土中应力计算
4土中应力的计算
y x
) xz x (1 P(1 )P xz x 2 u ( 1 ) u (1 2 3 ) 3E 2 R ( R z ) R 2E R R( R z ) 1 ) yz y (yz P (1v )P y ( 1 2 ) 2 3 v ( 1 ) E R R ( R z ) 2 3 2E P R R ( R z ) 2 1 (1 2 ) z w 12 (1 ) 3 P (1 ) 2 z E R R ) w 3 2(1 2E R R
第4章
土中应力的计算
土体受到力的作用,以内力的形式作出响 应,即产生内力,内力的集度称为应力。 应力按起因可分为:自重应力和附加应力。
土中某点的总应力=
该点的自重应力与附加应力之和。
应力按分担作用可分为: 有效应力和孔隙应力(孔隙压力)。
土中某点的总应力=
该点的有效应力与孔隙应力之和。
均质土中的自重应力
关于基底压力简化计算的说明
基底压力的简化计算
(一) 中心荷载下的基底压力P(kPa)
室内设计地面 G
d d
F
+0.00
+0.00
G
F
室外设计地面
b
b
p (a) (b)
p
d — 基础埋 深(m);必 须从设计地 面或室内外 平均设计地 面算起。
F G p A
F — 作用任基础上的竖向力设计值(kN); G — 基础自重设计值及其上回填土总重 (kN);G=GAd , 其中G为基础及回填土之 平均重度,一般取20kN/m3。
单向偏心荷载下的基底压力
单向偏心荷载 下,设计时通常 取基底长边方向 与偏心方向一致, 此时两短边边缘 最大压力设计值 pmax 与最小压力设 计 值 pmin 按 材 料 力学短柱偏心受 压公式计算:
土力学:第三章土中应力计算
附加应力的分布规律
平面分布规律
附加应力在平面上的分布呈扩散状,随着深度的 增加而减小。
深度分布规律
在一定深度范围内,附加应力随深度的增加而增 大,达到一定深度后基本保持稳定。
方向分布规律
附加应力在不同方向上的分布不同,与外部荷载 的方向和土体的性质有关。
附加应力的影响因素
01
外部荷载
外部荷载的大小、分布和作用方 式直接影响附加应力的分布和大 小。
在水平方向上,自重应力 表现为均匀分布。
侧向应力
在土体边缘,自重应力表 现为侧向应力,对土体的 稳定性产生影响。
自重应力的影响因素
土的密度
土的密度越大,自重应力越大。
重力加速度
重力加速度越大,自重应力越大。
土体的几何形状和尺寸
土体的几何形状和尺寸对自重应力的分布和大小有显著影响。
04 土中附加应力计算
02
03
土体的性质
边界条件
土体的容重、压缩性、内摩擦角、 粘聚力等性质对附加应力的影响 较大。
土体的边界条件,如固定边界、 自由边界等,对附加应力的分布 和大小也有影响。
05 土中有效应力计算
CHAPTER
有效应力的概念与计算方法
有效应力的概念
有效应力是指土壤颗粒之间的法向应 力,是土壤保持其结构稳定和防止剪 切破坏的主要因素。
土中应力计算的重要性
01
02
03
工程安全
准确的土中应力计算是确 保工程安全的前提,能够 预测可能出现的危险和制 定应对措施。
设计优化
通过土中应力计算,可以 优化设计方案,提高工程 结构的稳定性和经济性。
科学研究
土中应力计算有助于深入 研究土力学性质和规律, 推动土力学学科的发展。
土力学-土中应力计算
(1)地下水位下降情况
水位未降前 scz前=′z
水位下降后
scz后 = z
scz后 scz前
因scz后 scz前 土中有效应力增加
地面沉降
原地下水位 1
变动后地下水位 1′
原自重应力分布曲线
1′
变动后地下水位
1
原地下水位
地下水位变动后的 自重应力分布曲线
2′
2
z
2
2′
z
(2)地下水位上升
地基土和基础的刚度;荷载;基础埋深;地基土性质
基底压力是地基和 基础在上部荷载作 用下相互作用的结 果,受荷载条件、 基础条件和地基条 件的影响
暂不考虑上部结构的影 响,用荷载代替上部结 构,使问题得以简化
•大小
荷载条件: •方向
•分布
基础条件:
• 刚度 • 形状 • 大小 • 埋深
• 土类
地基条件: • 密度
二.水平向自重应力计算
s cx s cy K0s cz
z
K0——侧压力系数
t 0
scz scy
W
scx
F=1
无侧向变形(有侧限)条件下:
scz scx
εx εy 0
σx σy
scy
根据弹性力学中广义虎克定律:
εx
1 E
σx
υ
σy
σz
ch s cx s cy K0s cz
K0
• 土层结构等
1.基础的刚度的影响
柔性基础(EI=0)
Eg.土坝(堤)、路基、油罐等薄板基础、机场跑道。
沉降各处不同, 中央大边缘小
变形地面
反力
基底压力分布与 作用的荷载的分
布完全相同
土体中的应力计算
土体中的应力计算在土体中,应力是指单位面积上的力的作用,可以分为垂直应力和水平应力。
垂直应力是指垂直于土体中其中一点的力的作用,通常用σ表示,单位为N/m²或Pa;水平应力是指与土体中其中一点切向的力的作用,通常用τ表示,单位为N/m²或Pa。
在计算土体中的应力时,需要先确定作用力的大小和方向。
作用力可以分为自重应力、表面荷载和边界条件所引起的应力。
自重应力是由土体自身的重力引起的应力,可以通过土体的密度和重力加速度来计算;表面荷载是由于外界施加在土体上的荷载,可以通过荷载的大小和分布情况来计算;边界条件所引起的应力是由于土体边界的约束而产生的应力,可以根据边界条件的空间限制来计算。
计算垂直应力时,需要将作用力作用在单位面积上,即垂直应力等于作用力的大小除以土体的面积。
例如,对于自重应力来说,垂直应力可以通过土体的密度乘以重力加速度来计算。
而对于表面荷载来说,垂直应力可以通过荷载的大小和分布情况来计算。
计算水平应力时,需要考虑土体的弹性特性。
根据弹性理论,水平应力的大小与垂直应力的大小和土体的弹性模量有关。
弹性模量是反映土体抵抗应力的能力的指标,可以通过试验或经验公式估算得到。
一般来说,弹性模量越大,土体的抵抗应力能力越强,水平应力的大小也越大。
在应力计算时,还需要考虑土体的变形特性。
土体的变形可以分为弹性变形和塑性变形两种。
弹性变形是指在荷载作用后,土体恢复到无荷载状态时的变形,是可逆的,可以通过应力和应变之间的线性关系进行计算。
而塑性变形是指在荷载作用后,土体不完全恢复到无荷载状态时的变形,是不可逆的,需要通过试验或经验公式来确定。
总之,土体中的应力计算是根据应力平衡原理和弹性力学原理进行的,需要考虑土体的类型、作用力的大小和方向以及土体的弹性和变形特性。
通过合理的应力计算,可以为土壤工程和土木工程的设计和施工提供基础数据。
土力学完整课件土中应力计算
积分,得
z t p
Y
t f (m l / b, n z / b)
三角分布矩形荷载角点下的竖向附加应 力系数.可查表. 注意l—荷载不变化边 的长度; b—荷载变化边的长度.
水平均布荷载
q
z
x z
2
2 pz 3
2
2
(二)条形荷载下的附加应力计算 1.均布条形荷载下的附加应力 p O x b/2 b/2 z x M z 2. 三角形荷载的附加应力 pt O x b z x M z
z u p
z x u f u m , n b b
l
pmax pmin
基础底面的抵 抗矩;矩形截 面W=(bl2)/6
讨论:
N 6e pmax 1 bl l min
当e<l/6时,pmax,pmin>0,基底压力呈梯形分布 当e=l/6时,pmax>0,pmin=0,基底压力呈三角形分布 当e>l/6时,pmax>0,pmin<0,基底出现拉应力,基底压力重分布
F=400kN/m 0.1m M=20kN •m/m
3.基底中点下附加压 力计算
1.5m 2m 112.6kPa
0 =18.5kN/m3
292.0kPa
179.4kPa
112.6kPa
分析步骤Ⅳ:
F=400kN/m 0.1m M=20kN •m/m
1.5m
1m 1m 2m 2m 2m
0 =18.5kN/m3
3. r 0 ,随 z 从 0 开始增大, z 先随之增大,后随之减小;
土中的应力计算
e x
e xL
Ke
L x K=B/2-
L
压力调整 基底压
y
y
e
3K
y
pmin 0
力合力 与总荷
载相等
pmax
pmin
0 pmax
pmin 0
e<B/6: 梯形
pmax
e=B/6: 三角形
e>B/6: 出现拉应力区
2N
2N
pmax 3KL 3(B 2 e)L
12
2.2.3基底附加压力
H 成层
E1 均匀
E2<E1
25
无限均布荷载作用下的附加应力
当条形荷载在宽度方向增加 到无穷时,此时地基中附加应力 分布仍可按均布条形荷载下土中 应力的公式计算,查表2-10。
相当于薄压缩层:h 0.5b
b,z/b 0, αsz=1.0
基础中点处,任意深度处的附加
应力均等于p0,即在大面积荷载
作用下,地基中附加应力分布与 深度无关。
成层 H
均匀 E1
E2>E1
23
2.变薄交互层地基(各向异性地基) • 当Ex/Ez<1 时,应力集中——Ex相对较小,不利于应力扩散 • 当Ex/Ez>1 时,应力扩散——Ex相对较大,有利于应力扩散
24
3.双层地基(非均质地基)
(1)上层软弱,下层坚硬的成层地基 ▪ 中轴线附近σz比均质时明显增大的现象
21
条形荷载与矩形荷载的附加应力对比图
表明荷载作 用面积越大 附加应力传 递的越深。
22
2.3.4 地基附加应力的应用讨论
1.变形模量随深度增大的地基(非均质地基)
B
4 土中应力计算
8
z 10m :
z zi 4 0.045 0.047 0.368kPa
i 1
8
第五节 竖向分布荷载作用下 土中应力计算
分布荷载作用下土中应力计算
• 在基底范围取元素 面积dF,作用在 元素面积上的分布 集中力可以用集中 力dQ表示。
dF d d dQ p( , )d d
第四章 土中应力计算
第一节 概述
• 土中应力:是指土体在自身重力、构筑 物荷载以及其它因素(土中水渗流、地 震等)作用下,土中所产生的应力。土 中应力包括自重应力与附加应力。 • 计算方法:主要采用弹性力学公式,也 就是把地基土视为均匀的、各向同性的 半无限弹性体。
土的应力-应变关系
• 连续介质问题 • 线性弹性体问题 • 均质、等向问题
• 某建筑场地 的地质柱状 图和土的有 关指标列于 图中。计算 地面下深度 为2.5m、 3.6m、 5.0m、 6.0m、 9.0m 处的自重应 力,并绘出 分布图。
例 题 4.1
例 题4.2
• 计算绘制地基中自重应力沿深度分布曲线。
第三节 基础底面的 压力分布与计算
基础底面压力分布的概念
• 接触压力问题及其 影响因素:基础刚 度、尺寸、埋深、 土性、荷载大小
• 绝对柔性基础 • 柔性基础 • 刚性基础
基础底面压力分布的概念
• 刚性基础:基础各点的沉降是相同的,基 底压力分布随荷载的增大依次呈马鞍形分 布、抛物线形分布及钟形分布。
接触压力计算方法
• 简化方法——材料力学轴心和偏心受 压公式 • 弹性地基上的梁板理论——弹性力学 理论,考虑基础刚度的影响
例题 4.7
某基础为方形,基础 深度范围内土的重度 γ=18kN/m3,试计算 基础最大压力边角下 深度z=2m处的附加 应力。
1、土体中的应力计算
σ z α cp
z
M
m=L/B, n=z/B
(推倒公式见课本P18
z
查表1-3
L z c f ( B , L, z ) f ( , ) f ( m , n) B B
矩形面积垂直均布荷载角点下的应力分布系数αc
§1.3 地基附加应力 1.3.2 矩形荷载和圆形荷载作用时的地基附加应力
1.1.1 均质土中自重应力(σcz、σcx)
1.定义:自重应力—由土体自重在土中产生的力。 它是单位土体截面积上的平均应力。 2.计算: 基本假定:地面水平,地基是均质的各向同性的 半无限的直线变形体。
§1.1 土中自重应力
1.1.1 均质土中自重应力
σc z
A Z r rZ A
地面沉降使汛期河水外溢,全镇四周筑堤围堰形成“大包 围”,每年有半年时间靠排水站开泵排水,才能保证镇上 不被淹。 ——苏州东吴市盛泽镇
§1.1 土中自重应力 1.1.4 土质堤坝自身的自重应力
(有限构筑物的自重应力)
计算 面
计算 面
H γH1 H1 γH γH 0
地面
0
计算 面
§1 土中应力
3. 斜向偏心荷载下的基底压力
(参考其他土力学书籍)
将倾斜偏心荷载的合力分解成 竖向分量和水平分量。 竖向分量引起的基底压力按竖 直偏心荷载的计算公式计算 水平分量引起的基底压力按下 式计算 P Pv
Ph
矩形基础:
条形基础:
§1.2 基底压力 1.2.2 基底压力的简化计算
3. 斜向偏心荷载下的基压应力
M′
zm c p ( c1 c 2 )
(2)矩形荷载面边缘内一点的σz
土中应力的计算
第三节 基础底面压力
建筑物荷载通过基础传递给地基的压力称为 基底压力,与此相对应的地基土对基础底面的 反作用力称为地基反力。 基础
F G
地基
第三节 基础底面压力
建筑物荷载通过基础传递给地基的压力称为 基底压力,与此相对应的地基土对基础底面的 反作用力称为地基反力。
F
基础 基础
基底压 力
G
p
地基
第三节 基础底面压力
ZF
F
Z
s
cz
1 h1 2 h 2 3 h 3
i
hi
s
cz
i
hi w h
w
例题 2-1
某土层及其物理性质指标如图所示,地下水位 在地表下1.0 m,计算土中自重应力并绘出分布
a 点: s cz h 0 b 点:
s
cz
1 h1
s
W F
ZF
F
cz
Z
式中 为土的重度,kN/m3 ; F 为土柱体的截面积m2。
自重应力σcz的分布:
随深度z线性增加,呈三角形分布。
s
cz
Z
均质土的自重应力
二、 成层地基土的自重应力
地基土通常为成层土。当地基为成层土体 时,设各土层的厚度为hi,重度为i,则在深 度z处土的自重应力计算公式
2、偏心荷载作用下基底压力:
p max p min F G A M W F G lb (1
p
F G A
6e b
)
Fk—作用在基础顶面形心的竖向力值. Gk-基础自重及台阶回填土总重,
Gk
G
Ad
土体中的应力计算
土体中的应力计算土体中的应力计算是土力学中的重要内容之一,应力是描述土体内部单元之间相互作用的物理量,应力计算可以帮助工程师了解土体行为,并为工程设计和分析提供依据。
本文将从应力的概念、计算方法和应力分析的应用等方面进行详细探讨。
一、应力的概念应力是描述物体内部受力情况的物理量,是单位面积上的力,通常用σ表示。
根据应力的作用方向,可以将应力分为正应力和剪应力两种类型。
正应力是指与应力面垂直的力,剪应力是指与应力面平行的力。
在土体中,通常将正应力分为垂直应力(垂直于土体中心轴线的应力)和水平应力(与土体中心轴线平行的应力)。
二、应力的计算方法土体中应力的计算可以通过静力平衡方程、弹性理论以及实验和数值模拟等方法进行。
1.静力平衡方程法:利用牛顿第二定律和力学平衡原理,根据土体受力平衡的条件来计算应力。
对于均匀土体来说,可以根据土体所受垂直和水平外荷载以及土体自重的大小来计算应力。
2.弹性理论:应力与应变之间的关系可以用弹性理论来描述。
在土壤力学中,常用的是弹性模量和泊松比来表示土体的弹性性质。
通过应变测量和加载试验,可以计算得到土体的应力应变关系。
3.实验和数值模拟法:通过设计合适的实验和进行数值模拟,可以直接或间接地测量土体中的应力。
例如,可以通过土钉或应变计等仪器来测量土体中的应力分布情况。
同时,通过数值模拟方法如有限元分析等,可以模拟土体中复杂的应力场分布。
三、应力分析的应用应力分析是土力学中的关键研究内容,它可以应用于工程设计和分析等方面。
1.基础工程设计:在土力学中,应力分析是基础工程设计的基础。
通过计算土体中的应力分布情况,可以确定土体中的强度和稳定性,从而指导基础工程的设计和施工。
2.土体力学性质研究:通过对土体中应力的分析,可以研究土体的力学性质和变形规律。
这对于土壤改良和地震灾害分析等方面具有重要意义。
3.岩土工程应用:应力分析可以应用于岩土工程相关的设计和分析。
例如,通过分析土体中的应力分布,可以确定边坡的稳定性和墙体结构的受力情况,从而指导工程设计和施工。
土中应力计算
基底压力旳简化计算
1. 中心荷载下旳基底压力
F G p
A A l b
2.偏心荷载下旳基底压力
三角形形心点 三角形形心点
pk max Fk Gk M k
pk min
lb
W
M k (Fk Gk )e
W bl 2 6
pk max Fk Gk (1 6e )
pk min
lb
l
e Mk Fk Gk
d z
3
2
b(x 2
p0 xz 3 y 2 z 2)5/2
dxdy
z1 t1 p0
z2 t2 p0 (c t1) p0
t1
mn 2
[
1
m2 n2 (1 n2 )
n2 ]
m2 n2 1
3. 均布旳圆形荷载
z
d z
A
3 p0 z 3
2
2
0
r0 rddr
0 (r 2 z 2 )5 / 2
z
p0 [arctan 1 2n
2m
arctan
1
2n 2m
4m(4n2 4m2 1) (4n2 4m2 1)2 16m
2
]
sz
p0
均布条形荷载下地基中附加应力旳分布规律:
(1) 地基附加应力旳扩散分布性; (2) 在离基底不同深度处各个水平面上,以基底中心点下轴
线处最大,伴随距离中轴线愈远愈小; (3) 在荷载分布范围内之下沿垂线方向旳任意点,随深度愈
e>L/6, 应力重新分布
pk max
2(Fk Gk ) 3bk
k l e 2
3.2.4 基底附加压力
p0 p ch p 0h
土中应力计算
c
e
角点法例子
5m
10 m
A
D
H
B C 3m G F 3m
I
z=6m
2m
3、铅直三角形分布荷载角点下附加应力y
z
B
0
L
0
d z z ( p0 , m, n)
B
dP
p0
L
z z p0
L z z F ( B, L, z ) F ( , ) F (m, n) B B
2.4.1 铅直集中荷载作用下附加应力 1、布辛奈斯克公式(竖向集中力)
O
X
2.4.1 铅直集中荷载作用下附加应力 1、布辛奈斯克公式(竖向集中力)
3F z 3 z 2 R 5
3F yz 2 zy 2 R 5 3F xz2 zx 2 R 5
z : zy : zx z : y : x
第二章 土中的应力计算
2.1 土中应力形式 目的 强度、变形和稳定性分析 分类 自重应力;附加应力; 渗透应力;振动应力等 求解方法 弹性理论
O
X
2.2 土的自重应力
1、一点的竖向应力状态
天然地面
cz
cz
cz z
σcz= z
z
cx
cy
1
1
z
1、一点的竖向应力状态
理想 情况
条形基础
实际 情况
基础底面长宽 比l / b≥10
2.4.5 条形基础底面铅直匀布荷载
p0 b/2 b/2 x z
z sz p0
x
z
M
2.4.6 条形基础底面铅直三角形分布荷载
3.土中应力计算资料
简化计算方法: 假定基底压力按直线分布的材料力学方法
基底压力的简化计算
§3.4 基底压力计算
竖直中心
竖直偏心
矩
P
形
L
B
pP A
P x
yo L
B
p(x, y) P Mxy Myx
A Ix
Iy
P
条
B
形
p P B
P:单位长度上的荷载
P
B
p(x) P Mx BI
倾斜偏心
P L
B
P Pv Ph
载的影响,试求A基础
底面中心点o下2m处 的竖向附加应力
分析
o点的附加应力应该是两个基础共同产生的附加应力之和, 根据叠加原理可以分别进行计算
2m
A基础引起的附加
应力
B 300kPa
σzA=4Kc pA 3m σzB=(Kc1- Kc2- Kc3+ Kc4)pB
A
1m
2m 200kPa o
2m
B基础引起的 附加应力
B
B
A Ix
Iy
Mx Pey;
x
L
x
ey L ex
My Pex
y
y
pP A
矩形面积中心荷载 矩形面积偏心荷载
单项偏心,偏心距e
pmax
min
P A
1
6e B
矩形基础上的集中荷载
§3.4 基底压力计算
P B
e x
y
P B
e Lx
y
P B
pmax
min
P A
1
6e B
Ke Lx
出现拉力时, 应进行压力调
1m
土体中的应力计算
土体中的应力计算1.格令法格令法是土力学中常用的一种计算土体中应力的方法,它基于土体中的格令应力体系。
格令应力体系是指土体中各个方向上的应力分量。
常见的格令应力体系包括水平应力(σ_h),垂直应力(σ_v)和剪应力(τ)。
格令法计算土体中应力的基本过程如下:(1)确定水平应力(σ_h):水平应力是以土体排列方向为基准的应力分量,通过土体中的外加荷载和支持条件来计算。
常见的计算方法有:a.一维法:当土体受到轴对称荷载时,可以使用一维法计算水平应力。
其中σ_h=P/A,其中P为荷载大小,A为土体的横截面积。
b.二维法:当土体受到平面荷载时,可以使用二维法计算水平应力。
其中σ_h=P/A,P为荷载大小,A为土体的接触面积。
c.三维法:当土体受到体力荷载时,可以使用三维法计算水平应力。
其中σ_h=F/A,F为荷载大小,A为土体的接触面积。
(2)确定垂直应力(σ_v):垂直应力是指土体中垂直于排列方向的应力分量。
垂直应力的计算方法如下:a.压力传递原理:假设土体为均质、无阻性及无滑动的情况下,垂直应力可通过压力传递原理计算。
垂直应力由上层土体通过土粒间的压缩传递给下层土体,下层土体又继续传递给更下层土体,以此类推。
b.常用公式:经验公式计算垂直应力可使用τ=kσ_v,其中k为土体的地层系数,可以根据实际情况选择合适的数值。
(3)确定剪应力(τ):剪应力是土体中沿一定面域内的剪力分量。
剪应力的计算方法如下:a.剪切试验:通过进行剪切试验,可以直接测得土体中的剪应力。
b.运动原理:当土体处于平衡状态时,土粒间的剪应力满足平衡条件。
可以根据平衡条件求解土体中剪应力的大小和方向。
2.应变法应变法是另一种常用的计算土体中应力的方法,它基于土体中的应变体系。
应变是指在外力作用下,土体中产生的形变量。
常见的应变体系包括线性应变和体积应变。
应变法计算土体中应力的基本过程如下:(1)确定线性应变(ε):线性应变是土体中只考虑线性部分的应变。
第三章 土中应力的计算
z 2 z 2( aeoh) z 2(ebfo) q( t 1 t 2 )
(3)三角形荷载FEC(最大值为p-q)
作用范围3,4块,对M点引起的竖向应力σz3
z 3 z 3(ofcg) z 3( hogd ) ( p q)( t 3 t 4 )
第三章
土中应力的计算
3.1 概述
土中的应力—指土体在自重、构筑物荷载以及 其它因素(如水渗流、地震等)作用下,土体中 所产生的应力,包括自重应力和附加应力。
自重应力—土体受自重作用而产生的应力。
附加应力—土体受建筑物等外荷载作用而产生 的应力。
1、土中应力计算目的 为了对建筑物地基基础进行沉降(变形)、 承载力与稳定性分析,必须掌握建筑前后土中应 力的分布和变化情况。
2、偏心荷载作用时,基底压力按偏心受压公式计算:
Pmax
min
F G M F G 6e (1 ) A W A l
式中: F+G、M-作用在基础底面中 心的竖直荷载及弯矩, M=(F+G)e; e-荷载偏心距; W-基础底面的抵抗矩(抗弯截 面系数),对矩形基础 W=bl2/6; b、l-基础底面的宽度与长度。
IL w wP 50 25 1.09 1 w L w P 48 25
故受浮力作用,其浮重度为:
'
( s w ) ( 26.8 9.81) 16.8 7.1 kN/m3 s (1 w ) 26.8 (1 0.50)
a 点:z = 0 m,σcz=γz=0; b 点:z = 2 m,σcz=γz=19 ×2=38 kPa c 点:z = 5 m , σcz =∑γihi=19 ×2+10 ×3=68 kPa, d 点:z = 9 m,σcz =∑γihi=19 ×2+10 ×3+7.1 ×4=96.4 kPa 土层中的自重应力cz分布,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 土中 应 力 计 算自重应力:由土体重力引起的应力附加应力:由于建筑物荷载在土中引起的应力 要求:正确理解自重应力、附加应力、基底压力、基底附加压力的概念及影响因素。
掌握各种应力的计算公式、计算方法及分布规律。
第一节 土中应力状态法向应力以压应力为正,拉应力为负;剪应力以逆时针方向为正,顺时针方向为负。
σx 、σy 、σz ,τxy=τyx、τyz=τzy、τzx=τxz,第二节 土中的自重应力由土体重力引起的应力称为自重应力。
一般是自土体形成之日起就产生于土中。
一、均质地基土的自重应力土体在自身重力作用下任一竖直切面均是对称面,切面上都不存在切应力。
因此只有竖向自重应力σc z ,其值等于单位面积上土柱体的重力W 。
深度z 处土的自重应力为: 式中 γ为土的重度,kN/m 3 ;F 为土柱体的截面积m 2。
σcz 的分布:随深度z 线性增加,呈三角形分布。
二、成层地基土的自重应力地基土通常为成层土。
当地基为成层土体时,设各土层的厚度为h i ,重度为γi ,则在深度z 处土的自重应力计算公式地下水位以上的土层取天然重度γ,地下水位以下的土层取有效重度γ`( γ` = γsat- γw) γw=10kN/m3 三、土层中有不透水层时的自重应力在地下水位以下,如果埋藏有不透水层(坚硬的粘土、基岩),该层面处的自重应力应按上覆土层的水土总重计算。
四、水平向自重应力式中K 0为侧压力系数,也称静止土压力系数例题 2-1某土层及其物理性质指标如图所示,地下水位在地表下1.0 m ,计算土中自重应力并绘出分布a 点:b 点:c 点:d 点:例题 2-2某地基土层的地质剖面如图所示,计算各土层的自重应力并绘出分布 50m 处:48m 处:45m 顶:45m 不透水层面:43m 处:【课堂讨论】• 土的性质对自重应力有何影响?• 地下水位的升降是否会引起土中自重应力的变化?如何影响?作业1、20==h cz γσkpa h cz 6.1816.1811=⨯==γσkpa h h cz 4.271)108.18(6.182211=⨯-+=+=γγσkpah h h cz 6.523)104.18(4.27332211=⨯-+=++=γγγσ0==h cz γσkpah cz 3621811=⨯==γσh h cz 5.613)105.18(362211=⨯-+=+=γγσkpah h h ww cz 5.913105.612211=⨯+=++=γγγσkpah h h h w w cz 5.1292195.91332211=⨯+=+++=γγγγσ第二节 基底压力的简化计算建筑物荷载通过基础传递给地基的压力称基底压力,又称地基反力。
一、基底压力的分布基底压力的分布规律主要取决于基础的刚度和地基的变形条件。
对柔性基础,地基反力分布与上部荷载分布基本相同,如由土筑成的路堤,其自重引起的地基反力分布与路堤断面形状相同。
对刚性基础,在外荷载作用下,开始时地基反力呈马鞍形分布;荷载较大时,边缘地基土产生塑性变形,边缘地基反力不再增加,使地基反力重新分布而呈抛物线分布,若外荷载继续增大,则地基反力会继续发展呈钟形分布。
(a )理想柔性基础 (b )路堤下地基反力分布(a )马鞍形 (b )抛物线形 (c)钟形二、基底压力的简化计算实用上,通常将基底压力假设为线性分布情况按下列公式进行简化计算:中心荷载作用下的基底压力:偏心荷载作用下的基底压力:F --荷载效应标准组合时,上部结构传至基础顶面的竖向力值.G -基础自重及回填土总重, 式中l ,b 为基底平面的长边与短边尺寸。
在l 方向偏心.偏心荷载作用下的基底压力:1)当 e <b/6 时,基底压力呈梯形分布,p min >0; 2)当e =b/6 时,基底压力呈三角形分布,p min =0;3)e >b/6 时,即荷载作用点在截面核心外,p min <0;基底地基反力出现拉力。
此时基底与地基土局部脱开,使基底压力重新分布。
根据偏心荷载与基底压力的平衡条件,得p max 为: a 为竖向荷载作用点至最大压力边缘的距离a=b/2-e(a )中心荷载下 (b )偏心荷载e<b /6时 (c )偏心荷载e=b /6时(d )偏心荷载e>b /6时三、基底附加压力• 基础通常是埋置在天然地面下一定深度的。
由于天然土层在自重作用下的变形已经完成,故只有超出基底处原有自重应力的那部分应力才使地基产生附加变形,使地基产生附加变形的基底压力称为基底附加压力p 0。
因此,基底附加压力是上部结构和基础传到基底压力与基底处原先存在于土中的自重应力之差,按下式计算:d-从天然地面算起的基础埋深。
例2-3:已知某基础的底面尺寸为3m ×2m ,基底中心处的偏心力矩Mk =147KN.m ,竖向力F k +G k =490kN,求基底压力。
若已知基础埋深2.0米,γ=16kN/m3,计算基底附加压力。
解:3G Gm /kN 20hA G ==γγd p p p cz 0γσ-=-=m 5.06l m 3.010********G F M e 33k k k =<=⨯⨯=+=2k k min k max k m /kN 67.3267.130)33.061(23490)b e 61(bl G F p p =⨯±⨯=±+=2min k min 02max k max 0m /kN 67.021667.32d p p m /kN 67.9821667.130d p p =⨯-=-==⨯-=-=γγ例2―4 某柱基础,作用在设计地面处的柱荷载、基础尺寸、埋深及地基条件如图示,计算基底压力和基底附加压力。
解=G Ad G γkN 4833.25.30.320=⨯⨯⨯=GF Me +=∑m 169.048310503.267105=+⨯+=m583.065.36b ==<kpa 7.103kpa 3.188)5.3169.061(0.35.34831050)b e 61(bl G F p pmin max =⨯±⨯+=±+=3212211m /kN 69.168.05.18.0185.116h h h h =+⨯+⨯=+⨯+⨯=γγγ2min min 02max max 0m /kN 3.653.269.167.103d p p m /kN 9.1493.269.163.188d p p =⨯-=-==⨯-=-=γγ第四节 土 中 附 加 应 力1、土中附加应力是由建筑物荷载在地基内引起的应力。
2、由基底附加应力引起的地基中任一点的附加应力如何确定? 在计算地基中的附加应力时,一般均假定: ①基础刚度为零,即基底作用的是柔性荷载; ②地基是连续、均匀、各向同性的线性变形体。
③地基是半无限空间弹性体 采用弹性力学解答。
一、竖向集中力P 作用下的地基附加应力以集中力P 的作用点为原点,以P 的作用线为Z 轴建立起三轴坐标系(Oxyz),则Mα—集中力作用下土中附加应力系数,可由表查得。
附加应力在地基中的分布规律如图集中力在地基中引起的附加应力是向深部、四周传播. 1.在集中力F作用线上,σz 随深度增加而递减; 2、在地面下水平面上,σz 向两侧逐渐减小;3、在r >0的竖直线上,随z的增加,σz 从小增大,至一定深度后又随z的增加而变小;4、距离地面越远,附加应力分布的范围越广当地基表面作用有几个集中力时,可分别算出各集中力在地基中引起的附加应力,然后根据应力叠加原理求出附加应力的总和。
在实际工程中,建筑物荷载都是通过一定尺寸的基础传递给地基的。
对于不同的基础形状和基础底面的压力分布,都可利用布氏公式,通过积分法或等代荷载法求得地基中任意点的附加应力值σz。
具体求解时又分为空间和平面问题的附加应力。
若基础的长度与宽度之比l/b<10时,地基中的附加应力计算问题属于空间问题。
二、矩形面积受均布荷载作用下的附加应力计算角点O下z深度处的附加应力σz可按下式计算。
式中αc—均布垂直荷载作用下矩形基底角点下的竖向附加应力分布系数,由l/b、z/b查表得到,l恒为基础长边,b为基础短边。
对于均布矩形荷载下的附加应力计算点不位于角点下的情况,可利用上式以角点法求得。
角点法:通过O点将荷载面分成若干个矩形面积,O点就必然是各个矩形的公共角点,然后再计算每个矩形角点下同一深度z处的附加应力σz,并求其代数和。
1、O点在荷载面边缘:2、O点在荷载面内:3、O点在荷载面边缘外侧:4、O点在荷载面角点外侧:应用角点法时应注意的问题:①划出的每一个矩形,都有一个角点为O 点;②所有划出的各矩形面积的代数和,应等于原有受荷的面积; ③所划出的每一个矩形面积中,l 为长边,b 为短边。
例2-5 某矩形基础,长2.0 m ,宽1.0m,基底的附加压力为100 kPa ,如图所示,计算此矩形面积的角点A 、边点E 、中点O ,矩形面积外F 点和G 点下,深度z =2.0m处的附加应力。
(1)计算角点A 下的附加应力:查得αc =0.1202(2)计算边点E 下的附加应力作辅助线IE ,将原来的矩形ABCD 划分为两个相等的小矩形EADI 和EBCI 。
查得αc =0.084=2×0.0840×100=16.8 kPa (3) 计算中点O 下的附加应力作辅助线JK ,IE 将原来的矩形ABCD 划分为四个相等的小矩形OEAJ 、OJDI 、OICK和OEBK 。
查得αc =0.0474=4×0.0474×100≈19 kPa (4) 计算矩形面积外F 点下的附加应力作辅助线CH 、JF 、BG 和HG ,将原来的矩形ABCD 划分为两个相等的长矩形FHDJ 、FGAJ 和两个小矩形FHCK 、FGBK 。
查得αc1=0.0732αc2=0.0270=2×(0.0732-0.0270)×100≈9.2 kPa0.20.10.2b l ==0.20.10.2b z ==kpa 121001202.0p c A z =⨯==ασ0.10.10.1==b l 0.20.10.2==b z p c E z ασ2=0.25.00.1==b l 0.45.00.2==b z p c O z ασ4=55.05.2==b l 0.45.00.2==b z 15.05.0==b l 0.45.00.2==b z p c c Fz )(221αασ-⋅=(5) 计算矩形面积外G 点下的附加应力作辅助线CH 、BG 、HG ,将原来的矩形ABCD 划分为一个大矩形GHDA 和一个小矩形GHCB 。