高一上学期第一次月考数学试题(附答案解析)
2023-2024学年河南省高一上册第一次月考数学试题(含解析)
2023-2024学年河南省高一上册第一次月考数学试题一、单选题1.已知集合{}220A x x x =-≤,{}1,0,3B =-,则()R A B ⋂=ð()A .∅B .{}0,1C .{}1,0,3-D .{}1,3-【正确答案】D【分析】先由一元二次不等式的解法求得集合A ,再由集合的补集和交集运算可求得答案.【详解】因为{}{}22002A x x x x x =-≤=≤≤,所以{R |0A x x =<ð或}2x >,又{}1,0,3B =-,所以(){}1,3R A B ⋂=-ð,故选:D .2.已知函数()f x =()()3y f x f x =+-的定义域是()A .[-5,4]B .[-2,7]C .[-2,1]D .[1,4]【正确答案】D【分析】由函数解析式可得2820x x +-≥,解不等式可得24x -≤≤,再由24234x x -≤≤⎧⎨-≤-≤⎩即可求解.【详解】由()f x =2820x x +-≥,解得24x -≤≤,所以函数()()3y f x f x =+-的定义域满足24234x x -≤≤⎧⎨-≤-≤⎩,解得14x ≤≤,所以函数的定义域为[1,4].故选:D 3.不等式3112x x-≥-的解集是()A .3{|2}4x x ≤≤B .3{|2}4x x ≤<C .{>2x x 或3}4x ≤D .3{|}4x x ≥【正确答案】B【分析】把原不等式的右边移项到左边,通分计算后,然后转化为()()432020x x x ⎧--⎨-≠⎩,求出不等式组的解集即为原不等式的解集.【详解】解:不等式3112x x --可转化为31102x x ---,即4302x x --,即4302x x --,所以不等式等价于()()432020x x x ⎧--⎨-≠⎩,解得:324x <,所以原不等式的解集是3{|2}4x x <.故选:B .4.命题“∀x ∈R ,∃n ∈N+,使n ≥2x+1”的否定形式是()A .∀x ∈R ,∃n ∈N+,有n<2x+1B .∀x ∈R ,∀n ∈N+,有n<2x+1C .∃x ∈R ,∃n ∈N+,使n<2x+1D .∃x ∈R ,∀n ∈N+,使n<2x+1【正确答案】D【分析】根据全称命题、特称命题的否定表述:条件中的∀→∃、∃→∀,然后把结论否定,即可确定答案【详解】条件中的∀→∃、∃→∀,把结论否定∴“∀x ∈R ,∃n ∈N+,使n ≥2x+1”的否定形式为“∃x ∈R ,∀n ∈N+,使n<2x+1”故选:D本题考查了全称命题、特称命题的否定形式,其原则是将原命题条件中的∀→∃、∃→∀且否定原结论5.已知12a b ≤-≤,24a b ≤+≤,则32a b -的取值范围是()A .3,92⎡⎤⎢⎥⎣⎦B .5,82⎡⎤⎢⎥⎣⎦C .5,92⎡⎤⎢⎥⎣⎦D .7,72⎡⎤⎢⎥⎣⎦【正确答案】D【分析】令32()()a b m a b n a b -=-++求,m n ,再利用不等式的性质求32a b -的取值范围.【详解】令32()()()()a b m a b n a b m n a n m b -=-++=++-,∴32m n n m +=⎧⎨-=-⎩,即51,22m n ==,∴55()5,121()222a b a b ≤-≤≤+≤,故73272a b ≤-≤.故选:D6.如图,ABC 中,90ACB ∠=︒,30A ∠=︒,16AB =,点P 是斜边AB 上任意一点,过点P 作PQ AB ⊥,垂足为P ,交边AC (或边CB )于点Q ,设AP x =,APQ △的面积为y ,则y 与x 之间的函数图象大致是()A .B .C .D .【正确答案】D【分析】首先过点C 作CD AB ⊥于点D ,由ABC 中,90ACB ∠= ,30A ∠= ,可求得B ∠的度数与AD 的长度,再分别从当012AD ≤≤与当1216x <≤时,去分析求解即可求得y 与x 之间的函数关系式,进一步选出图象.【详解】过点C 作CD AB ⊥于点D ,因为90ACB ∠= ,30A ∠= ,16AB =,所以60B ∠= ,142BD BC ==,12AD AB BD =-=.如图1,当012AD ≤≤时,AP x =,tan 30PQ AP x =⋅ ,所以21236y x x x ==,如图2:当1216x <≤时,16BP AB AP x =-=-,所以)tan 6016PQ BP x =⋅=-,所以)211622y x x x =-=-+,故选:D此题考查了动点问题,注意掌握含30 直角三角形的性质与二次函数的性质;注意掌握分类讨论的思想.属于中档题.7.已知函数221111x xf x x --⎛⎫= ⎪++⎝⎭,则()f x 的解析式为()A .()()2211x f x x x =≠-+B .()()2211xf x x x =-≠-+C .()()211xf x x x =≠-+D .()()211xf x x x =-≠-+【正确答案】A 【分析】令11x t x -=+,则11tx t-=+,代入已知解析式可得()f t 的表达式,再将t 换成x 即可求解.【详解】令11x t x -=+,则11tx t-=+,所以()()222112111111t t t f t t t t t -⎛⎫- ⎪+⎝⎭==≠-+-⎛⎫+ ⎪+⎝⎭,所以()()2211xf x x x=≠-+,故选:A.8.已知0x >,0y >,且2121x y+=+,若2231x y m m +>--恒成立,则实数m 的取值范围是()A .1m ≤-或4m ≥B .4m ≤-或m 1≥C .14-<<mD .41m -<<【正确答案】C 由2121x y +=+得121y x=+,利用基本不等式求出2x y +的最小值,再将不等式恒成立转化为最值,解不等式可得结果.【详解】由2121x y +=+得212(1)y x x y ++=+,所以12x xy +=,所以121y x=+,所以121x y x x +=++13≥=,当且仅当1,1x y ==时,等号成立,所以()min 23x y +=,所以2231x y m m +>--恒成立,可化为2331m m >--,即2340m m --<,解得14-<<m .故选:C结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥;②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤;③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥;④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;二、多选题9.有以下判断,其中是正确判断的有().A .()xf x x =与()1,01,0x g x x ≥⎧=⎨-<⎩表示同一函数B .函数()22122x f x x =+++的最小值为2C .函数()y f x =的图象与直线1x =的交点最多有1个D .若()1f x x x =--,则112f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭【正确答案】CD【分析】根据函数的定义域可判断A 的正误,根据基本不等式可判断B 的正误,根据函数的定义可判断C 的正误,根据函数解析式计算对应的函数值可判断D 的正误.【详解】对于A ,()xf x x=的定义域为()(),00,∞-+∞U ,而()1,01,0x g x x ≥⎧=⎨-<⎩的定义域为R ,两个函数的定义域不同,故两者不是同一函数.对于B ,由基本不等式可得()221222f x x x =++≥+,但221x +=无解,故前者等号不成立,故()2f x >,故B 错误.对于C ,由函数定义可得函数()y f x =的图象与直线1x =的交点最多有1个,故C 正确.对于D ,()1012f f f ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,故D 正确.故选:CD.10.下面命题正确的是()A .“3x >”是“5x >"的必要不充分条件B .“0ac <”是“一元二次方程20ax bx c ++=有一正一负两个实根”的充要条件C .“1x ≠”是“2430x x -+≠”的必要不充分条件D .设,R x y ∈,则“4x y +≥”是“2x ≥且2y ≥”的充分不必要条件【正确答案】ABC【分析】利用充分条件,必要条件的定义逐项判断作答.【详解】对于A ,3x >不能推出5x >,而5x >,必有3x >,“3x >”是“5x >"的必要不充分条件,A 正确;对于B ,若0ac <,一元二次方程20ax bx c ++=判别式240b ac ∆=->,方程有二根12,x x ,120cx x a=<,即12,x x 一正一负,反之,一元二次方程20ax bx c ++=有一正一负两个实根12,x x ,则120cx x a=<,有0ac <,所以“0ac <”是“一元二次方程20ax bx c ++=有一正一负两个实根”的充要条件,B 正确;对于C ,当1x ≠时,若3x =,有2430x x -+=,当2430x x -+≠时,1x ≠且3x ≠,因此“1x ≠”是“2430x x -+≠”的必要不充分条件,C 正确;对于D ,,R x y ∈,若4x y +≥,取1,4x y ==,显然“2x ≥且2y ≥”不成立,而2x ≥且2y ≥,必有4x y +≥,设,R x y ∈,则“4x y +≥”是“2x ≥且2y ≥”的必要不充分条件,D 不正确.故选:ABC11.函数()1,Q0,Qx D x x ∈⎧=⎨∉⎩被称为狄利克雷函数,则下列结论成立的是()A .函数()D x 的值域为[]0,1B .若()01D x =,则()011D x +=C .若()()120D x D x -=,则12x x -∈Q D .x ∃∈R ,(1D x =【正确答案】BD【分析】求得函数()D x 的值域判断选项A ;推理证明判断选项B ;举反例否定选项C ;举例证明x ∃∈R ,(1D x =.判断选项D.【详解】选项A :函数()D x 的值域为{}0,1.判断错误;选项B :若()01D x =,则0Q x ∈,01Q x +∈,则()011D x +=.判断正确;选项C :()()2ππ000D D -=-=,但2ππ=πQ -∉.判断错误;选项D :当x =时,((()01D x D D ===.则x ∃∈R ,(1D x =.判断正确.故选:BD12.已知集合{}20,0x x ax b a ++=>有且仅有两个子集,则下面正确的是()A .224a b -≤B .214a b+≥C .若不等式20x ax b +-<的解集为()12,x x ,则120x x >D .若不等式2x ax b c ++<的解集为()12,x x ,且124x x -=,则4c =【正确答案】ABD【分析】根据集合{}20,0x x ax b a ++=>子集的个数列方程,求得,a b 的关系式,对A ,利用二次函数性质可判断;对B ,利用基本不等式可判断;对CD ,利用不等式的解集及韦达定理可判断.【详解】由于集合{}20,0x x ax b a ++=>有且仅有两个子集,所以2240,4a b a b ∆=-==,由于0a >,所以0b >.A ,()22224244a b b b b -=-=--+≤,当2,b a ==时等号成立,故A 正确.B ,21144a b b b +=+≥=,当且仅当114,,2b b a b ===时等号成立,故B 正确.C ,不等式20x ax b +-<的解集为()12,x x ,120x x b =-<,故C 错误.D ,不等式2x ax b c ++<的解集为()12,x x ,即不等式20x ax b c ++-<的解集为()12,x x ,且124x x -=,则1212,x x a x x b c +=-=-,则()()22212121244416x x x x x x a b c c -=+-=--==,4c ∴=,故D 正确,故选:ABD三、填空题13.已知21,0()2,0x x f x x x ⎧+≥=⎨-<⎩,求()1f f -=⎡⎤⎣⎦________.【正确答案】5【分析】先求()1f -,再根据()1f -值代入对应解析式得()1.f f ⎡⎤-⎣⎦【详解】因为()()1212,f -=-⨯-=所以()[]1241 5.f f f ⎡⎤-==+=⎣⎦求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现(())f f a 的形式时,应从内到外依次求值.14.已知正实数a 、b 满足131a b+=,则()()12a b ++的最小值是___________.【正确答案】13+13+【分析】由已知可得出3ba b =-且3b >,化简代数式()()12a b ++,利用基本不等式可求得结果.【详解】因为正实数a 、b 满足131a b +=,则03b a b =>-,由0b >可得3b >,所以,()()()()()()32312122222333b b a b b b b b b b +⎛⎫⎛⎫++=++=++=++⎪ ⎪---⎝⎭⎝⎭()()()33515222313131333b b b b b -+=++=-++≥+=+--当且仅当62b =时,等号成立.因此,()()12a b ++的最小值是13+.故答案为.13+15.对于[]1,1a ∈-,()2210x a x a +-+->恒成立的x 取值________.【正确答案】()(),02,-∞+∞ 【分析】设()()()2221121f a x a x a x a x x =+-+-=-+-+关于a 的一次函数,只需()()1010f f ⎧>⎪⎨->⎪⎩即可求解.【详解】令()()()2221121f a x a x a x a x x =+-+-=-+-+,因为对于[]11a ∈-,,不等式()2210x a x a +-+->恒成立,所以()()1010f f ⎧>⎪⎨->⎪⎩即220320x x x x ⎧->⎨-+>⎩解得:0x <或2x >.故答案为.()()02-∞⋃+∞,,方法点睛:求不等式恒成立问题的方法(1)分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)恒成立,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈恒成立,进而转化为()max g x λ≥或()()min g x x D λ≤∈,求()g x 的最值即可.(2)数形结合法结合函数图象将问题转化为函数图象的对称轴、区间端点的函数值或函数图象的位置关系(相对于x 轴)求解.此外,若涉及的不等式转化为一元二次不等式,可结合相应一元二次方程根的分布解决问题.(3)主参换位法把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解,一般情况下条件给出谁的范围,就看成关于谁的函数,利用函数的单调性求解.16.若函数2()2f x x x =+,()2(0)g x ax a =+>,对于1x ∀∈[]1,2-,[]21,2x ∃∈-,使12()()g x f x =,则a 的取值范围是_____________.【正确答案】(]0,3【分析】由题意可知函数()g x 在区间[]1,2-的值域是函数()f x 在区间[]1,2-的值域的子集,转化为子集问题求a 的取值范围.【详解】()()20g x ax a =+>在定义域上是单调递增函数,所以函数在区间[]1,2-的值域是[]2,22a a -+函数()22f x x x =+在区间[]1,2-是单调递增函数,所以函数()f x 的值域是[]1,8-,由题意可知[][]2,221,8a a -+⊆-,所以21228a a -≥-⎧⎨+≤⎩,解得.3a ≤故答案为.(]0,3本题考查双变量等式中任意,存在问题求参数的取值范围,重点考查函数的值域,转化与化归的思想,属于中档题型.四、解答题17.已知{|13}A x x =-<≤,{|13}B x m x m =≤<+(1)若1m =时,求A B ⋃;(2)若R B A ⊆ð,求实数m 的取值范围.【正确答案】(1)(1,4)A B =-U ;(2)()1,3,2m ⎛⎤∈-∞-+∞ ⎥⎝⎦ .(1)利用集合的并集定义代入计算即可;(2)求出集合R A ð,利用集合包含关系,分类讨论B =∅和B ≠∅两种情况,列出关于m 的不等式,求解可得答案.【详解】(1)当1m =时,{|14}B x x =≤<,则{|14}A B x x ⋃=-<<即(1,4)A B =-U .(2){|1R A x x =≤-ð或}(]()3,13,x >=-∞-⋃+∞,由R B A ⊆ð,可分以下两种情况:①当B =∅时,13m m ≥+,解得:12m ≤-②当B ≠∅时,利用数轴表示集合,如图由图可知13131m m m <+⎧⎨+≤-⎩或133m m m <+⎧⎨>⎩,解得3m >;综上所述,实数m 的取值范围是:12m ≤-或3m >,即()1,3,2m ⎛⎤∈-∞-+∞ ⎥⎝⎦ 易错点睛:本题考查利用集合子集关系确定参数问题,易错点是要注意:∅是任何集合的子集,所以要分集合B =∅和集合B ≠∅两种情况讨论,考查学生的逻辑推理能力,属于中档题.18.(1)已知a b c <<,且0a b c ++=,证明:a a a c b c<--.(2213a a a a ---(3)a ≥【正确答案】(1)证明见解析;(2)证明见解析【分析】(1)利用不等式的性质证明即可;(2)a 3a -<1a -2a -,对不等式两边同时平方后只需证明()3a a -<()()12a a --.【详解】证明:(1)由a b c <<,且0a b c ++=,所以0a <,且0,a cbc -<-<所以()()0a c b c -->,所以()()a c a c b c -<--()()b c a c b c ---,即1b c -<1a c -;所以a b c ->a a c -,即a a c -<a b c-.(2213a a a a ---,(3)a ≥a 3a -<1-a 2a -,即证(3)(3)(1)(2)2(1)(2)a a a a a a a a +-+--+-+--()3a a -<()()12a a --即证(3)(1)(2)a a a a -<--;即证02<,显然成立;213a a a a ---19.已知二次函数y =ax 2+bx ﹣a +2.(1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值;(2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0.【正确答案】(1)a =﹣1,b =2(2)见解析【分析】(1)根据一元二次不等式的解集性质进行求解即可;(2)根据一元二次不等式的解法进行求解即可.【详解】(1)由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根,所以132(1)3b a a a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;(2)当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0,即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭,当21a a-=-即1a =时,解集为{}1x x ≠-;当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.20.(1)求函数()3f x x 在区间[]2,4上的值域.(2)已知二次函数2()1(R)f x x mx m m =-+-∈.函数在区间[]1,1-上的最小值记为()g m ,求()g m 的值域;【正确答案】(1)12,4⎤-⎦;(2)(]0-∞,【分析】(1)t =,可得函数()22()36318g t t tt t =--=+-,讨论其值域即可求解;(2)分类讨论二次函数的对称轴与给定区间[]1,1-的关系,分别表示出函数的最小值,表示为分段函数形式,作出图象即可求解.【详解】(1)函数()3f x x =,t =,则26x t =-∵[]2,4x ∈2t ≤≤那么函数()f x 转化为()22()36318g t t t t t =--=+-其对称轴16t =-,2t ≤≤时()g t 单调递增,∴()(2)g g t g ≤≤,12()4g t -≤≤-,故得()f x的值域为12,4⎤--⎦.(2)2()1f x x mx m =-+-,二次函数对称轴为2m x =,开口向上①若12m <-,即2m <-,此时函数()f x 在区间[]1,1-上单调递增,所以最小值()(1)2g m f m =-=.②若112m -≤≤,即22m -≤≤,此时当2m x =时,函数()f x 最小,最小值2()124m m g m f m ⎛⎫==-+- ⎪⎝⎭.③若12m >,即m>2,此时函数()f x 在区间[]1,1-上单调递减,所以最小值()(1)0g m f ==.综上22,2()1,2240,2m m m g m m m m <-⎧⎪⎪=-+--≤≤⎨⎪>⎪⎩,作出分段函数的图像如下,所以当2m <-时,()(,4);g m ∈-∞-当22m -≤≤时,[]4,0;g(m)∈-当m>2时,()0g m =,综上知()g m 的值域为(]0.,-∞21.今年,我国某企业为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且()2101001000,040100007018450,40x x x R x x x x ⎧++<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(1)求2023年的利润()W x (万元)关于年产量x (千部)的函数关系式;(2)2023年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【正确答案】(1)()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩(2)2023年产量为100(千部)时,企业所或利润最大,最大利润是8000万元【分析】(1)根据已知条件求得分段函数()W x 的解析式.(2)结合二次函数的性质、基本不等式求得()W x 的最大值以及此时的产量.【详解】(1)当040x <<时,()()22700101001000250106001250W x x x x x x =-++-=-+-;当40x ≥时,()100001000070070184502508200W x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭;∴()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)若040x <<,()()210307750W x x =--+,当30x =时,()max 7750W x =万元;若40x ≥,()10000820082008000W x x x ⎛⎫=-++≤-= ⎪⎝⎭,当且仅当10000x x=即100x =时,()max 8000W x =万元.答:2023年产量为100(千部)时,企业所或利润最大,最大利润是8000万元.22.已知()11282,0,11f x f x x x x x ⎛⎫+=+-≠≠ ⎪-⎝⎭,(1)求()f x 的解析式;(2)已知()()()22,22g x mx mx g x x f x m =--<-+在()1,3上有解,求m 的取值范围.【正确答案】(1)1()2f x x=+,0,1x x ≠≠;(2)3m <.【分析】(1)根据给定条件,用11,1x x x--依次替换x ,再消元求解作答.(2)由(1)结合已知,变形不等式,分离参数构造函数,求出函数在()1,3的最大值作答.【详解】(1)0,1x x ≠≠,11()2()821f x f x x x +=+--,用11x-替换x 得:11()2912()1x f f x x x x -+=-+--,则有1114()4()8222(9)1011x f x f x x x x x x x --=+---+=-+---,用1x x-替换x 得:1112()2()82(1)711x f f x x x x x x x -+=+--=++--,于是得99()18f x x =+,则1()2f x x=+,所以()f x 的解析式为1()2f x x=+,0,1x x ≠≠.(2)(1,3)x ∈,2221()()22(2)22g x x f x m mx mx x m x-<-+⇔--+<-+,即22(2)22m x x x x -+<++,于是得22222x x m x x ++<-+,令2222(),132x x h x x x x ++=<<-+,依题意,(1,3)x ∈,()m h x <有解,当(1,3)x ∈时,222223()22323()22222222[()][()]23333x x x x h x x x x x x x -++-==+=+-+-+-+--++322316219(2333x x =+≤+-++-,当且仅当1629233x x -=-,即2x =时取等号,因此当2x =时,max ()(2)3h x h ==,则3m <,所以m 的取值范围是3m <.。
高一上学期第一次月考数学试卷(含答案解析)
高一上学期第一次月考数学试卷(含答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合A ={x|x >2},B ={x|−2⩽x ⩽3},则A ∩B =( )A. (2,3)B. (2,3]C. [2,3]D. [−2,3]2. 如图所示的Venn 图中,已知A ,B 是非空集合,定义A ∗B 表示阴影部分的集合.若A ={x |0≤x <3},B ={y |y >2},则A ∗B =( )A. {x |x >3}B. {x |2≤x ≤3}C. {x |2<x <3}D. {x |x ≥3}3. 中国清朝数学家李善兰在859年翻译《代数学》中首次将“function ”译做“函数”,沿用至今.为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数.”这个解释说明了函数的内涵:只要有一个法则,使得取值范围中的每一个值x ,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(−2)+1)的值为( )A. 1B. 2C. 3D. 44. 命题“∀x >1,x −1>lnx ”的否定为( )A. ∀x ≤1,x −1≤lnxB. ∀x >1,x −1≤lnxC. ∃x ≤1,x −1≤lnxD. ∃x >1,x −1≤lnx5. 设M =2a(a −2)+7,N =(a −2)(a −3),则M 与N 的大小关系是( )A. M >NB. M =NC. M <ND. 无法确定6. f(2x −1)的定义域为[0,1),则f(1−3x)的定义域为( )A. (−2,4]B. (−2,12]C. (0,23]D. (0,16] 7. 已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的条件.( )A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要 8. 已知集合A ={x|3−x x ≥2)},则∁R A =( ) A. {x|x >1}B. {x|x ≤0或x >1}C. {x|0<x <1}D. {x|x <0或x >1}二、多选题(本大题共4小题,共20.0分。
河南省名校联考2024-2025学年高一上学期第一次月考数学试卷(含答案)
河南省名校联考2024-2025学年高一上学期第一次月考数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.下列关系式正确的是( )B. C. D.2.关于命题A.q 是存在量词命题,是真命题B.q 是存在量词命题,是假命题C.q 是全称量词命题,是真命题D.q 是全称量词命题,是假命题3.已知集合,则用列举法表示( )A. B. C. D.4.已知,,,则“”是“a ,b ,c 可以构成三角形的三条边”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件,则的最小值为( )A.9B.6C.4D.36.已知集合,,,若C 恰有1个真子集,则实数( )A.2 B.6 C.-2或6 D.2或67.某花卉店售卖一种多肉植物,若每株多肉植物的售价为30元,则每天可卖出25株;若每株多肉植物的售价每降低1元,则日销售量增加5株.为了使这种多肉植物每天的总销售额不低于1250元,则每株这种多肉植物的最低售价为( )A.25元B.20元C.15元D.10元8.学校统计某班45名学生参加音乐、科学、体育3个兴趣小组的情况,其中有20名学生参加了音乐小组,有21名学生参加了科学小组,有22名学生参加了体育小组,有24名学生只参加了1个兴趣小组,有12名学生只参加了2个兴趣小组,则3个兴趣小组都没参加的学生有( )A .5名B .4名C .3名D .2名Q 1-∈N ⊆Z N ⊆Q R:q a ∀<31A x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z A ={}2,0,1,2,4-{}2,0,2,4-{}0,2,4{}2,40a >0b >0c >a b c +>21b+=2a b +(){}2,1A x y y xax ==++(){},23B x y y x ==-C A B = a =二、多项选择题9.下列各组对象能构成集合的有( )A.南昌大学2024级大一新生B.我国第一位获得奥运会金牌的运动员C.体型庞大的海洋生物D.唐宋八大家10.已知A. B. C. D.11.已知二次函数(a ,b ,c 为常数,且)的部分图象如图所示,则( )A.B.C.D.不等式的解集为三、填空题12.已知13.已知,,集合,则________.14.已知四、解答题15.已知全集,集合,.(1)若,求,;(2)若,求a 的取值范围.16.给出下列两个结论:①关于x 的方程无实数根;②存在,使.a b >>>2c =-1c =-1c =2c =2y ax bx c =++0a ≠0a b +>0abc >1320a b c ++>20bx ax c -->{}21x x -<<a ==a ∈R b ∈R {}{}2,,2,2,0a b a a +=()3a b -=m n <<U =R {}23A x x =-<<{}12B x a x a =-<<2a =A B U BðB A ⊆230x mx m +-+=02x ≤≤()130m x +-=(1)若结论①正确,求m 的取值范围;(2)若结论①,②中恰有一个正确,求m 的取值范围.17.已知正数a ,b ,c 满足.(1)若(2)求18.已知,函数.(1)当时,函数的图象与x 轴交于,两点,求;(2)求关于x 的不等式的解集.19.设A 是由若干个正整数组成的集合,且存在3个不同的元素a ,b ,,使得,则称A 为“等差集”.(1)若集合,,且B 是“等差集”,用列举法表示所有满足条件的B ;(2)若集合是“等差集”,求m 的值;(3)已知正整数,证明:不是“等差集”.1abc =c =+2222a b c ++a ∈R ()23223y ax a x a =++++1a =()23223y ax a x a =++++()1,0A x ()2,0B x 3312x x +1y ≥c A ∈a b b c -=-{}1,3,5,9A =B A ⊆{}21,,1A m m =-3n ≥{}23,,,,n x x x x ⋅⋅⋅参考答案1.答案:D对B :不是自然数,故B 错误;对C :整数不都是自然数,如是整数但不是自然数,故C 错误;对D :有理数都是实数,故D 正确.故选:D.2.答案:D解析:对于命题q ,是全称量词命题,当,,所以q 为全称量词命题且为假命题.故选:D.3.答案:B解析:由题意可得可为、,即x 可为0,2,-2,4,即.故选:B.4.答案:B解析:当,,,得,a ,b ,c 不能构成三角形的三边长,若a ,b ,c 是某三角形的三边长,则有,所以“”是“a ,b ,c 可以构成三角形的三条边”的必要不充分条件.故选:B.5.答案:A,则,,,所以当时,取得最小值9.故选:A1-1-3a =-2b =a <1x -1±3±{}2,0,2,4A =-5a =1b =2c =a b c +>a b c +>a b c +>21b+=12(2)1452922a b a b a b b b a a ⎛⎫+=++=+++≥+= ⎪⎝⎭=3=3b =3,3a b ==2a b +6.答案:C解析:由C 恰有1个真子集,故C 中只有一个元素,即与有且只有一个交点,将代入,有,即,解得或.故选:C.7.答案:D解析:设售价为x 元,则销售量为,销售额,整理可得,解得,所以最低售价为10元,故选:D.8.答案:B解析:设三个小组都参加的人数为x ,只参加音乐科学的人数为,只参加音乐体育的人数为,只参加体育科学的人数为,作出韦恩图,如图,由题意,,即,因为有12名学生只参加了2个兴趣小组,所以,代入解得,即三个兴趣小组都参加的有5人,所以参加兴趣小组的一共有人,21y x ax =++23y x =-23y x =-21y x ax =++()2240x a x +-+=()22160a ∆=--=6a =2a =-()255301755x x +-=-()17551250x x -≥2352500x x -+≤1025x ≤≤1y 2y 3y 12132324202122y x y y x y y x y +++++++++=++()12323632439y y y x +++=-=12312y y y ++=5x =2412541++=所以不参加所有兴趣小组的有人.故选:B9.答案:ABD解析:对于A ,因为南昌大学2024级大一新生是确定的,所以能构成集合,所以A 正确,对于B ,因为我国第一位获得奥运会金牌的运动员是确定的,所以能构成集合,所以B 正确,对于C ,因为体型庞大的海洋生物没有明确的标准,没有确定性,所以不能构成集合,所以C 错误,对于D ,因为唐宋八大家是确定的,所以能构成集合,所以D 正确.故选:ABD10.答案:AB由,故,即,即,故A 、B 正确;C 、D 错误.故选:AB.11.答案:BCD解析:由图象可知,该二次函数开口向上,故,与轴的交点为、,故,即、,对A :,故A 错误;对B :,故B 正确;对C :,故C 正确;对D :可化为,即,即,其解集为,故D 正确.故选:BCD.12.答案:解析:45414-=>1c a +>>0a b >>bc ac >()0a b c -<0c <0a >x ()1,0-()2,0()()22122y ax bx c a x x ax ax a =++=+-=--b a =-2c a =-()0a b a a +=+-=()()3220abc a a a a =⋅-⋅-=>13213480a b c a a a a ++=--=>20bx ax c -->220ax ax a --+>220x x +-<()()120x x -+<{}21x x -<<<a ===,所以.故答案为:.13.答案:8解析:由题设,若,则不满足元素的互异性,所以,显然满足题设,所以.故答案为:814.答案:解析:令,,则,.故答案为:.15.答案:(1),b===>0>+><<a b<<a={}2,2,0a211a baa aba+=⎧=⎧⎪=⇒⎨⎨=-⎩⎪≠⎩()3328a b-==1-m n x+=<0m n y-=<m==8242242x ym x y x ym n x xxyyy⋅⋅-+=-=--+-4441331y x y xx y x y⎛⎫=---=-+≤-=-⎪⎝⎭=11-{}24A B x x=-<<{}14UB x x x=≤≥或ð(2)解析:(1)当时,,则,因为,所以;(2)当时,成立,此时,解得,当时,由,得,解得综上,16.答案:(1)(2).解析:(1)若关于x 的方程无实数根,则有,即,解得;(2)若存在,使,由时,,故时有解,即有由(1)知,若结论①正确,则,故结论①,②中恰有一个正确时,.17.答案:(1)(2)8解析:(1)若,则,(2)32a ≤2a ={}14B x x =<<{}14U B x x x =≤≥或ð{}23A x x =-<<{}24A B x x =-<< B =∅B A ⊆12a a -≥1a ≤-B ≠∅B A ⊆121223a a a a -<⎧⎪-≥-⎨⎪≤⎩1a -<≤a ≤62m -<<6m -<<2≥230x mx m +-+=()2430m m ∆=--+<()()2412260m m m m +-=-+<62m -<<02x ≤≤()130m x +-=0x =()1330m x +-=-≠1m +=2x <≤1m +≥≥62m -<<6m -<<2≥1c =ab =3b +≥=====2222222882a b c a c b c ac bc ac bc +++=++++++,当且仅当、、时,即时,等号成立,故18.答案:(1)(2)见解析解析:(1)当时,.由题可知,是方程的两个实数根,则,.由,得,则.(2)由,得.当时,不等式整理为,解得,即原不等式的解集为.当时,令,得或当时,;当时,,则原不等式的解集为;当时,;当时,.19.答案:(1)答案见解析(2)(3)证明见解析8822ab bc ac bc ac bc≥=++++()828ab bc ac bc =++≥=+a c =b c =()2ab bc +=1=1a b c ===2222a b c ++50-1a =255y x x =++1x 2x 2550x x ++=125x x +=-125x x =211222550550x x x x ⎧++=⎨++=⎩32111322225555x x x x x x ⎧=--⎨=--⎩()()()233221212121212555225752550x x x x x x x x x x ⎡⎤+=-+-+=-+-+=-+=-⎣⎦1y ≥()232220ax a x a ++++≥0a =220x +≥1x ≥-{}1x x ≥-0a ≠()()()232221220ax a x a x ax a ++++=+++=1x =-x =0a >1->221a x x x a ⎧+⎫≤-≥-⎨⎬⎩⎭或20a -<<221a a +-<-221a x x a ⎧+⎫-≤≤-⎨⎬⎩⎭2a =-1-=}1-2a <-1->221a x x a ⎧+⎫-≤≤-⎨⎬⎩⎭2m =解析:(1)因为集合,,存在3个不同的元素a ,b ,,使得,则或或.(2)因为集合是“等差集”,所以或或,计算可得或或又因为m 正整数,所以.(3)假设是“等差集”,则存在m ,n ,,,成立,化简可得,因为,,所以,所以与集合的互异性矛盾,所以不是“等差集”.{}1,3,5,9A =B A ⊆c B ∈a b b c -=-{}1,3,5,9B ={}1,3,5B ={}1,5,9B ={}21,,1A m m =-221m m =+-2211m m =+-()2221m m +=-m =0=2m =m =2m ={}22,,,,n x x x x ⋅⋅⋅{}1,2,3,,q n ∈ m n q <<2n m q x x x =+2m n q n x x --=+0m n x ->*x ∈N 1q n -≥21q n x x ->≥≥1x ={}22,,,,n x x x x ⋅⋅⋅{}22,,,,n x x x x ⋅⋅⋅。
河南省郑州市第一中学2024-2025学年高一上学期第一次月考试题 数学(含答案)
郑州一中27届(高一)第一次模拟测试数学试题卷第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,,则如图中阴影部分表示的集合为( )A. B. C. D. 2. 命题“,”的否定是( )A. , B. ,C. , D. ,3. 已知函数的值为( )A. B. 0 C. 2 D. 44. 已知,若,,,且,,,则的值( )A. 大于0B. 等于0C. 小于0D. 不能确定5. 函数的部分图象大致为( )A.B.U R =(){}{}30,1M x x x N x x =+<=<-{|1}x x ≥-{|30}-<<x x {|3}x x ≤-{|10}x x -≤<x ∃∈R 310x x +>x ∃∈R 310x x +≥x ∃∈R 310x x+≤x ∀∈R 310x x+≤x ∀∈R 310x x +>()()2,1,2,1x x f x f x x -≤⎧=⎨>⎩2-3()2f x x x =+a b c ∈R 0a b +>0a c +>0b c +>()()()f a f b f c ++()22111x f x x +=-+C. D.6. 已知,则下列不等式一定成立的是( )A. B. C D. 7. 已知,关于的一元二次不等式的解集中有且仅有3个整数,则的值不可能是( )A 13 B. 14 C. 15 D. 168. 已知函数,若的值域为,则实数的取值范围是( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列函数中,既是奇函数,又在上单调递增的是( )A. B. C. D. 10. 命题“,”为真命题的一个充分不必要条件可以是( )A. B. C. D. 11. 设为实数,不超过的最大整数称为的整数部分,记作.例如,.称函数为取整函数,下列关于取整函数的结论中正确的是( )A. 在上是单调递增函数B. 对任意,都有C. 对任意,,都有..0a b >>22a b a b +>+2()4a b ab+≤2b a a b +<22b b a a +<+Z a ∈x 280x x a -+≤a 212,()23,3x c f x x x x c x ⎧-+<⎪=⎨⎪-+≤≤⎩()f x [2,6]c 11,4⎡⎤--⎢⎥⎣⎦1,04⎡⎫-⎪⎢⎣⎭[1,0)-11,2⎡⎤--⎢⎥⎣⎦(0,)+∞()f x =()||f x x x =2()1x x f x x -=-3()f x x =[1,2)x ∀∈20x a -≤4a ≥5a >6a ≥7a >x x x []x [1.2]1=[ 1.4]2-=-()[]f x x =()f x ()f x R x ∈R ()1f x x >-x ∈R k ∈Z ()()f x k f x k+=+D 对任意,,都有第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12. 用列举法表示______.13. 函数是上的偶函数, 且当时,函数的解析式为,则______;当时,函数的解析式为___________.14. 已知,为非负实数,且,则的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或验算步骤.15. 已知全集,集合,.(1)求;(2)求.16. 设命题,使得不等式恒成立;命题,不等式成立.(1)若为真命题,求实数取值范围;(2)若命题、有且只有一个是真命题,求实数取值范围.17. 设函数为定义在上的奇函数.(1)求实数的值;(2)判断函数的单调性,并用定义法证明在(0,+∞)上的单调性.18. 已知某园林部门计划对公园内一块如图所示的空地进行绿化,用栅栏围4个面积相同的小矩形花池,一面可利用公园内原有绿化带,四个花池内种植不同颜色的花,呈现“爱我中华”字样.(1)若用48米长的栅栏围成小矩形花池(不考虑用料损耗),则每个小矩形花池的长、宽各为多少米时,才能使得每个小矩形花池的面积最大?.的的x y ∈R ()()()f xy f x f y =6N N 1a a ⎧⎫∈∈=⎨⎬-⎩⎭∣()f x R 0x >2()1f x x=-(1)f -=0x <a b 21a b +=22211a b a b+++R U ={}2|560A x x x =-+>{|230}B x x =->A B ⋂()()U U A B ðð[]:1,1p x ∀∈-2230x x m --+<[]:0,1q x ∃∈2223x m m -≥-p m p q m ()22a f x x a x+=-+(,0)(0,)-∞+∞ a ()f x ()f x(2)若每个小矩形的面积为平方米,则当每个小矩形花池的长、宽各为多少米时,才能使得围成4个小矩形花池所用栅栏总长度最小?19. 已知集合中含有三个元素,同时满足①;②;③为偶数,那么称集合具有性质.已知集合,对于集合的非空子集,若中存在三个互不相同的元素,使得均属于,则称集合是集合的“期待子集”.(1)试判断集合是否具有性质,并说明理由;(2)若集合具有性质,证明:集合是集合的“期待子集”;(3)证明:集合具有性质的充要条件是集合是集合的“期待子集”.983A ,,x y z x y z <<x y z +>x y z ++A P {}1,2,3,,2n S n = *(N ,4)n n ∈≥n SB n S ,,a b c ,,+++a b b c c a B B n S {}1,2,3,5,7,9A =P {}3,4,B a =P B 4S M P M n S郑州一中27届(高一)第一次模拟测试数学试题卷第I卷(选择题)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】C【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】A【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BD【10题答案】【答案】BCD【11题答案】【答案】BC第II卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】 ①. ②. 【14题答案】【答案】2四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或验算步骤.【15题答案】【答案】(1)或 (2)【16题答案】【答案】(1)(2)【17题答案】【答案】(1)(2)在上单调递减,在(0,+∞)上单调递减,证明见解析【18题答案】【答案】(1)长为6米、宽为4米(2)长为7米、宽为米【19题答案】【答案】(1)不具有,理由见解析(2)证明见解析 (3)证明见解析{}1,2,3,61()21f x x=--{3|22x x <<3}x >3|232x x x ⎧⎫≤≤≤⎨⎬⎩⎭或(,0)-∞(,3]-∞0a =(,0)-∞143。
2024-2025学年天津市和平区高一上学期第一次月考数学质量检测试题(含解析)
本训练分第Ⅰ卷和第Ⅱ卷两部分,满分150分,训练时间1002024-2025学年天津市和平区高一上学期第一次月考数学质量检测试题分钟.第Ⅰ卷 选择题(60分)一.选择题(本题共12小题,每小题5分,共60分)1. 设集合{}{}{}1,0,11,3,5,0,2,4A B C =-==,,则()A B C ⋂⋃=( )A. {}0B. {0,1,3,5}C. {0,1,2,4}D. {0,2,3,4}【答案】C 【解析】【分析】根据交集并集的定义即可求出.【详解】 {}{}{}1,0,11,3,5,0,2,4A B C =-==,,{}1A B ∴⋂=,{}()0,1,2,4A B C ⋂⋃=∴.故选:C.2. 命题“2R,240x x x ∀∈-+≥”的否定为( )A. 2R,240x x x ∃∈-+≥ B. 2R,240x x x ∃∈-+<C. 2R,240x x x ∀∉-+≥ D. 2R,240x x x ∃∉-+<【答案】B 【解析】【分析】全称量词命题的否定是存在量词命题.【详解】命题“2R,240x x x ∀∈-+≥”的否定为“2R,240x x x ∃∈-+<”.故选:B.3. 已知不等式240x ax ++<的解集非空,则实数a 的取值范围是( )A. ()4,4- B. ()(),44,∞∞--⋃+C. ()(),22,∞∞--⋃+ D. ()2,2-【答案】B 【解析】【分析】利用一元二次不等式、函数、方程的关系计算即可.【详解】由题意可知2440a ∆=-⨯>,解之得()(),44,a ∈-∞-⋃+∞.故选:B 4. 若,,a b c R ∈,且满足a b c >>,则下列不等式成立的是A.11a b< B.2211a b >C.2211a bc c >++ D. a c b c>【答案】C 【解析】【分析】通过反例可依次排除,,A B D 选项;根据不等式的性质可判断出C 正确.【详解】A 选项:若1a =,2b =-,则11a b>,可知A 错误;B 选项:若1a =,12b =,则2211a b <,可知B 错误;C 选项:210c +> 2101c ∴>+又a b > 2211a bc c ∴>++,可知C 正确;D 选项:当0c =时,a c b c =,可知D 错误.本题正确选项:C【点睛】本题考查不等式性质的应用,解决此类问题通常采用排除法,利用反例来排除错误选项即可,属于基础题.5 已知全集{}0U x x =>,集合{}12A x x =≤<,则U A =ð( )A. {|1x x ≤-或}2x ≥B. {|01x x <<或}2x ≥C. {|1x x <-或x >2}D. {|01x x <<或x >2}【答案】B 【解析】【分析】根据全集和补集的概念可直接得结果.【详解】因为{}0U x x =>,{}12A x x =≤<,所以U A =ð{|01x x <<或}2x ≥..故选:B6. 已知,R a b ∈,若集合{}2,,1,,0b a a a b a ⎧⎫=-⎨⎬⎩⎭,则a b +的值为( )A. 1-B. 0C. 1D. 2【答案】A 【解析】【分析】利用集合相等,求出0b =,再根据互异性求出a 的取值情况并检验即可.【详解】根据题意,0a ≠,故0ba=,则0b =,则{a ,0,21}{a =,a ,0},由集合的互异性知0a ≠且1a ≠,故{a ,0,21}{a =,a ,0},则21a =,即1a =-或1a =(舍),当1a =-,0b =时,{1-,0,1}{1=,1-,0},符合题意,所以1a b +=-.故选:A .7. 已知0a >,0b >,132a b+=,则a b +的最小值为( )A. 2B. 3C. 2D. 2+【答案】D 【解析】【分析】利用基本不等式中“常数”代换,即可求得.【详解】0,0a b >> ,132a b+=,11313()()(4)22b a a b a b a b a b ∴+=++=++1(422≥+=,当且仅当3b a a b =,即a b ==.故选:D .8. 满足{}{}1,2,31,2,3,4,5A = 的集合A 的个数是( )A. 4 B. 5C. 7D. 8【答案】D 【解析】【分析】根据并集、子集知识求得正确答案.【详解】因为{}{}1,2,31,2,3,4,5A ⋃=,所以4,5A ∈,所以集合A 是集合{}4,5与集合{}1,2,3的子集的并集所得,集合{}1,2,3的子集共有328=个,所以集合A 有8个.故选:D9. 设集合{}13A x x =->,{}2B x x a =<,若A B A = ,则实数a 的取值范围是( )A. {}4a a ≤- B. {}1a a ≤- C. {}1a a ≥ D. {}4a a ≥【答案】A 【解析】【分析】先根据不等式解集表示出,A B ,然后将A B A = 转化为B A ⊆,由此列出不等式完成求解.【详解】由13x ->解得4x >或2x <-,所以{2A x x =<-或}4x >,由2x a <解得2ax <,所以2a B x x ⎧⎫=<⎨⎬⎩⎭,又因为A B A = ,所以B A ⊆,所以22a≤-,所以4a ≤-,即a 的取值范围是{}4a a ≤-,故选:A.10. 若“11x -<<”是“()()30x a x a ---<”的充分不必要条件,则实数a 的取值范围是( )A. {|1a a ≤或2}a ≥ B. {}21a a -<<C. {}21a a -≤≤- D. {|2a a ≤-或1}a ≥-【答案】C 【解析】【分析】求得不等式的()()30x a x a ---<解,由已知可得131a a ≤-⎧⎨+≥⎩(两个等号不能同时成立),求解即可.【详解】因为()()30x a x a ---<,所以3a x a <<+,因为“11x -<<”是“()()30x a x a ---<”的充分不必要条件,的所以131a a ≤-⎧⎨+≥⎩(两个等号不能同时成立),解得21a -≤≤-,所以实数a 的取值范围是{}|21a a -≤≤-.故选:C.11. 已知0x >,0y >,且26xy x y ++=,则2x y +的最小值为( ).A. 4 B. 6C. 8D. 12【答案】A 【解析】【分析】利用基本不等式和消元思想对本题目进行求解.【详解】解:已知00x y >>,,且xy +2x +y =6,y =621x x -+2x +y =2x +621x x -+=2(x +1)8441x +-≥+,当且仅当()821,11x x x +==+时取等号,故2x +y 的最小值为4.故选:A12. 关于x 的不等式2(1)0x a x a -++<的解集中恰有2个整数,则实数a 的取值范围( )A. (1,0][2,3)-⋃ B. [2,1)(3,4]-- C. ()(]2,13,4--⋃ D. [1,0)(2,3]- 【答案】B 【解析】【分析】首先解出不等式,根据不等式的解分类讨论可得.【详解】不等式2(1)0x a x a -++<化为(1)()0x x a --<,当1a =时,不等式无解,当1a <时,不等式解为1<<a x ,这里有且只有2个整数,则21a -≤<-,当1a >时,不等式解为1x a <<,这里有且只有2个整数,则34a <≤,综上a 的取值范围是[2,1)(3,4]-- .故选:B .【点睛】方法点睛:本题考查解一元二次不等式,对于含有参数的一元二次不等式需要分类讨论才能求解.分类标准有三个层次:一是二次项系数的正负,二是相应一元二次方程的判别式∆的正负,三在方程有解时,讨论解的大小,以得出不等式的解.第Ⅱ卷 非选择题(90分)二.填空题(本题共8小题,每小题5分,共40分)13. 函数()f x =______.【答案】[)(]2,11,2- 【解析】【分析】根据二次根式的被开方数非负和分式的分母不为零,列不等式组求解即可.【详解】由题意得2010x x ⎧-≥⎨-≠⎩,解得21x x ⎧≤⎨≠⎩,即221x x -≤≤⎧⎨≠⎩,所以()f x 的定义域为[)(]2,11,2- ,故答案为:[)(]2,11,2- .14. 设{|2}A x x ==,{|2}B x ax ==,若B A ⊆,则实数a 的值为_________.【答案】0或1-或1【解析】【分析】根据B A ⊆,对集合{|2}B x ax ==进行分类讨论,即可求得a 的值.【详解】因{|2}A x x ==,则{2,2}A =-,因为{|2}B x ax ==,当0a =时,则B =∅,满足B A ⊆,当0a ≠时,则2{}B a =,因为B A ⊆,所以22a =或22a=-,则1a =或1a =-,综上,0a =或1a =-或1a =.为故答案为:0或1-或1.15. 若2a >-,则162a a ++的最小值为________.【答案】6【解析】【分析】根据基本不等式直接求最值.【详解】1616222622a a a a +=++-≥-=++当且仅当162,22a a a +==+时取等号故答案为:6【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属基础题.16. 已知全集R U =,集合{}Z 03M x x =∈≤≤与集合{}*21,N N x x k k ==+∈的关系如图所示,则阴影部分所表示的集合中元素的个数为______.【答案】3【解析】【分析】由图形可以看出,阴影部分所示的集合是()U N M ð,故先化简两个集合,即可求解.【详解】由题意{}{}Z 030,1,2,3M x x =∈≤≤=, {}{}*21,N 3,5,7,,N x x k k ==+∈= 故{}()0,1,2U N M ⋂=ð,集合有3个元素,故答案为:317. 已知13a b -<+<且24a b <-<,则23a b +的取值范围是______.【答案】913,22⎛⎫- ⎪⎝⎭【解析】【分析】设()()23a b x a b y a b +=++-,求出,x y ,结合不等式性质可求结论.【详解】设()()23a b x a b y a b +=++-,则()()23a b x y a x y b +=++-,所以2,3x y x y +=-=,故52x =,12y =-,所以()()512322a b a b a b +=+--,因为13a b -<+<,24a b <-<,所以()5515222a b -<+<,()1212a b -<--<-,所以9132322a b -<+<,所以23a b +取值范围是913,22⎛⎫-⎪⎝⎭.故答案为:913,22⎛⎫-⎪⎝⎭.18. 已知集合{}12A x x =-<≤,{}12B x m x m =-≤<+.若A B =∅ ,则实数m 的取值范围是______.【答案】{3m m >或}3m ≤-【解析】【分析】由A B =∅ ,有12m ->或21m +≤-,解不等式可得.【详解】显然集合{}12B x m x m =-≤<+非空,要使A B =∅ ,应有12m ->或21m +≤-,解得3m >或3m ≤-,故答案为:{3m m >或}3m ≤-19. 若两个正数,x y 满足92xy x +=,且不等式212x m m y+>-恒成立,则实数m 取值范围是______.【答案】(1-+【解析】【分析】由条件适当变形,再结合均值不等式求出1x y +的最小值,只需2min 12()m m x y-<+,解出实数m 的范围即可.【详解】解:因为,x y 为正数且满足92xy x +=,的的所以92y x+=,所以1111111()()(2)2)2222x y x xy y x y xy +=++=++≥+=当且仅当192xy xy xy x ⎧=⎪⎨⎪+=⎩,即515x y =⎧⎪⎨=⎪⎩时等号成立.因为不等式212x m m y+>-恒成立,所以只需222m m -<,即2220m m --<,所以11m -<<+,即实数m的取值范围是(1-+.故答案为:(1-+.20. 设,,a b c 是两两不相等的正整数,已知集合{},,A a b b c c a =+++,集合()(){}()222*,1,2N B n n n n =++∈,若A B =,则222ab c ++的最小值是______.【答案】1297【解析】【分析】不妨设a b c <<,由条件可得()2142n a --=,()2122n b ++=,()2342n c +-=,由此证明n 为奇数且3n >,证明5n =时,,,a b c 都最小,由此可得结论.【详解】不妨设a b c <<,则a b a c b c +<+<+,因为A B =,{},,A a b b c c a =+++,()(){}222,1,2B n n n =++,所以2a b n +=,()21a c n +=+,()22b c n +=+,所以()22365a b c n n ++=++,所以23652n n a b c ++++=,所以()()22214365222n n n a n --++=-+=,()()22212365122n n n b n ++++=-+=,()2223436522n n n c n +-++=-=,因为,,a b c 为正整数,N n *∈,所以1n -,1n +,3n +都为奇数,12n ->,故n 为大于等于5的奇数,又当5x ≥时,函数()2142x y --=,()2122x y ++=,()2342x y +-=都随x 的增大而增大,所以当5n =时,,,a b c 同时取最小值,此时222a b c ++取最小值,当5n =时,6a =,19b =,30c =,222363619001297a b c ++=++=,所以222a b c ++的最小值是1297.故答案为:1297.【点睛】关键点点睛:本题解决的关键在与通过假设a b c <<,由此求出,,a b c 的表达式,结合整除知识,证明n 为大于等于5的奇数.三.解答题(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)21. 已知非空集合{}121P x a x a =+≤≤+,{}25Q x x =-≤≤.(1)若3a =,求()R P Q ð;(2)若“x ∈Q ”的充分条件是“x P ∈”,求实数a 的取值范围.【答案】(1){}|24x x -≤< (2)02a ≤≤【解析】【分析】(1)根据补集、交集的知识求得正确答案.(2)根据充分条件列不等式,由此求得a 的取值范围.【小问1详解】3a =时,P ={x |4≤x ≤7},{|4P x x =<R ð或}7x >,因为{}25Q x x =-≤≤,所以(){}R |24P Q x x ⋂=-≤<ð.【小问2详解】若“x ∈Q ”的充分条件是“x P ∈”,则P Q ⊆,所以12112215a a a a +≤+⎧⎪+≥-⎨⎪+≤⎩,解得02a ≤≤,所以实数a 的取值范围是02a ≤≤.22. 设命题:R p x ∀∈,不等式2102mx mx ++>恒成立:命题1:13m q m m m ⎧⎫+∈≥⎨⎬-⎩⎭.(1)若p 为真命题,求实数m 的取值范围;(2)若命题p 、q 有且只有一个是真命题,求实数m 的取值范围.【答案】(1)02m ≤<(2)01m <<或23m ≤<【解析】【分析】(1)对m 进行分类讨论,由此列不等式来求得m 的取值范围.(2)根据p 真q 假或p 假q 真,列不等式来求得m 的取值范围.【小问1详解】对于命题:R p x ∀∈,不等式2102mx mx ++>恒成立,当0m =时,102>恒成立.当0m ≠时,则需20Δ20m m m >⎧⎨=-<⎩,解得02m <<.综上所述,m 的取值范围是02m ≤<.【小问2详解】由113m m +≥-得1132210333m m m m m m m++-+--==≥---,所以()()223030m m m ⎧--≥⎨-≠⎩,解得13m ≤<.若p 真q 假,则“02m <<”且“1m <或3m ≥”,则01m <<.若p 假q 真,则“0m ≤或2m ≥”且“13m ≤<”,则23m ≤<.综上所述,m 的取值范围是01m <<或23m ≤<.23. 已知函数()()()21,f x ax a x b a b =-++∈R .(1)若关于x 的不等式()0f x <的解集为()1,3-,求不等式240bx ax -+<的解集;(2)若1b =,求关于x 的不等式()0f x >的解集.【答案】(1)()4,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭(2)答案见解析【解析】【分析】(1)根据题意可得0a >,且1-,3是方程2(1)0ax a x b -++=的两个实数根,利用韦达定理得到方程组,求出a ,b ,进一步可得不等式240bx ax -+<等价于2340x x --+<,即2340x x +->,最后求解不等式即可;(2)当0b =时,0a >时,不等式等价于1(1)0x x a -->,从而分类讨论1a >,1a =,01a <<三种情况即可求出不等式所对应的解集.【小问1详解】若关于x 的不等式()0f x <的解集为(1,3)-,则1-和3是方程()210ax a x b -++=的两根,且0a >,由韦达定理得123a a b a+⎧=⎪⎪⎨⎪=-⎪⎩,解得1,3a b ==-,所以不等式()()22403403410bx ax x x x x -+<⇔--+<⇔+->,解得43x <-或1x >,所以不等式240bx ax -+<的解集为()4,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭.【小问2详解】若1b =,则()()()()20110110f x ax a x ax x >⇔-++>⇔-->,1)当0a =时,由()10x -->解得1x <;2)当0a ≠时,方程()()110ax x --=的两根为1,1a,当0a <时,11a <,解不等式()()110ax x -->得11x a<<;当01a <<时,11a >,解不等式()()110ax x -->得1x <或1x a >;当1a >时,11a <,解不等式()()110ax x -->得1x >或1x a <;当1a =时,由2(1)0x ->得1x ≠.综上,当0a =时,不等式解集为(),1-∞;当0a <时,不等式解集为1,1a ⎛⎫ ⎪⎝⎭;当01a <<时,不等式解集为()1,1,a ⎛⎫-∞+∞⎪⎝⎭ ;当1a >时,不等式解集为()1,1,a ⎛⎫-∞+∞ ⎪⎝⎭;当1a =时,不等式解集为()(),11,-∞+∞ .24. 设二次函数2y x mx =+.(1)若对任意实数[]0,1,0m y ∈>恒成立,求实数x 的取值范围;(2)若存在[)04,0x ∈-,使得函数值04y ≤-成立,求实数m 的取值范围.【答案】(1)()(),10,-∞-⋃+∞(2)[)4,+∞【解析】【分析】(1)转化m 自变量,x 为参数,根据已知条件列方程式即可求解;(2)若存在[)04,0x ∈-,使得04y ≤-成立,经变形后()004x m x -+≤-,只需要其最小值满足条件即可,根据不等式性质求出最小值,即可求出m 的取值范围.【小问1详解】对任意实数[]()0,1,0m f x ∈>恒成立,即()20g m xm x =+>对任意实数[]0,1m ∈恒成立,因为()2g m xm x =+是关于m 的一次函数, 所以()()220010g x g x x ⎧=>⎪⎨=+>⎪⎩001x x x ≠⎧⎨><-⎩或所以实数x 的取值范围是()(),10,-∞-⋃+∞;【小问2详解】存在[)04,0x ∈-,使得()04f x ≤-成立,即2004x mx +≤-,只需()004x m x -+≤-成立,即需00min 4x m x ⎛⎫-+ ⎪-⎭≤⎝成立,因为(]00,4,x -∈所以0044x x -+≥=-(当且仅当02x =-时等号成立),则00min 44x m x ⎛⎫-+=≤ ⎪-⎝⎭,所以4≥m ,综上得实数m 的取值范围是:[)4,+∞.。
南京市第九中学2024-2025学年高一上学期第一次月考数学试卷
江苏南京市第九中学2024-2025学年高一数学上第一次月考试卷一.选择题(共4小题)1.若不等式2kx2+kx﹣<0对一切实数x都成立,则k的取值范围为()A.(﹣3,0)B.[﹣3,0)C.[﹣3,0]D.(﹣3,0]2.已知集合,集合,则()A.M∈N B.C.M=N D.3.已知a>b>c,且a+b+c=0,则下列不等式一定成立的是()A.ab2>bc2B.ab2>b2cC.(ab﹣ac)(b﹣c)>0D.(ac﹣bc)(a﹣c)>04.已知正实数a,b满足2a+b=1,则的最小值为()A.3B.9C.4D.8二.多选题(共5小题)(多选)5.下列四个命题中正确的是()A.方程的解集为{2,﹣2}B.由所确定的实数集合为{﹣2,0,2}C.集合{(x,y)|3x+2y=16,x∈N,y∈N}可以化简为{(0,8),(2,5),(4,2)} D.中含有三个元素(多选)6.已知实数a,b∈R+,且2a+b=1,则下列结论正确的是()A.ab的最大值为B.a2+b2的最小值为C.的最小值为6D.(多选)7.下列四个命题是真命题的是()A.若函数f(x)的定义域为[﹣2,2],则函数f(x+1)的定义域为[﹣3,1]B.函数的值域为C.若函数y=x2+mx+4的两个零点都在区间为(1,+∞)内,则实数m的取值范围为(﹣5,﹣4)D.已知f(x)=x2﹣(m+2)x+2在区间[1,3]上是单调函数,则实数m的取值范围是(﹣∞,0]∪[4,+∞)(多选)8.已知集合A={x|﹣1<x<3},集合B={x|x<m+1},则A∩B=∅的一个充分不必要条件是()A.m≤﹣2B.m<﹣2C.m<2D.﹣4<m<﹣3(多选)9.若a<0<b,且a+b>0,则()A.B.C.|a|<|b|D.(a﹣1)(b﹣1)<0三.填空题(共4小题)10.定义在R上的函数f(x)满足,则=.11.若命题“∃x∈[﹣1,2],使得x2+mx﹣m﹣5≥0”是假命题,则m的取值范围是.12.已知关于x的不等式ax+b>0的解集为(﹣3,+∞),则关于x的不等式ax2+bx<0的解集为.13.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠B=∠C且7a2+b2+c2=4,则△ABC 的面积的最大值为.四.解答题(共5小题)14.命题p:实数x满足x2﹣4ax+3a2<0(其中a>0),命题q:实数x满足.(1)若a=1,且命题p、q均为真命题,求实数x的取值范围;(2)若q是p的充分不必要条件,求实数a的取值范围.15.已知函数f(x)=是定义域(﹣1,1)上的奇函数,(1)确定f(x)的解析式;(2)用定义证明:f(x)在区间(﹣1,1)上是减函数;(3)解不等式f(t﹣1)+f(t)<0.16.已知函数f(x)=x2+ax+3,a∈R(1)若函数的定义域为R,求实数a的取值范围;(2)若当x∈[﹣2,2]时,函数有意义,求实数a的取值范围.(3)若函数g(x)=f(x)﹣(a﹣2)x+a,函数y=g[g(x)]的最小值是5,求实数a的值.17.若x,y∈(0,+∞),x+2y+xy=30.(1)求xy的取值范围;(2)求x+y的取值范围.18.已知关于x的函数和.(1)若y1≥y2,求x的取值范围;(2)若关于x的不等式(其中0<t≤2)的解集D=[m,n],求证:.参考答案与试题解析一.选择题(共4小题)1.【解答】解:k=0时,﹣<0恒成立,故满足题意;k≠0时,,∴﹣3<k<0.∴实数k的取值范围是(﹣3,0].故选:D.2.【解答】解:={x|x=12k,k∈N*},={x|x=24k,k∈Z},故A错误,C错误,当x=﹣12时,,既不在集合M,也不在集合N,故B错误;当元素满足为24的正整数倍时,比满足为12的正整数倍,故M∩N=,故D正确,故选:D.3.【解答】解:因为a>b>c,且a+b+c=0,所以a>0,c<0,对于A,由于a>c,而当b=0时,ab2=bc2,故A错误;对于B,当b=0时,ab2=b2c,故B错误;对于C,由于a>0,b>c,则b﹣c>0,所以(ab﹣ac)(b﹣c)=a(b﹣c)(b﹣c)>0,故C正确;对于D,因为a>b>c,所以a﹣b>0,a﹣c>0,又c<0,所以(ac﹣bc)(a﹣c)=c(a﹣b)(a﹣c)<0,故D错误.故选:C.4.【解答】解:因为正实数a,b满足2a+b=a+a+b=1,则====5++=9,当且仅当a+b=2a且2a+b=1,即a=b=时取等号.故选:B.二.多选题(共5小题)5.【解答】解:对于A,方程的解集为{(2,﹣2)},故A错误;对于B,当a>0,b>0时,=,当a>0,b<0时,=,当a<0,b>0时,=﹣1+1=0,当a<0,b<0时,=﹣1﹣1=﹣2,故所确定的实数集合为{﹣2,0,2},故B正确;对于C,3x+2y=16,x∈N,y∈N,则或或,故集合{(x,y)|3x+2y=16,x∈N,y∈N}可以化简为{(0,8),(2,5),(4,2)},故C正确;对于D,A=={﹣3,0,1,2}中含有4个元素,故D错误.故选:BC.6.【解答】解:对于A,因为a,b∈R+,2a+b=1,所以,得,当且仅当时,取等号,所以ab的最大值为,所以A正确,对于B,因为a,b∈R+,2a+b=1,所以0<a<1,b=1﹣2a>0,所以,所以,所以当时,a2+b2有最小值,所以B错误,对于C,因为a,b∈R+,2a+b=1,所以,当且仅当,即时,取等号,所以的最小值为,所以C错误,对于D,因为2a+b=1,所以,由选项B知,所以,所以,所以,所以,所以,所以D正确.故选:AD.7.【解答】解:由﹣2≤x+1≤2,解得﹣3≤x≤1,即函数f(x+1)的定义域为[﹣3,1],故A正确;函数的定义域为[2,+∞),易知函数在[2,+∞)上单调递增,则函数的值域为[2,+∞),故B错误;若函数y=x2+mx+4的两个零点x1,x2都在区间为(1,+∞)内,则x1>1,x2>1,∴x1﹣1>0,x2﹣1>0,且x1+x2=﹣m,x1x2=4,故即解得﹣5<m <﹣4,故C正确,若f(x)=x2﹣(m+2)x+2在[1,3]单调递增,则,若f(x)=x2﹣(m+2)x+2在[1,3]单调递减,则,故实数m的取值范围是(﹣∞,0]∪[4,+∞),D正确.故选:ACD.8.【解答】解:根据题意,A={x|﹣1<x<3},集合B={x|x<m+1},若A∩B=∅.则m+1≤﹣1≤﹣2,对于A,m≤﹣2为A∩B=∅的充分必要条件,故A错,对于B,m<﹣2为A∩B=∅的一个充分不必要条件,故B正确,对于C,m<2为A∩B=∅的一个必要不充分条件,故C错,对于D,﹣4<m<﹣3为A∩B=∅的一个充分不必要条件,故D正确,故选:BD.9.【解答】解:A选项:∵a<0<b,且a+b>0,∴b>﹣a>0,可得,即,A正确;B选项,,B错误;C选项,a<0<b即|a|=﹣a,|b|=b,由a+b>0可得|b|>|a|,C正确;D选项,因为当,所以(a﹣1)(b﹣1)>0,D错误.故选:AC.三.填空题(共4小题)10.【解答】解:∵,∴==2+2+2+1=7.故答案为:7.11.【解答】解;由题意原命题的否定“∀x∈[﹣1,2],使得x2+mx﹣m﹣5<0”是真命题,不妨设,其开口向上,对称轴方程为,则只需f(x)在[﹣1,2]上的最大值[f(x)]max<0即可,我们分以下三种情形来讨论:情形一:当即m≥2时,f(x)在[﹣1,2]上单调递增,此时有[f(x)]max=f(2)=m﹣1<0,解得m<1,故此时满足题意的实数m不存在;情形二:当即﹣4<m<2时,f(x)在上单调递减,在上单调递增,此时有[f(x)]max=max{f(2)(﹣1)}<0,只需,解不等式组得﹣2<m<1,故此时满足题意的实数m的范围为﹣2<m<1;情形三:当即m≤﹣4时,f(x)在[﹣1,2]上单调递减,此时有[f(x)]max=f(﹣1)=﹣2m﹣4<0,解得m>﹣2,故此时满足题意的实数m不存在;综上所述:m的取值范围是(﹣2,1).故答案为:(﹣2,1).12.【解答】解:∵关于x的不等式ax+b>0的解集为(﹣3,+∞),∴﹣=﹣3且a>0,∴b=3a,∴不等式ax2+bx<0,可化为ax2+3ax<0,又∵a>0,∴x2+3x<0,解得﹣3<x<0,即原不等式的解集为(﹣3,0).故答案为:(﹣3,0).13.【解答】解:由∠B=∠C得b=c,代入7a2+b2+c2=4得,7a2+2b2=4,即2b2=4﹣7a2,由余弦定理得,cos C==,所以sin C===,则△ABC的面积S===a==×≤××==,当且仅当15a2=8﹣15a2取等号,此时a2=,所以△ABC的面积的最大值为,故答案为:.四.解答题(共5小题)14.【解答】解:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0,又a>0,所以a<x<3a;当a=1时,1<x<3,即p为真时,实数x的取值范围是1<x<3;由,得,解得2<x≤3,即q为真时,实数x的取值范围是2<x≤3;则p、q均为真命题时,实数x的取值范围是(2,3);(2)由(1)知p:a<x<3a,a>0,q:2<x≤3;当q是p的充分不必要条件时,;解得1<a≤2,所以实数a的取值范围是(1,2].15.【解答】解:(1)根据题意,函数f(x)=是定义域(﹣1,1)上的奇函数,则有f(0)==0,则b=0;此时f(x)=,为奇函数,符合题意,故f(x)=,(2)证明:设﹣1<x1<x2<1,f(x1)﹣f(x2)=﹣=﹣又由﹣1<x1<x2<1,则(x1﹣x2)<0,x1x2+1>0,(﹣1)<0,(﹣1)<0,则有f(x1)﹣f(x2)>0,即函数f(x)在(﹣1,1)上为减函数;(3)根据题意,f(t﹣1)+f(t)<0⇒f(t﹣1)<﹣f(t)⇒f(t﹣1)<f(﹣t)⇒,解可得:<t<1,即不等式的解集为(,1).16.【解答】解:(1)若函数的定义域为R,则对任意的x∈R,x2+ax+3≠0,由于函数f(x)=x2+ax+3为开口向上的二次函数,故只需要Δ=a2﹣12<0,解得,故a的范围为{a|};(2)对x∈[﹣2,2]有意义,则对于x∈[﹣2,2],f(x)﹣a=x2+ax+3﹣a≥0恒成立,记h(x)=x2+ax+3﹣a,对称轴为,当时,即a≥4,此时h(x)在x∈[﹣2,2]单调递增,故,与a≥4矛盾,舍去,当,即a≤﹣4,此时h(x)在x∈[﹣2,2]单调递减,故h(2)=4+2a+3﹣a=7+a≥0⇒a≥﹣7,故﹣7≤a≤﹣4,当,即﹣4<a<4,此时,解得﹣6≤a≤2,故﹣4<a≤2,综上可得:{a|﹣7≤a≤2};(3)g(x)=f(x)﹣(a﹣2)x+a=x2+2x+a+3=(x+1)2+a+2≥a+2,令t=g(x),则t≥a+2,y=g[g(x)]=g(t)=(t+1)2+a+2,t≥a+2,则g(t)为开口向上,对称轴为t=﹣1的二次函数,当a+2≤﹣1⇒a≤﹣3,此时g(t)min=g(﹣1)=a+2=5⇒a=3,不符合要求,舍去,当a+2>﹣1⇒a>﹣3,此时或a=﹣6(舍去),故a=﹣1.17.【解答】解:(1)因为x,y∈(0,+∞),x+2y+xy=30,所以30﹣xy=x+2y,当且仅当x=2y时取等号,解可得,0<xy≤18,(2)因为x,y∈(0,+∞),30=x+2y+xy=x+y+y(x+1)≤x+y+()2,当且仅当x+1=y时取等号,所以(x+1+y)2+4(x+1+y)﹣124≥0,解可得,x+y+1或x+y+1(舍),故x+y≥8﹣3,又x+y=x+2+﹣3,0<x<30,所以由对勾函数的性质可得x+y<30,所以8﹣3≤x+y<30.18.【解答】解:(1)y1≥y2可得x2﹣2|x|≥4x2﹣16,即3x2+2|x|﹣16≤0,即(|x|﹣2)(3|x|+8)≤0,即,则﹣2≤x≤2,则实数x的取值范围是[﹣2,2];证明:(2)因为,所以y1≥y2,由(1)知x∈[﹣2,2],所以D=[m,n]⊆[﹣2,2];(i)0<t<1时,当x∈[0,2]时,,所以当x∈[0,2]时,恒成立,当x∈[﹣2,0)时,令=x2+2x﹣(2t﹣2)x+t2=x2+(4﹣2t)x+t2,y=g(x)对称轴x=t﹣2<﹣1,故y=g(x)在[﹣1,0)上为增函数,又g(﹣1)=1+2t﹣4+t2=(t+1)2﹣4<0,g(0)=t2>0,所以存在x0∈(﹣1,0)使得g(x0)=0,故g(x)≥0的解集为[x0,0],所以当x∈[﹣2,2]时,的解集为[x0,2],其中x0∈(﹣1,0),所以D=[m,n]⊆(﹣1,2],则;(ii)当t=1时,y1≥﹣1≥y2,因为,所以y1≥﹣1恒成立,由题意知﹣1≥y2的解集为D=[m,n],所以m,n是方程﹣1=4x2﹣16的两根,所以,所以;(iii)当1<t≤2时,当x∈[0,2]时,由(i)知,当x∈[﹣2,0)时,令,∴在[﹣2,2]恒成立,故只需要考虑(2t﹣2)x﹣t2≥y2在[﹣2,2]的解集即可,由(2t﹣2)x﹣t2≥y2,可得4x2﹣(2t﹣2)x+t2﹣16≤0,由题意m,n是4x2﹣(2t﹣2)x+t2﹣16=0的两根,令φ(x)=4x2﹣(2t﹣2)x+t2﹣16,其对称轴为,φ(2)=16﹣2(2t﹣2)+t2﹣16=t2﹣4t+4=(t﹣2)2≥0,φ(﹣2)=16+2(2t﹣2)+t2﹣16=t2+4t﹣4=(t+2)2﹣8>0,所以m,n∈[﹣2,2],,又h(t)=﹣3t2﹣2t+65在1<t≤2为单调减函数,∴h(t)<h(1)=60,∴,综上,.。
高一上学期第一次月考数学试卷(含答案解析)
高一上学期第一次月考数学试卷(含答案解析)第I 卷(选择题)一、单选题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合{0,1}A =,{|0}B x x =,则下列结论正确的是( ) A. {0}B ∈B. A B ⋂=∅C. A B ⊆D. A B R ⋃=2. 已知集合,{2,1,0,1,2,4}B =--,则A B ⋂=( ) A. {1,0,1,2}-B. {2,0,4}-C. {0,1,2}D. {0,1}3. 已知命题p :x R ∃∈,2 1.x x +则命题p 的否定是( ) A. x R ∃∈,21x x >+ B. x R ∃∈,21x x + C. x R ∀∈,21x x +D. x R ∀∈,21x x >+4. 已知a R ∈,则“2a >”是“4a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. “A B ⊆“是“A B B ⋂=“的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件6. 如果0a <,0b >,那么下列不等式中正确的是( )A.11a b< B. <C. 22a b <D. ||||a b >7. 已知集合M 满足{1,2}{1,2,3}M ⋃=,则集合M 的个数是( ) A. 1B. 2C. 3D. 48. 对于任意实数x ,不等式2(2)2(2)40m x m x ---+>恒成立,则m 的取值范围是( ) A. {|22}m m -<< B. {|22}m m -< C. {|2m m <-或2}m >D. {|2m m <-或2}m9. 已知a ,b R ∈,且0ab ≠,则在下列四个不等式中,不恒成立的是( )A.222a b ab +B.2b a a b+ C. 2()2a b ab +D. 222()22a b a b ++10. 设S 为实数集R 上的非空子集.若对任意x ,y S ∈,都有x y +,x y -,xy S ∈,则称S 为封闭集.下面是关于封闭集的4个判断:(1)自然数集N 为封闭集; (2)整数集Z 为封闭集;(3)若S 为封闭集,则一定有0S ∈; (4)封闭集一定是无限集.则其中正确的判断是( )A. (2)(3)B. (2)(4)C. (3)(4)D. (1)(2)第II 卷(非选择题)二、填空题(本大题共5小题,共25.0分)11. 已知函数21()ln log f x a x b x =+,若(2017)1f =,则1()2017f =______ . 12. 若0x >,则12x x+的最小值为______,此时x 的取值为______. 13. 一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是__________.14. 设2{|340}A x x x =+-=,{|10}.B x ax =-=若B A ⊆,则a 的值为______.15. 某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润(y 万元)与机器运转时间(x 年数,*)x N ∈的关系为21825.y x x =-+-则当每台机器运转______ 年时,年平均利润最大,最大值是______ 万元.三、解答题(本大题共6小题,共85.0分。
2023-2024学年陕西省高一上册第一次月考(10月)数学试题(含解析)
2023-2024学年陕西省高一上册第一次月考(10月)数学试题一、单选题1.已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则N A B ⋂=ðA .}{1,5,7B .}{3,5,7C .}{1,3,9D .}{1,2,3【正确答案】A【详解】试题分析:N A B ⋂ð为在集合A 但不在集合B 中的元素构成的集合,因此{1,5,7}N A B ⋂=ð集合的交并补运算2.函数11y x =+的定义域为()A .{}1x x >-B .{}1x x ≥C .{}0x x ≥D .{|1x x ≤且1}x ≠-【正确答案】B【分析】根据偶次根式下的被开方数为非负数、分式分母不等于零列不等式组,解不等式组求得函数的定义域.【详解】要使函数11y x =+有意义,则10110x x x -≥⎧⇒≥⎨+≠⎩,所以函数的定义域为{}1x x ≥.故选:B3.设集合{|03}A x N x =∈<的真子集个数为()A .16B .8C .7D .4【正确答案】C【分析】首先判断集合A 的元素个数,再求真子集个数.【详解】{}0,1,2A =,所以集合A 的真子集个数是3217-=.故选:C4.已知函数()y f x =的对应关系如下表所示,函数()y g x =的图象是如图所示的曲线ABC ,则()2f g ⎡⎤⎣⎦的值为()x 123()f x 23A .3B .0C .1D .2【正确答案】D【分析】根据图象可得()21g =,进而根据表格得()12f =.【详解】由题图可知()21g =,由题表可知()12f =,故()22f g =⎡⎤⎣⎦.故选:D .5.设集合{|04},{|02}A x x B y y =≤≤=≤≤,则下列对应f 中不能构成A 到B 的映射的是A .1:2f x y x →=B .:2f x y x →=+C .:f x y →=D .:|2|f x y x →=-【正确答案】B【详解】根据映射定义,1:2f x y x →=,:f x y →=,:2f x y x →=-中的对应f 中均能构成A 到B 的映射,而对于:2f x y x →=+,当4x =,6y =,而6B ∉,不能构成A 到B 的映射,选B.6.设集合{}41,Z M x x n n ==+∈,{}21,Z N x x n n ==+∈,则()A .MN B .N M C .M N∈D .N M∈【正确答案】A【分析】根据集合M 和N 中的元素的特征,结合集合间的关系,即可得解.【详解】对集合M ,其集合中的元素为4的整数倍加1,对集合N ,其集合中的元素为2的整数倍加1,4的整数倍加1必为2的整数倍加1,反之则不成立,即M 中的元素必为N 中的元素,而N 中的元素不一定为M 中的元素,故M 为N 的真子集,即M N ,故选:A7.设函数()221,12,1x x f x x x x ⎧-≤=⎨+->⎩,则()12f f ⎛⎫⎪ ⎪⎝⎭的值为A .1516B .2716-C .89D .18【正确答案】A【详解】因为1x >时,2()2,f x x x =+-所以211(2)2224,(2)4f f =+-==;又1x ≤时,2()1f x x =-,所以211115(()1().(2)4416f f f ==-=故选A.本题考查分段函数的意义,函数值的运算.8.下列各组函数()f x 和()g x 的图象相同的是()A .()f x x =,()2g x =B .()2f x x =,()()21g x x =+C .()1f x =,()0g x x=D .()f x x =,()()()00x x g x xx ⎧≥⎪=⎨-<⎪⎩【正确答案】D【分析】若两个函数图象相同则是相等函数,分别求每个选项中两个函数的定义域和对应关系,即可判断是否为相同函数,进而可得正确选项.【详解】对于A 中,函数()f x x =的定义域为R ,()2g x x ==的定义域为[)0,+∞,所以定义域不同,不是相同的函数,图象不同;对于B 中,()2f x x =,()()21g x x =+的对应关系不同,所以不是相同的函数,两个函数图象不同;对于C 中,函数()1f x =的定义域为R ,与()01g x x ==的定义域为{|0}x x ≠,所以定义域不同,所以不是相同的函数,两个函数图象不同;对于D 中,函数(),0,0x x f x x x x ≥⎧==⎨-<⎩与(),0,0x x g x x x ≥⎧=⎨-<⎩的定义域相同,对应关系也相同,所以是相同的函数,两个函数图象相同;故选:D.9.如果函数()()2212f x x a x =+-+在区间(],4∞-上单调递减,那么实数a 的取值范围是()A .3a ≤-B .3a ≥-C .5a ≤D .5a ≥【正确答案】A【分析】根据二次函数的单调性列式可求出结果.【详解】因为函数()()2212f x x a x =+-+在区间(],4∞-上单调递减,所以(1)4a --≥,解得3a ≤-.故选:A10.若函数()1f x +的定义域为[]1,15-,则函数()2f xg x =A .[]1,4B .(]1,4C .⎡⎣D .(【正确答案】B先计算()f x 的定义域为[]0,16,得到201610x x ⎧≤≤⎨->⎩,计算得到答案.【详解】设1x t +=,则()()1f x f t +=.由()1f x +的定义域为[]1,15-知115x -≤≤,0116x ∴≤+≤,即016t ≤≤()y f t ∴=的定义域为[]0,16,∴要使函数()2f xg x =201610x x ⎧≤≤⎨->⎩,即441x x -≤≤⎧⎨>⎩,解得14x <≤,故选:B .本题考查了函数的定义域,意在考查学生的计算能力.11.设P ,Q 是两个非空集合,定义(){},,P Q a b a P b Q ⨯=∈∈,若{}3,4,5P =,{}4,5,6,7Q =,则P Q ⨯中元素的个数是()A .3B .4C .12D .16【正确答案】C【分析】根据集合新定义,利用列举法写出集合的元素即可得答案.【详解】因为定义(){},,P Q a b a P b Q ⨯=∈∈,且{}3,4,5P =,{}4,5,6,7Q =,所以()()()()()()()()()()()(){}3,4,3,5,3,6,3,7,4,4,4,5,4,6,4,7,5,4,5,5,5,6,5,7P Q ⨯=,P Q ⨯中元素的个数是12,故选:C.12.已知函数(3)5,1()2,1a x x f x a x x-+≤⎧⎪=⎨>⎪⎩是(-∞,+∞)上的减函数,则a 的取值范围是()A .(0,3)B .(0,3]C .(0,2)D .(0,2]【正确答案】D【分析】直接由两段函数分别为减函数以及端点值的大小关系解不等式组即可.【详解】由函数是(-∞,+∞)上的减函数可得()3020352a a a a ⎧-<⎪>⎨⎪-+≥⎩解得02a <≤.故选:D.二、填空题13.已知集合A ={x|125x-∈N ,x ∈N },则用列举法表示为__________________.【正确答案】{}1,2,3,4A =【分析】由题设集合A ={x|125x -∈N ,x ∈N },可通过对x 赋值,找出使得125x-∈N ,x ∈N 成立的所有x 的值,用列举法写出答案.【详解】由题意A ={x|125x-∈N ,x ∈N }∴x 的值可以为1,2,3,4,故答案为A={1,2,3,4}.考查学生会用列举法表示集合,会利用列举法讨论x 的取值得到所有满足集合的元素.做此类题时,应注意把所有满足集合的元素写全且不能相等.14.已知()123f x x +=+,则()3f =______;【正确答案】7【分析】由13x +=,求出x ,然后代入()123f x x +=+中可求得结果.【详解】由13x +=,得2x =,所以()212237f +=⨯+=,即()37f =,故715.已知集合11,2A ⎧⎫=-⎨⎬⎩⎭,{}10B x mx =-=,若A B A ⋃=,则所有实数m 组成的集合是______;【正确答案】{}1,0,2-【分析】由A B A ⋃=可得B A ⊆,然后分0m =和0m ≠两种情况求解即可.【详解】因为A B A ⋃=,所以B A ⊆,当0m =时,B =∅,满足B A ⊆,当0m ≠时,则{}110B x mx x x m ⎧⎫=-===⎨⎬⎩⎭,因为B A ⊆,11,2A ⎧⎫=-⎨⎬⎩⎭,所以11m =-或112m =,得1m =-或2m =,综上,所有实数m 组成的集合是{}1,0,2-,故{}1,0,2-16.定义在[]22-,上的函数()f x 满足()()()12120x x f x f x --<⎡⎤⎣⎦,12x x ≠,若()()1f m f m -<,则m 的取值范围是______.【正确答案】11,2⎡⎫-⎪⎢⎣⎭【分析】由题意可得函数在[]22-,上单调递减,然后根据函数的单调性解不等式即可.【详解】因为定义在[]22-,上的函数()f x 满足()()()12120x x f x f x --<⎡⎤⎣⎦,12x x ≠,所以()f x 在[]22-,上单调递减,所以由()()1f m f m -<,得212221m m m m-≤-≤⎧⎪-≤≤⎨⎪->⎩,解得112m -≤<,即m 的取值范围是11,2⎡⎫-⎪⎢⎣⎭,故11,2⎡⎫-⎪⎢⎣⎭三、解答题17.已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.【正确答案】01x y =⎧⎨=⎩或1412x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】根据集合相等的定义,结合集合元素的互异性,通过解方程组进行求解即可.【详解】∵A =B ,∴集合A 与集合B 中的元素相同∴22x x y y =⎧⎨=⎩或22x y y x⎧=⎨=⎩,解得x ,y 的值为00x y =⎧⎨=⎩或01x y =⎧⎨=⎩或1412x y ⎧=⎪⎪⎨⎪=⎪⎩,验证得,当x =0,y =0时,A ={2,0,0}这与集合元素的互异性相矛盾,舍去.∴x ,y 的取值为01x y =⎧⎨=⎩或1412x y ⎧=⎪⎪⎨⎪=⎪⎩本题考查了已知两集合相等求参数取值问题,考查了数学运算能力.18.已知函数211,1,()1,11,23, 1.x x f x x x x x ⎧+>⎪⎪=+-⎨⎪+<-⎪⎩(1)求((2))f f -的值;(2)若3()2f a =,求a .【正确答案】(1)2;(2)2,2±,34-.【分析】(1)根据函数211,1,()1,11,23, 1.x x f x x x x x ⎧+>⎪⎪=+-⎨⎪+<-⎪⎩,先求得(2)f -,再求((2))f f -的值.(2)根据3()2f a =,分1a >,11a -≤≤,1a <-讨论求解.【详解】(1)因为函数211,1,()1,11,23, 1.x x f x x x x x ⎧+>⎪⎪=+-⎨⎪+<-⎪⎩,所以()(2)2231f -=⨯-+=-()2((2))(1)112f f f -=-+==-(2)当1a >时,1312a +=,解得2a =;当11a -≤≤时,2312a +=,解得2a =±当1a <-时,3232a +=,解得34a =-;综上:a 的值为:2,34-.本题主要考查分段函数求值和已知函数值求参数,还考查了分类讨论的思想和运算求解的能力,属于中档题.19.已知集合{}|22A x a x a =-≤≤+,{|1B x x =≤或}4x ≥.(1)当3a =时,求A B ⋂;A B ⋃;(2)若A B ⋂=∅,求实数a 的取值范围.【正确答案】(1){|11A B x x ⋂=-≤≤或45}x ≤≤;A B ⋃=R ;(2)(),1-∞.【分析】(1)直接求A B ⋂和A B ⋃;(2)对集合A 分A =∅和A ≠∅两种情况讨论分析得解.【详解】(1)当3a =时,{}|15A x x =-≤≤,{|1B x x =≤或}4x ≥,∴{|11A B x x ⋂=-≤≤或45}x ≤≤,A B ⋃=R .(2)若A =∅,此时22a a ->+,∴a<0,满足A B ⋂=∅,当A ≠∅时,0a ≥.{}|22A x a x a =-≤≤+,∵A B ⋂=∅,∴21{24a a ->+<,∴01a ≤<.综上可知,实数a 的取值范围是(,1)-∞.本题主要考查集合的运算,考查集合的运算结果求参数的取值范围,意在考查学生对这些知识的理解掌握水平.20.已知()f x 是定义在(0,)+∞上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1.(1)求证:(8)3f =;(2)求不等式()(2)3f x f x -->的解集.【正确答案】(1)证明见解析;(2)1627x <<.【分析】(1)根据()21f =,结合f (xy )=f (x )+f (y ),利用赋值法即可求得()8f ,则问题得证;(2)等价转化不等式,利用函数单调性,即可求得不等式解集.【详解】(1)由题意得(8)(42)(4)(2)(22)(2)3(2)3f f f f f f f =⨯=+=⨯+==(2)原不等式可化为()(2)(8)(8(2))f x f x f f x >-+=-由函数()f x 是(0,)+∞上的增函数得8(2)0x x >->,解得1627x <<.故不等式()(2)3f x f x -->的解集为162,7骣琪琪桫.本题考查抽象函数函数值的求解,以及利用函数单调性解不等式,属综合基础题.21.已知集合{|210}P x x =-,{|11}Q x m x m =-+.(1)求集合P R ð;(2)若P Q ⊆,求实数m 的取值范围;(3)若P Q Q ⋂=,求实数m 的取值范围.【正确答案】(1){|2x x <-或10}x >;(2)9m ≥;(3)3m ≤.【分析】(1)由补集定义得结论;(2)由包含关系得不等式组,求解可得;(3)由P Q Q ⋂=,则Q P ⊆,然后分类讨论:按Q =∅和Q ≠∅分类.【详解】(1)因为{|210}P x x =-≤≤,所以R {|2P x x =<-ð或10}x >;(2)因为P Q ⊆,所以12110m m -≤-⎧⎨+≥⎩,解得9m ≥;(3)P Q Q ⋂=,则Q P ⊆,若11m m ->+即0m <,则Q =∅,满足题意;若0m ≥,则Q ≠∅,由题意12110m m -≥-⎧⎨+≤⎩,解得03m ≤≤,综上,3m ≤.22.设函数1()1ax f x x -=+,其中a ∈R .(1)若1a =,()f x 的定义域为区间[]0,3,求()f x 的最大值和最小值;(2)若()f x 的定义域为区间(0,+∞),求a 的取值范围,使()f x 在定义域内是单调减函数.【正确答案】(1)max min 1(),()12f x f x ==-(2)1a <-【详解】1()1ax f x x -=+=(1)11a x a x +--+=a -11a x ++,设x 1,x 2∈R ,则f (x 1)-f (x 2)=211111a a x x ++-++=1212(1)()(1)(1)a x x x x +-++.(1)当a =1时,设0≤x 1<x 2≤3,则f (x 1)-f (x 2)=12122()(1)(1)x x x x -++.又x 1-x 2<0,x 1+1>0,x 2+1>0,所以f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2),所以f (x)在[0,3]上是增函数,所以f (x)max =f (3)=1-24=12;f (x)min =f (0)=1-21=-1.(2)设x 1>x 2>0,则x 1-x 2>0,x 1+1>0,x 2+1>0要f (x)在(0,+∞)上是减函数,只要f (x 1)-f (x 2)<0而f (x 1)-f (x 2)=1212(1)()(1)(1)a x x x x +-++,所以当a +1<0即a <-1时,有f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2),所以当a<-1时,f(x)在定义域(0,+∞)上是单调减函数.。
重庆市中学2024~2025学年高一上学期第一次月考数学试题含答案
重庆市2024~2025学年高一上学期第一次月考数学试题(命题人:)(答案在最后)考试说明:1.考试时间120分钟2.试题总分150分3.试卷页数2页一、单项选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,3{|ln}3x M x y x -==+,}2{|2,1xx y y N =≤≤=,如图阴影部分所表示的集合为()A.{}23x x ≤< B.{}34x x <≤C.{|2x x ≤或3}x > D.{}33x x -≤≤【答案】B 【解析】【分析】由题意知,阴影部分表示的为M N ⋂,算出集合,M N 表示的范围,根据集合的交集的运算,即可得到本题答案.【详解】全集U =R ,集合M 中函数满足303x x ->+,解得3x <-或3x >,M ={|3x x <-或3}x >,集合N 中指数函数2x y =在上单调递增,则24222=x ≤≤,}|24{y N y =≤≤,由图可得阴影部分所表示的集合为{|34}M N x x ⋂=<≤,故选:B.2.若函数()y f x =的一个正零点用二分法计算,零点附近函数值的参考数据如下:(1)2f =-,(1.25)0.984f =-,(1.375)0.260f =-,(1.40625)0.054f =-,(1.4375)0.162f =,(1.6)0.625f =,那么方程()0f x =的一个近似根(精确度0.1)为()A.1.2 B.1.3C.1.4D.1.5【答案】C【解析】【分析】由参考数据可得(1.4375)(1.375)0f f <,区间(1.375,1.4375)满足题干要求精确到0.1,结合选项可得答案.【详解】因为1.6 1.43750.16250.1-=>,所以不必考虑端点1.6;因为1.40625 1.250.156250.1-=>,所以不必考虑端点1.25和1;因为(1.4375)0f >,(1.375)0f <,所以(1.4375)(1.375)0f f <,所以函数()f x 在(1.375,1.4375)内有零点,因为1.4375 1.3750.06250.1-=<,所以满足精确度0.1;所以方程()0f x =的一个近似根(精确度0.1)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知:1.4[1.375,1.4375]∈.故选:C.3.“1sin 2x =”是“2()6x k k Z ππ=+∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】首先根据1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,再判断即可得到答案.【详解】由1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,即2()6x k k Z ππ=+∈能推出1sin 2x =,但1sin 2x =推不出2()6x k k Z ππ=+∈“1sin 2x =”是“2()6x k k Z ππ=+∈”的必要不充分条件故选:B【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.4.函数21π()sin 212x xf x x -⎛⎫=⋅+ ⎪+⎝⎭在区间ππ,22⎡⎤-⎢⎥⎣⎦上的图象大致为()A.B.C.D.【答案】D 【解析】【分析】先得到函数的奇偶性,再计算出当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >,判断出答案.【详解】化简函数()f x 解析式可得21()cos 21x x f x x -=⋅+,定义域为R ,112121212()()cos cos()cos cos 121212112xxxx x x x x f x f x x x x x------+-=⋅+-=⋅+⋅++++ 01212cos 11cos 22x x x x x x -=⋅+⋅+=+-,()f x ∴为奇函数,AC 错误;又因为当π0,2x ⎛⎫∈ ⎪⎝⎭时,21()cos 021x x f x x -=⋅>+,B 错误,D 正确.故选:D.5.已知π0,4α⎛⎫∈ ⎪⎝⎭,π,02β⎛⎫∈- ⎪⎝⎭,πsin 43α⎛⎫+= ⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,则sin 2βα⎛⎫+ ⎪⎝⎭的值为()A.9 B.69-C.9D.9【答案】A 【解析】【分析】先根据已知条件及同角三角函数基本关系求出π1cos 43α⎛⎫+= ⎪⎝⎭,π3cos 423β⎛⎫-= ⎪⎝⎭;再利用已知角π4α+和π42β-来配凑2βα+;最后利用两角差的正弦公式即可求解.【详解】π0,4α⎛⎫∈ ⎪⎝⎭ ,π,02β⎛⎫∈- ⎪⎝⎭,πππ,442α⎛⎫∴+∈ ⎪⎝⎭,πππ,4242β⎛⎫-∈ ⎪⎝⎭,πsin 43α⎛⎫+=⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,π1cos 43α⎛⎫∴+= ⎪⎝⎭,πcos 423β⎛⎫-= ⎪⎝⎭.ππsin sin 2442ββαα⎡⎤⎛⎫⎛⎫⎛⎫∴+=+-- ⎪ ⎪ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππππsin cos cos sin 442442ββαα⎛⎫⎛⎫⎛⎫⎛⎫=+--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13333=⨯-⨯9=.故选:A.6.酒驾是严重危害交通安全的违法行为,为了保障安全,根据国家规定,驾驶人员每100毫升血液酒精含量大于或等于20毫克,并每100毫升血液酒精含量小于80毫克为饮酒后驾车;每100毫升血液酒精含量大于或等于80毫克为醉酒驾车.某驾驶员喝了一定量的酒后,其血液中酒精含量上升到了每毫升血液含酒精0.8毫克,如果停止饮酒后,他的血液中的酒精会以每小时25%的速度减少,那么他想要驾车至少要经过(参考数据:lg 20.301≈,lg 30.477≈)()A.3hB.4hC.5hD.7h【答案】C 【解析】【分析】先根据题意表示出经过t 小时后,该驾驶员体内的酒精含量;再列出不等式求解即可.【详解】经过t 小时后,该驾驶员体内的酒精含量为:30.8mg /ml 4t⎛⎫⨯ ⎪⎝⎭.只需30.80.24t⎛⎫⨯< ⎪⎝⎭,即3144t⎛⎫< ⎪⎝⎭,341log 43344t ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.因为函数34x y ⎛⎫= ⎪⎝⎭在R 上为减函数,所以341lg 42lg 20.602log 4.8164lg 4lg 32lg 2lg 30.6020.477t >==≈=---,故他至少要经过5个小时后才能驾车.故选:C.7.定义在R 上的奇函数()f x 满足,当(0,2)x ∈时,()cos((1))2f x x π=-,且2x ≥时,有1()(2)2f x f x =-,则函数2()()F x x f x x =-在[2,5]-上的零点个数为A.9B.8C.7D.6【答案】B 【解析】【分析】先由奇函数性质求出函数()f x 在[]2,2-上的解析式,再利用1()(2)2f x f x =-.得到[2,5]-的图象,2()()F x x f x x =-的零点个数,等价于求1()f x x =的解的个数.根据两函数交点个数即可求解.【详解】当(0,2)x ∈时,()cos((1))cos(sin()2222f x x x x ππππ=-=-=,()f x 是奇函数,()00f ∴=,当2x ≥时,有1()(2)2f x f x =-,()()12002f f ∴==,()()14202f f ==,若()2,0x ∈-,则()0,2x -∈,则()sin()(in ()22)s x f x f x x ππ-=-=-=-,即()sin()2f x x π=,()2,0x ∈-即当22x -≤≤时,()sin()2f x x π=,当24x ≤≤时,022x ≤-≤,此时1111()(2)sin[(2)]sin()sin()2222222f x f x x x x ππππ=-=-=-=-,当45x ≤≤时,223x ≤-≤,此时1111()(2)sin[(2)]sin()sin(44)24222f x f x x x x ππππ=-=--=--=,由2()()0F x x f x x =-=,得:当0x =时,由(0)0F =,即0x =是()F x 的一个零点,当0x ≠时,由2()0f x xx -=得1()xf x =,即1()f x x=,作出函数()f x 与1()g x x=在,[2,5]-上的图象如图:由图象知两个函数在[2,5]-上共有7个交点,加上一个0x =,故函数2()()F x x f x x =-在[2,5]-上的零点个数为8个,故选:B.【点睛】本题主要考查函数与方程的应用.判断函数零点个数的方法:直接法:即直接求零点,令()0f x =,如果能求出解,则有几个不同的解就有几个零点定理法:即利用零点存在性定理,不仅要求函数的图象在区间[]a b ,上是连续不断的曲线,且()()0f a f b < ,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点图象法:即利用图象交点的个数,画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数()h x 和()g x 的差,根据()0()()f x h x g x Û==,则函数f(x)的零点个数就是函数()y h x =和()y g x =的图象的交点个数性质法:即利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数.8.已知()f x 是定义在R 上的奇函数,若对任意120x x <<,均有()()2112120x f x x f x x x ->-且(3)3f =,则不等式()0f x x ->的解集为()A.(3,0)(3,)-⋃+∞B.()3,3-C.(,3)(3,)-∞-⋃+∞D.(3,0)(0,3)-⋃【答案】A 【解析】【分析】先变形得到()()1212f x f x x x <,令()()f x g x x =,得到()()f x g x x=在(0,)+∞上单调递增,结合(3)(3)13f g ==,得到3x >,再结合函数的奇偶性和单调性得到30x -<<,从而求出答案.【详解】因为120x x <<,所以()()21120x f x x f x -<,所以()()1212f x f x x x <.设函数()()f x g x x =,则函数()()f x g x x =在(0,)+∞上单调递增,且(3)(3)13f g ==.当0x >时,不等式()0f x x ->等价于()f x x >,即()1f x x>,即()(3)g x g >,解得3x >,又因为()f x 是定义在上的奇函数,所以(0)0f =,所以,当0x =时,不等式()0f x x ->无解.因为()f x 是定义在上的奇函数,所以−=−,()()f x g x x=的定义域为()(),00,∞∞-⋃+,又()()()()()f x f x f x g x g x x x x---====--,故()()f x g x x=为偶函数,且在(,0)-∞单调递减,当0x <时,不等式()0f x x ->等价于()f x x >,即()1f x x<,因为(3)(3)13f g --==-,故()(3)g x g <-,解得30x -<<,综上,不等式()0f x x ->的解集为(3,0)(3,)-⋃+∞.故选:A.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于实数a ,b ,c ,下列说法正确的是()A.若1a b <<,则11b a< B.若22ac bc >,则a b>C.若0a b >>,0c >,则b b c a a c+<+ D.若c a b >>,a b c a c b<--【答案】ABC 【解析】【分析】AB 选项,可利用不等式性质进行判断;CD 选项,利用作差法比较出大小.【详解】A 选项,若1a b <<,则0ab >,不等式两边同除以ab 得11b a<,A 正确;B 选项,若22ac bc >,则0c ≠,故20c >,不等式两边同除以2c 得a b >,B 正确;C 选项,()()()b a cb bc ab bc ab ac a a c a a c a a c -++---==+++,因为0a b >>,0c >,所以0,0b a a c -<+>,故()()0b a c b b c a a c a a c -+-=<++,所以b b ca a c+<+,C 正确;D 选项,()()()a b c a b c a c b c a c b --=----,因为c a b >>,所以0c a ->,0c b ->,0a b ->,但c 的正负不确定,故无法判断()()()c a b c a c b ---的正负,从而无法判断a c a -与bc b-的大小关系,D 错误.故选:ABC.10.已知函数()sin()f x x ωϕ=+(0ω>,π2ϕ<)的最小正周期为π,将该函数的图象向左平移π3个单位后,得到的图象对应的函数为偶函数,则下列说法正确的是()A.函数()y f x =的图象关于直线π6x =对称B.函数()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增C.1(0)2f =-D.函数()y f x =的图象关于点π,012⎛⎫⎪⎝⎭对称【答案】BCD 【解析】【分析】由三角函数的周期性与奇偶性,结合三角函数图象平移法则求得,ωϕ,再利用代入检验法与整体代入法逐一分析各选项即可得解.【详解】因为函数()sin()f x x ωϕ=+的最小正周期为2ππω=,则2ω=,故()sin(2)f x x ϕ=+,将该函数的图象向左平移π3个单位后,得到2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭的图象,因为得到的图象对应的函数2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭为偶函数,所以2πππ(Z)32k k ϕ+=+∈,即ππ(Z)6k k ϕ=-+∈,因为π2ϕ<,所以π6ϕ=-,故π()sin 26f x x ⎛⎫=- ⎪⎝⎭,对于A ,当π6x =时,则πππ1sin 6362f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,令πππ2π22π262k x k -+<-<+,Z k ∈,得ππππ(Z)63k x k k -+<<+∈,当1k =时,()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增,故B 正确;对于C ,π1(0)sin 62f ⎛⎫=-=- ⎪⎝⎭,故C 正确;对于D ,πππsin 01266f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:BCD.11.设函数()()12,1log 1,1x x f x x x ⎧≤⎪=⎨->⎪⎩,若()()()()1234f x f x f x f x ===,且1234x x x x <<<,则()1243412x x x x ++++的值可以是()A.4B.5C.163D.6【答案】AB 【解析】【分析】画出函数图象,数形结合得到120x x +=,3322x ≤<,423x <≤,结合交点关系得到()12344444222111x x x x x x +++=++++-,构造函数42()2(23)11g x x x x =++<≤+-,根据函数单调性得到取值范围,求出答案.【详解】函数()f x的图象如图所示,设()()()()1234f x f x f x f x t ====,由图可知,当01t <≤时,直线y t =与函数()f x 的图象有四个交点,交点的横坐标分别为1234,,,x x x x ,且1234x x x x <<<,1x >时,令12()log (1)1f x x =-=,解得32x =或3x =.由图可知,120x x +=,3322x ≤<,423x <≤,由()()34f x f x =,可得34111x x -=-,则有34111x x =+-,所以()1233444444422221111x x x x x x x x +++=+=+++++-.令42()2(23)11g x x x x =++<≤+-,易知()g x 在(2,3]上为减函数,且16(2)3g =,(3)4g =,故()12344164213x x x x ≤+++<+,且1644,3⎡⎫∈⎪⎢⎣⎭,1654,3⎡⎫∈⎪⎢⎣⎭,AB 正确;又1616164,,64,333⎡⎫⎡⎫∉∉⎪⎪⎢⎢⎣⎭⎣⎭,CD 错误.故选:AB.【点睛】将函数零点问题或方程解的问题转化为两函数的图象交点问题,将代数问题几何化,借助图象分析,大大简化了思维难度,首先要熟悉常见的函数图象,包括指数函数,对数函数,幂函数,三角函数等,还要熟练掌握函数图象的变换,包括平移,伸缩,对称和翻折等,涉及零点之和问题,通常考虑图象的对称性进行解决.三、填空题:本题共3小题,每小题5分,共15分.12.若1()2xf x ⎛⎫= ⎪⎝⎭的反函数为1()f x -,且11()()4f a f b --+=-,则11a b +的最小值为__________.【答案】12【解析】【分析】先利用指、对数式的互化得到函数1()2xf x ⎛⎫= ⎪⎝⎭的反函数,再利用对数的运算性质化简11()()4f a f b --+=-,最后由基本不等式求得最值即可.【详解】因为x y a =和log a y x =(0a >,1a ≠)互为反函数,若1()2xf x ⎛⎫= ⎪⎝⎭,则112()log f x x -=,又因为11()()4f a f b --+=-,所以111222log log log ()4a b ab +==-,所以16ab =,且0a >,0b >,又11116162a b a b a b ab +++==≥=,当且仅当4a b ==时等号成立,所以11a b +的最小值为12.故答案为:12.13.如果函数()f x 的图象可以通过()g x 的图象平移得到,则称函数()f x 为函数()g x 的“同形函数”,下面几对函数是“同形函数”的是__________.(填上正确选项的序号即可)①()sin f x x =,()cos g x x =;②()2sin cos f x x x =,()cos 2g x x =;③44()sin cos f x x x =-,()cos 2g x x =;④()sin 2tan f x x x =⋅,()cos 2g x x =.【答案】①②③【解析】【分析】①②③,结合三角恒等变换及平移变换法则求出答案;④由两函数定义域不同,故④错误.【详解】①()cos g x x =的图象向右平移π2个单位得到()sin f x x =的图象,①正确;②π()2sin cos sin 2cos 22f x x x x x ⎛⎫===-⎪⎝⎭,故()f x 的图象可由()cos 2g x x =的图象向右平移π4个单位得到,故②正确;③()()44222222()sin cos sin cos sincos sin cos f x x x x xx x x x =-=-+=-cos 2cos(2π)x x =-=+,故()f x 的图象可由()cos 2g x x =的图象向左平移π2个单位得到,故③正确;④2sin ()sin 2tan 2sin cos 2sin 1cos 2cos(2)1co πs xf x x x x x x x x x=⋅=⋅==-=++,因为()sin 2tan f x x x =⋅的定义域不是,而()cos 2g x x =的定义域是,所以不可能由()cos 2g x x =的图象平移得到()sin 2tan 2f x x x =⋅的图象,故④错误.故答案为:①②③14.定义域为R 的函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()f x x =,且对任意x ∈R ,有(2)()f x f x +=-,2024(),0()log (),0f x xg x x x ≥⎧=⎨--<⎩,则方程()()0g x g x --=实数根的个数为__________.【答案】2027【解析】【分析】由于题意可得函数()f x 以4为周期,分0x >,0x <,0x =三种情况讨论,把问题转化函数图象交点个数问题,作出函数图象,结合函数的周期性即可得解.【详解】对任意∈有(2)()f x f x +=-,得(4)(2)()f x f x f x +=-+=,则函数()f x 以4为周期,由于函数()f x 的图象关于直线1x =对称,则()(2)f x f x =-,又(2)()f x f x +=-,所以(2)(2)0f x f x ++-=,则函数()f x 的图象关于(2,0)对称.当0x >时,0x -<,由()()0g x g x --=得()()g x g x =-,则2024()log f x x =-,作出()y f x =与2024log y x =-的大致图象如图,令2024log 1x -=-,则2024x =,而20244506=⨯,由图可知,在第一个周期内有三个交点,后面每个周期内有两个交点,所以()y f x =与2024log y x =-的图象在(0,)+∞上有350521013+⨯=个交点;当0x <时,0x ->,由()()g x g x =-得:2024log ()()x f x --=-,令x t -=,0t >,得2024()log f t t =-,由上述可知,()y f t =与2024log y t =-的图象在(0,)+∞上有1013个交点,故()y f x =-与2024log ()y x =--的图象在(,0)-∞上有1013个交点,又0x =时,()()0g x g x --=成立,所以方程()()0g x g x --=实数根的个数为2101312027⨯+=.故答案为:2027.【点睛】思路点睛:由题分析可得函数()f x 以4为周期,图象关于(2,0)中心对称,把问题转化函数图象交点个数问题,数形结合可得解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}11ee x A x -=≤≤,若关于x 的不等式20x mx n ++≤的解集为A .(1)求函数()2f x x mx n =++的解析式;(2)求关于x 的不等式()()2322f x x λλ+>-+的解集,其中λ∈R .【答案】(1)详见解析;(2){|x x λ<-或}3x λ>-.【解析】【分析】(1)先化简集合A ,再根据关于x 的不等式20x mx n ++≤的解集为A ,利用根与系数的关系求解;(2)由(1)化简不等式为()()30x x λλ++->求解.【小问1详解】解:集合{}11ee x A x -=≤≤{}|12x x =≤≤,因为关于x 的不等式20x mx n ++≤的解集为A ,所以3,2m n =-=,则()232f x x x =-+;【小问2详解】由(1)知:关于x 的不等式()()2322f x x λλ+>-+即为:()2232322x x x λλ-++>-+,即为()222330x x λλλ+-+->,即为()()30x x λλ++->,解得:3x λ>-或x λ<-,所以不等式的解集为:{|x x λ<-或}3x λ>-.16.若函数()y f x =对任意实数x ,y 都有()()()f xy f x f y =,则称其为“保积函数”.现有一“保积函数”()f x 满足(1)1f -=-,且当01x <<时,()(0,1)f x ∈.(1)判断“保积函数”()f x 的奇偶性;(2)若“保积函数”()f x 在区间(0,)+∞上总有()0f x >成立,试证明()f x 在区间(0,)+∞上单调递增;(3)在(2)成立的条件下,若(2)2f =,求()211log sin 2f x +≤,[0,2π]x ∈的解集.【答案】(1)()f x 为奇函数(2)证明见解析(3)π3π0,,π44⎛⎤⎡⎫⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)赋值,结合(1)1f -=-,进而得到()f x 为奇函数;(2)()f x 在(0,)+∞上单调递增,利用定义法得到函数的单调性;(3)赋值法得到1122f ⎛⎫=⎪⎝⎭,结合函数单调性得到211log sin 2x +≤,[0,2π]x ∈,数形结合,结合定义域,得到不等式,求出解集.【小问1详解】()f x 为奇函数,理由如下:根据题意,令1y =-,得()()(1)f x f x f -=-,因为(1)1f -=-,所以()()f x f x -=-,故结合定义域可知,()f x 为奇函数.【小问2详解】证明:任取1x ∀,2(0,)x ∈+∞,且12x x >,则2101x x <<,因此()()()()()2212111111x x f x f x f x f x f x f x f x x ⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()2111x f x f x ⎛⎫⎛⎫=-⎪ ⎪ ⎪⎝⎭⎝⎭,因为2101x x <<,且当01x <<时,()(0,1)f x ∈,所以2110x f x ⎛⎫-> ⎪⎝⎭,因为(0,)∀∈+∞x ,()0f x >恒成立,所以()10f x >,所以()()()2121110x f x f x f x f x ⎛⎫⎛⎫-=-> ⎪ ⎪⎪⎝⎭⎝⎭,即()()12f x f x >,又因为120x x >>,所以()f x 在(0,)+∞上单调递增;【小问3详解】(1)1f -=-Q ,又()f x 为奇函数,(1)(1)1f f ∴=--=,()()()f xy f x f y = ,112(2)22f f f⎛⎫⎛⎫∴⨯= ⎪ ⎪⎝⎭⎝⎭,(2)2f = ,1122f ⎛⎫∴= ⎪⎝⎭,故原不等式等价于()211log sin 2f x f ⎛⎫+≤⎪⎝⎭,[0,2π]x ∈,()f x 在(0,)+∞上单调递增且(0,)∀∈+∞x ,()0f x >恒成立,又()f x 为奇函数,()f x ∴在上单调递增,故211log sin 2x +≤,[0,2π]x ∈,则221log sin log 22x ≤-=,[0,2π]x ∈,∴sin 0sin 2x x >⎧⎪⎨≤⎪⎩,解得π04x <≤或3ππ4x ≤<,综上,()211log sin 2f x +≤,[0,2π]x ∈的解集为π3π0,,π44⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭.17.已知函数())f x x =ω+ϕ(0ω>,ππ22ϕ-≤≤)的图象关于直线π3x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和ϕ的值;(2)当π0,2⎡⎤∈⎢⎥⎣⎦x 时,求函数()y f x =的最大值和最小值;(3)设()()(0)g x f cx c =>,若()g x 图象的任意一条对称轴与x 轴的交点的横坐标不属于区间(π,2π),求c 的取值范围.【答案】(1)2ω=,π6ϕ=-(22-(3)1150,,6312⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】(1)根据最小正周期求出ω,再根据对称轴求出ϕ;(2)由(1)可得()f x 解析式,再由x 的取值范围求出π26x -的范围,最后由正弦函数的性质计算可得;(3)首先得到()g x 的解析式,由12ππ22c⨯≥求出c 的大致范围,再求出()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π)时c 的取值范围,即可得解.【小问1详解】因为()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期πT =,所以2π2Tω==,又因为()f x 的图象关于直线π3x =对称,所以232ππkπϕ⨯+=+,k ∈Z ,所以ππ6k ϕ=-,k ∈Z ,又ππ22ϕ-≤≤,所以π6ϕ=-,综上可得2ω=,π6ϕ=-.【小问2详解】由(1)知π()26f x x ⎛⎫=- ⎪⎝⎭,当π0,2⎡⎤∈⎢⎥⎣⎦x 时,ππ5π2666x -≤-≤,所以当ππ262x -=(即π3x =)时,max ()f x =当ππ266x -=-(即0x =)时,min 3()2f x =-,所以函数()y f x =在π0,2⎡⎤∈⎢⎣⎦x 2-.【小问3详解】由题意π()()26g x f cx cx ⎛⎫==- ⎪⎝⎭()0c >,()g x 图象的任意一条对称轴与x 轴的交点的横坐标都不属于区间(π,2π),12ππ22c ∴⨯≥且0c >,解得102c <≤,令ππ2π62cx k -=+,k ∈Z ,解得ππ23k x c c=+,k ∈Z ,若()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π),则πππ2π23k c c <+<,解得114623k k c +<<+,当1k =-时,112c -<且16c <-(矛盾),故解集为空集;当0k =时,1163c <<;当1k =时,55126c <<,故c 的取值范围为1150,,6312⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦.18.已知函数2()43f x x x =-+,()(4)3g x a x =+-,a ∈R .(1)若[1,0]x ∃∈-,使得方程()20m f x -=有解,求实数m 的取值范围;(2)若对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,求实数a 的取值范围;(3)设()()()h x f x g x =+,记()M a 为函数()h x 在[0,1]上的最大值,求()M a 的最小值.【答案】(1)[]2log 3,3(2){15a a ≤-或9}5a ≥-(3)3-【解析】【分析】(1)根据二次函数的单调性,结合存在性的定义、对数的单调性进行求解即可;(2)根据存在性和任意性的定义,结合函数的对称性分类讨论进行求解即可;(3)根据函数的对称性、单调性分类讨论进行求解即可.【小问1详解】[1,0]x ∃∈-,2()20243m m f x x x -=⇔=-+,因为函数2()43f x x x =-+的图象的对称轴是直线2x =,所以()y f x =在[1,0]-上为减函数,max ()(1)8f x f =-=,min ()(0)3f x f ==,故2[3,8]m ∈,所以m 的取值范围为[]2log 3,3.【小问2详解】对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,∴即在区间[1,5]-上,()()12max max f x g x ≤,函数2()43f x x x =-+图象的对称轴是直线2x =,又[1,5]x ∈-,∴当5x =时,函数()f x 有最大值为2(5)54538f =-⨯+=,①当4a =-时,()3g x =-,不符合题意,舍去;②当4a >-时,()g x 在[1,5]-上的值域为[7,517]a a --+,5178a ∴+≥,得95a ≥-;③当4a <-时,()g x 在[1,5]-上的值域为[517,7]a a +--,78a ∴--≥,得15a ≤-,综上,a 的取值范围为{15a a ≤-或9}5a ≥-;【小问3详解】函数2()h x x ax =+图象的对称轴为2a x =-,①当2a ≤-或0a ≥时,()h x 在[0,1]上单调递增,则()(1)|1|M a f a ==+;②当20a -<<时,2()max ,(1)max ,124a a M a ff a ⎧⎫⎧⎫⎛⎫=-=+⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,解不等式组22014a a a -<<⎧⎪⎨>+⎪⎩,得(221a -<<-,故当20a -<<,()((2,22141,210a a M a a a ⎧-<<-⎪=⎨⎪+-≤<⎩,综上,()((2,22141,221a a M a a a a ⎧-<<-⎪=⎨⎪+≤-≥-⎩或,()M a ∴在((),21∞--上单调递减,在()21,∞⎡+⎣上单调递增,(21a ∴=-时,()M a取最小值为(2113+=-.【点睛】关键点睛:本题的关键是根据函数的对称轴与所给区间的相位位置进行分类讨论.19.已知()()()sin22sin cos 8f m θθθθ=---+.(1)当1m =时,求π12f ⎛⎫⎪⎝⎭的值;(2)若()fθ的最小值为7-,求实数m 的值;(3)对任意的π,π4θ⎛⎫∈⎪⎝⎭,不等式()816sin cos m f θθθ->-恒成立.求m 的取值范围.【答案】(1)172+(2)5m =或1m =-(3)722,6⎛⎫++∞ ⎪ ⎪⎝⎭【解析】【分析】(1)利用辅助角公式,化简函数,再代入求π12f ⎛⎫⎪⎝⎭;(2)首先设sin cos t θθ=-,利用三角恒等变换,将函数表示成关于t 的二次函数,讨论对称轴,结合定义域求函数的最小值,列式求解m ;(3)根据(2)的结果,不等式参变分离为128m t t t->+-,在(t ∈恒成立,转化为判断函数的单调性,求函数的最值,即可求解m 的取值范围.【小问1详解】()()())πsin22sin cos 8sin22sin 84f m m θθθθθθ⎛⎫=---+=--+ ⎪⎝⎭,当1m =时,ππππ1ππsin 881261242124f ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1178262π+=+=;【小问2详解】设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则t ⎡∈⎣,22sin cos 1=-+t θθ,()()()229,f Q t t m t t θ⎡==---+∈⎣,其对称轴为12m t =-+,当102m-+≥,即2m ≥时,()f θ的最小值为(77Q =+=-,则5m =;当102m-+<,即2m <时,()f θ的最小值为77Q =-=-1m =-;综上,5m =或1m =-;【小问3详解】由()816sin cos m f θθθ->-,对所有π,π4θ⎛⎫∈ ⎪⎝⎭都成立.设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则(t ∈,()281629m t m t t-∴>---+,(t ∈恒成立,280t -> ,128m t t t∴-+->,在(t ∈恒成立,当(t ∈时,8t t -递减,则18t t t+-在(递增,t ∴=时18t t t +-取得最大值726得2m ->2∴>m 所以存在符合条件的实数m ,且m的取值范围为2,6∞⎛⎫++ ⎪ ⎪⎝⎭.【点睛】关键点点睛:本题的关键利用公式()22sin cos 1sin cos θθθθ=--,从而利用换元法转化为关于t 的函数问题.。
辽宁省沈阳市东北育才中学2024-2025学年高一上学期第一次月考(10月)数学试题(含解析)
东北育才高中2024-2025学年度上学期高一年级数学科第一次月考试卷时间:120分钟 满分:150分一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是正确的.1.已知集合,则中元素个数为( )A.2B.3C.4D.62.设集合,则集合的真子集的个数为( )A.3B.4C.15D.163.命题“,不等式”为假命题的一个必要不充分条件是( )A.B.C. D.4.设,则下列命题正确的是( )A.若,则B.若,则C.若则D.若,则5.若集合,若,则实数的取值范围是( )A.B.C.D.6.对于实数,当且仅当时,规定,则不等式的解集是()A. B.C. D.7.已知,则的最小值为( )(){}(){}*,,,,,8A x y x y y x B x y x y =∈≥=+=N ∣∣A B ⋂{}{}{}1,2,3,4,5,,,A B M xx a b a A b B ====+∈∈∣M x ∃∈R 2210ax x -+≤0a >1a >102a <<2a >,a b ∈R ,x y a b >>a x b y ->-a b >11a b<,x y a b >>ax by >a b >22a b >{}30,101x A xB x ax x ⎧⎫-===+=⎨⎬+⎩⎭∣B A ⊆a 13⎧⎫-⎨⎬⎩⎭1,13⎧⎫-⎨⎬⎩⎭10,3⎧⎫-⎨⎬⎩⎭10,,13⎧⎫-⎨⎬⎩⎭x ()1n x n n ≤<+∈N []x n =[]24[]36450x x -+<{28}xx ≤<∣31522xx ⎧⎫<<⎨⎬⎩⎭{}27xx ≤≤∣{27}x x <≤∣0,0,23x y x y >>+=23x yxy+A. B.8.方程至少有一个负实根的充要条件是( )A. B.C.D.或二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分,9.设均为非空集合,且满足,则下列各式中正确的是( )A. B.C.D.10.下列四个命题中正确的是( )A.由所确定的实数集合为B.同时满足的整数解的集合为C.集合可以化简为D.中含有三个元素11.已知关于的不等式的解集为,则下列结论正确的是()A. B.的最大值为C.的最小值为8 D.的最小值为三、填空题:本大题共3小题,每小题5分,共15分.12.的解集是__________.13.某班举行数学、物理、化学三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中同时只参加数学、物理两科的有10人,同时只参加物理、化学两科的有7人,同时只参加数学、化学两科的有11人,而参加数学、物理、化学三科的有4人,则全班共有__________人.3-11-1+2210ax x ++=01a <≤1a <1a ≤01a <≤0a <A B U 、、A B U ⊆⊆()U A B U ⋃=ð()()U U U A B B ⋂=ððð()U A B ⋂=∅ð()()U U A B U⋃=ðð(),a b a b ab+∈R {}2,0,2-240,121x x x +>⎧⎨+≥-⎩{}1,0,1,2-(){},3216,,x y x y x y +=∈∈N N ∣()()(){}0,8,2,5,4,26,3A aa a ⎧⎫=∈∈⎨⎬-⎩⎭N Z x ()()()2323100,0a m x b m x a b +---<>>11,2⎛⎫- ⎪⎝⎭21a b +=ab 1812a b +224a b +1222150x x -->14.已知关于的不等式(其中)的解集为,若满足(其中为整数集),则使得集合中元素个数最少时的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题13分)已知集合为全体实数集,或.(1)若,求;(2)若,求实数的取值范围.16.(本小题15分)已知全集,集合,集合.(1)若,求实数的取值集合;(2)若集合,且集合满足条件__________(从下列三个条件中任选一个作答),求实数的取值集合.条件①是的充分不必要条件:②是的必要不充分条件:③,使得.17.(本小题15分)设,且.(1介于之间;(2)求;(3)你能设计一个比的吗?并说明理由.18.(本小题17分)对于二次函数,若,使得成立,则称为二次函数的不动点.(1)求二次函数的不动点:(2)若二次函数有两个不相等的不动点,且,求的最小值.x ()()2640mx m x --+<m ∈R A A B ⋂=Z Z B m U {2M xx =<-∣{}5},121x N x a x a >=+≤≤-∣3a =()U M N ⋃ðU N M ⊆ða U =R A x y ⎧⎪==⎨⎪⎩()(){}2440B x x m x m =---<∣B =∅m B ≠∅,A B m x A ∈x B ∈x A ∈x B ∈12,x A x B ∀∈∃∈12x x =10a >1a ≈21111a a =++12,a a 12,a a 2a 3a ()20y ax bx c a =++≠0x ∃∈R 2000ax bx c x ++=0x ()20y ax bx c a =++≠222y x x =+-()2221y x a x a =-++-12,x x 12,0x x >2112x x x x +19.(本小题17分)已知是非空数集,如果对任意,都有,则称是封闭集.(1)判断集合是否为封闭集,并说明理由:(2)判断以下两个命题的真假,并说明理由:命题:若非空集合是封闭集,则也是封闭集;命题:若非空集合是封闭集,且,则也是封闭集:(3)若非空集合是封闭集合,且为实数集,求证:不是封闭集.A ,x y A ∈,x y A xy A +∈∈A {}{}0,1,0,1BC ==-p 12,A A 12A A ⋃q 12,A A 12A A ⋂≠∅12A A ⋂A ,A ≠R R A R ð东北育才高中2024-2025学年度上学期高一年级数学科第一次月考答案【解析】1.解:在集合中,观察集合的条件,当是正整数且时,有等4个元素,则中元素个数为4个.故选C.2.解:由题意可知,集合,集合中有4个元素,则集合的真子集有个,故选C.3.解:命题“,不等式”为假命题,则命题“,不等式”为真命题,所以,解得,所以使得命题“,不等式”为假命题,则实数的取值范围为1,则命题“,不等式”为假命题的一个必要不充分条件是,故选:A.4.解:A :令,则,故错误;B :令,则,故错误;C :令,则,故错误;D :因为,所以即,故正确;故选D.5.解:由题可知:.当时,显然不成立即,则满足;B 8x y +=A ,x y y x ≥()()()()1,7,2,6,3,5,4,4A B ⋂{}5,6,7,8M =M 42115-=x ∃∈R 2210ax x -+≤x ∀∈R 2210ax x -+>0Δ440a a >⎧⎨=-<⎩1a >x ∃∈R 2210ax x -+≤a a >x ∃∈R 2210ax x -+≤0a >1,3,2,0x y a b ==-==13a x b y -=<-=0,0a b ><11a b>0,1,1,0x y a b ==-==0ax by ==a a b >…22||a b >22a b >{}3031x A xx ⎧⎫-===⎨⎬+⎩⎭0a =10…B =∅B A ⊆当时,,由可得:;综上所述实数的取值范围为.故选C.6.解:由,根据的定义可知:不等式的解集是.故选A.7.解:因为,则,当且仅当时,即当,且,等号成立,故的最小值为故选B.8.当时,方程为有一个负实根,反之,时,则于是得;当时,,若,则,方程有两个不等实根,,即与一正一负,反之,方程有一正一负的两根时,则这两根之积小于,于是得,若,由,即知,方程有两个实根,0a ≠1B x x a ⎧⎫==-⎨⎬⎩⎭B A ⊆1133a a -=⇒=-a 10,3⎧⎫-⎨⎬⎩⎭[]24[]36450x x -+<[]()[]()232150x x ⇒--<[]31522x ⇒<<[]x []24[]36450x x -+<{28}xx <∣…0,0,23x y x y >>+=()22222322111x x y y x y x xy y x y xy xy xy y x +++++===+++=+…222x y =3x =-y =23x y xy+1+0a =210x +=12x =-12x =-0,a =0a =0a ≠Δ44a =-0a <Δ0>12,x x 1210x x a=<1x 2x 1a0,0a <0a <0a >Δ0≥01a <≤12,x x必有,此时与都是负数,反之,方程两根都为负,则,解得,于是得,综上,当时,方程至少有一个负实根,反之,方程至少有一个负实根,必有.所以方程至少有一个负实根的充要条件是.故选:9.解:因为,如下图所示,则,选项A 正确:,选项B 正确:,选项正确:,选项D 错误.故选ABC.10.解:分别取同正、同负和一正一负时,可以得到的值分别为,故A 正确;由得,12122010x x a x x a ⎧+=-<⎪⎪⎨⎪=>⎪⎩1x 2x 2210ax x ++=12,x x 1212Δ4402010a x x a x x a ⎧⎪=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩01a <≤01a <≤1a ≤2210ax x ++=2210ax x ++=1a ≤2210ax x ++=1a ≤CA B U ⊆⊆()U U U ,B A A B U ⊆⋃=ððð()()UUUA B B ⋂=ððð()U A B ⋂=∅ðð()()UUUA B A U ⋃=≠ððð,a b (),a b a b ab+∈R 2,2,0-240,121,x x x +>⎧⎨+≥-⎩22x -<≤所以符合条件的整数解的集合为,故B 正确;由,可以得到符合条件的数对有,故C 正确;当时,;当时,,当时,;当时,;当时,;当时,,所以集合含有四个元素,故D 错误,故选ABC.11.解:由题意,,且方程的两根为和,所以,所以,所以A 正确;因为,所以,可得,当且仅当时取等号,所以的最大值为B 正确;,当且仅当,即时取等号,所以的最小值为C 错误;,当且仅当时取等号,所以的最小值为,所以D 正确.故选ABD.12.解:由,,{}1,0,1,2-3216,,x y x y +=∈∈N N ()()()0,8,2,5,4,22a =666332a ==∈--N 1a =663331a ==∈--N 0a =662330a ==∈--N 1a =-66331a =∉-+N 2a =-6635a =∉-N 3a =-66136a ==∈-N A 2,1,0,3-30a m +>()()232310a m x b m x +---=1-12123111,12323b m a m a m--+=-⨯=-++32,231a m b m +=-=-21,a b +=0,0a b >>21a b +=≥18ab ≤122a b ==ab 1,8()121222255549b a a b a b a b a b ⎛⎫+=++=++≥+=+= ⎪⎝⎭22b a a b =13a b ==12a b+9,22222114(2)(2)22a b a b a b +=+≥+=122a b ==224a b +1222150x x -->2||2150x x ∴-->()()530x x ∴-+>解得:或(舍去),或,即所求的解集为,故答案为.13.解:设参加数学、物理、化学三科竞赛的人分别组成集合,各集合中元素的个数如图所示,则全班人数为.故答案为43.14.解:分情况讨论:当时,,解得;当时,,当且仅当解得或;当时,,当且仅当由,解得.因为,集合中元素个数最少,所以不符合题意;所以要使集合中元素个数最少,需要,解得.故答案为:.15.(本小题13分)5x >3x <-5x ∴<-5x >()(),55,∞∞--⋃+()(),55,∞∞--⋃+,,A B C 24510711443++++++=0m =()640x -+<{}4A xx =>-∣0m <()2266640,4m m x x m m m m ⎛⎫++-+>=+-<- ⎪⎝⎭…m =26{|m A x x m +=<4}x >-0m >2664m m m m+=+≥>m =()2640m x x m ⎛⎫+-+< ⎪⎝⎭264m A x x m ⎧⎫+⎪⎪=-<<⎨⎬⎪⎪⎩⎭A B ⋂=Z B 0m ≤B 265m m +≤23m ≤≤{}23mm ∣……【答案】解:(1)当时,,所以或,又或,所以或;(2)由题可得,①当时,则,即时,此时满足;②当时,则,所以,综上,实数的取值范围为.16.(本小题15分)【答案】解:(1)若,则,解得,所以实数的取值集合为(2)集合,集合,则此时,则集合,当选择条件①时,是的充分不必要条件,有 ,则,且不能同时取等,解得,所以实数的取值集合为当选择条件②时,是的必要不充分条件,有 ,则,且不能同时取等,解得,所以实数的取值集合为当选择条件③时,,使得,有,则,解得,所以实数的取值集合为3a ={}45N xx =≤≤∣U {4N x x =<∣ð5}x >{2M xx =<-∣5}x >()U {4M N x x ⋃=<∣ð5}x >{}U 25M xx =-≤≤∣ðN =∅121a a +>-2a <U N C M ⊆N ≠∅12112215a a a a +≤-⎧⎪+≥-⎨⎪-≤⎩23a ≤≤a {}3aa ∣…B =∅244m m =+2m =m {}2{}2200{45}A xx x x x =-++>=-<<∣∣B ≠∅2,m ≠2244(2)0m m m +-=->{}244B xm x m =<<+∣x A ∈x B ∈A B 24445m m ≤-⎧⎨+≥⎩1m <-m (),1∞--x A ∈x B ∈B A 24445m m ≥-⎧⎨+≤⎩11m -<≤m (]1,1-12,x A x B ∀∈∃∈12x x =A B ⊆24445m m ≤-⎧⎨+≥⎩1m ≤-m (],1∞--17.(本小题15分)【答案】解:(1)证明:.之间.(2比.(3)令,则比.证明如下:由(2.故比18.(本小题17分)【答案】解:(1)由题意知:,,解得,所以,二次函数的不动点为和1.(2)依题意,有两个不相等的正实数根,即方程有两个不相等的正实数根,所以,解得,所以,所以))12111101a a a a ⎫=-⋅--=<⎪+⎭12a a 、11a --1a -2a ∴1a 32111a a =++3a 2a 32a a -=--3a 2a 222x x x +-=()()120x x ∴-+=122,1x x =-=222y x x =+-2-()2221x a x a x -++-=()22310x a x a -++-=()2Δ(3)810a a =+-->12302a x x ++=>1a >12102a x x -⎛⎫=> ⎪⎝⎭121231,22a a x x x x +-+==()222121221121212122x x x x x x x x x x x x x x +-++==,当且仅当,即时等号成立,所以的最小值为6.19.(本小题17分)【答案】(1)解:对于集合,因为,所以是封闭集;对于集合,因为,所以集合不是封闭集;(2)解:对命题:令,则集合是封闭集,但不是封闭集,故错误;对于命题:设,则有,又因为集合是封闭集,所以,同理可得,所以,所以是封闭集,故正确;(3)证明:假设结论成立,设,若,矛盾,所以,所以有,设且,否则,所以有,矛盾,故假设不成立,原结论成立,证毕.()()()22231(1)41162132121212a a a a a a a a a +⎛⎫-+ ⎪-+-+++⎝⎭===---1822621a a -=++≥=-1821a a -=-5a =1221x x x x +{}0B =000,000B B +=∈⨯=∈{}0B ={}1,0,1C =-()112,112,C C -+-=-∉+=∉{}1,0,1C =-p {}{}122,,3,A xx k k A x x k k ==∈==∈Z Z ∣∣12,A A 12A A ⋃q ()12,a b A A ∈⋂1,a b A ∈1A 11,a b A ab A +∈∈22,a b A ab A +∈∈()()1212,a b A A ab A A +∈⋂∈⋂12A A ⋂2a A a A ∈⇒∈2R ()a A a A -∈⇒-∈R ðða A -∈0a a A -+=∈2R R b A b A ∈⇒∈ððR b A -∈ð2()b A b A -∈⇒-∈R 0b b A -+=∈ð。
高一上学期第一次月考数学试卷(带有答案解析)
高一上学期第一次月考数学试卷(带有答案解析)班级:___________姓名:___________考号:____________一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={0,−1},则−1与集合A的关系为.()A. −1⊆AB. −1⫋AC. −1∈AD. −1∉A2. 命题“∃x>1,x2−x>0”的否定是()A. ∃x≤1,x2−x>0B. ∀x>1,x2−x≤0C. ∃x>1,x2−x≤0D. ∀x≤1,x2−x>03. 已知全集U=R,集合A={−1,0,1,2},B={y|y=2x},图中阴影部分所表示的集合为()A. {−1,0}B. {1,2}C. {−1}D. {0,1,2}4. 已知集合A={x|−2<x<4},B={x|x<3或x>5},则A∩B=()A. {x|−2<x<5}B. {x|x<4或x>5}C. {x|−2<x<3}D. {x|x<−2或x>5}5. “a>b”是“a2>b2”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 不等式1+5x−6x2>0的解集为()A. {x|x>1或x<−16}B. {x|−16<x<1}C. {x|x>1或x<−3}D. {x|−3<x<2}7. 设x∈R,则“x>1”是“1x<1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. 设正实数x满足2+y=1,则8x+1+1y的最小为()A. 9B. 253C. 8D. 45二、多选题(本大题共4小题,共20.0分。
在每小题有多项符合题目要求)9. 与不等式x2−x+2>0的解集相同的不等式有()A. −x2+x−2<0B. 2x2−3x+2>0C. x2−x+3≥0D. x2+x−2>010. 已知集合A={2,a2+1,a2−4a},B={0,a2−a−2},5∈A,则a为()A. 2B. −2C. 5D. −111. 若x,y∈R,则使“x+y>1”成立的一个必要不充分条件是()A. ex+y>1B. x2+y2>1C. |x|+|y|>1D. 2x+2y>112. 下列说法正确的有()A. 若x<12,则2x+12x−1的最大值是−1B. 若x,y,z都是正数,且x+y+z=2,则4x+1+1y+z的最小值是3C. 若x>0,y>0,x+2y+2xy=8,则x+2y的最小值是2D. 若实数x,y满足xy>0,则xx+y+2yx+2y的最大值是4−22三、填空题(本大题共4小题,共20.0分)13. 已知集合M={−1,a},N={0,a2−2a−4},若M∪N={−1,0,a2−2a−4},则a=______.14. 若关于x的一元二次不等式2x2−kx+38>0对于一切实数x都成立,则实数k的取值范围为______.15. 已知正实数x,y满足1x+1y=1,则x+4y最小值为______.16. “a>b”是“ac2>bc2”的______条件.(请用“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”填空)四、解答题(本大题共6小题,共70.0分。
2023-2024学年河南省新乡市高一上册第一次月考数学试题(含解析)
2023-2024学年河南省新乡市高一上册第一次月考数学试题一、单选题1.下列函数中在定义域上既是奇函数又是增函数的为()A .y =x +1B .y =-x 2C .y =x 3D .1y x=-【正确答案】C【分析】依据奇偶性和单调性依次判断每个选项即可.【详解】y =x +1是非奇非偶函数,y =-x 2是偶函数,y =x 3由幂函数的性质,是定义在R 上的奇函数,且为单调递增,1y x=-在在定义域为(,0)(0,)-∞+∞ ,不是定义域上的单调增函数,故选:C此题考查函数奇偶性单调性的判断,要求对奇偶性和单调性的判断方式熟练掌握,是简单题目.2.已知函数()()()2212(3)x x f x x f x ⎧≥+⎪=⎨<+⎪⎩,则()()13f f -=()A .7B .12C .18D .27【正确答案】A【分析】先求出f (1)=f (4)=42+1=17,f (3)=32+1=10,由此能求出f (1)﹣f (3)的值.【详解】∵函数f (x )()()()21232x x f x x ⎧+≥⎪=⎨+⎪⎩<,∴f (1)=f (4)=42+1=17,f (3)=32+1=10,∴f (1)﹣f (3)=17﹣10=7.故选A .本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.3.已知函数()21,0,21,0,x x f x x x ⎧-≤=⎨+>⎩已知()3f a =,则实数a 的值为A .2-或1B .2-或2C .1D .2-或2或1【正确答案】A【分析】可分别讨论当0x ≤时,213x -=,解出满足条件的x 的值.当0x >时,213x +=,解出满足条件的x 的值.【详解】当0x ≤时,213x -=,即2x =-;当0x >时,213x +=,即1x =;故选A此题考查分段函数值求参数,分别求出每个区间满足条件的x 范围即可,属于简单题目.4.下列各项中,()f x 与()g x 表示同一函数的是()A .()f x x =,()g x =B .()f x x =,()2g x =C .()f x x =,()2x g x x=D .()1f x x =-,()()()1111x x g x x x ⎧-≥⎪=⎨-<⎪⎩【正确答案】D【分析】根据函数的定义域与解析式逐项判断即可.【详解】对于A ,()g x x =,与()f x 的解析式不同,故A 错误;对于B ,()2g x =的定义域为{}0x x ≥,()f x 的定义域为R ,故B 错误;对于C ,()2x g x x=的定义域为{}0x x ≠,()f x 的定义域为R ,故C 错误;对于D ,()()()11111x x f x x x x ⎧-≥⎪=-=⎨-<⎪⎩,且()f x 与()g x 的定义域都为R ,故()f x 与()g x 表示同一函数,故D 正确.故选:D.5.设甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图象为()A .B .C.D.【正确答案】D【详解】试题分析:根据题意,甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20min ,在乙地休息10min 后,他又以匀速从乙地返回到甲地用了30min ,那么可知先是匀速运动,图像为直线,然后再休息,路程不变,那么可知时间持续10min ,那么最后还是同样的匀速运动,直线的斜率不变可知选D.函数图像点评:主要是考查了路程与时间的函数图像的运用,属于基础题.6.已知函数()f x 为(1,1)-上的奇函数且单调递增,若(21)(1)0f x f x -+-+>,则x 的值范围是()A .(1,1)-B .(0,1)C .[1,)+∞D .[1,)-+∞【正确答案】B根据函数定义域以及函数单调性奇偶性,求解不等式即可.【详解】由题意,()f x 为(1,1)-上的奇函数且在(1,1)-单调递增,故(21)(1)0(21)(1)f x f x f x f x -+-+>⇔->-,1211,111,211,x x x x -<-<⎧⎪∴-<-<⎨⎪->-⎩解得01x <<.故选:B.本题考查利用函数奇偶性和单调性求解不等式,属基础题.7.不等式(4)3x x -<的解集为()A .{|1x x <或3}x >B .{|0x x <或4}x >C .{|13}x x <<D .{|04}x x <<【正确答案】A【分析】将不等式化为(1)(3)0x x -->,可解得结果.【详解】不等式(4)3x x -<化简为:2430x x -+>,所以(1)(3)0x x -->解得:1x <或3x >.故选:A.本题考查了一元二次不等式的解法,属于基础题.8.若0a b >>,下列不等式成立的是A .1b a<B .2a ab <C .22a b <D .11a b>【正确答案】A【详解】由不等式的性质,若0a b >>,则:1ba<,2a ab >,22a b >,11a b<.本题选择A 选项.9.已知0,0x y >>,若3xy =,则x y +的最小值为()A .3B .2C .D .1【正确答案】C【分析】直接利用基本不等式求最小值.【详解】由于0,0x y >>,3xy =,所以x y +≥=x y ==立.所以x y +的最小值为故选:C .本题考查用基本不等式求最值,基本不等式求最值时的三个条件:一正二定三相等,务必满足.10.关于x 的不等式()()21100ax a x a -++><的解集为()A .11x x a ⎧⎫<<⎨⎬⎩⎭B .1x x a ⎧>⎨⎩或}1x <C .1x x a ⎧<⎨⎩或}1x >D .11x x a ⎧⎫<<⎨⎬⎩⎭【正确答案】A根据二次不等式的求解方法求解即可.【详解】不等式()()21100ax a x a -++><可化为()()110ax x -->,则11x a<<.故选:A.本题考查含参一元二次不等式的解法,较简单.11.若不等式210x tx -+<对一切()1,2x ∈恒成立,则实数t 的取值范围为()A .2t <B .52t >C .1t ≥D .52t ≥【正确答案】D首先分离参数可得1t x x >+,然后结合对勾函数的性质求得152x x +<,从而可确定t 的取值范围.【详解】因为不等式210x tx -+<对一切()1,2x ∈恒成立,所以211x t x x x+>=+在区间(1,2)上恒成立,由对勾函数的性质可知函数1y x x=+在区间(1,2)上单调递增,且当2x =时,15222y =+=,所以152x x +<故实数t 的取值范围是52t .故选:D .方法点睛:一元二次不等式恒成立问题主要方法:(1)若实数集上恒成立,考虑判别式的符号即可;(2)若在给定区间上恒成立,则考虑运用“分离参数法”转化为求最值问题.12.若,,a b c R ∈且a b >,则下列不等式中一定成立的是()A .ac bc >B .2()0a b c ->C .11a b<D .22a b-<-【正确答案】D【分析】根据不等式的性质即可判断.【详解】对于A ,若0c ≤,则不等式不成立;对于B ,若0c =,则不等式不成立;对于C ,若,a b 均为负值,则不等式不成立;对于D ,不等号的两边同乘负值,不等号的方向改变,故正确;故选:D本题主要考查不等式的性质,需熟练掌握性质,属于基础题.13.设集合{1,2,4}A =,{1,2,3}B =,则A B ⋃=A .{3,4}B .{1,2}C .{2,3,4}D .{1,2,3,4}【正确答案】D 由并集的计算求解即可【详解】由题{}1,2,3,4A B ⋃=故选D本题考查集合的简单运算,并集的定义,是基础题14.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【正确答案】A【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A.本题主要考查并集、补集的定义与应用,属于基础题.15.命题“x ∀∈R ,0ax b +≤”的否定是()A .x ∃∈R ,0ax b +≤B .x ∃∈R ,0ax b +>C .x ∀∈R ,0ax b +≥D .x ∀∈R ,0ax b +>【正确答案】B【分析】根据全称量词的命题为存在量词命题直接写出即可.【详解】全称量词的命题为存在量词命题,所以命题“x ∀∈R ,0ax b +≤”的否定是“x ∃∈R ,0ax b +>”.故选:B.16.已知集合是M {x |x N}=∈,则()A .0M ∈B .πM∈C MD .1M∉【正确答案】A【分析】根据自然数的定义,得到结果.【详解】集合{}0,1,2,3,M =⋅⋅⋅0M∴∈本题正确选项:A本题考查自然数的定义、元素与集合的关系,属于基础题.17.已知集合{}1,2,4A =,集合(),{|},,B x y x A y A x y =∈∈>,则集合B 中元素的个数是()A .6B .5C .4D .3【分析】根据题意求出()()(){}2,1,4,1,4,2B =,即可求出结果.【详解】集合{}1,2,4A =,集合(),{|},,B x y x A y A x y =∈∈>,∴()()(){}2,1,4,1,4,2B =,∴集合B 中元素的个数是3个.故选:D.18.已知集合{}12A x x =≤≤,集合{}B x x a =≥.若A B B ⋃=,则实数a 的取值范围是()A .1a <B .1a ≤C .2a >D .2a ≥【正确答案】B【分析】A B B ⋃=转化为A B ⊆,从而可求实数a 的取值范围.【详解】因为A B B ⋃=,所以A B ⊆.因为{}12A x x =≤≤,{}B x x a =≥,所以1a ≤.故选:B.19.已知集合{}2210A x ax x =++=,若集合A 为单元素集,则a 的取值为()A .1B .1-C .0或1D .1-或0或1【正确答案】C【分析】根据集合A 为单元素集,可得方程2210ax x ++=只有一个实根,对a 分类讨论即可求解.【详解】若集合A 为单元素集,则方程2210ax x ++=只有一个实根.当0a =,可得12x =-,满足题意;当0a ≠时,440a ∆=-=,解得1a =.故a 的取值是0或1.故选:C.20.已知函数()532f x ax bx =++,若()27f =,则()2f -=()A .-7B .-3C .3D .7【分析】利用奇函数的性质即得.【详解】设()()532g x f x ax bx =-=+,则()()53g x ax bx g x -=--=-,即()()22f x f x -=--+,故()()2243f f -=-+=-.故选:B二、解答题21.已知集合{}02A x x =<<,{}1B x x a =<<-(1)若3a =-,求()R A B ⋃ð;(2)若A B B = ,求a 的取值范围.【正确答案】(1){2x x <或3x ≥};(2)[)2-+∞,.(1)3a =-时,先计算B R ð,再进行并集运算即可;(2)先利用交集结果判断B A ⊆,再讨论B 是否空集使其满足子集关系,列式计算即得结果.【详解】(1)因为3a =-,所以{}13B x x =<<,=B R ð{1x x ≤或3x ≥},故()=⋃R A B ð{2x x <或3x ≥};(2)因为A B B = ,所以B A ⊆.若B =∅,则1a -≤,解得1a ≥-;若B ≠∅,则12a a ->⎧⎨-≤⎩,解得21a -≤<-.综上所述,a 的取值范围为[)2-+∞,.易错点睛:已知B A ⊆求参数范围时,需讨论集合B 是否是空集,因为空集是任意集合的子集,直接满足B A ⊆.22.已知0a >,0b >且2a b +=.(1)求ab 的最大值;(2)求28a b+的最小值.【正确答案】(1)1;(2)9.(1)利用基本不等式求得ab 的最大值.(2)利用基本不等式求得28a b+的最小值.【详解】(1)依题意222122a b ab +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当1a b ==时等号成立,所以ab 的最大值为1.(2)()281281281022b a a b a b a b a b ⎛⎫⎛⎫+=⋅+⋅+=++ ⎪ ⎪⎝⎭⎝⎭()1110108922⎛≥+=+= ⎝.当且仅当2824,,33b a a b a b ===时等号成立,所以28a b+的最小值为9.本小题主要考查基本不等式求最值,属于基础题.23.已知()221xf x x =+.(1)判断()f x 在[-1,1]的单调性,并用定义加以证明;(2)求函数()f x 在[-1,1]的最值.【正确答案】(1)增函数,证明见解析;(2)最大值()11f =,最小值()11f -=-.【分析】(1)利用定义法证明函数的单调性,按照设元、作差、变形、判断符号、下结论的步骤完成即可;(2)由(1)根据函数的单调性即可解答.【详解】解:(1)函数()f x 在[]1,1-上单调递增;证明:设任意的[]12,1,1x x ∈-且12x x <,()()()()()()2212211212222212122121221111x x x x x x f x f x x x x x +-+-=-++++()()()()122122122111x x x x xx --=++[]12,1,1x x ∈- 且12x x <,1211x x ∴-≤⋅<,210x x ->()()120f x f x ∴-<故函数()f x 在[]1,1-上单调递增;(2)由(1)知()f x 在[]1,1-上单调递增;所以()()2max 211111f x f ⨯===+()()()()2min 211111f x f ⨯-=-+-==-本题考查函数的单调性的证明,函数的最值,属于基础题.24.已知()f x 是定义在R 上的偶函数,且当0x ≥时,()223f x x x =+-.(1)求()f x 的解析式;(2)若()()121f m f m +<-,求实数m 的取值范围.【正确答案】(1)2223,0()23,0x x x f x x x x ⎧+-≥=⎨--<⎩;(2){0mm <∣或2}m >.【分析】(1)根据偶函数的性质进行求解即可;(2)根据偶函数的性质,结合二次函数()223f x x x =+-在0x ≥时的单调性进行求解即可.【详解】(1)当0x <时,()22()()2()323f x f x x x x x =-=-+⋅--=--,所以2223,0()23,0x x x f x x x x ⎧+-≥=⎨--<⎩;(2)当0x ≥时,()2223(1)4f x x x x =+-=+-,因此当0x ≥时,该函数单调递增,因为()f x 是定义在R 上的偶函数,且当0x ≥时,该函数单调递增,所以由()()()()121121121f m f m f m f m m m +<-⇒+<-⇒+<-,因此222(1)(21)202m m m m m +<-⇒->⇒>或0m <,所以实数m 的取值范围是{0m m <∣或2}m >.。
河北衡水市安平中学2024-2025学年高一上学期9月第一次月考数学试卷(含解析)
安平中学2024-2025学年第一学期第一次月考高一年级数学试题一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则A .B .C .D .22.命题“”的否定是A .B .C .D .3.满足的集合的个数A .4B .8C .15D .164.已知,且,,,则取值不可能为A. B. C. D. 5.已知,,若,则A. 2 B. 1 C. D. 6.若则一定有A .B .C .D .7.命题“,”为真命题的一个充分不必要条件是A . B . C . D .8.某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数的最大值是A. 6B. 5C. 7D. 8二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得部分分,有选错的得0分。
9.下面命题正确的是{}2,1,0,1,3M =--{}32N x x =-≤≤M N ⋂={}2,1,0,1--∅{}2,1,1--0x x x ∃∈+R ,<0x x x ∃∈+R ,≤0x x x ∃∈+R ,≥0x x x ∀∈+R ,<0x x x ∀∈+R ,≥{}{}11234A ⊆⊆,,,Z a ∈{(,)|3}A x y ax y =-≤(2,1)A ∈(1,4)A -∉a 1-012{}1,,A x y ={}21,,2B x y =A B =x y -=14230,0,a b c d >><<a b c d >a b c d <a b d c >a b d c<{}21≤≤∈∀x x x 20x a -≤4a ≥5a ≥4a ≤5a ≤A .“”是“”的充分不必要条件B .“”是“二次方程有一正根一负根”的充要条件C .“且”是“”的充要条件D .设,则“”是“”的必要不充分条件10.下列四个命题中正确的是A .若,则B .若,则C .若,则D .若,则11.已知集合,,且,,则下列判断正确的是A .B .C .D .三、填空题:本题共3小题,每小题5分,共15分。
高一上学期第一次月考数学试题(附答案解析)
高一上学期第一次月考数学试题(附答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共12小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知全集U=Z,集合A={−1,2,3},B={3,4},则(∁U A)∩B=( )A. {4}B. {3}C. {1,2}D. ⌀2. 已知a,b,c,d∈R,则下列不等式中恒成立的是( )A. 若a>b,c>d,则ac>bdB. 若a>b,则ac2>bc2C. 若a>b>0,则(a−b)c>0D. 若a>b,则a−c>b−c3. 已知集合A={x|(x−2)(x+1)≤0},B={−2,0,1},则A∩B中元素的个数为( )A. 0B. 1C. 2D. 34. 已知p:0<x<2,q:−1<x<3,则p是q的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 下列命题正确的是( )A. 若数列{a n}、{b n}的极限都存在,且c n=a n bn (b n≠0),则数列{cn}的极限存在B. 若数列{a n}、{b n}的极限都不存在,则数列{a n+b n}的极限也不存在C. 若数列{a n+b n}、{a n−b n}的极限都存在,则数列{a n}、{b n}的极限也都存在D. 设S n=a1+a2+⋯+a n,若数列{a n}的极限存在,则数列{S n}的极限也存在6. 设全集U=R,集合A={x|x2−2x−3<0},B={x|x−2≥0},则图中阴影部分所表示的集合为( )A. {x|x≤−1或x≥3}B. {x|x<2或x≥3}C. {x|x≤2}D. {x|x≤−1}7. 设集合A={1,2,3,4},B={3,4,5},全集U=A∪B,则集合∁U(A∩B)的元素个数为( )A. 1个B. 2个C. 3个D. 4个8. 若集合A={−1,1},B={x|mx=2},且B⊆A,则实数m的值( )A. −2B. 2C. 2或−2D. 2或−2或09. 若P=√a+√a+7,Q=√a+3+√a+4(a≥0),则P,Q的大小关系是( )A. P>QB. P=QC. P<QD. 由a的取值确定10. 已知正实数a,b,满足a+2b=1,则1a +2b的最小值为( )A. 8B. 9C. 10D. 1111. 已知实数a,b,c,若a>b,则下列不等式成立的是( )A. 1a >1bB. a2>b2C. ac2+1>bc2+1D. a|c|>b|c|12. 若集合A={−1,1},B={x|x+m=0},且A∪B=A,则m的值为( )A. 1B. −1C. 1或−1D. 1或−1或0第II卷(非选择题)二、填空题(本大题共8小题,共32.0分)13. 已知集合A={x|0<x<4},集合B={x|x<a},若A⊆B,则实数a的取值范围是______.14. 已知x>1,函数y=x+4x−1的最小值为______.15. 已知集合A={−1,2,4},B={0,2,6},则A∩B=______ .16. 已知集合A={m+2,2m2+m},若3∈A,则m的值为______.17. 若集合{a,ba,1}={a2,a+b,0},则a2021+b2021=______.18. 不等式的解集为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一上学期第一次月考数学试题(附答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共8小题,共32.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={−1,1},B={x|ax=1},若A∩B=B,则a的取值集合为( )A. {1}B. {−1}C. {−1,1}D. {−1,0,1}2. 下列存在量词命题是假命题的是( )A. 存在x∈Q,使2x−x3=0B. 存在x∈R,使x2+x+1=0C. 有的素数是偶数D. 有的有理数没有倒数3. 定义集合A,B的一种运算:A⊗B={x|x=a2−b,a∈A,b∈B},若A={−1,0},B={1,2},则A⊗B 中的元素个数为( )A. 1B. 2C. 3D. 44. 已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+xyz|xyz|的值所组成的集合是M,则下列判断正确的是( )A. 4∈MB. 2∈MC. 0∉MD. −4∉M5. 一批救灾物资随26辆汽车从某市以vkm/h的速度送达灾区,已知运送的路线长400km,为了安全起见,两辆汽车的间距不得小于(v20)2km,那么这批物资全部到达灾区最少需要时间( )A. 5 hB. 10 hC. 15 hD. 20 h6. 已知集合A={x|ax2−(a+1)x+1<0},B={x|x2−3x−4<0},且A∩B=A,则实数a的取值范围是( )A. a≤14B. 0<a≤14C. a≥14D. 14≤a<1或a>17. 如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2−4ac>0;③8a+ c<0;④5a+b+2c>0,正确的有( )A. 4个B. 3个C. 2个D. 1个8. 某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数的最大值是( )A. 6B. 5C. 7D. 8二、多选题(本大题共4小题,共16.0分。
在每小题有多项符合题目要求)9. 下列说法正确的是( ) A. 若a >b >0,则1a <1bB. 若a >b >0,m >0,则b+ma+m >ba C. a >b >0,则a 3−b 3>a 2b −ab 2 D. 若a >b >0,则ac 2>bc 210. 下列关于x 的不等式有实数解的有( ) A. x 2+3x +3<0 B. x 2+6x +9≤0 C. −x 2−2x −1>0 D. x 2−2m +a 2−1≥011. 下列关于基本不等式的说法正确的是( ) A. 若0<x <13,则x(1−3x)的最大值为112 B. 函数y =x2+3x+3x+1(x >−1)的最小值为2C. 已知x +y =1,x >0,y >0,则12x +xy+1的最小值为54 D. 若正数x ,y 满足x 2+xy −2=0,则3x +y 的最小值为312. 设集合X 是实数集R 的子集,如果实数x 0满足:对任意的r >0,都存在x ∈X ,使得0<|x −x 0|<r成立,那么称x 0为集合X 的聚点.则下列集合中,0为该集合的聚点的有( )A. {x|x =1n ,n ≠0,n ∈Z} B. {x|x =nn+1,n ∈N ∗} C. {x|x ∈Q,x ≠0}D. 整数集Z第II卷(非选择题)三、填空题(本大题共4小题,共16.0分)13. 命题“∃x∈R,使得λx2−λx+1<0成立”为假命题,则λ取值范围______.14. 已知a>b>c,2a+b+c=0,则ca的取值范围是______.15. 满足{1,2}⊆A⫋{1,2,3,4,5}的集合A共有______个.16. 设关于x的不等式ax2+8(a+1)x+7a+16≥0(a∈Z),只有有限个整数解,且0是其中一个解,则a的取值是______,全部不等式的整数解的和为______.四、解答题(本大题共4小题,共36.0分。
解答应写出文字说明,证明过程或演算步骤)17. (本小题8分)已知集合A={x|−2≤x≤4},B={x|x2−2mx+m2−4≤0}.(1)命题p:x∈A,命题q:x∈B,且p是q的必要非充分条件,求实数m的取值范围;(2)若A∩B≠⌀,求实数m的取值范围.18. (本小题8分)已知x>0,y>0,x+2y=2.(1)求xy的最大值;(2)求2x+1+1y+1的最小值.19. (本小题8分)如图所示,居民小区要建一座八边形的休闲场所,它的主题造型平面图是由两个相同的矩形ABCD和EFGH构成的面积为200m2的十字形地域.计划在正方形MNPQ上建一座花坛,造价为4200元/m2.在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为210元/m2;再在四个空角(图中四个三角形)上铺草坪,造价为80元/m2.设总造价为S(单位:元),AD长为x(单位:m).(1)将S 表示为x 的函数;(2)当x 为何值时,S 最小?并求出这个最小值.20. (本小题12分)已知二次函数f(x)=x 2−ax +b +2,a ,b ∈R .(1)若关于x 的不等式f(x)<0的解集为(1,2),求实数a ,b 的值; (2)若a =b ,解关于x 的不等式f(x)≤3x 2;(3)若关于x 的不等式f(x)≥b 在x ∈[1,4]上恒成立,求实数a 的取值范围.参考答案与解析1.【答案】D【解析】解:集合A ={−1,1},B ={x|ax =1},A ∩B =B , ∴B ⊆A ,当a =0时,B =⌀,满足条件, 当a ≠0时,B ={1a},由B ⊆A ,得1a=−1或1a =1,解得a =−1或a =1, ∴a 的取值集合为{−1,0,1}. 故选:D .B ⊆A ,当a =0时,B =⌀,满足条件,当a ≠0时,B ={1a },由B ⊆A ,得1a =−1或1a=1,由此能求出a 的本题考查集合的运算,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【答案】B【解析】解:对于A,若x=0,则2x−x3=0,故A是真命题,对于B,因为方程x2+x+1=0的Δ=1−4=−3<0,所以方程x2+x+1=0无实根,故B是假命题,对于C,2是素数,也是偶数,故C为真命题,对于D,0是有理数,但是0没有倒数,故D是真命题,故选:B.对于A,C,D可举例说明其是真命题,对于B,利用Δ<0可说明其是假命题.本题主要考查了特称命题真假的判断,属于基础题.3.【答案】C【解析】解:∵A⊗B={x|x=a2−b,a∈A,b∈B},A={−1,0},B={1,2},∴A⊗B={0,−1,−2},∴A⊗B中的元素个数为3.故选:C.根据集合的新定义确定集合中的元素.本题考查集合的运算,考查新定义等基础知识,考查运算求解能力,是基础题.4.【答案】A【解析】解:根据题意,分4种情况讨论;①、x,y,z全部为负数时,则xyz也为负数,则x|x|+y|y|+z|z|+xyz|xyz|=−4;②、x,y,z中有一个为负数时,则xyz为负数,则x|x|+y|y|+z|z|+xyz|xyz|=0;③、x,y,z中有两个为负数时,则xyz为正数,则x|x|+y|y|+z|z|+xyz|xyz|=0;④、x,y,z全部为正数时,则xyz也正数,则x|x|+y|y|+z|z|+xyz|xyz|=4;则M={4,0,−4};分析选项可得A符合.分别对x ,y ,z 的符号进行讨论,计算出集合M 的所有元素,再进行判断. 本题主要考查元素和集合间的关系,属于基础题.5.【答案】B【解析】 【分析】本题考查基本不等式的实际运用,属于中档题.由题意求出总路程为400 +25(v 20)2=400+v 216,进而得到t=400+v 216v=400v +v16,利用基本不等式即可求解. 【解答】解:由已知这批物资全部到达灾区的路程是第一辆车出发,到最后一辆车到灾区, 总路程为400 +25(v 20)2=400+v 216,设这批物资全部到达灾区的时间为t , ∴t =400+v 216v =400v +v 16⩾2√400v ⋅v16=10, 当且仅当400v=v16,即v =80时,等号成立.故这批物资全部到达灾区最少需要时间为10 h , 故选B .6.【答案】C【解析】解:B ={x|x 2−3x −4<0}={x|−1<x <4},由A ∩B =A ,可得A ⊆B , 集合A ={x|ax 2−(a +1)x +1<0}={x|(ax −1)(x −1)<0}, ①当a =0时,A ={x|x >1},与A ⊆B 矛盾,故a ≠0. ②当a =1时,A =⌀,符合题意,故a =1成立. ③当a >1时,0<1a <1,∴A ={x|1a <x <1}, 满足A ⊆B ,故a >1成立.④当0<a <1时,1a >1,∴A ={x|1<x <1a },要满足A⊆B,故1a ≤4,∴14≤a<1.⑤当a<0时,A={x|x<1a或x>1},不满足A⊆B,故a<0不成立.综上,a的取值范围是{a|a≥14}.故选:C.化简集合A、B,由A∩B=A,可得A⊆B,对a进行分类讨论,解出集合A,再根据集合的关系得出a的取值范围,即可求得答案.本题考查了含参数的不等式的解法,集合之间的关系,考查了分类讨论的思想,属于基础题.7.【答案】B【解析】解:由图象可知,a<0,−b2a=1,c>0,所以b=−2a>0,所以abc<0①错误;由图象可知,抛物线与x轴有2个交点,故Δ=b2−4ac>0,②正确;因为f(−2)=4a−2b+c=8a+c<0,③正确;因为f(−1)=a−b+c>0,f(2)=4a+2b+c>0,所以5a+b+2c>0,④正确.故选:B.由已知结合二次函数的性质分别检验各选项即可判断.本题综合考查了二次函数的性质,考查了分析问题的能力,属于中档题.8.【答案】A【解析】解:设周一,周二,周三开车上班的职工组成的集合分别为A,B,C,则n(A)=14,n(B)=10,n(C)=8,n(A∪B∪C)=20,∵n(A∪B∪C)=n(A)+n(B)+n(C)−n(A∩B)−n(A∩C)−n(B∩C)+n(A∩B∩C),且n(A∩B)≥n(A∩B∩C),n(A∩C)≥n(A∩B∩C),n(B∩C)≥n(A∩B∩C),∴20≤14+10+8−3n(A∩B∩C)+n(A∩B∩C),即n(A∩B∩C)≤14+10+8−202=6.∴这三天都开车上班的职工人数的最大值是6.故选:A.设周一,周二,周三开车上班的职工组成的集合分别为A,B,C,由已知结合集合间关系的运算及不等式的运算求解.本题考查集合间的关系及运算,考查不等式的应用,考查运算求解能力,是中档题.9.【答案】ABC【解析】解:对于A,∵a>b>0,∴1 a −1b=b−aab<0,即1a<1b,故A正确,对于B,∵a>b>0,m>0,∴b+m a+m −ba=(b+m)a−b(a+m)(a+m)a=m(a−b)(a+m)a>0,故B正确,对于C,∵a>b>0,∴a3−b3−a2b+ab2=a2(a−b)+b2(a−b)>0,故C正确,对于D,当c=0时,ac2=bc2,故D错误.故选:ABC.根据已知条件,结合作差法,以及特殊值法,即可求解.本题主要考查不等式的性质,考查作差法,属于基础题.10.【答案】BD【解析】解:对于A,x2+3x+3=x2+3x+94−94+3=(x+32)2+34>0,即x2+3x+3<0没有实数解,故A错误;对于B,由x2+6x+9=(x+3)2≤0可知,当x=−3时,x2+6x+9≤0成立,即x2+6x+9≤0有实数解,故B正确;对于C,x2+2x+1=(x+1)2≥0,故−x2−2x−1=−(x2+2x+1)≤0,即−x2−2x−1>0没有实数解,故C错误;对于D,令f(x)=x2−2m+a2−1,则f(x)开口向上,图像两端趋于正无穷,显然,必存在x∈R,使得f(x)≥0,即x2−2m+a2−1≥0有实数解,为更有说服力,令x=m+1,则f(x)=(m+1)2−2m+a2−1=m2+a2≥0,故D正确.故选:BD.利用配方法或图像法即可判断得选项中关于x 的不等式的实数解情况.本题主要考查一元二次不等式及其应用,不等式的解法,考查运算求解能力,属于中档题.11.【答案】AC【解析】解:A :∵函数y =x(1−3x)=−3x 2+x =−3(x −16)2+112,且0<x <13,∴当x =16时,y 取得最大值,其最大值为112,∴A 正确, B :设t =x +1,∵x >−1,则t >0, ∴y =x 2+3x+3x+1=t 2+t+1t=t +1t +1≥2√1+1=3,当且仅当t =1时等号成立,∴y 的最小值为3,∴B 错误, C :∵x +y =1,∴12x +xy+1=12x +1−yy+1=12x +2y+1−1,∵12x +2y+1=(12x +2y+1)[x +(y +1)]×12=(y+12x +2xy+1+52)×12≥(2√1+52)×12=94,当且仅当y+12x =2xy+1,即x =23,y =13时等号成立,∴12x +xy+1的最小值为94−1=54,∴C 正确,D :∵x 2+xy −2=0,∴y =2−x 2x=2x−x ,∴3x +y =3x +2x −x =2x +2x≥4,当且仅当x =1时等号成立,∴3x +y 的最小值为4,∴D 错误, 故选:AC .利用二次函数求最值判断A ,利用换元法和基本不等式判断B ,利用乘1法判断C ,利用基本不等式判断D . 本题主要考查基本不等式及其应用,二次函数求最值,属于中档题.12.【答案】AC【解析】 【分析】本题考查了对新定义的理解与应用,考查了集合的应用,属于中档题.对于选项A ,对任意r >0,令n =max{1,[1r]+1},([1r]表示不超过1 r的最大整数,max{1,[1 r]+1}表示1与[1 r]+1较大的一个),可判断0<|1 n−0|<r ,故{x|x =1n ,n ≠0,n ∈Z}以0为聚点;对于选项B ,可判断|n n+1−0|≥12,故{x|x =nn+1,n ∈N ∗}不以0为聚点;对于选项C ,对任意r >0,n =max{1,[1 r ]+1},令x =1 n ∈Q ,则0<|x −0|<r ,故{x|x ∈Q,x ≠0}以0为聚点;对于选项D ,对于r =12,不存在x ∈Z ,使0<|x −0|<12成立,故整数集不以0为聚点.【解答】解:对于选项A ,对任意r >0,令n =max{1,[1r]+1},([1 r ]表示不超过1 r 的最大整数,max{1,[1 r ]+1}表示1与[1 r]+1较大的一个),∵|1n −0|=|1n|∴当n =1时,|1n |=1,当n =[1r ]+1时,|1n |=|1[1r]+1|<1∴0<|1 n−0|<r ,故{x|x =1n,n ≠0,n ∈Z}是以0为聚点,故A 选项正确;对于选项B ,由n ∈N ∗知,|nn+1−0|=|nn+1|=|n+1−1n+1|=|1−1n+1|≥12, ∴{x|x =n n+1,n ∈N ∗}不是以0为聚点,故B 选项错误;对于选项C ,对任意r >0,n =max{1,[1 r]+1}, 令x =1n∈Q ,∴|x |=|1n |⩽1则0<|x −0|<r ,∴{x|x ∈Q,x ≠0}以0为聚点,故C 选项正确;对于选项D ,当r =12,不存在x ∈Z ,使得0<|x −0|<12成立, ∴整数集不以0为聚点,故D 选项错误; 故本题选AC .13.【答案】0≤λ≤4【解析】 【分析】特称命题“∃x ∈R ,使得λx 2−λx +1<0成立”其否定为“∀x ∈R ,使得λx 2−λx +1≥0成立”原命题为假命题,则其否定为真,分两种情况当λ=0,②当λ≠0,讨论可得解. 本题考查了特称命题、全称命题及含参函数的解集问题,本题属中档题. 【解答】解:命题“∃x ∈R ,使得λx 2−λx +1<0成立”为假命题, 则其否定“∀x ∈R ,使得λx 2−λx +1≥0成立”为真,①当λ=0时,1≥0恒成立,即λ=0满足题意,②当λ≠0时,由题意有:{λ>0λ2−4λ≤0, 解得:0<λ≤4,综合①②得:实数λ取值范围:0≤λ≤4,故答案为0≤λ≤4.14.【答案】(−3,−1)【解析】解:∵a >b >c ,2a +b +c =0,∴a >0,c <0,∴b =−2a −c ,且a >0,c <0,∵a >b >c ,∴−2a −c <a ,即3a >−c ,解得c a >−3,将b =−2a −c ,代入b >c ,可得−2a −c >c ,∴c a <−1,∴−3<c a <−1,即c a的取值范围是(−3,−1). 故答案为:(−3,−1).先将2a +b +c =0变形为b =−2a −c ,再代入不等式a >b ,b >c ,解这两个不等式,即可求得a 与c 的比值关系,联立可求c a 的取值范围.本题主要考查了一元一次不等式的应用,解决问题的关键是将2a +b +c =0变形为b =−2a −c ,代入后消去b ,进而求得a ,c 的关系,属于基础题.15.【答案】7【解析】解:{1,2}⊆A ⫋{1,2,3,4,5},则满足条件的集合A 有:{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5}共7个.故答案为:7.根据已知条件,结合并集的定义,以及集合之间的包含关系,即可求解.本题考查的知识点是集合的包含关系判断及其应用,属于基础题.16.【答案】−1或−2 −10【解析】解:设y =f(x)=ax 2+8(a +1)x +7a +16,函数图象为抛物线.对于任意一个给定的a 值其抛物线只有在开口向下的情况下才能满足y ≥0且整数解只有有限个,所以a <0. 因为0为其中的一个解,所以f(0)=7a +16≥0,解得a ≥−167, 又因为a ∈Z ,所以a =−2,−1,当a =−2时不等式为−2x 2−8x +2≥0,解不等式得−√5−2≤x ≤√5−2,因为x 为整数,所以x =−4,−3,−2,−1,0;当a =−1时不等式为−x 2+9≥0,解不等式得−3≤x ≤3;因为x 为整数,所以x =−3,−2,−1,0,1,2,3;综上知,全部不等式的整数解的和为−10.故答案为:−1或−2;−10.可设y =f(x)=ax 2+8(a +1)x +7a +16,根据函数图象为抛物线,结合题意求出a 的值,再解对应的不等式,从而求出不等式的整数解的和.本题考查一元二次不等式的解法与应用问题,解题的关键是确定a 的值,求出对应一元二次不等式的解集,是基础题.17.【答案】解:(1)由x 2−2mx +m 2−4≤0得[x −(m +2)][x −(m −2)]≤0,得m −2≤x ≤m +2,即B =[m −2,m +2],若p 是q 的必要非充分条件,则B ⫋A ,则{m +2≤4m −2≥−2,得{m ≤2m ≥0,得0≤m ≤2, 即实数m 的取值范围是[0,2].(2)若A ∩B =⌀,则m −2>4或m +2<−2,得m >6或m <−4,若A ∩B ≠⌀,则−4≤m ≤6,即实数m 的取值范围是[−4,6].【解析】本题主要考查充分条件和必要条件的应用,根据充分条件和必要条件的定义转化为集合关系是解决本题的关键,是中档题.(1)根据必要不充分条件的定义转化为集合关系进行求解即可.(2)先求出A ∩B =⌀的等价条件,然后再求出A ∩B ≠⌀即可.18.【答案】解:(1)∵x >0,y >0,x +2y =2,∴2=x +2y ≥2√2xy ,∴√2xy ≤1,即xy ≤12,当且仅当x =2y =1时,等号成立,所以xy 的最大值为12;(2)由题意,x +2y =2,可得(x +1)+2(y +1)=5,则 2x+1+1y+1=15[(x +1)+2(y +1)](2x+1+1y+1)=15[4+x+1y+1+4(y+1)x+1]≥15[4+2√x+1y+1⋅4(y+1)x+1]=85, 当且仅当x+1y+1=4(y+1)x+1,即x =32,y =14时,等号成立, 所以2x+1+1y+1的最小值85.【解析】(1)由基本不等式可得2=x +2y ≥2√2xy ,运算即可得解;(2)转化可得 2x+1+1y+1=15[(x +1)+2(y +1)](2x+1+1y+1),由基本不等式即可得解.本题考查了基本不等式在求最值中的应用,属于中档题.19.【答案】解:(1)设DQ =ym ,则x 2+4xy =200,所以y =200−x 24x , 所以S =4200x 2+210⋅4xy +80⋅2y 2=38000+4000x 2+400000x 2,0<x <10√2. (2)S =38000+4000x 2+400000x 2≥38000+2√4000x 2⋅400000x 2=118000, 当且仅当4000x 2=400000x 2,即x =√10时,上式等号成立,所以当x =√10时,S 最小,最小值为118000.【解析】(1)设DQ =ym ,则x 2+4xy =200,求出y 的值,再结合各个面积的造价,即可求解.(2)根据(1)的结论,再结合基本不等式的公式,即可求解.本题主要考查函数的实际应用,掌握基本不等式是解本题关键,属于基础题.20.【答案】解:(1)∵f(x)<0的解集为(1,2),∴1,2是方程x 2−ax +b +2=0的两个根.∴a =1+2=3,b +2=1×2=2.∴a =3,b =0.(2)当a =b 时,不等式f(x)≤3x 2等价于2x 2+ax −a −2≥0,∴(x −1)(2x +a +2)≥0.∴当−a+22=1,即a =−4时,(x −1)2≥0,解得x ∈R ; 当−a+22>1,即a <−4时,不等式(x −1)(2x +a +2)≥0的解集为{x|x ≤1或x ≥−a+22}; 当−a+22<1,即a >−4时,不等式(x −1)(2x +a +2)≥0的解集为{x|x ≤−a+22或x ≥1}.(3)∵x 2−ax +b +2≥b 在x ∈[1,4]上恒成立,∴x 2−ax +2≥0在x ∈[1,4]上恒成立,∴ax ≤x 2+2在x ∈[1,4]上恒成立,∴a ≤x +2x 在x ∈[1,4]上恒成立,∵x +2x ≥2√2,当且仅当x =√2时等号成立,∴a ≤2√2,实数a 的取值范围是(−∞,2√2].【解析】(1)由题意可得1,2是方程x 2−ax +b +2=0的两个根,然后利用根与系数的关系可求出实数a ,b 的值;(2)将f(x)≤3x 2化为(x −1)(2x +a +2)≥0,再分−a+22=1,−a+22>1和−a+22<1三种情况求解; (3)将问题转化为a ≤x +2x 在x ∈[1,4]上恒成立,然后利用基本不等式求出x +2x 的最小值即可.本题考查了一元二次不等式与对应方程的应用问题,也考查了不等式恒成立问题,考查运算求解能力,是中档题.。