人教版七年级数学下册5.3.2 命题、定理、证明 专题复习

合集下载

七年级数学人教版下册命题、定理、证明

七年级数学人教版下册命题、定理、证明

直线的基本事实:两点确定一条直线.
作用
线段的基本事实:两点间线段最短.
平行线的判定-基本事实:同位角相等,两直线平行.
平行线的基本事实:经过直线外的一点有且仅有 一条直线与已知直线平行.
定理:有些真命题它们的正确性是经过推理证实的, 也可以作为继续推理的依据.
作用 学过的定理: (1)补角的性质:同角或等角的补角相等.
例如,要判定命题“相等的角是对顶角”是假命题,可以举出如下 反例:图中,OC是∠AOB的平分线,∠1=∠2,但它们不是对顶角.
A
O
1 2
C
B
例题讲解
例2 如图,已知直线b//c,a⊥b. 求证a⊥c.
证明: ∵a⊥b (已知),
b
c
∴∠1 = 90°(垂直的定义).
a
1
2
又b//c(已知),
∴∠1 = ∠2(两直线平行,同位角相等).
(2)余角的性质:同角或等角的余角相等.
(3)对顶角的性质:对顶角相等.
(4)平行线的判定:内错角相等,两直线平行; 同旁内角互补,两直线平行
在很多情况下,一个命题的正确性需要经过推理才能作出判断, 这个推理过程叫做证明.
判断一个命题是假命题,只要举出一个例子(反例),它符合命题 的题设,但不满足结论就可以了.
6.如图,已知AB∥CD,直线AB,CD被直线MN所截,
交点分别为P,Q,PG平分∠BPQ,QH平分∠CQP.
求证:PG∥HQ.
M P
A
证明:∵AB∥CD(已知),
H C
∴∠BPQ=∠CQP(两直线平行,内错角相等).
B G
D Q
N
又∵PG平分∠BPQ,QH平分∠CQP(已知),

人教版数学七年级下册 5.3.2命题、定理、证明 课件(共23张PPT)

人教版数学七年级下册 5.3.2命题、定理、证明  课件(共23张PPT)
思路点拨:根据题意,从中任选两个作为条件,另一个作为结论 构成一个命题,根据平行线的判定和性质及对顶角相等进行证明
举一反三
10. (创新题)如图5-9-2,在四边形ABCD中,①AB∥CD,② ∠A=∠C,③AD∥BC. (1)请你以其中两个为条件,第三个为结论,写出一个命题 ; (2解)判:断(1这)命个题命为题如是果否A为B∥真C命D,题∠,A并=说∠明C,理由.
第五章 相交线与平行线
第9课时 命题、定理、证明
目录
01 本课目标 02 课堂演练
1. 了解命题、定理和证明的概念. 2. 能区分命题的题设和结论,会将一个简略的命题写成“ 如果……那么……”的形式. 3. 能判断命题的真假,并能对一个命题的正确性进行说理.
知识重点
知识点一 命题的定义
____判__断__一__件__事__情______的语句,叫做命题.
对点范例
1. 下列语句中,是命题的是( A )
①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗;
③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等
.
A. ①④⑤
B. ①②④
C. ①②⑤
D. ②③④⑤
知识重点
知识点二 命题的结构
命题都可以改写成“如果……那么……”的形式,其中, “如果”后接的部分是____题__设______,“那么”后接的部 分是____结__论______.
举一反三
8. 命题“相等的角不一定是对顶角”是_____真_______(填“ 真”或“假”)命题.
典型例题
【例4】对于命题“若a>b,则a2>b2”,小明想举一个反例
说明它是一个假命题,则符合要求的反例可以是( D )

人教版数学七年级下册《5-3-2命题、定理、证明 》教案

人教版数学七年级下册《5-3-2命题、定理、证明 》教案

人教版数学七年级下册《5-3-2命题、定理、证明》教案一. 教材分析《5-3-2命题、定理、证明》是人教版数学七年级下册的一章内容。

本章主要介绍命题、定理和证明的概念,要求学生理解命题的真假判断,了解定理的定义和证明过程,能够运用证明方法解决一些简单的数学问题。

二. 学情分析学生在学习本章内容前,已经掌握了整数、分数、代数等基础知识,具备一定的逻辑思维能力。

但部分学生对于抽象的概念理解起来可能存在一定的困难,需要通过具体的例题和实践活动来加深理解。

三. 教学目标1.了解命题、定理的概念,理解命题的真假判断,掌握定理的定义和证明过程。

2.培养学生运用证明方法解决数学问题的能力。

3.培养学生的逻辑思维能力和团队合作能力。

四. 教学重难点1.命题、定理的概念及命题的真假判断。

2.证明方法的应用。

五. 教学方法1.讲授法:讲解命题、定理的概念,演示证明过程。

2.案例分析法:分析具体例题,引导学生运用证明方法解决问题。

3.小组合作法:分组讨论,共同完成证明任务。

六. 教学准备1.教材、PPT课件。

2.相关例题和练习题。

3.教学工具:黑板、粉笔。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些日常生活中的命题,如“明天会下雨”、“今天是星期天”等,引导学生思考这些命题的真假判断。

2.呈现(10分钟)讲解命题、定理的概念,解释命题的真假判断,通过PPT课件展示定理的定义和证明过程。

3.操练(10分钟)给出几个简单的例题,让学生尝试运用证明方法解决问题。

引导学生思考证明过程中的关键步骤,培养学生的逻辑思维能力。

4.巩固(10分钟)学生分组讨论,共同完成一个证明任务。

教师巡回指导,解答学生疑问。

5.拓展(10分钟)给出一个较复杂的证明题目,让学生独立完成。

鼓励学生运用所学知识,解决问题。

6.小结(5分钟)教师总结本节课的主要内容,强调命题、定理和证明的概念,以及证明方法的应用。

7.家庭作业(5分钟)布置一些有关命题、定理和证明的练习题,要求学生回家后独立完成。

2022至2023年年初中数学人教版初一下册 5.3.2命题、定理、证明

2022至2023年年初中数学人教版初一下册 5.3.2命题、定理、证明

选择题下列句子中,属于命题的是()A. 直线AB和CD垂直吗B. 作线段AB的垂直平分线C. 同位角相等,两直线平行D. 画∠【答案】C【解析】分别根据命题的定义进行判断.A、直线AB和CD垂直吗?这是疑问句,不是命题,所以A选项错误;B、作线段AB的垂直平分线,这是描叙性语言,不是命题,所以B 选项错误;C. 同位角相等,两直线平行是命题,所以C选项正确;D、画∠,这是描叙性语言,不是命题,所以D选项错误.故选C选择题下列句子是命题的是( )A. 画∠AOB=45°B. 小于直角的角是锐角吗?C. 连结CDD. 三角形内角和等于180°【答案】D【解析】对于选项A、C,由于不能判断其正误,所以不是命题;对于选项B,由于不是陈述句,所以不是命题;对于选项D,根据命题的定义可得D中的句子是命题.故选D.选择题下列语句中,不是命题的是()A. 所有的平角都相等B. 锐角小于90°C. 两点确定一条直线D. 过一点作已知直线的平行线【答案】D【解析】根据命题的定义:判断一件事情的语句叫命题,进行选择.、平角都相等,判断一件事情,故是命题;、锐角小于,判断一件事情,故是命题;、两点确定一条直线,判断一件事情,故是命题;、没判断一件事情,只是叙述一件事情,故不是命题.故选:.选择题下列命题是真命题的是( )A. 同旁内角相等,两直线平行B. 若,则C. 如果,那么D. 平行于同一直线的两直线平行【答案】D【解析】分析: 分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.详解: A. ∠ 同旁内角互补,两直线平行,故是假命题;B. ∠若,则,故是假命题;C. ∠-1>-2满足,但,故是假命题;D. ∠平行于同一直线的两直线平行,故是真命题;故选D.选择题下列命题中,属于真命题的是()A. 互补的角是邻补角B. 在同一平面内,如果a∠b,b∠c,则a∠c。

人教版数学七年级下册5.3.2《 命题、定理、证明》同步练习 (含答案)

人教版数学七年级下册5.3.2《 命题、定理、证明》同步练习 (含答案)

人教版数学七下5.3.2《命题、定理、证明》同步练习一、选择题1.下列命题中是假命题的是( )A.同旁内角互补,两直线平行B.直线a⊥b,则a与b的夹角为直角C.如果两个角互补,那么这两个角一个是锐角,一个是钝角D.若a∥b,a⊥c,那么b⊥c2.命题“垂直于同一条直线的两条直线互相平行”的题设是()A.垂直B.两条直线C.同一条直线D.两条直线垂直于同一条直线3.下列命题中,真命题的个数为().①在同一平面内,两条直线被第三条直线所截,同位角相等;②两条平行线被第三条直线所截,同位角的平分线平行;③两条平行线被第三条直线所截,内错角的平分线平行;④两条平行线被第三条直线所截,同旁内角的平分线平行;⑤两条直线被第三条直线所截,形成4对同位角、2对内错角和2对同旁内角.A.4B.3C.2D.14.下列命题中,属于真命题的是()A.两个锐角之和为钝角B.同位角相等C.钝角大于它的补角D.相等的两个角是对顶角5.下列说法中,正确的是()A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角。

6.有下列四个命题:①相等的角是对顶角;②同位角相等;③两点之间,直线最短;④从直线外一点到这条直线的垂线段,叫做点到直线的距离.其中是真命题的个数有()A.0个B.1个C.2个D.3个7.下列命题中,真命题是()A.相等的角是直角B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有具只有一条直线8.已知下列命题:①对顶角相等;②垂直于同一条直线的两直线平行;•③相等的角是对顶角;④同位角相等,其中假命题有( )A.1个B.2个C.3个D.4个9.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等;⑥经过直线外一点,有且只有一条直线与这条直线平行.其中假命题有( )A.1个B.2个C.3个D.4个10.下列语句不是命题的是()A.过直线外一点作直线的垂线B.三角形的外角大于内角C.邻补角互补D.两直线平行,内错角相等11.下列命题是假命题的是()A.同角的余角相等B.同旁内角互补C.对顶角相等D.在同一平面内,垂直于同一条直线的两条直线平行12.下列四个命题中:①在同一平面内,互相垂直的两条直线一定相交②有且只有一条直线垂直于已知直线③两条直线被第三条直线所截,同位角相等④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.其中真命题的个数为()A.1个B.2 个C.3个D.4个二、填空题13.下列命题中:①若∣a∣=∣b∣,则a=b;②两直线平行,同位角相等;③对顶角相等;④内错角相等,两直线平行.是真命题的是.(填写所有真命题的序号)14.把“两个邻角的角平分线互相垂直”写成“如果……,那么……”的形式为_______________.15.把命题“同角的补角相等”改成“如果...那么....”的形式16.把命题“垂直于同一条直线的两直线平行”,改写成“如果…,那么…”的形式:.17.命题“同位角相等,两直线平行”中,条件是,结论是18.把命题“平行于同一直线的两直线平行”写成“如果…,那么…”的形式________.三、解答题19.已知命题:“如图,点B,F,C,E在同一条直线上,则AB∥DE.”判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,在不添加其他辅助线的情况下,请添加一个适当的条件使它成为真命题,并说明理由.20.如图所示,已知AB∥CD,分别探究下面图形中∠APC,∠PAB,∠PCD的关系,请你从四个图形中任选一个,说明你所探究的结论的正确性.①结论:(1)________(2)________(3)________(4)________②选择结论(1),说明理由.参考答案1.答案为:C2.答案为:D.3.答案为:B4.答案为:C5.答案为:C6.答案为:A.7.答案为:D.8.答案为:C9.答案为:B10.答案为:A11.答案为:B12.答案为:A.13.答案为:②③④14.答案为:如果作两个邻补角的角平分线,那么这两条角平分线互相垂直15.答案为:如果两个角是同一个角的补角,那么这两个角相等.16.答案为:如果两条直线垂直于同一条直线,那么这两条直线平行.17.答案为:同位角相等;两直线平行.18.答案为:如果两条直线都与第三条直线平行,那么这两条直线互相平行19.解:这个命题是假命题.添加条件∠B=∠E使其成为真命题.理由:内错角相等,两直线平行.(添加条件不唯一)20.∠APC+∠PAB+∠PCD=360°;∠APC=∠PAB+∠PCD;∠PCD=∠APC+∠PAB;∠PAB=∠APC+∠PCD。

人教版七年级数学下册 5.3.2 命题、定理、证明 训练(含答案)

人教版七年级数学下册   5.3.2 命题、定理、证明  训练(含答案)

人教版七年级数学下册5.3.2《命题、定理、证明》训练一、选择题(共10小题,3*10=30)1.下列语句中,是命题的是()A.连接A,B两点B.画一个角的平分线C.过点C作直线AB的平行线D.过直线外一点,有且只有一条直线与已知直线垂直2.下列语句:①两点之间,线段最短;②画线段AB=3 cm;③直角都相等;④如果a=b,那么a2=b2;⑤同旁内角互补,两直线平行吗?其中是命题的有( )A.1个B.2个C.3个D.4个3.命题“对顶角相等”的“题设”是()A.两个角是对顶角B.角是对顶角C.对顶角D.以上都不正确4.命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中正确的有()A.1个B.2个C.3个D.4个5.下列命题可以作为定理的有()①两直线平行,同旁内角互补;②相等的角是对顶角;③等角的余角相等;④对顶角相等.A.1个B.2个C.3个D.4个6.下列命题中,是真命题的是()A.同位角相等B.相等的角是直角C.若|y|=2,则y=±2 D.若ab=0,则a=07.给出以下命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两条直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1个B.2个C.3个D.4个8.下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条直线所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行.其中( )A .①、②是正确的命题B .②、③是正确命题C .①、③是正确命题D .以上结论皆错9.下列说法正确的是( )A .互补的两个角是邻补角B .两直线平行,内错角互补C .“平行于同一条直线的两直线平行”不是命题D .“相等的两个角是对顶角”是假命题10. 判断命题“如果n <1,那么n 2-1<0”是假命题,只需举出一个反例.反例中的n 可以为( )A .-2B .-12C .0D .12二.填空题(共8小题,3*8=24)11.命题“平行于同一条直线的两条直线平行”的题设是_________________________12.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵_________________________,∴a ∥b.13.甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是________.14.下列语句:①钝角大于90°;②两点之间,线段最短;③希望明天下雨;④作AD ⊥BC ;⑤同旁内角不互补,两直线不平行.其中是命题的是__________(填序号)15.下列命题:①若|a|>|b|,那么a 2>b 2;②两点之间,线段最短;③对顶角相等;④内错角相等.其中真命题的是__________(填序号)16.“两直线平行,内错角相等”的题设是______________,结论是______________.17.对于下列假命题,各举一个反例写在横线上.(1)“如果ac =bc ,那么a =b”是一个假命题.反例:___________________.(2)“如果a 2=b 2,则a =b”是一个假命题.反例:___________________.18.如图,从①∠1=∠2;②∠C =∠D ;③∠A =∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为_______.三.解答题(共6小题,46分)19.(6分) 把下列命题写成“如果……那么……”的形式.(1)对顶角相等;(2)不相等的角不是对顶角;(3)相等的角是内错角.20.(6分) 举反例说明下列命题是假命题:(1)互补的两个角一个是钝角,一个是锐角;(2)若|a|=|b|,则a=b;(3)内错角相等.21.(6分) 分别指出下列命题的题设和结论,并判断是真命题还是假命题,如果是假命题,请举一个反例说明.(1)同旁内角互补,两直线平行;(2)如果a2=b2,那么a=b;(3)如果ac=bc,那么a=b;(4)互补的两个角一定是一个为锐角,另一个为钝角.22.(6分) 如图,已知∠ABC=∠ACB,BD平分∠ABC,交AC于点D,CE平分∠ACB,交AB于点E,∠DBF=∠F,求证:EC∥DF.23.(6分) 在下面的括号内,填上推理的根据:(1)如图①,已知AB∥CD,BE∥CF,求证:∠B+∠C=180°.证明:∵AB∥CD(已知),∴∠B=∠BGC(____________________________).∵BE∥CF(已知),∴∠BGC+∠C=180°(____________________________),∴∠B+∠C=180°(__________).(2)如图②,已知AD⊥BC于点D,DE∥AB,∠1=∠3,求证:FG⊥BC.证明:∵DE∥AB(已知),∴∠1=∠2(________________________).又∵∠1=∠3(已知),∴∠2=∠3(_______________),∴AD∥FG(______________________________),∴∠BGF=∠BDA(_______________________).∵AD⊥BC(已知),∴∠BDA=90°(_________________),∴∠BGF=90°(____________),∴FG⊥BC(______________).24.(8分) 命题“两直线平行,内错角的平分线互相平行”是真命题吗?如果是,请给出证明;如果不是,请举出反例.25.(8分) 已知命题“如果两条平行线被第三条直线所截,那么一对内错角的平分线互相平行”.(1)写出命题的题设和结论;(2)画出符合命题的几何图形;(3)用几何符号表述这个命题;(4)说明这个命题是真命题的理由.参考答案1-5DCAAC 6-10 CBBDA11.两条直线平行于同一条直线12. ∠1+∠3=180°13.014.①②⑤15. ①②③16. 两直线平行,内错角相等17. 3×0=(-2)×0 ,32=(-3)218.319. 解:(1)如果两个角是对顶角,那么这两个角相等.(2)如果两个角不相等,那么这两个角不是对顶角.(3)如果两个角相等,那么这两个角是内错角.20. 解:(1)∠A =90°,∠B =90°,∠A 与∠B 互补,但∠A 与∠B 为两个直角.(2)|-3|=|3|,但-3≠3.(答案不唯一)(3)如图,∠1与∠2是内错角,但∠1≠∠2.21. 解:(1)题设:同旁内角互补,结论:两直线平行,是真命题(2)题设:a2=b2,结论:a =b ,是假命题.例如:(-2)2=22,但-2≠2(3)题设:ac =bc ,结论:a =b ,是假命题.例如:3×0=2×0,但3≠2(4)题设:两个角互补,结论:一个为锐角,一个为钝角,是假命题.例如:两个直角互补22. 解:∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠DBF =12 ∠ABC ,∠ECB =12∠ACB. ∵∠ABC =∠ACB ,∴∠DBF =∠ECB.∵∠DBF =∠F ,∴∠ECB =∠F ,∴EC ∥DF23. 解:(1)两直线平行,内错角相等两直线平行,同旁内角互补等量代换(2)两直线平行,内错角相等等量代换同位角相等,两直线平行两直线平行,同位角相等垂直的定义等量代换垂直的定义24. 解:是真命题,证明如下:已知:AB ∥CD ,BE ,CF 分别平分∠ABC ,∠BCD.求证:BE ∥CF.证明:∵AB ∥CD ,∴∠ABC =∠BCD.∵BE ,CF 分别是∠ABC ,∠BCD 的平分线,∴∠2=12∠ABC ,∠3=12∠BCD. ∴∠2=∠3.∴BE ∥CF.25. 解:(1)题设:两条平行线被第三条直线所截,结论:一对内错角的平分线互相平行(2)如图:(3)如图,已知AB ∥CD ,GH ,MN 分别平分∠BGF 和∠EMC ,则GH ∥MN(4)∵GH ,MN 分别平分∠BGF 和∠EMC ,∴∠HGF =12 ∠BGF ,∠NME =12∠EMC , 又∵AB ∥CD ,∴∠BGF =∠CME ,∴∠HGF =∠NME ,∴GH ∥MN。

人教版数学七年下册第五章5.3.2《命题,定理,证明》精选题高频考点(含答案)-2

人教版数学七年下册第五章5.3.2《命题,定理,证明》精选题高频考点(含答案)-2
“假”)命题. 23.电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个广场下面 最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的广场(最 多八个)中雷的个数(实际游戏中, 0 通常省略不标,为方便大家识别与印刷,我把图
乙中的 0 都标出来了,以示与未掀开者的区别),如图甲中的“ 3 ”表示它的周围八个广块 中仅有 3 个埋有雷.图乙是张三玩游戏中的局部,图中有 4 个方块已确定是雷(方块上
(3)如果 a b ,那么 ab 0 ;
(4)如果一条直线和两条平行线中的一条垂直,那么这条直线也和另一条直线垂直. 48.如图,在△ABC 中,∠B≠∠C.求证:AB≠AC.
49.把下列命题改写成“如果……那么……”的形式,并判断其真假. (1)60°角的余角是 30°; (2)等边三角形是轴对称图形;
B.直角三角形有一个锐角大于 45°
C.直角三角形的每个锐角都大于 45°
D.直角三角形有一个锐角小于 45°
17.17.下列判断正确的个数是( )
①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③锐角和钝角互补;
④如果两个角是同一个角的补角,那么它们相等.
试卷第 2页,总 7页
A.1 个 B.2 个 C.3 个 D.4 个
D.三角形的三条高都在三角形内部
20.下列命题中,是假命题的是:( )
A.对顶角相等
B.同位角相等
C.两点确定一条直线
D.角平分线上的点到这个角的两边的距
离相等
二、填空题 21.相等的角是直角的逆命题是______.
22.命题:“如果 a b ,那么 a b ”的逆命题为______,逆命题是______(填“真”或
试卷第 5页,总 7页

人教版七年下册第五章5.3.2《命题,定理,证明》精选题高频考点(含答案)-2

人教版七年下册第五章5.3.2《命题,定理,证明》精选题高频考点(含答案)-2

人教版七年下册第五章5.3.2《命题,定理,证明》精选综合题高频考点(含答案)-1学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列命题中,真命题是( )A .相等的角是对顶角B .两条直线被第三条直线所截,同位角相等C .在同一平面内,垂直于同一条直线的两条直线平行D .同旁内角互补2.下列命题中,是假命题的是( )A .过直线外一点,有且只有一条直线与已知直线平行;B .一个三角形中至少有两个锐角;C .两直线平行,同位角相等;D .相等的角是对顶角3.下列命题是真命题的是( )A .π是单项式B .三角形的一个外角大于任何一个内角C .两点之间,直线最短D .同位角相等 4.下列命题中,真命题的是( )A .同旁内角互补;B .平行于同一条直线的两条直线平行;C .三角形的一个外角等于它的两个内角之和;D .若函数()231m y m x -=+是正比例函数,且图象在第二、四象限,则2m =. 5.下列选项中,可以用来证明命题“若a 2>b 2,则a >b “是假命题的反例是( ) A .a =﹣2,b =1 B .a =3,b =﹣2 C .a =0,b =1 D .a =2,b =1 6.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ) A .∠α=60°,∠α的补角∠β=120°,∠β>∠αB .∠α=90°,∠α的补角∠β=90°,∠β=∠αC .∠α=100°,∠α的补角∠β=80°,∠β<∠αD .两个角互为邻补角7.命题:①一个三角形中至少有两个锐角;②垂直于同一条直线的两条直线垂直;③如果两个有理数的积小于0,那么这两个数的和也小于0.其中为真命题的有( )A .0个B .1个C .2个D .3个8.反证法证明命题:“在△ABC 中,若∠B ≠∠C ,则AB ≠AC ”应先假设A .AB=ACB .∠B =∠C C .AB >ACD .AB <AC 9.下列命题是真命题的是( )A .两直线被第三条直线所截,同位角相等B .有一个角是60°的三角形是等边三角形C .三个角分别相等的两个三角形全等D .到角两边距离相等的点在角平分线上 10.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设( ) A .三角形中有一个内角小于或等于60° B .三角形中有两个内角小于或等于60° C .三角形中有三个内角小于或等于60° D .三角形中没有一个内角小于或等于60° 11.判断命题“如果n <1,那么n 2﹣1<0”是假命题,只需举出一个反例.反例中的n 可以为( )A .﹣2B .﹣12C .0D .1212.下列选项中,可以用来证明命题“若2a 4>,则a 2>”是假命题的反例是( ) A .a 3=- B .a 2=- C .a 2= D .a 3=13.下列语句不是命题的是( )A .连结ABB .对顶角相等C .相等的角是对顶角D .同角的余角相等 14.下列命题正确的是( )A .菱形的对角线相等B .矩形的对角线互相垂直C .平行四边形的对角线相等且互相平分D .正方形的对角线相等且互相垂直平分 15.下列说法中,正确的是( )A .所有的命题都有逆命题B .所有的定理都有逆定理C .真命题的逆命题一定是真命题D .假命题的逆命题一定是假命题 16.用反证法证明:“直角三角形至少有一个锐角不小于45°”时,应先假设( ) A .直角三角形的每个锐角都小于45°B .直角三角形有一个锐角大于45°C .直角三角形的每个锐角都大于45°D .直角三角形有一个锐角小于45°17.17.下列判断正确的个数是( )①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③锐角和钝角互补; ④如果两个角是同一个角的补角,那么它们相等.A .1个B .2个C .3个D .4个18.下列命题是真命题的是( )A .如果|a |=|b |,那么a =bB .平行四边形对角线相等C .两直线平行,同旁内角互补D .如果a >b ,那么a 2>b 219.下列命题中,正确的是( )A .三角形的一个外角大于任何一个内角B .两边和其中一边的对角分别相等的两个三角形全等C .三角形的一条中线将三角形分成两个面积相等的三角形D .三角形的三条高都在三角形内部20.下列命题中,是假命题的是:( )A .对顶角相等B .同位角相等C .两点确定一条直线D .角平分线上的点到这个角的两边的距离相等二、填空题21.相等的角是直角的逆命题是______.22.命题:“如果a b =,那么a b =”的逆命题为______,逆命题是______(填“真”或“假”)命题.23.电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个广场下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的广场(最多八个)中雷的个数(实际游戏中,0通常省略不标,为方便大家识别与印刷,我把图乙中的0都标出来了,以示与未掀开者的区别),如图甲中的“3”表示它的周围八个广块中仅有3个埋有雷.图乙是张三玩游戏中的局部,图中有4个方块已确定是雷(方块上标有旗子),则图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定不是雷的有________,一定是雷的有________.(请填入方块上的字母)24.把命题“三个内角都相等的三角形是等边三角形”改写成“如果…,那么…”的形式为_____________________________________________________.25.命题“若(1)0x x -=,则0x =”是_____命题(填“真”、假),证明时可举出的反例是______________.26.命题“如果ab =0,那么a =0”是______命题(填“真”或“假”)27.命题“等角的余角相等”的逆命题是:___________.28.用反证法证明“内错角相等,两直线平行”时,首先要假设_____.29.通过观察、猜测得到的结论一定正确吗?______.要判断一件事情或一个结论正确与否,必须进行有根有据地______.30.将命题“等边对等角”改写成“如果......那么......”的形式___________31.用反证法证明“三角形的三个内角中至少有一个角不小于60度”,第一步应假设_____________________.32.下列语句:①今天上午第几节课是数学课?②取线段AB 的中点.③如果a b >,那么33a b >.④这两条直线平行吗?⑤凡是直角都相等.其中______是命题.(填序号)33.(1)命题“如果一个数的绝对值等于它本身,那么这个数是非负数”的条件是______,结论是______;(2)命题“在同一平面内,如果a b ⊥r r,a c ⊥,b 、c 不重合,那么b c ∥”,这个命题的条件是______,结论是______,这个命题是______命题;(3)命题“同角的补角相等”是______命题,这个命题可以改写为:如果______,那么______.34.如图,已知∠1和∠2互为补角,∠A=∠D .求证:AB ∥CD .证明:∵∠1与∠CGD 是对顶角,∴∠1=∠CGD (______).又∠1和∠2互为补角(已知),∴∠CGD 和∠2互为补角,∴AE ∥FD (_________),∴∠A=∠BFD (_______).∵∠A=∠D(已知),∴∠BFD=∠D (_______),AB ∥CD (______).35.用反证法证明“若2a <,则24a <”时,应假设_____.36.命题“全等三角形的对应边都相等”的逆命题是___命题.(填“真”或“假”)37.对顶角相等,这个命题的题设是:___________________;结论是:________________. 38.“邻补角的角的平分线互相垂直”的逆命题是:_____,它是_____命题.39.命题“如果a≠b ,则a ,b 的绝对值一定不相等”是_____命题.(填“真”或“假”) 40.根据下图和命题“等腰三角形底边上的中线是顶角的角平分线”写出:已知:_______________________________求证:_______________ .三、解答题41.当1n =、2、3、4时,()()222121n n +--的值有什么特征?当n 是任意整数时,这个结论成立吗?用一句话概括这个结论.42.甲、乙、丙三名同学中有一名做了一件好事,李老师问他们:“谁做了好事?”他们调皮地说了下面的几句话:甲说:“我没有做这件事,乙也没有做这件事.”乙说:“我没有做这件事,丙也没有做这件事.”丙说:“我没有做这件事,也不知谁做的这件事.”当李老师追问时,他们承认上面每人讲的话中都有一句真话,一句假话.根据这些条件,你能分析出到底是谁做了好事吗?43.如图所示,通过画图可知:三角形三条边的垂直平分线的交点都在三角形的内部,于是可得出结论:任何一个三角形三条边的垂直平分线的交点都在三角形的内部,这个结论正确吗?44.把下列命题改写成“如果……那么……”的形式,并指出命题的条件是什么?结论是什么?(1)对角线互相垂直平分且相等的四边形是正方形;(2)对顶角相等.45.下列命题的条件是什么?结论是什么?并指出真假.(1)两条直线相交,只有一个交点;(2)相等的角是对顶角;(3)直角三角形的两个锐角互余.46.把下列命题改写成“如果…那么…”的形式:(1)同旁内角互补,两直线平行;(2)末位数字是0的数,一定能被5整除;(3)直角都相等;(4)同角的余角相等.47.指出下列命题中的条件和结论:(l )任意两个奇数之和是偶数;(2)互余的两个角不一定相等;(3)如果a b >,那么0ab >;(4)如果一条直线和两条平行线中的一条垂直,那么这条直线也和另一条直线垂直. 48.如图,在△ABC 中,∠B ≠∠C .求证:AB ≠AC .49.把下列命题改写成“如果……那么……”的形式,并判断其真假.(1)60°角的余角是30°;(2)等边三角形是轴对称图形;(3)点(1,2)在函数1y x =-的图象上;(4)垂线段最短.50.命题:角平分线上的点到角两边的距离相等,是真命题,还是假命题?如果是真命题,请证明;如果是假命题,请举一反例.参考答案1.C2.D3.A4.B5.A6.C7.B8.A9.D10.D11.A12.A13.A14.D15.A16.A17.B18.C19.C20.B21.直角都相等22.如果a b =,那么a b = 真23.A 、C 、E B 、D 、F 、G.24.如果一个三角形的三个角都相等,那么这个三角形是等边三角形.25.假 x=126.假27.如果两个角的余角相等,那么这两个角相等.28.“内错角相等,两直线不平行”29.不一定 推理证明30.如果一个三角形中有两条边相等,那么这两条边所对的角也相等.31.三角形的三个内角都小于60°32.③⑤33.一个数的绝对值等于它本身 这个数是非负数 在同一平面内,a b ⊥r r,a c ⊥,b 、c 不重合 b c ∥ 真 真 两个角是同一个角的补角 这两个角相等 34.对顶角相等; 同旁内角互补,两直线平行; 两直线平行,同位角相等; 等量代换; 内错角相等,两直线平行.35.24a …36.真37.两个角是对顶角 这两个角相等38.如果两个角的角平分线互相垂直,那么这两个角是邻补角. 假39.假40.已知:△ABC 中,AB=AC ,AD 是BC 边上的中线 求证:AD 平分∠BAC. 41.是8的倍数,当n 是任意整数时这个结论成立,概括为两个连续奇数的平方差是8的倍数.42.乙43.不正确44.(1)详见解析;(2)详见解析45.(1)详见解析;(2)详见解析;(3)详见解析.46.(1)如果两条直线被第三条直线所截得的同旁内角互补,那么这两条直线平行. (2)如果一个数的末位数字为0,那么这个数一定能被5整除.(3)如果一些角是直角,那么这些角都相等.(4)如果两个角是同一个角的余角,那么这两个角相等.47.(1)条件:任意两个奇数相加,结论:和是偶数.(2)条件:任意两个角互余,结论:这两个角不一定相等.(3)条件:a b >,结论:0ab >.(4)条件:一条直线和两条平行线中的一条垂直,结论:这条直线也和另一条直线垂直. 48.见解析49.(1)如果一个角是60°角的余角,那么这个角是30°,是真命题;(2)如果一个图形是本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

5.3.2 命题、定理、证明 人教版七年级数学下册重难点专项练习(含答案)

5.3.2 命题、定理、证明 人教版七年级数学下册重难点专项练习(含答案)

5.3.2《命题、定理、证明》重难点题型专项练习考查题型一命题的判断典例1.(2022春·湖南永州·七年级校考期中)下列语句中,属于命题的是().A.直线和垂直吗?B.过线段的中点画的垂线C.同旁内角互补,两直线平行D.连接,两点【答案】C【分析】分别根据命题的定义进行判断.【详解】解:A、直线和垂直吗?这是疑问句,不是命题,所以A选项错误;B、过线段的中点C画的垂线,这是描叙性语言,不是命题,所以B选项错误;C、同旁内角互补,两直线平行是命题,所以C选项正确;D、连接A、B两点,这是描叙性语言,不是命题,所以D选项错误.故选:C.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.变式1-1.下列语句属于命题的是()A.你今天打卡了吗?B.请戴好口罩!C.画出两条相等的线段D.同位角相等【答案】D【分析】根据命题的定义(判断一件事情的语句,叫做命题),逐项判断即可求解.【详解】解:A.你今天打卡了吗?没有作出判断,故该选项不是命题,不符合题意;B.请戴好口罩!没有作出判断,故该选项不是命题,不符合题意;C.画出两条相等的线段,没有作出判断,故该选项不是命题,不符合题意;D.同位角相等,作出判断,故该选项是命题,符合题意.故选:D.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.变式1-2.(2022秋·重庆璧山·七年级校联考期中)下列语句中.不是命题的是()A.内错角相等,两直线平行B.对顶角相等C.如果一个数能被2整除.那么它也能被4整除D.画一条线段【答案】D【分析】根据命题的定义,句子可以改写成“如果……那么……”形式,则为命题,如果不能就不是.【详解】解:A.内错角相等,两直线平行,改写成:如果两条直线被第三条直线所截所成的角中,内错角相等,那么这两条直线平行,是命题,故此选项不符合题意;B.对顶角相等,改写成:如果两个角是对顶角,那么这两角相等,是命题,故此选项不符合题意;C.如果一个数能被2整除,那么它也能被4整除,是命题,故此选项不符合题意;D.画—条线段,无法改写,不是命题,故此选项符合题意.故选:D.【点睛】本题考查命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果……那么……”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.正确理解命题的定义是解题的关键.变式1-3.(2022秋·安徽宣城·七年级校考期中)下列语句属于命题的个数是()①宣城市奋飞学校是市文明单位②直角等于③对顶角相等④奇数一定是质数吗?A.1B.2C.3D.4【答案】C【分析】根据命题的概念注意判断即可.【详解】解:由命题的概念可知,④不是命题,而①②③均是命题,故选C.【点睛】本题考查了命题的概念,解决本题的关键是掌握命题时表示判断的语句.考查题型二真假命题的判断典例2.(2021春·黑龙江哈尔滨·七年级哈尔滨市虹桥初级中学校校考期中)有下列命题是真命题的是( )A.相等的角是对顶角B.两条直线被第三条直线所截,同位角相等C.有一边互为反向延长线,且和为180°的两个角是邻补角D.过直线外一点有且只有一条直线与这条直线平行【答案】D【分析】根据对顶角的性质和定义,邻补角的定义,平行线的性质,平行线公理逐一判断即可.【详解】A、共顶点,且一个角的两边是另一个角的两边的反向延长线,这样的两个角是对顶角,但是,相等的两个角,若不满足对顶角的定义,也不是对顶角,故此命题是假命题;B、两条平行线被第三条直线所截,同位角相等,故此命题是假命题;C、有一边互为反向延长线,且共顶点与共一条边的两个角是邻补角,故此命题是假命题;D、过直线外一点有且只有一条直线与这条直线平行,是真命题;故选:D.【点睛】本题考查了命题真假的判断,掌握命题所涉的相关知识是关键.变式2-1.(2022春·湖南永州·七年级校考期中)下列不是真命题的是()A.三角形内角和为B.两条直线不相交,就是平行C.任意的等腰三角形都存在着“三线合一”的现象D.三角形至多有一个钝角【答案】B【分析】利用三角形的内角和,等腰三角形的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A.三角形内角和为,正确,是真命题;B.同一平面内,两条直线不相交,就是平行,故原命题错误,是假命题;C.任意的等腰三角形都存在着“三线合一”的现象正确,是真命题;D.三角形至多有一个钝角,正确,是真命题,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形的内角和,等腰三角形的性质、平行线的性质,难度不大.变式2-2.(2022秋·福建福州·七年级校考期中)下列命题是真命题的是()A.同位角相等B.两个锐角的和是锐角C.若两个角的和为,则这两个角互补D.相等的角是对顶角【答案】C【分析】根据平行线的性质,补角的定义,锐角的定义,对顶角的定义逐项进行判断即可.【详解】解:、两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;B、两个锐角的和可能是锐角、钝角,也可能是直角,故原命题错误,是假命题,不符合题意;C、若两个角的和为,则这两个角互补,正确,是真命题,符合题意;D、相等的角不一定是对顶角,故原命题错误,是假命题,不符合题意.故选:C.【点睛】本题主要考查了命题真假的判定,解题的关键是熟练掌握平行线的性质,补角的定义,锐角的定义,对顶角的定义.变式2-3.(2022秋·北京海淀·七年级校考期中)下列命题中,真命题的个数是( )①相等的角是对顶角;②同位角相等;③等角的余角相等;④如果,那么.A.1B.2C.3D.4【答案】A【分析】根据对顶角、平行线的性质、余角的概念、平方根的概念逐一判断,即可得到答案.【详解】解:①相等的角不一定是对顶角,原说法错误,是假命题;②两直线平行,同位角相等,原说法错误,是假命题;③等角的余角相等,原说法正确,是真命题;④如果,那么,原说法错误,是假命题,即真命题的个数为1,故选:A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.考查题型三命题的题设与结论典例3.(2022秋·福建福州·七年级福建省福州外国语学校校考阶段练习)命题“在同一平面内,垂直于同一条直线的两条直线相互平行”的题设是____________,结论是_____________.该命题是__________命题(填“真”或“假”).【答案】如果在同一平面内,两条直线垂直于同一条直线这两条直线相互平行真【分析】将命题转化为“如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线相互平行”即可找出题设和结论,根据平行线的判定方法判断该命题的真假.【详解】解:原命题可以转化为“如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线相互平行”,故题设是“如果在同一平面内,两条直线垂直于同一条直线”,结论是“这两条直线相互平行”,根据平行线的判定定理,可知该命题是真命题.故答案为:如果在同一平面内,两条直线垂直于同一条直线;这两条直线相互平行;真.【点睛】本题考查命题的概念和平行线的判定,当命题的题设和结论不明显时,可以将命题转化为“如果……,那么……”的形式,“如果”后面是题设,“那么”后面是结论.变式3-1.(2022秋·湖北宜昌·七年级校考期中)命题“内错角相等”的题设是_____,结论是____,它是________(“真”或“假”)命题.【答案】两个角是内错角这两个角相等假【分析】将这个命题改写成“如果,那么”的形式,由此即可得出它的题设和结论,再根据同位角的定义即可判断真假.【详解】解:命题“内错角相等”可改写为“如果两个角是内错角,那么这两个角相等”,则命题“内错角相等”的题设是两个角是内错角,结论是这两个角相等,因为两个内错角不一定相等,所以它是假命题,故答案为:两个角是内错角;这两个角相等;假.【点睛】本题考查了命题的题设与结论、判断命题的真假,熟练掌握将命题改写成“如果,那么”的形式是解题关键.变式3-2.命题“等边对等角”的题设是______结论是______【答案】同一个三角形中的两条边相等;这两条边所对的两个角也相等【分析】判断一件事情的语句叫做命题.任何一个命题都有题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.命题都可以写成“如果…,那么…”的形式,“如果”后接题设部分,“那么”后接结论部分.【详解】解:由于命题“在同一个三角形中,等边对等角”可改写成:在同一个三角形中,如果有两条边相等,那么这两条边所对的两个角相等.所以题设是同一个三角形中的两条边相等,结论是这两条边所对的两个角相等.故答案为:同一个三角形中的两条边相等;这两条边所对的两个角相等.【点睛】对于像本题这样简写的命题,题设和结论不明显,要经过分析,找出命题中的已知事项和由已知事项推出的事项,将命题改写成“如果…,那么…”的形式,从而区分命题的题设和结论.变式3-3.命题“两点之间线段最短"的题设是______________,结论是______________.【答案】连接两点,得到线段;线段最短【分析】命题常常可以写为“如果……那么……”的形式,如果后面接题设,而那么后面接结论;根据上步的知识,从命题的定义出发,寻找题设和结论就可以了.【详解】命题“两点之间线段最短"的题设是:连接两点,得到线段,结论是:线段最短,故答案为:连接两点;线段最短【点睛】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.考查题型四写出命题的逆命题典例4.写出命题“两个全等三角形的面积相等”的逆命题______.【答案】若两个三角形面积相等,则这两个三角形全等【分析】根据逆命题的定义,若两个三角形面积相等,则这两个三角形全等即可.【详解】解:命题“两个全等三角形的面积相等”的逆命题是:若两个三角形面积相等,则这两个三角形全等,故答案为:若两个三角形面积相等,则这两个三角形全等.【点睛】本题考查命题概念,弄清楚命题的条件和结论是写出逆命题的关键.变式4-1.“如果,那么”的逆命题为_____.【答案】如果,那么【分析】根据互逆命题的定义,把原命题的题设和结论交换即可.【详解】解:“如果,那么”的逆命题为“如果,那么”.故答案为:如果,那么.【点睛】本题考查了互逆命题的知识,解决本题的关键是掌握两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.变式4-2.写出命题“如果,那么或.”的逆命题:______.【答案】如果或,那么【分析】根据逆命题的写法,把原命题的条件作为结论,结论作为条件即可.【详解】解:命题“如果,那么或.”的逆命题是:如果或,那么,故答案为:如果或,那么.【点睛】题目主要考查命题与逆命题的写法,熟练掌握命题与逆命题的关系是解题关键变式4-3.命题“等腰三角形两底角的平分线相等”的逆命题是________________.【答案】有两条角平分线相等的三角形是等腰三角形【分析】根据逆命题的定义写出即可.【详解】解:命题“等腰三角形两底角的平分线相等”的逆命题是“有两条角平分线相等的三角形是等腰三角形”.故答案是:有两条角平分线相等的三角形是等腰三角形.【点睛】本题考查了互逆命题的知识,掌握逆命题的定义是解题的关键.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.考查题型五 互逆定理的判断典例5.下列说法正确的是( )A .真命题的逆命题是真命题B .原命题是假命题,则它的逆命题也是假命题C .命题一定有逆命题D .定理一定有逆命题【答案】C【分析】根据命题、逆命题,真假命题的关系对各选项分析判断后利用排除法求解.【详解】解:A .真命题的逆命题不一定是真命题,故本选项错误,不符合题意;B .原命题是假命题,则它的逆命题不一定是假命题,故本选项错误,不符合题意;C .命题一定有逆命题,故本选项正确,符合题意;D .定理不一定有逆命题,故本选项错误,不符合题意;故选:C .【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,也考查了逆命题,逆定理.变式5-1.下列说法错误的是( )A .任何命题都有逆命题B .真命题的逆命题不一定是正确的C .任何定理都有逆定理D .一个定理若存在逆定理,则这个逆定理一定是正确的【答案】C【分析】根据命题,定理的定义对各选项分析判断后利用排除法求解即可.【详解】A.任何命题都有逆命题,故A正确,不符合题意;B.真命题的逆命题不一定为真,故B正确,不符合题意;C.任何定理不一定都有逆定理,故C错误,符合题意;D.定理一定是正确的,一个定理若存在逆定理,则这个逆定理一定是正确的,故D正确,不符合题意.故选:C.【点睛】本题考查了命题,定理的定义.如果一个命题的条件与结论分别是另一个命题的结论与条件,那么这两个命题称为互逆命题.定理是指用逻辑的方法判断为正确并作为推理的根据的真命题.一个命题是真命题,它的逆命题却不一定是真命题,如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理.变式5-2.下列说法正确的是()A.真命题的逆命题也是真命题B.每个命题都有逆命题C.每个定理都有逆定理D.假命题没有逆命题【答案】B【分析】根据命题、逆命题,真假命题的关系对各选项分析判断后利用排除法求解.【详解】解:A、真命题的逆命题可能是真命题,也可能是假命题,故本选项错误;B、一个命题一定有逆命题,正确,故本选项正确;C、一个定理不一定有逆定理,故本选项错误;D、假命题一定有逆命题,错误,故本选项错误.故选B.【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.变式5-3.下列说法中,正确的是()A.真命题的逆命题一定是真命题B.假命题的逆命题一定是假命题C.所有的定理都有逆定理D.所有的命题都有逆命题【答案】D【分析】根据互逆命题的定义对A进行判断;根据命题与逆命题的真假没有联系可对B、C、D进行判断.【详解】解:A、真命题的逆命题不一定是真命题,所以A选项错误;B、假命题的逆命题不一定是假命题,所以B选项错误.C、每个定理不一定有逆定理,所以C选项错误;D、每个命题都有逆命题,所以D选项正确;故选:D.【点睛】本题考查了命题与定理:断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.。

2022-2022年人教版数学初一下册同步训练:5.3.2《命题、定理、证明》

2022-2022年人教版数学初一下册同步训练:5.3.2《命题、定理、证明》

2022-2022年人教版数学初一下册同步训练:5.3.2《命题、定理、证明》选择题下列说法错误的是()A.所有的命题都是定理.B.定理是真命题.C.公理是真命题.D.“画线段AB=CD”不是命题.【答案】A【解析】A:定理是真命题,但假命题不是定理,所以错误,B、C、D均正确,所以本题选择A.【考点精析】本题主要考查了命题与定理的相关知识点,需要掌握我们把题设、结论正好相反的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题;经过证明被确认正确的命题叫做定理才能正确解答此题.选择题下列语句中,不是命题的是()A.内错角相等B.如果,那么、互为相反数C.已知,求的值D.玫瑰花是红的【答案】C【解析】A、B、D都是判断一件事情的语句,并且由题设和结论构成,C不是构成一件事情的语句,故答案为:C.根据命题的定义,判断一件事情的语句就叫命题就可以作出判断。

选择题下列命题中,不正确的是()A.在同一平面内,过一点有而且只有一条直线与已知直线垂直B.经过直线外一点,有而且只有一条直线与这条直线平行C.垂直于同一直线的两条直线垂直D.平行于同一直线的两条直线平行【答案】C【解析】在同一平面内垂直于同一直线的两条直线平行,故C错误;A、B、D正确;故选C.【考点精析】本题主要考查了平行公理的相关知识点,需要掌握平行公理――平行线的存在性与惟一性;经过直线外一点,有且只有一条直线与这条直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行才能正确解答此题.选择题下列命题是假命题的是()A.互补的两个角不能都是锐角B.两直线平行,同位角相等C.若a∥b,a∥c,则b∥cD.同一平面内,若a⊥b,a⊥c,则b⊥c【答案】D【解析】A.互补的两个角不能是锐角,正确,是真命题;B.两直线平行,同位角相等,正确,是真命题;C.根据平行线的传递性可以判断该命题为真命题;D.同一平面内,若a⊥b,a⊥c,则b∥c,故原命题为假命题,故选D.【考点精析】关于本题考查的平行公理和平行线的性质,需要了解平行公理――平行线的存在性与惟一性;经过直线外一点,有且只有一条直线与这条直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补才能得出正确答案.选择题下列命题:①同旁内角互补;②若n<1,则n2-1<0;③直角都相等;④相等的角是对顶角.其中,真命题的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】①同旁内角互补,错误,是假命题;②若n<1,则n2-1<0,错误,是假命题;③直角都相等,正确,是真命题;④相等的角是对顶角,错误,是假命题,故选A.【考点精析】本题主要考查了命题与定理的相关知识点,需要掌握我们把题设、结论正好相反的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题;经过证明被确认正确的命题叫做定理才能正确解答此题.选择题如图,直线c与a、b相交,且a∥b,则下列结论:(1)∠1=∠2;(2)∠1=∠3;(3)∠2=∠3。

人教七年级下数学_必刷题《命题、定理、证明》刷基础

人教七年级下数学_必刷题《命题、定理、证明》刷基础

5.3.2 命题、定理、证明知识点一命题的定义1.(2019江苏徐州铜山区期末)下列句子中,是命题的是()A.画一个角等于已知角B.a,b两条直线平行吗C.对顶角相等D.过一点画已知直线的垂线2.下列语句不是命题的是()A.解方程3x+5=9x-13B.整数是有理数C.一个数的绝对值不小于原数D.负数的偶次幂是正数知识点二命题的组成3.命题“只有符号不同的两个数互为相反数”的题设是()A.两个数的符号不同B.两个数只有符号不同C.两个数互为相反数D.只有符号不同4.(2019安徽阜阳颖泉区校级月考)命题“绝对值相等的两个数互为相反数”. (1)将命题改写成“如果……那么……”的形式.(2)写出该命题的题设和结论.知识点三命题的真假5.(2019湖北随州曾都区校级期中)下列命题:①两条直线被第三条直线所截,同位角的平分线互相平行;②直线外一点到这条直线的垂线段,就是这一点到这条直线的距离;③在平面内,过一点有且只有一条直线与已知直线垂直;④在平面内,过一点有且只有一条直线与已知直线平行.其中真命题的个数是()A.1B.2C.3D.46.(2020河南漯河哪城区期末)下列命题是假命题的是()A.同位角相等,两直线平行B.相等的角是对顶角C.若a=b,则|a|=|b|D.若ab=0,则a=0或b=07.下列命题是真命题还是假命题?说明理由.(1)一个数的平方大于原数;(2)如果x=y,那么x+5=y+5.知识点四举反例判断假命题8.(2020北京丰台区三模)能够说明“设a,b是任意非零实数,若a>b,则1a <1”是假命题的一组整数的a,b值依次为______________________________.b9.(2019福建福州三模)说明命题“若x>-4,则x²>16”是假命题的一个反例可以是______________________________________________________________. 知识点五定理与证明10.(2019广东中山期中)下列命题是定理的是()A.内错角相等B.同位角相等,两直线平行C.一个角的余角不等于它本身D.在同一平面内,有且只有一条直线与已知直线垂直11.(2019江苏南京鼓楼区校级月考)如图,从①∠1=∠2,②∠C=∠D,③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论可以组成3个命题. (1)这三个命题中,真命题的个数为__________;(2)选择一个真命题,并且证明.(要求写出每一步的依据)参考答案1.答案:C解析:A、B、D选项都没有对一件事情作出任何判断,都不是命题.C选项作出了判断,是命题.2.答案:A解析:B、C、D选项都对事情作出了判断,只有A选项没有作出任何判断,故A选项不是命题.3.答案:B解析:原命题可以改写为“如果两个数只有符号不同,那么这两个数互为相反数”,“如果”后面的部分是题设,故B正确.4.答案:见解析解析:(1)如果两个数的绝对值相等,那么这两个数互为相反数.(2)题设是两个数的绝对值相等,结论是这两个数互为相反数.5.答案:A解析:两条平行线被第三条直线所截,同位角的平分线互相平行,①错误;直线外一点到这条直线的垂线段的长度,就是这一点到这条直线的距离,②错误;在平面内,过一点有且只有一条直线与已知直线垂直,③正确;在平面内,过直线外一点有且只有一条直线与已知直线平行,④错误.故选A.6.答案:B解析:A选项,同位角相等,两直线平行,正确,是真命题,不符合题意;B选项,相等的角不一定是对顶角,故原命题错误,是假命题,符合题意;C选项,若a=b,则|a|=|b|,正确,是真命题,不符合题意;D选项,若ab=0,则a=0或b=0,正确,是真命题,不符合题意.故选B.7.答案:见解析解析:(1)假命题.理由:若一个数为0.1,0.12=0.01,0.01<0.1,故该命题是假命题.(2)真命题.理由:因为x=y(已知),所以x+5=y+5(等量加等量,和相等).8.答案:2﹣1(答案不唯一)解析:当a=2,b=﹣1时,有a>b,1a >1b,则题中所给命题是假命题.9.答案:x=﹣3(答案不唯一)解析:若x=﹣3,则x²=9,条件满足,但9<16,结论不成立.10.答案:B解析:A选项,内错角相等,需要有前提条件“两直线平行”,是假命题;B选项,同位角相等,两直线平行,是真命题,也是定理;C选项,一个角的余角可以等于它本身,如45°,是假命题;D选项,在同一平面内,过一点有且只有一条直线与已知直线垂直,是假命题.故选B.11.答案:见解析解析:(1)由①②,得③;由①③,得②;由②③,得①均为真命题,故答案为3.(2)(答案不唯一)选①②为条件,③为结论.如图所示,∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠3=∠2(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠D=∠4(两直线平行,同位角相等).∵∠C=∠D(已知),∴∠4=∠C(等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).。

新人教版七年级下册初中数学 5-3-2 命题、定理、证明 教学课件

新人教版七年级下册初中数学 5-3-2 命题、定理、证明 教学课件

真命题
(2)如果两个角互补,那么它们是邻补角; 假命题
(3)如果 | a | = | b |,那么 a = b ; 假命题
(4)经过直线外一点有且只有一条直线与这 条
直线平行;
真命题
(5)两点确定一条直线. 真命题
第十一页,共二十五页。
新课讲解
知识点2 定理与证明
上面例题中的(1)(4)(5)它们的正确性是经
题设:已知事项 结论:由已知事项推出的事项
证明
形式 :如果……那么……
证明
下列各组命题是由几部分组成的?
(1)如果两条直线都与第三条直线平行,
那么这两条直线也互相平行.
(2)两条平行线被第三条直线所截,
同旁内角互补.
(3)如果两个角的和是 90º,
那么这两个角互余.
(4)等式两边都加同一个数, 结果仍是等式.
(5)两点之间,线段最短.
第六页,共二十五页。
新课讲解
由已知事项推出的事项
结论:这条直线也垂直于两条平行线中的另一 条.
第十五页,共二十五页。
新课讲解
命题 1:在同一平面内,如果一条直线垂直于两
条平行线中的一条,那么它也垂直于另一条. (2)命题 1 是真命题还是假命题? 真命题
(3)你能画出图形,写出已知、求证并证明它是
真命题吗? 已知:b∥c, a⊥b .
b
c
求证:a⊥c.
命题由题设和结论两部分组成. 已知事项
许多数学命题常可以写成“如果……,那么……”
的形式.“如果”后面连接的部分是题设,“那么”后面 连接的部分是结论.
第七页,共二十五页。
新课讲解
下列语句是命题吗?如果是,请将它们改写 成“如果……,那

初中数学同步训练必刷题(人教版七年级下册 5

初中数学同步训练必刷题(人教版七年级下册 5

初中数学同步训练必刷题(人教版七年级下册 5.3.2 命题、定理、证明)一、单选题(每题3分,共30分)1.(2022七下·馆陶期末)下列语句中,不是命题的是()A.两点确定一条直线B.同位角相等C.垂线段最短D.连接A、B两点【答案】D【知识点】定义、命题及定理的概念【解析】【解答】两点确定一条直线,是命题,故A不符合题意;同位角相等,是命题,故B不符合题意;垂线段最短,是命题,故C不符合题意;连接A、B两点,不是命题,故D符合题意;故答案为:D.【分析】根据命题的定义逐项判断即可。

2.(2022七下·承德期末)下列说法错误的是()A.过马路的斑马线是平行线B.100米跑道的跑道线是平行线C.若a∥b,b∥d,则a∥dD.过直线外一点有且只有一条直线与已知直线平行【答案】C【知识点】真命题与假命题【解析】【解答】A. B. 由平行线的定义可知,斑马线是平行线,100米跑道的跑道线是平行线,A. B 不符合题意;C. 根据平行于同一条直线的两直线平行可知,C符合题意;D. 过直线外一点有且只有一条直线与已知直线平行,这是平行公理,不符合题意.故答案为:C.【分析】根据假命题的定义逐项判断即可。

3.(2022七下·承德期末)对于下列的叙述,其中错误的是()A.两直线平行,同旁内角互补B.同位角相等,两直线平行C.过一点有且只有一条直线与已知直线平行D.两点之间的所有连线中,线段最短【答案】C【知识点】真命题与假命题【解析】【解答】解:A、两直线平行,同旁内角互补,不符合题意;B、同位角相等,两直线平行,不符合题意;C、过直线外一点,有且只有一条直线与已知直线平行,符合题意;D、两点之间的所有连线中,线段最短,不符合题意;故答案为:C.【分析】根据平行线的性质和判定、线段的性质和平面内两直线的位置关系逐项判断即可。

4.(2022七下·双辽期末)下列命题是真命题的是()A.相等的角是对顶角B.在同一平面内,垂直于同一直线的两条直线平行C.内错角相等D.如果两个角的和等于平角,那么这两个角是邻补角【答案】B【知识点】真命题与假命题【解析】【解答】解:A、相等的角不一定是对顶角,故原命题为假命题;B、在同一平面内,垂直于同一直线的两条直线平行,真命题;C、两直线平行,内错角相等,故原命题为假命题;D、两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角,故原命题为假命题;故答案为:B.【分析】根据命题的定义对每个选项一一判断即可。

人教版七年级数学下册第五章5.3.2命题、定理、证明(教案)

人教版七年级数学下册第五章5.3.2命题、定理、证明(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《命题、定理、证明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断真假的陈述?”比如,判断广告中的产品宣传是否真实。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索命题的奥秘。
在学生小组讨论环节,大家对于定理在实际生活中的应用提出了很多有趣的观点。但同时我也注意到,部分学生在讨论过程中较为沉默,可能是因为他们对主题不他们积极参与讨论,提高自信心。
首先,关于命题的真假判断,大多数学生能够理解并掌握基本的判断方法,但在遇到一些复杂命题时,仍然会出现判断失误的情况。这说明在今后的教学中,我需要多设计一些具有挑战性的题目,帮助学生提高判断能力。
其次,定理的应用是学生们普遍感到困惑的地方。在讲解定理时,我应该更加注重引导学生理解定理的适用条件,以及如何在实际问题中灵活运用定理。通过案例分析,让学生明白定理并不是孤立的知识点,而是可以解决实际问题的有力工具。
1.教学重点
(1)理解命题的概念:命题是描述性语句,可以判断其真假。本节课重点是让学生掌握命题的基本要素,如何判断一个命题的真假,以及如何书写正确的命题。
举例:判断下列命题的真假:“一个三角形的三个内角和为180度。”
(2)掌握定理的定义:定理是经过证明的命题。重点在于让学生理解定理在几何证明中的重要性,并学会运用定理进行问题的解决。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解命题的基本概念。命题是可以判断真假的陈述句。它是数学逻辑推理的基础,是建立定理和进行证明的前提。
2.案例分析:接下来,我们来看一个具体的案例。通过分析“一个三角形的三个内角和为180度”这个命题,了解它在几何证明中的应用。

人教版数学七年级下册5.3.2命题、定理、证明2课件_2(共13张PPT)

人教版数学七年级下册5.3.2命题、定理、证明2课件_2(共13张PPT)

的证明,掌握证明题命题设的步骤:; 正方形的四条边, 结论:都相等 (真命题)
(4)如果a>b,b>c,那么a<c
反例:已知3>2,2>
1,那么3>1。
题设:如果a>b,b>c 结论:那么a<c (假命题)
二、自主预习
推理证实
正确性
∠1=∠2
∠2=∠3, ∠1=∠3 a∥b
∠1=∠2, ∠1=∠3
推理证实
依据
正确性
证明Leabharlann 1、会运用公理和定理、几何语言进行简单命题
命题分为真命题和假命题两种。
内错角相等,两直线平行 ∴BE∥CF(
)先根据命题的题设即已知条件,画出图形;
把命题的题设、结论,结合图形写为已知、求证; 证明一个真命题成立的步骤:
问题2 证明:邻补角的平分线互相垂直
把命题的题设、结论,结合图形写为已知、求证;
一条,那么它也垂直于另由一条已平行知线逐。 步推出求证的结论,写好推理的过程。
∴∠C+∠D =180°
答:命题由题设和结论两部分组成。
题设
如果不是,请举出反例.
结论 (3)正方形的四条边都相等;
第二步:把命题的题设、结论,结合图形写出已知、求证;
勤于思考、勇于探索的人,才会有更多的发现,才会增长更多的见识。
问题3:如果一个命题是假命题,如何去说明呢?
判断一个命题是假命题,只要举出一个 反,例说明 它符合命题的______题_,设但不满足_______结就论可以了.
试一试 说明“相等的角是对顶角”是假命题.
还有别的反例吗?
四、巩固训练 1.了解文中介绍的沙漠里的奇怪现象
2、科利亚为什么这么认真的、小心的埋木匣?(简单补充卫国战争的资料) 四、课堂延伸拓展

人教版七年级数学下册5.3.2 命题、定理、证明

人教版七年级数学下册5.3.2 命题、定理、证明

).
课堂检测
能力提升题
(1)如图所示,若∠1=∠2,则AB∥CD,试判断该命题的真假:假
(填“真”或“假”).
(2)若上述命题为真命题,请说明理由,若上述命题为假命题,请
你再添加一条件,使该命题成为真命题,并说明理由.
解:加条件:BE∥FD. 理由如下:∵BE∥FD,∴∠EBD= ∠FDN(两直线平行,同位角相等). 又∵∠1=∠2,∴∠ABD=∠CDN. ∴AB∥CD(同位角相等,两直线平行).
从结论出发,逆着寻找所需要的条件的思考过程,叫分析.
在分析的过程中,如果发现所需要的条件,都已具备或可 从已知条件中推得.那么证明就很容易了.
探究新知 证明的概念 在很多情况下,一个命题的正确性需要经过推理才能作出
判断,这个推理过程叫作证明.
注意:证明的每一步推理都要有根据,不能“想当然”. 这些根据,可以是已知条件,也可以是学过的定义、 基本事实、定理等.
题中,正确命题的个数为( D )
A. 0
B. 1
C. 2
D. 3
课堂检测
2. 下列命题:
①两点确定一条直线;②两点之间,线段最短;③对顶角相
等;④内错角相等;
其中真命题的个数是 ( C )
A. 1个
B. 2个
C. 3个
D. 4个
课堂检测
3. 下列选项中,可以用来说明命题“两个锐角的和是锐角” 是假命题的反例的是 ( C ) A. ∠A=30°,∠B=40° B. ∠A=30°,∠B=110° C. ∠A=30°,∠B=70° D. ∠A=30°,∠B=90°
条也相交;√
(3)相等的两个角是对顶角; ×
(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.×
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.3.2 命题、定理、证明专题复习
[命题角度1] 命题的判断与识别
看一句话是不是命题,关键是看它是不是做出了明确的判断,是不是一个完整的句子.如果一个句子对某一件事情没有做出任何判断,那么它就不是命题.这里强调了“判断”这个条件,也就是说命题是带有肯定或否定语气、完整的陈述语句,其他形式的句子,如疑问句、感叹句、祈使句等都不是命题.
例判断下列语句是不是命题.
(1)延长线段AB;( )
(2)两条直线相交,只有一个交点;( )
(3)画线段AB的中点;( )
(4)若|x|=2,则x=2;( )
(5)角平分线是一条射线.( )
[解析] (1)延长线段AB只是文字叙述,没有做出判断,不是命题;(2)两条直线相交,只有一个交点做出了判断,是命题;(3)画线段AB的中点,也只是文字叙述,没有做出判断,不是命题;(4)若|x|=2,则x=2,做出了判断,虽然此判断是错误的,但此语句仍是命题;(5)角平分线是一条射线做出了判断,是一个命题.
[答案:(1)不是(2)是(3)不是(4)是(5)是]
[命题角度2] 确定命题的题设和结论
确定一个命题的题设和结论时,若命题是“如果……那么……”的形式,则“如果”后接的部分是题设,“那么”后接的部分是结论.如果命题不是“如果……那么……”的形式,那么先将命题改写成“如果……那么……”的形式,再来确定命题的题设和结论.改写要求:(1)改写后的命题与改写前的命题的内容要一致;(2)改写后的命题的句子要完整、语句要通顺,必要时,要对原命题加一些修饰,并且补上原来省略的部分.
例分别指出下列各命题的题设和结论.
(1)两点确定一条直线;
(2)等角的补角相等.
解:(1)改写成“如果过两点作直线,那么能够作而且只能作一条直线.”
条件是过两点作直线;结论是能够作而且只能作一条直线.
(2)改写成“如果两个角是相等的角的补角,那么这两个角相等.”
条件是两个角是相等的角的补角;结论是这两个角相等.
[命题角度3] 确定命题的真假
要判定一个命题是真命题,需要利用学过的定义、公理、定理进行说明;要判定一个命题是假命题,只要举一个反例即可.判断时不能认为肯定的命题就是真命题,否定的命题就是假命题.
例下列命题中,哪些是真命题,哪些是假命题?
(1)如果a>0,b>0,那么a+b>0;
(2)能被3整除的数,一定能被6整除.
解:(1)是真命题.因为两个正数的和仍是正数.
(2)是假命题.能被3整除的数,不一定能被6整除.反例:如15是能被3整除的数,但不能被6整除.
5.3.2 命题、定理、证明
1. 下列语句:①直角都相等;②等角的补角相等吗;③画两个相等的角;④同旁内角的平
分线互相垂直.其中是命题的有()
A. ①④
B. ①③④
C. ②③④
D. ①③
2. 下面说法错误的是()
A. 定理一定是真命题
B. 真命题一定是定理
C. 不是真命题一定不是定理
D. 经过推理证明的真命题是定理
3. 已知三条不同的直线a、b、c在同一平面内,下列四条命题:
①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;
③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.
其中是真命题的是___________(填写所有真命题的序号).
4. (2013•佛山)命题“对顶角相等”的条件是____________________.
5. 甲、乙、丙、丁四位老师分别教数学、物理、化学、英语,甲老师可以教物理、化学;
乙老师可以教数学、英语;丙老师可以教数学、物理、化学;丁老师只能教化学,为了使每人都能胜任工作,那么教数学的是________老师.
答案
1. A
2. B
3. ①②④
4. 两个角是对顶角
5. 丙。

相关文档
最新文档