相乘,但是对于某些特殊的多项式相乘,可以写成公式的形式,直接写出结果,乘法公式应用十分广泛,也是本章重点内容之一。

平方差公式是第一个乘法公式,教学时,我是这样引入新课的,先计算下列各题,看谁做的又对又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。

激发学生的好胜心并为进一步探索新知搭建好有力的平台,然后我又让学生讨论交流上面几个等式左、右两边各有什么特点,你能用字母表示你发现的规律吗?你能用语言叙述这个规律吗?给学生充分的观察、分析、讨论交流的时间,老师应及时的给与必要的指导、鼓励和由衷的赞美,这一点我做的还很不够,今后要多多注意。

然后我有设计了这样一道题:下列多项式乘法中可以用平方差公式计算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)帮助学生理解公式的特征,掌握公式的。

特征是正确运用公式的关键,除了掌握公式的特征外还有必要理解公式中的字母a、b具有广泛的含义,几字母a、b可以表示具体的数、也可以表示单项式或多项式,由于学生的认知能力有一个过程,教学中应由易到难逐步安排学习这方面的内容。

《平方差公式》的优秀教学设计篇二一、教材分析本节课选自人教版八年级上册第14章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。

对它的学习和研究,不仅给出了特殊的多项式乘法的'简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式提供了方法。

因此,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位,同时也是最基本、用途最广泛的公式之一。

《平方差公式》优质教学设计

《平方差公式》优质教学设计

《平方差公式》优质教学设计目录•课程介绍与目标•教学内容与方法•互动环节与课堂活动•巩固提高与拓展延伸•评价方式与标准•教学反思与改进建议01课程介绍与目标平方差公式概念及重要性平方差公式定义阐述平方差公式的基本形式,即$a^2-b^2=(a+b)(a-b)$,并解释公式中各项的含义。

平方差公式的应用说明平方差公式在代数运算、因式分解、化简求值等方面的重要应用,以及在解决数学问题中的关键作用。

要求学生掌握平方差公式的基本形式和应用方法,能够运用平方差公式进行代数运算和因式分解。

知识与技能过程与方法情感态度与价值观通过引导学生观察、比较、归纳等数学活动,培养学生的数学思维和解决问题的能力。

让学生感受数学公式的简洁美和对称美,激发学生学习数学的兴趣和热情。

030201教学目标与要求教材分析与选用教材分析对所选用的教材进行深入分析,明确教材的特点、优点和不足,为教学设计提供依据。

教材选用根据教学需要和学生的实际情况,选用合适的教材,确保教学内容的科学性和系统性。

同时,可以结合一些辅助材料或网络资源,丰富教学内容和形式。

02教学内容与方法通过实际问题引入平方差的概念,让学生明确学习目的。

引入概念利用多项式乘法法则,引导学生推导平方差公式,并理解公式中各项的含义。

推导公式通过举例验证平方差公式的正确性,加深学生的理解。

验证公式平方差公式推导过程计算(a+b)(a-b) 的结果,并说明平方差公式的应用。

例题一利用平方差公式计算(2x+3)(2x-3) 的结果,并解释计算过程。

例题二求(m+n)^2 -(m-n)^2 的值,并说明如何运用平方差公式进行化简。

例题三典型例题分析与解答提高练习设计一些稍复杂的题目,需要学生灵活运用平方差公式进行化简和计算。

基础练习设计一些简单的计算题目,让学生运用平方差公式进行计算。

拓展练习设计一些具有挑战性的题目,引导学生探索平方差公式的更多应用。

学生自主练习题目设计03互动环节与课堂活动小组合作探究平方差公式应用分组讨论将学生分成若干小组,每组4-5人,让他们共同探究平方差公式的应用。

平方差公式教案教学设计(优秀7篇)

平方差公式教案教学设计(优秀7篇)

平方差公式教案教学设计(优秀7篇)《平方差公式》教学反思篇一教学目的进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。

教学重点和难点:公式的应用及推广。

教学过程:一、复习提问1、(1)用较简单的代数式表示下图纸片的面积。

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。

讲评要点:沿hd、gd裁开均可,但一定要让学生在裁开之前知道hd=bc=gd=fe=a-b,这样裁开后才能重新拼成一个矩形。

希望推出公式:a2-b2=(a+b)(a-b)2、(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异。

说明:平方差公式的数学表达式在使用上有三个优点:(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁。

但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解。

依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括。

因而也就“欠”明确(如结果不知是谁与谁的平方差)。

故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活。

3、判断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)平方差公式的教学设计篇二学习目标:1、能推导平方差公式,并会用几何图形解释公式;2、能用平方差公式进行熟练地计算;3、经历探索平方差公式的推导过程,发展符号感,体会“特殊——一般——特殊”的认识规律。

《平方差公式》教学教案

《平方差公式》教学教案

《平方差公式》教学教案第一章:导入1.1 教学目标让学生理解平方差公式的概念及意义。

培养学生对平方差公式的兴趣和好奇心。

1.2 教学内容平方差公式的定义和表达式。

平方差公式的推导过程。

1.3 教学步骤1. 引入平方差公式的概念,让学生回顾已学的平方和乘法运算。

2. 通过示例,引导学生观察和总结平方差公式的规律。

3. 让学生尝试推导平方差公式,并提供必要的提示和指导。

1.4 教学评价观察学生在推导过程中的理解和应用能力。

评估学生对平方差公式的掌握程度。

第二章:平方差公式的应用2.1 教学目标培养学生应用平方差公式解决问题的能力。

培养学生运用平方差公式进行简便计算的能力。

2.2 教学内容平方差公式的应用场景和问题类型。

平方差公式在实际问题中的应用方法。

1. 引入平方差公式的应用场景,让学生理解平方差公式的实际意义。

2. 通过示例,展示平方差公式在实际问题中的应用方法。

3. 让学生尝试解决一些实际问题,应用平方差公式进行计算和解答。

2.4 教学评价观察学生在解决实际问题时的应用能力和计算准确性。

评估学生对平方差公式应用的理解和掌握程度。

第三章:平方差公式的拓展3.1 教学目标让学生理解平方差公式的拓展概念和性质。

培养学生运用平方差公式解决更复杂问题的能力。

3.2 教学内容平方差公式的拓展概念和性质。

平方差公式在其他数学领域的应用。

3.3 教学步骤1. 引导学生思考平方差公式的拓展概念和性质,让学生进行自主探索。

2. 通过示例,介绍平方差公式在其他数学领域的应用,如二次方程的解法等。

3. 让学生尝试解决一些更复杂的题目,运用平方差公式进行计算和解答。

3.4 教学评价观察学生在探索平方差公式拓展概念和性质时的理解和思考能力。

评估学生对平方差公式在解决更复杂问题中的运用能力和创造力。

第四章:巩固练习巩固学生对平方差公式的理解和掌握。

提高学生运用平方差公式解决问题的能力。

4.2 教学内容设计一些练习题目,让学生运用平方差公式进行计算和解答。

《平方差公式》教学设计一等奖

《平方差公式》教学设计一等奖

《平方差公式》教学设计一等奖《《平方差公式》教学设计一等奖》这是优秀的教学设计一等奖文章,希望可以对您的学习工作中带来帮助!1、《平方差公式》教学设计一等奖教学建议一、知识结构二、重点、难点分析本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.1.平方差公式是由多项式乘法直接计算得出的:与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.只要符合公式的结构特征,就可运用这一公式.例如在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了.3.关于平方差公式的特征,在学习时应注意:(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).(3)公式中的和可以是具体数,也可以是单项式或多项式.(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.三、教法建议1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的`能力.2.通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即(a+b)(a-b)=a2+ab-ab-b2=a2-b2.这样得出平方差公式,并且把这类乘法的实质讲清楚了.3.通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),(1+2x)(1-2x)=12-(2x)2=1-4x2↓↓↓↓↑↑(a+b)(a-b)=a2-b2.这样,学生就能正确应用公式进行计算,不容易出差错.另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.教学目标1.使学生理解和掌握平方差公式,并会用公式进行计算;2.注意培养学生分析、综合和抽象、概括以及运算能力.教学重点和难点重点:平方差公式的应用.难点:用公式的结构特征判断题目能否使用公式.教学过程设计一、师生共同研究平方差公式我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.在此基础上,让学生用语言叙述公式.二、运用举例变式练习例1计算(1+2x)(1-2x).解:(1+2x)(1-2x)=12-(2x)2=1-4x2.教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.例2计算(b2+2a3)(2a3-b2).解:(b2+2a3)(2a3-b2)=(2a3+b2)(2a3-b2)=(2a3)2-(b2)2=4a6-b4.教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.课堂练习运用平方差公式计算:(l)(x+a)(x-a);(2)(m+n)(m-n);(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).例3计算(-4a-1)(-4a+1).让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.解法1:(-4a-1)(-4a+1)=[-(4a+l)][-(4a-l)]=(4a+1)(4a-l)=(4a)2-l2=16a2-1.解法2:(-4a-l)(-4a+l)=(-4a)2-l=16a2-1.根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.课堂练习1.口答下列各题:(l)(-a+b)(a+b);(2)(a-b)(b+a);(3)(-a-b)(-a+b);(4)(a-b)(-a-b).2.计算下列各题:(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.三、小结1.什么是平方差公式?2.运用公式要注意什么?(1)要符合公式特征才能运用平方差公式;(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.四、作业1.运用平方差公式计算:(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);(5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);2.计算:(1)(x+y)(x-y)+(2x+y)(2x+y);(2)(2a-b)(2a+b)-(2b-3a)(3a+2b);(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).2、《平方差公式》教学设计一等奖教学目的进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.教学重点和难点:公式的应用及推广.教学过程:一、复习提问1.(1)用较简单的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.希望推出公式:a2-b2=(a+b)(a-b)2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的`数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人套用(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就欠明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a 与b,这样才能使自己的计算即准确又灵活.3.判断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;()(2)(4x+3b)(4x-3b)=16x2-9;()(3)(4x+3b)(4x-3b)=4x2+9b2;()(4)(4x+3b)(4x-3b)=4x2-9b2;()二、新课例1 运用平方差公式计算:(1)102 (2)(y+2)(y-2)(y2+4).解:(1)10298 (2)(y+2)(y-2)(y2+4)=(100+2)(100-2) =(y2-4)(y2+4)=1002-22=10000-4 =(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103 (2)(x+3)(x-3)(x2+9);(3)59.8 (4)(x- )(x2+ )(x+ ).3.请每位同学自编两道能运用平方差公式计算的题目.例2 填空:(1)a2-4=(a+2)();(2)25-x2=(5-x)();(3)m2-n2=()();思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习1.x2-25=()();2.4m2-49=(2m-7)();3.a4-m4=(a2+m2)()=(a2+m2)()();例3 计算:(1)(a+b-3)(a+b+3); (2)(m2+n-7)(m2-n-7).解:(1)(a+b-3)(a+b+3) (2)(m2+n-7)(m2-n-7)=[(a+b)-3][(a+b)+3] =[(m2-7)+n][(m2-7)-n]=(a+b)2-9=a2+2ab+b2-9. =(m2-7)2-n2=m4-14m2+49-n2.三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样判断一个多项式的乘法问题是否可以用平方差公式?四、布置作业1.运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:(1)69 (2)53 (3)503 (4)40 39 .3、《平方差公式》教学设计一等奖教学目标理解两个完全平方公式的结构,灵活运用完全平方公式进行运算。

《平方差公式》教学教案

《平方差公式》教学教案

《平方差公式》教学教案第一章:导入1.1 教学目标:让学生理解平方差公式的概念和意义。

引导学生通过实际例子发现平方差公式的规律。

1.2 教学内容:平方差公式的定义和表达式。

平方差公式的推导过程。

1.3 教学步骤:1.3.1 引入平方差的概念,让学生回顾平方的定义和性质。

1.3.2 通过实际例子,引导学生发现平方差的现象,并总结规律。

1.3.3 给出平方差公式的表达式,解释其含义和适用范围。

1.4 教学评估:提问学生对平方差公式的理解和应用。

让学生完成一些相关的练习题,检验其对平方差公式的掌握程度。

第二章:平方差公式的推导2.1 教学目标:让学生理解平方差公式的推导过程。

培养学生通过逻辑推理和数学思维解决问题的能力。

2.2 教学内容:平方差公式的推导方法。

平方差公式的证明过程。

2.3 教学步骤:2.3.1 引导学生回顾平方的定义和性质,复习平方差的概念。

2.3.2 引导学生通过实际例子和数学推理,推导出平方差公式。

2.3.3 给出平方差公式的证明过程,解释其逻辑和数学依据。

2.4 教学评估:提问学生对平方差公式的推导过程和证明的理解。

让学生完成一些相关的练习题,检验其对平方差公式的推导和证明的掌握程度。

第三章:平方差公式的应用3.1 教学目标:让学生掌握平方差公式的应用方法。

培养学生运用平方差公式解决实际问题的能力。

3.2 教学内容:平方差公式的应用场景和例题。

平方差公式的变形和扩展。

3.3 教学步骤:3.3.1 引导学生理解平方差公式的应用场景,例如解决几何问题、物理问题等。

3.3.2 给出一些例题,引导学生运用平方差公式进行计算和解决问题。

3.3.3 引导学生对平方差公式进行变形和扩展,探讨其适用范围和限制条件。

3.4 教学评估:提问学生对平方差公式的应用场景和例题的理解。

让学生完成一些相关的练习题,检验其对平方差公式的应用和解决问题的掌握程度。

第四章:练习与巩固4.1 教学目标:让学生通过练习题巩固对平方差公式的理解和应用。

《平方差公式》教学设计(优秀7篇)

《平方差公式》教学设计(优秀7篇)

《平方差公式》教学设计(优秀7篇)平方差公式教学反思篇一平方差公式与完全平方公式是初中数学代数学知识方面应用最广泛的公式,也是学生代数运算的基础公式,在今后的数学学习过程中,更能体现其重要性,所以这两个公式的教学要求很高,需要每一名学生都必须熟练掌握这两个公式,并因此可以灵活运用公式进行因式分解和分解因式,解决很多代数问题。

如同勾股定理在全世界数学基础教学中地位显著,全世界各地数学教科书都要求学生掌握一样,平方差公式与完全平方公式也是全世界以致全国各地教科书都必讲必学的内容之一,作为整式的乘法公式,人教版教科书把平方差公式与完全平方公式安排在整式的乘法这一章的第二节,在第一节内容上先让学生掌握整式乘法的各项法则,当学生熟练掌握多项式与多项式的乘法后,再由此让学生来学生我们的乘法公式,本节内容分两部分,先介绍平方差公式,再介绍完全平方公式。

在学生熟练掌握多项式与多项式的乘法后,开始介绍平方差公式,教科书上是由找规律开始,让学生利用多项式乘法法则计算,从而发现平方差公式,由找规律得出公式的猜想,再介绍平方差公式的几何面积验证方法,来验证公式猜想的正确性,从而由代数探究及几何论证来得出平方差公式,得出公式后再来实际应用。

我一直严格要求自己,认真备教材,当然也认真备学生,使课堂教学符合学生的实际需要。

学生基础较差,教学内容要求生动、易学易懂,让学生能在活动教学中进行简单探究从而掌握好基础知识。

,我认真准备,仔细研读教材,精心制作出课件和教案,按教科书的教学顺序和过程,既安排学生计算上的运算探究猜想,又安排几何实践剪纸法,利用面积来验证公式。

我从实际问题出发,给出动手操作的实际几何问题引出本课,得出平方差公式的猜想,让学生动手实践,数形结合得出平方差公式,在利用多项式的乘法法则计算验证,最后辨析、应用,让学生熟悉平方差公式,最后应用提高,给出实际生活中的一个问题,利用平方差公式计算较大的数字,让学生明白学习,平方差公式不但可以在实际生活中运用,而且还可以简便计算,激发学生对平方差公式学习的兴趣,从而很好地掌握好平方差公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平方差公式》的优秀教学设计《平方差公式》的优秀教学设计作为一名辛苦耕耘的教育工作者,通常需要准备好一份教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。

那么优秀的教学设计是什么样的呢?以下是店铺帮大家整理的《平方差公式》的优秀教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《平方差公式》的优秀教学设计篇1教学目的进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。

教学重点和难点:公式的应用及推广。

教学过程:一、复习提问1、(1)用较简单的代数式表示下图纸片的面积。

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。

讲评要点:沿hd、gd裁开均可,但一定要让学生在裁开之前知道hd=bc=gd=fe=a-b,这样裁开后才能重新拼成一个矩形。

希望推出公式:a2-b2=(a+b)(a-b)2、(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异。

说明:平方差公式的数学表达式在使用上有三个优点。

(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁。

但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解。

依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括。

因而也就“欠”明确(如结果不知是谁与谁的平方差)。

故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活。

3、判断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)二、新课例1 运用平方差公式计算:(1)102×98;(2)(y+2)(y-2)(y2+4)。

解:(1)102×98 (2)(y+2)(y-2)(y2+4)=(100+2)(100-2) =(y2-4)(y2+4)=1002-22=10000-4 =(y2)2-42=y4-16。

=9996;2、运用平方差公式计算:(1)103×97;(2)(x+3)(x-3)(x2+9);(3)59.8×60.2;(4)(x- )(x2+ )(x+ )。

《平方差公式》的优秀教学设计篇2一、教材分析本节课选自人教版八年级上册第14章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。

对它的学习和研究,不仅给出了特殊的多项式乘法的'简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式提供了方法。

因此,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位,同时也是最基本、用途最广泛的公式之一。

二、学情分析1、学生的知识技能基础:学生在前面的学习中,已经学习了整式的有关内容,并经历了用字母表示数量关系的过程,有了一定的符号感。

经过一个学期的培养,学生已经具备了小组合作、交流的能力。

学生刚学过多项式的乘法,已具备学习并运用平方差公式的知识结构,通过创造问题情境,让学生承担任务,在探究相应问题中,建立并运用公式,从而使拓展学生知识技能结构成为可能。

通过实际问题的探究,学生已感受到多项式乘法运算的重要性,同时,具备了对式的运算基础“快”“准”的积极心理,学生已具备学习公式的知识与技能结构,通过新课程教学的实施,培养学生具有独立探索、合作交流的习惯。

2、学生活动经验基础:学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性。

三、教学目标1、知识目标:经历平方差公式的探索及推导过程,掌握平方差公式的结构特征并能熟练应用。

2、能力目标:运用公式进行简单的运算,获得一些数学活动的经验,进一步增强学生的符号感、推理和归纳能力及解决问题的能力。

3、情感目标:让学生经历“特殊到一般再到特殊”(即:特例─归纳─猜想─验证─用数学符号表示—解决问题)这一数学活动过程,积累数学活动的经验,体会数学的简洁美和数形结合的思想方法。

培养他们合情推理和归纳的能力以及在解决问题过程中与他人合作交流的意识。

通过几方面的合力,提高学生归纳概括、逻辑推理等核心素养水平。

四、教学重难点教学重点:体会公式的发现和推导过程,理解公式的本质和结构特征,能用自己的语言说明公式及其特点;并会运用公式进行简单的计算。

教学难点:从广泛意义上理解公式中的字母含义,具体问题要具体分析,会运用公式进行计算。

五、信息技术应用思路1、本课运用了信息技术辅助教学,主要使用的技术有:PPT课件、几何画板。

2、使用几何画板技术,演示利用动态绘图软件研究周期性快速切换、更改周期,形象演示图形变化,利用面积法推导平方差公式;在导入、难点突破、练习巩固等环节使用信息技术。

3、预期效果:激发学生学习兴趣;找准并突破难点;提高课堂学习效率。

整个教学过程用PPT节约了时间,使课容量适中;多媒体更能吸引学生的注意力,更利于课堂的完整。

六、教学过程设计(一)创设情境,导入课题问题1:美丽壮观的城市广场,是人们休闲旅游的地方,已经成为现代化城市的一道风景线。

某城市广场呈长方形,长为1003米,宽997米。

你能用简便的方法计算出它的面积吗?看谁算得快:师生活动:学生欣赏图片,感受生活中的数学问题,并进行生活中的数学向数学模型转换。

信息技术支持:PPT演示由现实中的实际问题入手,创设情境,从中挖掘蕴含的数学问题。

(二)探索新知,尝试发现问题2:时代中学计划将一个边长为m米的正方形花坛改造成长(m+1)米,宽为(m-1)米的长方形花坛。

你会计算改造后的花坛的面积吗?计算下列多项式的积,你能发现什么规律?(1)(m+1)(m-1)= ;(2)(5+x)(5-x)= ;(3)(2x+1)(2x-1)= 。

师生活动:学生在教师的引导下,通过小组讨论探究,进行多项式的乘法,计算出结论。

信息技术支持:PPT动画演示。

结论是一个平方减去另一个平方的形式,效果十分鲜明。

(三)总结归纳,发现新知问题3:依照以上三道题的计算回答下列问题:(1)式子的左边具有什么共同特征?(2)它们的结果有什么特征?(3)能不能用字母表示你的发现?问题4:你能用文字语言表示所发现的规律吗?教师提问,学生通过自主探究、合作交流,发现规律:两个数的和与这两个数的差的积,等于这两个数的平方差。

师生活动:学生在教师的引导下,通过小组讨论探究,归纳平方差公式的语言叙述。

式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,信息技术支持:PPT和几何画板演示,培养了学生的探究意识和合情推理的能力以及概括总结知识的能力。

(四)数形结合,几何说理问题5:在边长为a的正方形中剪去一个边长为b的小正方形,然后把剩余的两个长方形拼成一个长方形,你能用这两个图形的面积说明平方差公式吗?提示:a2-b2与(a+b)(a-b)都可表示该图形的面积。

师生活动:通过学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证了平方差公式的正确性,渗透了数形结合的思想。

信息技术支持:PPT演示,进一步利用动画的演示巩固对平方差公式的理解程度,培养了学生的应用意识。

(五)剖析公式,发现本质1。

左边是两个二项式相乘,其中“a与a”是相同项,“b与-b”是相反项;右边是二项式,相同项与相反项的平方差,即(a+b)(a-b)=a2-b2。

2。

让学生说明以上四个算式中,哪些式子相当于公式中的a和b,明确公式中a和b的广泛含义,归纳得出:a和b可能数或代表式。

师生活动:在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住概念的核心。

信息技术支持:通过PPT练习实现了知识向能力的转化,让学生主动尝试运用所学知识寻求解决问题。

(六)巩固运用,内化新知问题6:判断下列算式能否运用平方差公式计算:(1)(2x+3a)(2x–3b);(2)(-m+n)(m-n)。

问题7:利用平方差公式计算:(1)(3x +2y)(3x-2y);(2)(-7+2m2)(-7-2m2)。

师生活动:学生经过思考、讨论、交流,进一步熟悉平方差公式的本质特征,掌握运用平方差公式必须具备的条件。

信息技术支持:PPT展示书写步骤,有利于节省时间,提高效率,规范学生书写。

(七)拓展应用,强化思维问题8:利用平方差公式计算情景导航中提出的问题:即:1003×997=(1000+3)(1000-3)=10002-32=1000000-9=999991。

问题9:小明家有一块“L”形的自留地,现在要分成两块形状、面积相同的部分,种上两种不同的蔬菜,请你来帮小明设计,并算出这块自留地的面积。

师生活动:设计此组题旨在从正反两方面灵活运用平方差公式,由结果追溯算式中的相同项和相反项,关键在于理解公式结构特征,同时训练了学生逆向思维能力。

信息技术支持:PPT展示书写步骤,有利于节省时间。

(八)总结概括,自我评价问题10:这节课你有哪些收获?还有什么困惑?提示:从知识和情感态度两个方面加以小结。

师生活动:使学生对本节课的知识有一个系统全面的认识,分组讨论后交流。

信息技术支持:PPT演示,复习、巩固本节课的知识,在掌握基础知识的前提下,增加提高练习,适当增加灵活度,进一步深化对知识的理解。

(九)课后作业1、必做题:课本P36习题2.1A组1、2。

2、选做题:课本P36习题2.1B组1、2。

作业分层处理有较大的弹性,体现作业的巩固性和发展性原则,尊重学生的个体差异。

七、教学反思1、本节课通过与学生生活紧密联系问题及多媒体图画设计引入,激发了学生学习兴趣,同时在教学中以学生自主探究为主,为不同学生设计练习,有利于提升了学生的自信心。

2、多媒体的应用能使学生充分体验到教育信息技术的优点,在操作过程中体会学习的快乐,特别是操作简单,学习效率大大提升,在学习过程中使教学软件与本节课的教学内容紧密结合在一起,使学生的思维始终关注学科本质。

3、信息技术的应用,便于及时发现问题,反馈教学,使教与学更有层次性、针对性、实效性。

教师要善于抓住这个契机,充分利用多媒体技术,利用图形结合功能,降低难度,增强直观性。

相关文档
最新文档