表面活性剂的分离与分析

合集下载

阴离子表面活性剂的测定方法

阴离子表面活性剂的测定方法

阴离子表面活性剂的测定方法摘要阴离子表面活性剂对于人们的生产生活都起到重要的作用,但是同时它也会造成水体环境的污染,是水质监测的重要项目。

本文总结了几年来比较常用的阴离子表面活性剂在水体中含量的检测方法,论述了各种方法的优势与缺点,同时对研究前景进行了展望。

关键词阴离子表面活性剂;检测方法;水质监测表面活性剂(surfactant)是一种具有固定的亲水亲油基团的有机化合物,它在溶液的表面能够定向排列,并能使表面张力显著下降。

它的特色鲜明,并且应用非常广泛,因此具有“工业味精”的美誉。

不论在工业生产还是日程生活中我们都会发现它的身影,从石油、金属加工、农药生产再到我们熟悉的洗涤剂和化妆品,表面活性剂的应用无处不在。

其中阴性表面活性剂在各种表面活性剂中的应用尤其广泛,占表面活性剂使用量的40%以上,阴离子表面活性剂一旦被排入水体中,会在水体表面以及水体中的其它微粒的表层聚集,进而产生出泡沫以及发生乳化的现象,这些物质会产生阻隔的效果导致水中的氧气不能进行交换。

最终结果会是水质的破坏,水生生物面临巨大的危害。

随着工业以及生活污水的排放,进入水体的阴离子表面活性剂数量也在增加。

为了保障良好的自然环境,保障人民生活的健康,对于水体中的阴性表面活性剂必须进行严格的检测。

一直以来,我们一般采取亚甲蓝分光光度法对阴离子表面活性剂进行检测,虽然这种检验方法操作相对简单,但是实际选择性方面比较差,进行干扰的物质较多,有机酚类和无机氯化物等都可能对检验结果有不同程度的干扰。

随着社会经济的不断发展,对于阴离子表面活性剂的检验手段的研究也越来越深入,出现了很多新的、更有效的检测方法。

1 光度法光度法的检验方式就是根据阴离子表面活性剂能够与阳离子显色剂产生缔合反应的原理进行检测。

根据对形成缔合物检测方式的不同,光度法还可以具体分成两个不同的检验方法。

一是萃取光度法,顾名思义,首先要对阴离子表面活性剂与阳离子显色剂形成的缔合物进行有机化萃取,在对萃取的有机物进行吸光度计量,当然要在特定的波长环境下进行。

表面活性剂配方产品的分析方法及其进展(Ⅱ)——分离技术

表面活性剂配方产品的分析方法及其进展(Ⅱ)——分离技术

h u H I oe ut l o al io s f t t t u l i c n ig u al e i t T og PE i m r sibef a s r c n,is sa ydf utnf dn ibedt tnss m.H r yt h s a r y s fu a a n 'u l f l i i i st e o ye c e b e e h
Ho e e , n a l fte c mp n n a e o tie rm i s s m . Re e t C b 2 l  ̄ mo ̄ p p l i f l . w v r o smpe o o o e t C b ban f h s n d o t s yt h e c n yG oo i l / G l o ua i t si d , rnh e
谱 、高效液相色谱等手段 ,从 仪器的检测和记录系统得 到分析 结果 ,但此过程不 能直接得到被分离 的组分 ,
而高效液相色谱更适 用于表面活性 剂的分析工作 ,但往往 由于找不 到合适 的检测 系统 ,应用受到限制 。 关键词 :表面活性剂 ;离子交换 ;薄层色谱 ;柱层析 ;气相色谱 ;高效液相色谱
维普资讯
第 3 卷第 2 7 期
20 年 4 O7 月
日 用 化 学 工 业
Ch n u fca tDeeg n i a S ra tn tre t& Co meis s tc
VD . 7 No. J3 2 A r O 7 pi 2O l
ss m ad r o igeup etui a h m t r h G nd hg ef m ne l ud cr a gah ( P C . yt e r n q i n s g gscra o a y( C)a i pr r ac i i ho t r y H L ) e n cd m n o gp h o q m o p

表面活性剂的活性提取(论文写作课)

表面活性剂的活性提取(论文写作课)

基金项目:安徽省自然科学基金资助项目(10000007)作者简介:张慧娟(1988-),女,安徽合肥人,合肥工业大学硕士生;惠爱玲(1978-),女,安徽合肥人,博士,合肥工业大学教授,硕士生导师生物表面活性剂的活性提取张慧娟 惠爱玲(合肥工业大学农 产品生物化工教育部工程研究中心 合肥 230009)摘 要:生物表面活性剂是一类由微生物产生的具有表面活性的物质,与化学表面活性剂相比,具有无二次污染、环境友好等显著优点。

生物表面活性剂在医药、农业、石油开采、环境修复等方面的应用潜力,已引起人们的广泛关注。

本文对生物表面活性剂的提取方法及近年来生物表面活性剂的研究进展进行了总结,并对未来的发展方向作了展望。

关键词:生物表面活性剂;提取;前景The Isolation of BiosurfactantsZHANG Hui-juan ,HUI Ai-ling(Engineering Research Center of Bio-process in Ministry of Education , Hefei University of Technology, Hefei23009,China)Abstract :Biosurfactants are natural surface-active compounds mainly synthesized by microorganisms, which have distinct advantages like no secondly pollution and friendly to environment compared with chemical surfactants. With the development of modern biological technology, biosurfactants have been shown a variety of potential applications, including medicine, agriculture, oil production and environmental remediation, so it has already caused many researchers a strong interest in the production of biosurfactants making use of biological technology. A review is made from the isolation of biosurfactants. In addition, on the foundation of the analysis,several suggestions about the development of biosurfactants are proposed. Key words : Biosurfactant ;Isolation ;1 生物表面活性剂 表面活性剂是一类重要的化工原料, 素有工业味精之称, 它在石油工业、环境工程、食品工业、精细化工等许多领域中占有特殊和重要的地位[1]。

固相萃取-高效液相色谱(SPE-LC)法测定生活污水阴离子表面活性剂

固相萃取-高效液相色谱(SPE-LC)法测定生活污水阴离子表面活性剂

固相萃取-高效液相色谱(SPE-LC)法测定生活污水阴离子表面活性剂固相萃取-高效液相色谱(SPE-LC)法测定生活污水阴离子表面活性剂引言:随着社会经济的快速发展和人口数量的不断增加,生活污水的处理成为一个重要且紧迫的问题。

生活污水中存在着各种有机物质,包括表面活性剂。

表面活性剂是一类广泛存在于生活污水中的物质,由于其强大的溶解能力和分散能力广泛应用于日常生活和工业生产中。

然而,过量的表面活性剂可能对水环境造成负面影响,因此对其测定和去除具有重要意义。

本文将介绍一种新的分析方法——固相萃取-高效液相色谱(SPE-LC)法用于生活污水中阴离子表面活性剂的测定。

该方法结合了固相萃取和高效液相色谱技术的优势,能够快速、准确地测定生活污水中的阴离子表面活性剂。

实验方法:1. 样品处理:首先,收集生活污水样品,并经过初步处理去除大颗粒物质。

然后,将样品置于加热搅拌下,在其中加入适量的盐酸进行酸化处理,使阴离子表面活性剂转化为相应的负离子态。

2. SPE-LC测定:将经酸化处理的样品经过固相萃取柱进行富集。

固相萃取柱选择合适的固相吸附材料,具备强大的吸附能力和高选择性,可以有效地富集阴离子表面活性剂。

随后,采用高效液相色谱仪进行定量分析。

高效液相色谱仪配备合适的色谱柱和检测器,能够快速、准确地分离和检测样品中的阴离子表面活性剂。

结果与讨论:通过对不同浓度的阴离子表面活性剂标准溶液进行测试,得到了线性范围和灵敏度。

通过检测实际生活污水样品,确定了该方法对生活污水中阴离子表面活性剂的测定具有较高的准确性和重现性。

此外,本方法还具有较短的分析时间和所需样品量较少的优点。

结论:固相萃取-高效液相色谱(SPE-LC)法是一种可行的方法,用于生活污水中阴离子表面活性剂的测定。

该方法具有准确性高、重现性好、分析时间短和样品消耗少的特点,为生活污水处理过程中对阴离子表面活性剂的监测和控制提供了有效手段。

然而,仍需要进一步研究优化该方法的操作参数,并对其他污水中的阴离子表面活性剂进行测定,以更好地解决生活污水处理中的问题通过使用盐酸进行酸化处理,将阴离子表面活性剂转化为相应的负离子态。

生物表面活性剂的分离提纯及其应用前景

生物表面活性剂的分离提纯及其应用前景

生物表面活性剂的制备、提纯及其应用摘要:生物表面活性剂是由微生物产生的天然产物,具有表面活性高、对环境无污染、生物可降解性及良好的抑菌作用等优于化学合成的表面活性剂的独特性质。

本文对生物表面活性剂的合成方法进行了介绍,对生物表面活性剂在石油工业、环境工业、医药、食品、农业和化妆品工业等领域的应用进行了总结,展望了生物表面活性剂的良好应用前景。

关键词:生物表面活性剂制备提纯应用生物表面活性剂主要是由微生物在好氧或厌氧条件下在碳源培养基中生长时产生的。

这些碳源可以是碳水化合物、烃类、油、脂肪或者是它们的混合物。

生物表面活性剂可分为非离子型和阴离子型, 阳离子型较为少见。

像其它表面活性物质一样, 生物表面活性剂由一个或多个亲水性和憎水性基团组成, 亲水基可以是酯、羟基、磷酸盐、或羧酸盐基团、或者是糖基, 憎水基可以是蛋白质或者是含有憎水性支链的缩氨酸。

根据生物表面活性剂的结构特点, 可将其分为5 类:糖脂、脂肽、多糖蛋白质络合物、磷脂和脂肪酸或中性脂。

和传统的化学合成的表面活性剂相比, 生物表面活性剂有许多明显的优势:(1)更强的表面和界面活性;(2)对热的稳定性;(3)对离子强度的稳定性;(4)生物可降解性;(5) 破乳性。

由于这些显著特点, 使生物表面活性剂在一些方面可以逐渐代替化学合成的表面活性剂, 而且应用也越来越广泛。

1 生物表面活性剂的性质、分类及制备1. 1 生物表面活性剂的特性生物表面活性剂分子结构包含极性基团和非极性基团,是一种具有亲水、疏水两性特点的生物大分子化合物。

生物表面活性剂分子的亲水基和疏水基可以由不同的分子成分组成。

生物表面活性剂与其他表面活性剂比较,主要特性就是无毒性、稳定性好、耐酸耐盐性好、可以被生物降解、对环境无污染及抗菌性。

1. 2 生物表面活性剂的分类生物表面活性剂根据其化学结构的不同,可以分为酰基缩氨酸系、糖脂系、磷脂系、高分子聚合物和脂肪酸系表面活性剂五类,如表1 所示。

表面活性剂的提纯与鉴定

表面活性剂的提纯与鉴定

表面活性剂的提纯与鉴定张金花唐季安*摘要简要综述了迄今使用的表面活性剂纯化及鉴定方法,重点介绍了近几年以来的进展。

关键词表面活性剂纯化鉴定Abstract Methods for the purification and identification of surfactants were reviewed with an intensive discussion on the newly developed approaches.Key words Surfactant, Purification, Identification“表面活性剂”一词泛指具有一定性质、结构和界面吸附性能,能显著降低溶剂表面张力或液/液界面张力的一类物质。

从热力学的角度来看,表面活性剂溶液是一种有组织的溶液,而Shinoda定义的理想的有组织溶液的必要与充分条件为[1]:(1)溶质单体的溶解度低;(2)溶质相溶胀进大量的溶剂;(3)溶质处于液态或液晶态(溶剂化溶质);(4)溶质的分子量或聚集数高,在溶质分子内或分子间有强的引力。

从结构上看,表面活性剂分子是由极性的亲水基(或憎油基)和非极性的亲油基(或憎水基)两部分组成,这种结构使活性剂具有两亲性。

但表面活性剂分子以分子状态分散的浓度是较低的,在通常使用浓度下,大部分形成胶束(缔合体)而溶存;当溶液与另一相邻接时,基于官能团的作用,表面活性剂分子将在界面上产生选择性定向吸附,使界面的状态或性质发生显著变化。

表面活性剂具有润湿、分散、乳化、增溶、起泡、消泡、保湿、润滑、洗涤、渗透、杀菌、防腐等功能,广泛应用于洗涤、医药、石油、食品、农业等各个领域。

因此,各行各业从不同的角度关心表面活性剂的研究和应用。

然而,在表面活性剂溶液的物性和表面研究中,经常因表面活性剂中含有微量杂质,尤其是具有表面活性的杂质,给研究结果带来偏差。

例如,微量杂质会给测定临界胶束浓度(cmc)处的表面张力,研究表面吸附、界面行为带来偏差。

表面活性剂的定性分析

表面活性剂的定性分析

表面活性剂的定性分析一、表面活性剂离子类型的鉴别表面活性剂品种繁多,对未知的表面涤性剂首先需要快速、简便、有效地确定其离子型,即确定阴离子、阳离子、非离子及两性表面活性剂,是非常必要有。

下面我们介绍几种表面活性齐离子类型的鉴别方法。

1.泡沫特征试验这个试验可以初步鉴定存在的表面活性剂的类型,可以和下面其他试验联合应用。

具体操作步骤如下。

在一支沸腾管中,用几毫升水摇动少量醇萃取物,如果生成泡沫,表示存在表面活性剂。

加2~3滴稀盐酸溶液,摇动,如果泡沫被抑制,表示在其他表面活性剂中存在肥皂;如果泡沫保持,表示存在除肥皂外的表面活性剂。

若在这种情况下加热至沸,并沸腾几分钟,如果泡沫消失,并形成脂肪层,表示存在易水解阴离子洗涤剂(烷基硫酸盐或烷基醚硫酸盐);如果泡沫保持,表示存在不易水解的阴离子洗涤剂〔烷基(芳基)磺酸盐〕、阳离子或非离子表面活性剂,或其混合物。

2.亚甲基蓝-氯仿试验亚甲基蓝是水溶性染料,但阴离子表面活性剂与亚甲基蓝可形成可溶于氯仿的蓝色络合物,从而使蓝色从水相转移到氯仿相。

利用该性质可定性定量分析阴离子表面活性剂。

(1)溶液的配制1)亚甲基蓝溶液:将6.8 g浓硫酸缓慢地注入约50 mL水中,待冷却后加亚甲基蓝0.03 g和无水硫酸钠50 g,溶解后加水稀释至1 L。

2)阴离子表面活性剂溶液:ρB=0.5 g/L(2)检验步骤移取5 mL试样于在带玻璃塞的试管中,加入10 mL亚甲基蓝溶液和5 mL氯仿,塞上塞子充分振荡后静置分层,观察两层颜色。

如氯仿层呈蓝色,表示有阴离子表面活性剂存在。

因为试剂是酸性的,如果存在肥皂的话,则已经分解成脂肪酸,所以肥皂不能被检出。

如果水层的颜色较深,则表明存在阳离子表面活性剂,因为试剂是酸性的,两性表面活性剂通常呈(微弱的)阳性结果。

如果水层呈乳状,或两层基本呈同一颜色则表明有非离子表面活性剂存在。

如果有疑问,可用2 mL水代替试样溶液进行对照试验。

硝酸盐、磷酸盐等无机盐不会产生干扰。

表面活性剂分析

表面活性剂分析

一、定义:1、表面活性剂:⑴、在浓度很低时,能显著降低溶剂(一般为水)的表(界)面张力,从而明显改变体系表(界)面性质和状态的物质称为表面活性剂。

⑵、在浓度很低的情况下,能够显著降低水的表面张力或水同其他物质的界面张力的物质。

2、临界胶束浓度(cmc或叫CMC):形成表面活性剂完整胶束的最低浓度叫表面活性剂的临界胶束浓度。

3、双亲结构:在同一表面活性剂分子中同时具有亲油基和亲水基。

4、乳化:互不相溶的两种液体中,一种液体以微小粒子分散于另一种液体中的现象叫乳化,形成的液体叫乳液。

5、分散:一种固体以细小微粒的形式均匀地散布于另一种液体中的现象。

6、浊点:(含醚键或酯基的)非离子表面活性剂在水中的溶解度随温度的升高而降低,当达到一定温度时溶液开始变浑浊,这一温度叫非离子表面活性剂的浊点(也叫雾点)。

7、等电点:两性离子表面活性剂溶液中,正、负离子离解度相等时溶液的PH值。

8、HLB值(亲水亲油平衡值):表面活性剂为具有亲水基团和亲油基团的两亲分子,表面活性剂分子中亲水基和亲油基之间的大小和力量的平衡程度的量。

9、HLB基团数:分子结构式可分成若干基团,每个基团都对HLB有贡献,贡献的大小就叫基团数。

10、乙氧基化:在酸性或者碱性催化剂下,向有机分子内引入乙氧基的反应,称为乙氧基化反应(它属于亲核取代反应)。

11、润湿性(Wetting)是固体界面由固-气界面转变为固-液界面的现象。

润湿作用(wetting):固体表面的一种流体被另一种流体所取代的过程。

12、克拉夫(特)Krafft点离子型表面活性剂在水中的溶解度随着温度的变化而变化,当温度升高至某一点时,表面活性剂的溶解度急剧升高,该温度称为krafft点。

13、双子表面活性剂通过化学键将两个或两个以上的同一或几乎同一的表面活性剂单体,在亲水头基或靠近亲水头基附近用联接基团将这两亲成份联接在一起,形成的一种表面活性剂称为双子表面活性剂。

二、分类:1、表面活性剂:离子型表面活性剂(①、②、③)和非离子型表面活性剂①、阴离子型表面活性剂:羧酸盐型;硫酸酯盐型;磺酸盐型;磷酸酯盐型;②、阳离子型表面活性剂:季铵盐;脂肪胺盐型(伯、仲、叔胺盐);③、两性型表面活性剂:硫酸酯盐型;磺酸盐型;磷酸酯盐型;羧酸盐型(氨基酸系、甜菜碱系、咪唑啉系);④、非离子型表面活性剂:聚氧乙烯型;多元醇型;烷醇酰胺型;聚醚型。

质谱法分析季铵盐型阳离子表面活性剂[1]

质谱法分析季铵盐型阳离子表面活性剂[1]

收稿日期:2004211202 修回日期:2005202217通讯联系人:王 复,男,高级工程师,主要研究方向:有机结构及成分分析.第22卷第3期Vol.22 No.3分析科学学报J OU RNAL OF ANAL YTICAL SCIENCE 2006年6月J une 2006文章编号:100626144(2006)0320312203质谱法分析季铵盐型阳离子表面活性剂刘壮峻,陈卫东,朱凤英,王 复3(华东理工大学分析测试中心,上海200237)摘 要:以电子轰击质谱法(EI/MS )与电喷雾质谱法(ESI/MS )相结合,分析季铵盐型表面活性剂。

由于阳离子表面活性剂在水溶液中离解成正离子,可用电喷雾质谱的正离子模式(ESI +/MS )对其结构及组成进行鉴定,同时可判别季铵盐所含的Cl -、Br -、NO -3等阴离子。

关键词:电子轰击质谱;电喷雾质谱;季铵盐;阳离子表面活性剂中图分类号:O657.63;TQ423.12 文献标识码:A1 前言阳离子表面活性剂在抗静电、杀菌、柔软和印染等方面有着广泛的应用[1]。

常见的阳离子表面活性剂为含氮化合物,分为胺盐型和季铵盐型两大类。

但季铵盐型表面活性剂在阳离子表面活性剂中最为重要,产量也最大[2]。

因季铵盐型表面活性剂具有不易挥发、极性强等特点,通常采用液相色谱[3]或离子色谱[4]进行分离分析,而其结构定性仍需采用红外光谱标样对照[5]。

基于季铵盐型表面活性剂在水溶液中可离解成离子,(ESI/MS )进行分析,而根据电喷雾质谱提供的分子量信息以及电子轰击质谱提供的碎片离子信息可对其结构进行鉴定[6,7]。

2 实验部分2.1 实验仪器与条件Micromass 公司GC T 飞行时间质谱仪(EI ),电子轰击电压70eV ;Micromass 公司L C T 飞行时间质谱仪(ESI );Harvard 蠕动泵。

质谱条件:电喷雾正离子模式ESI +,离子源温度80℃,脱溶剂温度120℃,锥孔电压60V ,毛细管电压3.3kV ,扫描范围100~1500m/z ;进样量:3μL/min 。

《表面活性剂》教学大纲

《表面活性剂》教学大纲

《表面活性剂》教学大纲
Surfactant
一、课程基本信息
学时:16
学分:1.0
考核方式:考查,平时成绩占总成绩的40%
中文简介:表面活性剂是最重要的工业助剂,能极大的改变生产工艺和产品性能。

表面活性剂功能及应用课程系统的介绍了表面活性剂的基本原理,使学生了解和探索表面活性剂的分子结构特点、基本作用、结构与功能的关系,不同表面活性剂分子与添加剂的相互作用及表面活性剂的复配规律。

本课程是为化工工程与工艺的学生所开设。

它的作用和任务是通过本课程的学习,帮助学生进一步掌握表面活性剂的基本知识,基本原理、研究方法及主要应用。

二、教学目的与要求
通过本课程的学习,帮助学生掌握表面活性剂的基本知识,规律及性质,了解表面活性剂在化工中的应用。

教学的主要要求:要求学生掌握表面活性剂的基本概念和相关原理,了解它们在生产、生活中的,应用,并能利用所学知识解释有关现象,使学生熟练表面活性剂在化工中的应用。

三、教学方法与手段
1、突出重点,把教师讲授与课堂讨论相结合。

2、精讲多练,把现代教育技术(PPt课件或CA1课件)与传统黑板板书相结合。

四、教学内容及目标
五、推荐教材和教学参考资源
1.金谷.表面活性剂化学(2).北京:中国科学技术大学出版社,2013
2.李祥高,刘东志.表面活性剂化学(2).北京:化学工业出版社,2011
3.王军.表面活性剂新应用(1),北京:化学工业出版社,2009
4.肖进新、赵振国.表面活性剂应用原理(1),北京:化学工业出版社,2003。

水质分析阴离子表面活性剂

水质分析阴离子表面活性剂

因而在当前生活中已经被广泛用作乳化剂、 就会导致鱼类发生中毒情况,通过食物链 相直接显色光度法时,会通过水体的直接
润湿剂、起泡剂、洗涤剂与分散剂,在表 最终进入人体,危害人类生命健康。
显色来判断水体内部阴离子表面活性剂含
面活性剂中居于产量首位。但是当水体中
二、 阴离子表面活性剂的水质分析 量,此时不需要经过萃取环节,既可以提
沫,水体无法与空气发生气体交换,严重 势,在具体使用过程中,该种检测方法还 进行阴离子表面活性剂测定时,需要使用
降低了水内氧含量,造成水体产生恶臭, 能够测定水体中含有的各种同分异构体 [2]。 到 亚 甲 蓝, 此 时 阴 离 子 表 面 活 性 剂 会 与
加重水体自净负担;二是对水中生物产生 虽然该种检测方法应用优势明显,但依然 亚 甲 蓝 发 生 缔 合 反 应, 生 成 相 应 的 缔 合
情况下可以被分成脂肪酸盐、磺酸盐、硫 其采用高压输液系统,通过将缓冲液、不 稳定性差、痕量分析无法达到需求、灵敏
酸酯盐等几大类,主要具有以下几方面危 同比例的混合溶剂或单一溶剂装入存在固 度差等劣势,将其用于阴离子表面活性剂
害:一是对水环境产生的危害 [1]。在进行 定相的色谱柱中,在柱内实现合理分离后, 含量低的水质分析中,水相直接显色光度
剂浓度含量过高,危害严重时,还会造成 剂的测定方法尚未实现广泛运用。
以让不同波长的光依次通过缔合物,绘
水生生物的死亡;三是对人体产生的危害。
2. 水相直接显色光度法
制出该物质在不同波长通过下的吸收曲
在人们生活过程中处处都离不开水,当人
运用水相直接显色光度法进行水体中 线图,并将该图与标准水体吸收光谱进
通过一系列实验表明,若水泥剂量超过百 铺后,进行碾压时其含水量才能够保持在

阴离子表面活性剂测定中流动注射仪的应用分析

阴离子表面活性剂测定中流动注射仪的应用分析

阴离子表面活性剂测定中流动注射仪的应用分析一、流动注射仪的原理和优势流动注射仪是一种利用微量样品实现自动进样和在线分析的仪器。

其原理是通过微量进样泵将样品注入到流动系统中,经过混合、稀释等处理后,送入检测器进行分析。

相比传统的分析方法,流动注射仪具有以下优势:1. 高效性:流动注射仪能够快速、连续地进行样品分析,提高了分析效率和样品处理能力。

2. 精密度高:由于采用了微量进样和自动化分析的方式,流动注射仪在样品分析中具有极高的精密度和准确性。

3. 自动化程度高:流动注射仪可以实现全自动化的样品处理和分析过程,减少了人为操作的误差和对操作人员的技术要求。

4. 数据可靠性强:流动注射仪采用先进的检测器和数据处理系统,可以保证分析结果的可靠性和稳定性。

在阴离子表面活性剂的测定中,流动注射仪通常结合特定的化学分析方法,如离子色谱、荧光法、光度法等,进行定量分析。

离子色谱法是一种常用的阴离子表面活性剂测定方法,其原理是利用离子色谱仪对样品中的阴离子表面活性剂进行分离和定量检测。

流动注射仪作为离子色谱仪的进样系统,在阴离子表面活性剂测定中起着关键的作用。

具体而言,流动注射仪在阴离子表面活性剂测定中的应用包括以下几个方面:2. 载气输送:流动注射仪通过精密的泵系统和流动管路,将样品中的阴离子表面活性剂分离和输送至检测器进行分析。

以某化工企业的阴离子表面活性剂浓度测定为例,该企业生产的某种合成洗涤剂中含有一定量的阴离子表面活性剂,在生产过程中需要对其进行快速、准确的测定。

为此,该企业引入了流动注射仪进行阴离子表面活性剂的浓度测定。

在实际应用中,该企业的流动注射仪通过精确调控进样泵、混合器、稀释器等部件,可实现对合成洗涤剂中阴离子表面活性剂的自动化测定。

通过对流动注射仪进行标定和验证,该企业保证了测定结果的可靠性和准确性。

该企业还利用流动注射仪对生产过程中的样品进行在线监测,实现了对阴离子表面活性剂浓度变化的及时跟踪和控制。

sds工艺流程

sds工艺流程

sds工艺流程
SDS工艺流程是一种重要的工艺流程,它在许多领域中都得到了广泛的应用。

下面将从几个方面介绍SDS工艺流程的特点和应用。

SDS工艺流程是一种基于表面活性剂的分离和测定方法。

它的原理是利用表面活性剂在水溶液中形成胶束,从而实现对样品中某种物质的分离和测定。

这种方法具有操作简便、结果准确等优点,因此在化学分析、生物医药、环境监测等领域得到了广泛的应用。

SDS工艺流程的操作步骤相对简单,一般包括样品制备、溶液配制、胶束形成、分离和测定等几个步骤。

其中,样品制备是整个流程的关键步骤,它直接影响到后续的分离和测定结果。

在样品制备过程中,需要注意样品的处理方法和条件,以保证样品中目标物质的完整性和稳定性。

接下来,SDS工艺流程的应用范围非常广泛。

在化学分析领域,它可以用于分离和测定各种物质,如有机物、无机物、生物大分子等。

在生物医药领域,它可以用于药物的分析、质量控制等。

在环境监测领域,它可以用于水质、大气、土壤等样品的分析和监测。

SDS工艺流程还具有一些特殊的应用。

例如,在食品安全领域,它可以用于食品中有害物质的分析和检测。

在药物研究和开发中,它可以用于药物的纯度检验和质量控制。

在环境保护领域,它可以用于环境污染物的分析和监测。

SDS工艺流程是一种重要的工艺流程,它在化学、生物医药、环境监测等领域中都起着重要的作用。

它具有操作简便、结果准确、应用范围广泛等特点,因此备受学术界和工业界的关注。

希望通过本文的介绍,读者能对SDS工艺流程有一个更加全面和深入的了解。

生物表面活性剂的标准和检测方法

生物表面活性剂的标准和检测方法

生物表面活性剂的标准和检测方法目录欧洲前言 (3)引言 (4)1 范围 (6)2 参考规范 (6)3 专业术语和定义 (6)4 表面活性剂概述 (7)5 性能 (7)5.1 一般性能 (7)5.2 技术性能指标 (8)5.2.1 化学组成 (8)5.2.2 溶解度 (8)5.2.3 表/界面张力 (8)5.2.4 发泡性能 (8)5.2.5 湿润性 (8)5.2.6 乳化性能 (9)6 健康、安全和环境要求 (9)7 与化学品或表活相关的其他欧盟法规 (9)7.1概论 (9)7.2表面活性剂的分类 (10)7.3分析方法 (11)8可持续性 (11)9 降解性 (11)10 声明和产品标签 (12)欧洲前言这份文档由法国标准协会组织的技术委员会CEN/TC 276“表面活性剂”秘书处编制。

本文档目前已经递交投票。

本文档已被欧洲委员会和欧洲自由贸易协会授权给欧洲标准化委员会(CEN)。

本文档已被授权给欧盟委员会寄至欧洲标准化委员会以用于生物基产品溶剂和表面活性剂的欧洲标准发展。

引言生物基材料已经在表面活性剂生产上应用了数千年。

例如,人类所使用的第一种表面活性剂,就是完全基于生物性的肥皂。

随着二十世纪初现代表面活性剂的出现,以石油化工为主的原材料也成为人们关注的热点。

他们提供了更广泛的意义上调整表面活性剂各种应用性能的机会。

在过去的几十年中,出现了新的生物基表面活性剂原料。

对生物基产品潜在利益兴趣增加的原因与化石资源的消耗和气候变化相关。

由于对生物基产品在能源应用方面不同于食品、饲料以及生物生物质的关注,意识到对生物基产品通用标准的需求,欧洲委员会发布了M/492命令,从而由CEN/TC 411开发了一系列的标准。

CEN/TC 411“生物基产品”的标准在以下方面提供一个共同的基础:—常用术语—生物基含量测定—生命周期评价(LCA)—可持续性方面的问题—申报工具。

重要的是要了解是“生物基产品”涵盖了什么以及如何使用。

表面活性剂的性能测定与评价

表面活性剂的性能测定与评价

表面活性剂的性能测定与评价(总11页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除中国石油大学(油田化学基础实验)实验报告实验日期:成绩:班级:石工学号:1302姓名:教师:同组者:表面活性剂的性能测定及评价一.实验目的1、了解用指示剂和染料通过显色反应鉴别表面活性剂类型的原理和方法;2、了解离子型表面活性剂克拉夫特点和非离子表面活性剂浊点的测定方法及不同类型表面活性剂的性质;3、学会一种表面活性剂的界面张力的测定原理和方法,并掌握由表面张力计算临界胶束浓度(CMC)的原理和方法,学习Gibbs公式及其应用;4、学会表面活性剂溶液与原油的油水界面张力的测定原理和方法,并掌握超低界面张力在三次采油中的作用机理;5、学会观察表面活性剂溶液与原油混合后的乳化现象,并掌握不稳定体系数法评价表面活性剂的乳化能力。

二.实验原理表面活性剂分子是由亲水性的极性基团和憎水性的的非极性基团所组成的有机化合物,当它们一低浓度存在于某一体系中时,可被吸附在该体系的表面上,采取极性基团向着水,非极性基团脱离水的表面定向,从而使表面自由能明显降低。

1、表面活性剂类型的鉴别不同类型的表面活性剂具有不同的性质,因此可采用不同的方法将它们鉴别出来。

离子表面活性剂可利用他们的离子反应来鉴别,非离子表面活性剂则利用其与金属离子形成络合物的颜色来鉴别。

亚甲基蓝属阳离子型有色物,在容量分析中可作指示剂使用,当它遇阴离子表面活性剂时,生成不溶于水而溶于氯仿的产物,使氯仿层色泽变深;如果实验液中含有阳离子表面活性剂,由于阴阳离子表面活性剂的结合,使亚甲基蓝脱离阴离子表面活性剂而从氯仿中重新回到水中,使氯仿色泽变浅。

2、表面活性剂克拉夫特点和浊点离子型表面活性剂在温度较低时溶解度很小,但随温度升高而逐渐增加,当到达某特定温度时,溶解度急剧陡升,把该温度称为临界溶解温度又称克拉夫特点。

资料:2014-2015 表面活性剂化学实验资料

资料:2014-2015 表面活性剂化学实验资料

表面活性剂化学实验实验一乳状液的制备和性质一、实验目的1、用多种乳化剂制备不同类型的乳状液;2、学习鉴别乳状液类型的基本方法;3、了解乳状液的基本性质。

二、实验原理乳状液是一种分散体系,它是由一种以上的液体以液珠的形式均匀地分散于另一种与它们不相混溶的液体中而形成的。

通常将以液珠形式存在的一相称为内相(或分散相),另一相称为外相(或分散介质)。

通常外相为水相,内相为油相的乳状液称为水包油型乳状液,以O/W 表示,反之则为油包水型乳状液,以W/O 表示。

为使乳状液稳定要加入的第三种物质(多为表面活性剂),称为乳化剂。

乳化剂的性质常能决定乳状液的类型,如碱金属皂可使O/W 型稳定,而碱土金属皂可使W/O 型稳定。

有时将乳化剂的亲水、亲油性质用HLB 值表示,此值越大亲水性越强。

HLB 值在3~6 间的乳化剂可使W/O 型的乳状液稳定,HLB 值在8~18 间的乳化剂可使O/W 型的乳状液稳定。

欲使某液体形成一定类型的乳状液,对乳化剂的HLB 有一定的要求。

当几种乳化剂混合使用时,混合乳化剂的HLB 值和单个乳化剂的HLB 值有如下关系:混合乳化剂HLB= ax+by+cz+…../x+y+z+…..式中a、b、c ……表示单个乳化剂的HLB 值,x、y、z ……表示各单个乳化剂在混合乳化剂中占的重量分数。

乳状液类型的鉴别方法有:①染色法选择一种只溶于水(或只溶于油)的染料加入乳状液中,充分振荡后,观察内相和外相的染色情况,再根据染料的性质判断乳状液的类型。

例如把油溶性染料加入到乳状液中若能使内相着色,则为O/W 型乳状液。

②稀释法乳状液易于与其外相相同的液体混合。

将1 滴乳状液滴入水中,若很快混合为O/W 型。

③电导法O/W 型乳状液比W/O 型乳状液导电能力强。

乳状液的界面自由能大,是热力学不稳定体系。

因此,即使加入乳化剂,也只能相对地提高乳状液的稳定性。

用各种方法使稳定的乳状液分层,絮凝或将分散介质、分散相完全分开统称为破乳。

氟碳表面活性剂的分析鉴定6.-中国表面活性剂网

氟碳表面活性剂的分析鉴定6.-中国表面活性剂网

氟碳表面活性剂的分析鉴定6.1 氟碳表面活性剂分析鉴定的含义当制备成功某一氟碳表面活性剂化合物以后,最需要了解的是所合成的碳表面活性剂是否是纯化合物。

从氟碳表面活性剂水溶液的表面张力讨论中已经知道,在作浓度的表面张力曲线时如果在临界胶束浓度(CMC)前后出现表面张力的最低值现象,即大约在CMC后面浓度的表面张力曲线略有升高,这时说明氟碳表面活性剂不是纯化合物,混入有极少量的杂质。

当然对于有沸点或熔点的氟碳表面活性剂也可从其沸点、熔点的温度范围类似判断普通有机化合物一样判断其纯度的高低。

由于氟碳表面活性剂的物理化学性质对杂质的存在较敏感(可能是好的影响也可能是不好的影响),所以了解氟碳表面活性剂的纯度是必要的。

有了“纯化合物”的前提,不管是从事氟碳表面活性剂物化性质研究得到的物化性质数据,还是实际应用配方得到的最终应用效果,才有可能提供氟碳表面活性剂的真实性能。

在了解了杂质存在可能产生的影响后,实际工业应用中往往并不需要采用纯度很高的氟碳表面活性剂。

上述氟碳表面活性剂的不纯指的是氯碳表面活性剂化合物中与氟碳表面活性剂化学结构不同的其他化合物杂质,即杂质本身为没有表面活性的化合物。

而对于大多数氟碳表面活性剂却有另一类广泛存在的“不纯”,那就是同系物的存在。

例如由齐聚反应方法合成氟碳疏水疏油链段制备的氟碳表面活性剂,可能混合有不同的齐聚体。

以四氟乙烯为例,四氟乙烯齐聚时有四、五及六聚体等产物,用于表面活性剂合成的以五聚体为多。

但如果分馏时没有严格切割,可能有四、六聚体混入,对于这些齐聚体不管是五聚体还是四、六聚体同系物,再进一步合成氟碳表面活性剂的化学反应都是类似的,因此四聚体或六聚体的衍生物作为同系物杂质将一直保留到最后的氟碳表面活性剂产品中,而且越来越难分离提纯。

如果是六氟丙烯或六氟丙烯环氧进行齐聚反应也有类似的同系物产生。

又如四氟乙烯的调聚反应法合成氟碳表面活性剂,则存在不同调聚产物的分布,即碳原子数可以是六、八、十等。

表面活性剂红外光谱分析

表面活性剂红外光谱分析

表面活性剂红外光谱分析-光谱试验∙发布日期:2008-12-30∙所属类别:常用表面活剂剖析∙【摘要】∙(一)试样的准备试样的准备是整个光谱测定中极其重要的一步,因为由杂质而引起的光谱吸收可以掩盖表面活性剂官能团的光谱吸收,或者导致吸收带的错误分布。

因此试样中的无机盐,未转化的碱性物质,非表面活性物质等都应设法除去。

溶剂也应尽可能地除去。

特别是在接近3.0μm(约3300cm-1)和 6.1μm (约1640 cm-1)的水吸收波长处有强吸收的试样,应在50℃真空烘箱中除去水分。

如果阴离子和两性表面活性剂中含有金属反离子,阳离子和两性表面活性剂中含有卤素反离子,应该用离子交换树脂处理,以除去可能干扰分析的反离子。

在阳离子表面活性剂中,如果存在硫酸二甲酯或硫酸二乙酯这样一些反离子,或短链羧酸阴离子,都应尽量除去,否则会大大增大分析工作的复杂性。

反离子可以从离子交换树脂柱上洗脱,并进行分析。

对于混合活性物体系可用离子交换法进行分离(见下文中注),如果同类活性物再通过分析鉴定和官能团分析后再进行测谱,得到的情报就更确切可靠。

在某些情况下(特别是在分子中可能存在羧酸时),可以分别获得在酸性和碱性pH下试样的红外光谱图。

为此,表面活性剂水溶液的PH应该用NaOH或HCl调节至适当值,将水分蒸发干,残渣在50℃真空烘箱中细心地干燥以后再用于分析。

(二)操作步骤如果试样不是低熔点固体,最好用KBr压片法测定。

将1份经仔细碾碎了的试样与大约20份碾碎了的KBr混合(在碾磨时,可以加几点氯仿,以保证内部混合均匀)。

在室温和真空下用 2.06×108pa(2100kg/cm2)的压力,压成直径为10mm,厚度为1~2mm的圆片。

或者用浆糊法,即将2~3mg试样用玛瑙研钵充分研细,加1~2滴白油,再碾磨5min,用不锈钢刀刮至盐片上,压上另一片盐片,放在可拆液体槽架上或专门的浆糊槽架上,即可进行测定。

下列吸收带是白油引起的:3.3~3.5μm、6.8μm和7.3μm(3030~2860cm-1、约1470 cm-1和约l370 cm-1),分析图谱时可以不予考虑。

表面活性剂的检测

表面活性剂的检测
表面活性剂分子在界面上富集,一端 亲水,一端亲油,能够显著降低油水 界面张力,提高湿润性、渗透性、乳 化性等。
表面活性剂的分类
按离子类型分类
阴离子型、阳离子型、非离子型和两性离子型 表面活性剂。
按化学结构分类
直链烷基苯磺酸钠、脂肪醇硫酸钠、脂肪醇聚 氧乙烯醚硫酸钠等。
按应用领域分类
工业级、食品级、化妆品级和医药级表面活性剂。
3
HG/T 3777-2005 表面活性剂 工业十二烷基硫 酸钠试验方法
企业标准
Q/XXX 表面活性剂 工业脂肪醇聚氧乙烯醚硫 酸钠试验方法
Q/XXX 表面活性剂 工业烷基苯磺酸钠试验方 法
Q/XXX 表面活性剂 工业十二烷基硫酸钠试验 方法
04 表面活性剂检测设备与仪器
滴定仪
总结词
滴定仪是用于检测表面活性剂的常用设 备之一,通过滴定法测量表面活性剂的 浓度。
按照规定的实验步骤进行操作,包括表面活性剂的提取、分离、纯 化等过程,确保每一步都准确无误。
实验记录
在实验过程中,需要详细记录实验数据和现象,以便后续的数据处 理和分析。
数据处理与分析
数据整理
对实验数据进行整理,包括数据 的筛选、校准和标准化等,以确 保数据的准确性和可靠性。
ቤተ መጻሕፍቲ ባይዱ数据分析
运用统计分析方法对数据进行分 析,以得出表面活性剂的含量、 分布和性质等结果。
结果解释
根据分析结果,对表面活性剂的 特性和行为进行解释和推断,为 实际应用提供科学依据。
06 表面活性剂检测结果解读
结果判断依据
表面张力
表面活性剂能够显著降低水的表面张力,通 过测量水滴在固体表面形成的角度,可以判 断表面活性剂的浓度。

表面活性剂的分析与测试

表面活性剂的分析与测试

表面活性剂的分析与测试2008-03-20 19:09表面活性剂具有降低表面张力及在溶液中定向吸附并形成胶束的特性,由此表面活性剂具有湿润、乳化、分散、起泡、消泡、增溶、絮凝、杀菌、去污等一系列作用和功能。

这些功能已在洗涤剂生产、纺织、造纸、皮革加工、金属加工、石油工业、农药制剂生产等诸多工业领域得以应用并发挥重要作用。

各种用途的工业表面活性剂产品通常是用几种不同性能的表面活性剂、无机物、水或有机溶剂等复配而成。

一般需要用物理、化学和色谱方法对混合物进行分析、分离和精制,再利用红外、紫外、核磁、质谱和色谱等仪器进行未知物的定性分析、定量分析及组成与结构测试。

一、表面活性剂的理化性能测试浊点是非离子表面活性剂亲水性与温度关系的重要指标,与应用需求密切相关,多采用一定浓度的水溶液升温法。

分散力测试方法有分散指数法、酸量滴定法、比浊法等。

润湿力的测定方法通常用帆布沉降法、纱布沉降法、纱线沉降法和接触角法等。

静表面张力测定有滴重法、吊环法、平板法、悬滴法和最大泡压法。

形成胶束所需表面活性剂的最低浓度称为临界胶束浓度(cmc),表面活性剂的水溶液只有其浓度略高于其CMC值时它的作用才能充分显示,测定方法有表面张力、染料、电导率法等。

表面活性剂在水溶液中形成胶束以后,能使不溶解或微溶于水的有机化合物的溶解度显著增大的能力,形成真溶液体系。

增溶实验是将一定量的表面活性剂将苯或其它所需考察的有机物增溶在水中,当体系中有机溶剂含量超过表面活性剂的增溶极限时,体系浑浊,由此测定其增溶能力。

表面活性剂的泡沫性能包括它的起泡性和稳泡性两个方面,均随其浓度上升而增强(直至极限值),测定方法是测定表面活性剂在一定浓度、一定温度、一定高度自由流下的一定硬度的水溶液所产生的泡沫高度/量,及此泡沫在一定时间后的泡沫高度/量。

乳化力的测定因不同的乳化对象及不同的乳化环境表面活性剂呈现出不同的乳化力,视具体情况而定,无统一的方法。

相转变温度(PIT)是测定乳液相转变的温度,是衡量乳液稳定性的重要指标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四单元表面活性剂的分析与分离4.1 概述表面活性剂具有降低表面张力及在溶液中定向吸附并形成胶束的特性,由此表面活性剂具有湿润、乳化、分散、起泡、消泡、增溶、絮凝、杀菌、去污等一系列作用和功能。

这些功能已在洗涤剂生产、纺织、造纸、皮革加工、金属加工、石油工业、农药制剂生产等诸多工业领域得以应用并发挥重要作用。

各种用途的工业表面活性剂产品通常是用几种不同性能的表面活性剂、无机物、水或有机溶剂等复配而成。

一般需要用物理、化学和色谱方法对混合物进行分析、分离和精制,再利用红外、紫外、核磁、质谱和色谱等仪器进行未知物的定性分析、定量分析及组成与结构测试。

为什么分析表面活性剂?目的是告诉大家关于怎样分析表面活性剂及含表面活性剂的产品。

表面活性剂的种类繁多,主要的化学类型有阴离子型、阳离子型和非离子型,应用十分广泛,除了人人皆知的洗涤剂外,表面活性剂在化工、轻工、食品、石油工业、纺织、医药、塑料、皮革、金属加工、化妆品、工业乳化、印染、采油、选矿等行业都有重要的用途。

此外,也像其他化学工业部门一样,随之而来的环境保护与检测也常遇到这类化合物。

为了满足提高我国表面活性剂的研究、生产和应用水平,满足广大科技人员和高等院校师生应用要求,表面活性剂产品具有一个共同的特点:即它们都不是一个纯净的化合物,而是有一定相对分子质量分布范围的同系物混合物。

例如,在烷基磺酸盐、烷基硫酸盐或烷基季铵盐工业产品中,烷基链长有一个分布范围;烷基苯磷酸盐存在烷基与苯基连接位置不同的异构体;至于非离子型表面活性剂,如最常见的壬基酚聚氧乙烯醚,由于工业原料和生产工艺的缘故,烷基可能为C8、C9、C10,甚至更宽的范围,氧乙烯(EO)的聚合度从零到几十,随产品的用途和工艺变化更大。

所以表面活性剂的分析,不仅有总含水量的测定,还有分子量分布范围的测定问题。

4.2表面活性剂混合物的分离色谱是建立在吸附、分配、离子交换、亲和力和分子尺寸等基础上的分离过程,它利用不同组分在相互不溶的两相(固定相和流动相)中的相对运动各组分与固定相之间的吸附能力,分配系数,离子交换能力,亲和力或分子大小等性质的微小差别,经过连续多次在两相的质量交换,使不同组分得以分离并将其一一检测。

色谱法高效快速且在测定物质含量时线性范围宽、重现性好。

4.2.1 柱色谱分离技术人们常用离子交换法分离阴、非离子表面活性剂混合物,实验表明:对含烷基硫酸酯类阴离子表面活性剂混合物的分离,用氧化铝层析法优于用离子交换法。

阴、非离子表面活性剂以恰当比例复配可产生较大的协同效应,这早已被理论和实践证明。

目前,许多性能优良的洗涤剂中的活性成份都是阴、非离子表面活性剂的混合物。

其中,相当多的是烷基硫酸酯型阴离子表面活性剂与聚乙二醇型非离子表面活性剂的复配。

为了对产品质量进行检验和控制,常需要分离这种类型的表面活性剂混合物。

同时,为了鉴定未知表面活性剂结构,也需先进行分离操作。

分离方法的适当与否,直接关系到分析结果的准确性和可靠性。

对阴、非离子表面活性剂的分离大多采用离子交换树脂分离法。

离子交换树脂中具有能离解的酸性或碱性基团,能与溶液中其它的阴离子或阳离子起交换作用。

通过交换,把一些能离解的酸性、碱性组分吸附在树脂上,而与不能离解的非离子型物质分开。

被吸附的物质可选用适宜的洗脱剂洗脱、分离。

在实验过程中,用离子交换法分离烷基硫酸酯型阴离子表面活性剂和聚乙二醇型非离子表面活性剂的混合物时,常出现非离子组份含量偏高,分离不彻底及重现性差等问题,经分析,可能是烷基硫酸酯型阴离子表面活性剂在被树脂吸附和洗脱过程中,由于受pH值变化的影响而发生水解的缘故。

为此,我们对含烷基硫酸酯的阴离子表面活性剂与非离子表面活性剂混合体系的分离方法进行了研究。

4.2.2 离子交换色谱分离概述离子交换树脂的使用离子交换的实际应用柱流出液的分析4.2.3 薄层色谱分离技术薄层色谱(TLC)是一种快速、微量、操作简便的物理化学的分离技术,是将吸附剂或载体均匀地涂于玻璃板或聚脂薄膜及铝箔上形成一薄层来分离的。

其中以吸附薄层色谱应用最为广泛。

4.2.4其他色谱分析高压液相色谱(HPLC)特别适用于分离沸点高、极性强、热稳定性差的化合物,可对样品回收较容易,对表面活性剂无需进行化学预处理即可进行分离分析,分配吸附(正相、反相)色谱和离子交换色谱在非离子、阴离子、阳离子和两性表面活性剂的整个领域内应用十分普遍,也可针对副产物、未反应物和添加剂进行分析。

利用凝胶渗透色谱(GPC)可对非离子表面活性剂、高分子表面活性剂进行分析,确定其分子量分布情况。

气相色谱(GC)可以对表面活性剂的原料进行分析,并对于沸点在350℃以下的大多数有机物均可测试。

可依据组分的保留值参照标准物定性,以归一法、内标或外标法定量,提供烷基碳原子数分布值、烷基支化度、低沸点原料及低加成/聚合反应转化率。

对于难挥发/不挥发的物质须先进行预处理(化学法或热裂解法)将其转化成挥发物,才能分析。

现代仪器连用技术的发展使得GC-MS连用拓展了未知物分离检测的范围。

毛细管电泳和超临界流体色谱法基于相平衡的表面活性剂分离1气-液平衡2液-液平衡3液-固平衡4排阻色谱法4.3 表面活性剂的定性分析首先将某一表面活性剂的元素定性分析与离子类型鉴定相结合对此表面活性剂官能团进行定性分析。

如为阴离子型表面活性剂常常含硫、氮、磷中的任一种或两种元素,一般还含有K+、Na+、Ca2+、Mg2+、Ba2+等金属元素,还需要考虑其反离子为NH4+和烷醇胺的可能性;但金属离子也可能是属于无机副产物或添加物。

如为阳离子型表面活性剂元素定性应含氮、卤素,无金属离子。

非离子表面活性剂多不含S、P,某些如烷醇酰胺、脂肪胺醚等含N元素。

两性表面活性剂基本都含N元素,少数的S、N共存(磺化甜菜碱),或N、P共现(卵磷脂)。

氨基酸盐含有K+、Na+等金属离子。

如果有氟元素明显被检出时,可以肯定是含氟表面活性剂。

有显著硅检出时,需考虑有机硅类表面活性剂和硅酸盐添加物的存在的可能。

4.3.1表面活性剂元素的定性分析1. 非金属元素的定性分析2. 发射光谱法进行元素分析4.3.2表面活性剂类型的定性分析—鉴定表面活性剂的离子型鉴定:表面活性剂的品种繁多,但按其在水中的离子形态可分为离子型表面活性剂和非离子型表面活性剂两大类。

前者又可以分为阴离子型、阳离子型和两性型三种。

利用表面活性剂的离子型鉴别方法快速、简便地确定试祥的离子类型,有利于限定范围,指示分离、分析方向。

确定表面活性剂的离子型的方法很多,最常用的酸性亚甲基蓝试验。

染料亚甲基蓝溶于水而不溶于氯仿,它能与阴离子表面活性剂反应形成可溶于氯仿的蓝色络合物,从而使蓝色从水相转移到氯仿相。

本法可以鉴定除皂类之外的其他广谱阴离子表面活性剂。

非离子型表面活性剂不能使蓝色转移,但会使水相发生乳化;阳离子表面活性剂虽然也不能使蓝色从水相转移到氯仿相,但利用阴、阳离子表面活性剂的相互作用,可以用间接法鉴定。

表面活性剂类型的确定一.阴离子活性物甲:亚甲兰-氯仿法1 试剂i 亚甲兰溶液:将0.03克亚甲兰,12克浓硫酸和50克无水硫酸钠用水稀释至1Lii 0.05%阴离子表面活性剂溶液iii 氯仿.2 操作步骤在带塞试管中加人3ml亚甲基兰溶液和5毫升氯仿,加入一滴0.05%阴离子表面活性剂,塞上塞子充分振荡,并使其分层.一直滴到上下层对反射光呈同一颜色时为止.一般需要10-20滴阴离子表面活性剂,接着加入2m10.1%试样溶液,振荡后让其分层,静置观测两层颜色.3 结果和判断如果氯仿层颜色较深,而水层几乎五色,表明存在阴离子表面活性剂.因为试剂是酸性的如果存在肥皂的话,则已经分解脂肪酸,所以肥皂不能被检测。

如果水层颜色较深,则表明存在阳离子表面活性剂,因为试剂是酸性的,两性表面活性剂通常显(微弱)阳性结果。

如果两层仍或多或少有相同颜色,或下层变成乳白色或极淡的颜色,表明存在非离子表面活性剂,如果有疑问,可用2血水代替试样进行对照试验.硅酸盐.磷酸盐等无机盐不会产生干扰。

乙:百里酚兰试验1 . 试剂在0.005M盐酸溶液中加3滴百里酚兰溶液.2. 在5毫升中性0.01-0.1%试样中加人5毫升试剂,呈紫红色表明存在阴离子表面活性剂二阳离子表面活性剂溴酚兰法1 试剂将75毫升0.2M醋酸钠溶液、925毫升0.2M醋酸、20毫升0.1%溴酚兰乙醇溶液混合,此溶液pH必须调至3.6-3.9。

2 操作步骤调节1%试样溶液pH=7。

加2-5滴试样溶液于10毫升试剂中,显深兰的话,表明存在阳离子表面活性剂,所有阳离子表面活性剂都得样性结果.长链氨基酸和甜菜碱产生轻微兰光和紫色萤光.非离子表面活性剂和阳离子表面活性剂共承时,并不干扰.(亚甲基蓝——氯仿试验)操作方法及原理与(1)基本相同。

将亚甲基蓝溶液及氯仿加入试管中,加入阴离子表面活性剂标准溶液1-2滴,激烈摇动,氯仿层中呈明显蓝色。

在此试管中加入约1%(体积分数)的试样溶液数滴,并上下激烈摇荡,观察氯仿层颜色的变化。

以氯仿层蓝色变浅,且再增加试样溶液的量,会变成无色,此时表明试样中有阳离子表面活性剂存在。

三非离子表面活性剂甲:硫氰酸钴铵法本试验适合于混合试样中定性聚氧乙烯非离子表面活性剂1 硫氰酸钴铵试剂:溶解174克硫氰酸铵和28克硝酸钴于1L水中.2 操作步骤加5毫升硫氰酸钴铵试剂于5毫升1%试样中,放置2H后观察溶液颜色.出现蓝色的话,表明存在非离子表面活性剂.红紫至紫色为阴性.若生成蓝色沉淀和红紫色溶液,表明存在阳离子表面活性剂.乙:磷钼酸钠试验取5ml1%(体积分数)的试样水溶液于试管中,加10ml盐酸(1ml试剂级盐酸加10ml水)及10ml氯化钡溶液(10%质量分数),并加热,冷却后,如有混浊及沉淀生成时,过滤;过滤溶液中加入1ml磷钼酸钠溶液(10%质量分数),如有非离子表面活性剂存在时,测生成浅黄色沉淀。

此法只适用于聚氧乙烯性非离子表面活性剂,如有阴离子表面活性剂共存时,并无妨碍,但不适用于阳离子表面活性剂共存的情况。

4.4表面活性剂的定量分析确定表面活性剂的离子类型后可进一步对其定量分析。

阴离子表面活性剂定量分析法原理是阴离子表面活性剂和以知阳离子表面活性剂定量络合反应的方法。

维茨波恩的亚甲基蓝分相滴定法和亚甲基蓝光电比色法被日本工业标准JISK3362-1976所采用。

国际表面活性剂委员会(CID)和分析小组(CIA)推荐的国际标准ISO法是以阴离子表面活性剂海明1622为滴定剂,以阳离子染料/阴离子染料(溴化二氨基菲啶/二硫化蓝)作混合指示剂,此法比亚甲基蓝法变色明显,重现性好。

阳离子表面活性剂定量分析法有ISO287-1973亚甲基蓝法、溴甲酚氯法、四苯硼化钠法等。

相关文档
最新文档