空间解析几何与向量代数内容小结
向量代数与空间解析几何知识点总结
向量代数与空间解析几何知识点总
结
向量代数:
1、定义:向量代数是一种数学技术,用于处理和描述空间中的向量。
2、性质:向量的加法满足交换律、结合律,乘法满足分配律。
3、应用:向量代数可以用来求解空间几何问题,例如夹角的大小、两点之间的距离、点的位置等。
空间解析几何:
1、定义:空间解析几何是一种数学技术,用于研究平面图形和立体图形之间的关系。
2、性质:空间解析几何以点、线、面为基本单位,引入向量代数,通过空间关系、变换、测量等方法来求解几何问题。
3、应用:空间解析几何可以用来解决工程设计、地理学、天文学等领域的实际问题。
[全]高等数学之向量代数与空间解析几何知识点与题型总结[下载全]
高等数学之向量代数与空间解析几何知识点与题型总结
向量代数与空间解析几何知识点:
(1)向量代数知识点
(2)两平面夹角与两直线夹角公式
两平面夹角和两直线夹角公式(3)点到直线的距离公式
点到直线的距离
(4)常见二次曲线
常见二次曲线
题型一:求曲线上一点到某一固定平面的最近距离和最远距离例1:
【分析】:曲线上一点(x,y,z)到XOY面的距离为|z|,但把目标函数设为
f(x,y,z)=|z|,不便于计算,因而常把目标函数设为f(x,y,z)=z^2,把两个方程看成约束条件使用拉格朗人数乘法求解即可。
解:
题型二:求直线方程
建立直线方程有两个基本方法:
(1)已知直线L上的一个点P(x0,y0,z0)和直线L的方向向量s={l,m,n}就可以确定直线L;
(2)两个不平行的平面相交于一直线;
例2:求过点(-1,0,4)且平行于平面3x-4y+z=10,又与直线x+1=y-3=z/2相交的直线方程。
分析:只要求出所求直线方向向量即可,可利用所求直线与已知平面平行且与已知直线相交直接求。
解:。
向量代数与空间解析几何
向量代数与空间解析几何向量代数是几何学的一个分支,它学习的是由点和向量组成的空间结构,以及它们之间的关系。
若要解释几何学的基本概念,就必须要用到向量代数的技术和工具。
量代数与空间解析几何之间的关系非常密切。
空间解析几何是一种特殊的平面几何,它将空间中的点看作是实数组成的,并且结构由一个数学方程来表示。
这是向量代数在几何学中最重要的用途。
研究空间解析几何时,我们必须掌握向量代数的所有技巧,以表达空间模型的结构及其向量元素之间的关系。
向量代数在空间解析几何中的最基本的概念是向量。
向量是一种特殊的数字,它由一组实数组成,可以表示一条直线的方向和大小。
空间解析几何中的所有结构都可以用向量表示。
我们可以将向量加起来,用它们表示方向和大小的变化,从而求得更复杂的结构,比如多边形。
此外,向量代数也可以用于表示空间解析几何中的相关概念,比如平行和垂直。
如果两个向量平行,则它们会构成一个特殊的结构,而垂直的向量则会构成一个特殊的空间结构。
向量代数可以用来表示这些概念,也可以用于解决空间解析几何中的问题。
向量代数还可以用于表达空间解析几何中的变换,这可以通过矩阵来实现。
比如,如果希望移动一个空间结构中的某些向量,那么可以使用一个称为移动矩阵的向量代数工具,它可以把这些向量移动到新的位置。
同样,也可以使用变换矩阵来旋转这些向量,它可以把空间中的向量旋转到不同的方向。
这些都是依赖于向量代数的空间解析几何中的重要概念。
总而言之,向量代数与空间解析几何的关系是非常密切的。
空间解析几何学习的是空间中的点和向量,以及它们之间的关系,而这些关系是依赖于向量代数的技术和工具来表示的。
正是由于向量代数可以表达空间解析几何中的概念和关系,我们才能够更好地理解几何学的基本概念,并有效地解决空间解析几何中的问题。
高等数学第七章 向量代数与空间解析几何
第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。
第1章 向量代数与空间解析几何内容小结
m
n
p
(3)参数方程:若设 x x0 y y0 z z0 t,
m
n
p
则直线的参数方程为
x y
x0 y0
mt nt
.
z z0 pt
2.直线与直线、直线与平面的夹角
两直线的方向向量所成的不超过 的夹角称为两直线的夹角.直线和它在平面上的投 2
运算律:
○① 交换律 a b b a ;
○② 与数乘结合律 (a) b a (b) (a b) ;
○3 分配律 (a b) c a c bc .
两向量夹角公式:设 a ax , ay , az , b bx ,by ,bz , ( a 0, b 0) ,则
曲线
f
x,
y
0
绕 y 轴旋转所形成的旋转曲面方程为 f
x2 z2 , y
0;
z0
曲线
f
x,
z
0
绕 x 轴旋转所形成的旋转曲面方程为 f
x,
y2 z2
0;
y0
曲线
f
x,
z
0
绕 z 轴旋转所形成的旋转曲面方程为 f
若点 A 的坐标为 (x1, y1, z1) ,点 B 的坐标为 (x2, y2, z2 ) ,则 AB 的分解表示为 AB axi ay j azk ,
AB 的坐标表示为 AB ax , ay , az ,
其中 ax x2 x1, ay y2 y1, az z2 z1分别为 AB 在 x, y, z 轴上的投影. i, j, k 分别为 沿 x, y, z 轴正向的单位向量,它们称为空间直角坐标系的基本单位向量.
向量代数与空间解析几何
空间解析几何的应用
空间解析几何在物理学中的应用
描述物体运动轨迹和方向
解释重力、电磁场等现象
用于研究光速、波的传播等
描述量子力学中的波函数
空间解析几何在计算机图形学中的应用
建模:利用空间解析几何构建三维模型实现复杂形状的描述和设计。
渲染:通过空间解析几何的方法实现光照、阴影、纹理等效果的渲染提高图像的真实感和质感。
动画:利用空间解析几何描述物体的运动轨迹和形态变化实现逼真的动画效果。
交互:利用空间解析几何的方法实现用户与三维场景的交互例如旋转、缩放、移动等操作。
空间解析几何在机器人学中的应用
添加标题
添加标题
添加标题
添加标题
路径规划:基于空间解析几何的方法规划机器人的移动路径
机器人姿态描述:利用空间向量和矩阵表示机器人的姿态和位置
向量的向量积的坐标表示:向量=(1,2,3)向量b=(b1,b2,b3)则向量和向量b的向量积的坐标表示为×b=(2b3-3b2,3b1-1b3,1b2-2b1)。
向量的混合积的坐标表示:对于三个三维向量、b和c向量和向量b的混合积的坐标表示为(×b)·c其中"·"表示点乘。混合积的结果是一个标量其值等于三个向量的行列式值乘以三个向量的模长。
向量的模和向量的数量积的坐标表示
添加标题
向量的模坐标表示:向量=(x1,y1,z1)则向量的模为||=sqrt(x1^2+y1^2+z1^2)
向量的数量积坐标表示:向量=(x1,y1,z1)向量b=(x2,y2,z2)则向量和向量b的数量积为·b=x1*x2+y1*y2+z1*z2
添加标题
向量的向量积和向量的混合积的坐标表示
向量与空间解析几何知识点总结
向量与空间解析几何知识点总结一、向量。
1. 向量的概念。
- 既有大小又有方向的量称为向量。
在空间直角坐标系中,向量可以用坐标表示,如→a=(a_x,a_y,a_z),其中a_x、a_y、a_z分别是向量在x、y、z轴上的投影。
- 向量的模(长度):对于向量→a=(a_x,a_y,a_z),其模|→a|=√(a_x^2)+a_y^{2+a_z^2}。
2. 向量的运算。
- 加法。
- 几何方法:平行四边形法则或三角形法则。
- 坐标运算:若→a=(a_x,a_y,a_z),→b=(b_x,b_y,b_z),则→a+→b=(a_x + b_x,a_y + b_y,a_z + b_z)。
- 减法。
- 几何方法:三角形法则。
- 坐标运算:→a-→b=(a_x - b_x,a_y - b_y,a_z - b_z)。
- 数乘向量。
- 设λ为实数,→a=(a_x,a_y,a_z),则λ→a=(λ a_x,λ a_y,λ a_z)。
- 数乘向量的模|λ→a|=|λ||→a|,方向当λ>0时与→a相同,当λ < 0时与→a 相反。
- 向量的数量积(点积)- 定义:→a·→b=|→a||→b|cosθ,其中θ为→a与→b的夹角。
- 坐标运算:若→a=(a_x,a_y,a_z),→b=(b_x,b_y,b_z),则→a·→b=a_xb_x + a_yb_y+a_zb_z。
- 向量垂直的充要条件:→a⊥→bLeftrightarrow→a·→b=0。
- 向量的向量积(叉积)- 定义:→a×→b是一个向量,其模|→a×→b|=|→a||→b|sinθ,方向遵循右手螺旋法则。
- 坐标运算:若→a=(a_x,a_y,a_z),→b=(b_x,b_y,b_z),则→a×→b=<=ftbegin{array}{ccc}→i→j→k a_xa_ya_z b_xb_yb_zend{array}right=(a_yb_z - a_zb_y)→i+(a_zb_x - a_xb_z)→j+(a_xb_y - a_yb_x)→k。
高等数学向量代数与空间解析几何总结
{m,
n,
p}
36
[4] 两直线的夹角
直线 L1 : 直线 L2 :
x x1 y y1 z z1
m1
n1
p1
x x2 y y2 z z2
m2
n2
p2
^ cos(L1, L2 )
| m1m2 n1n2 p1 p2 | m12 n12 p12 m22 n22 p22
x2 y2 z2
27
3、空间曲线
[1] 空间曲线的一般方程
F(x, y,z) 0 G( x, y, z) 0
[2] 空间曲线的参数方程
x x(t)
y
y(t )
z z(t)
28
如图空间曲线 一般方程为
z 1 x2 y2
( x
1)2 2
y2
(1)2 2
x
1 cos t 2
1 2
(1) 曲面S 上任一点的坐标都满足方程; (2) 不在曲面S 上的点的坐标都不满足方程; 那么,方程F ( x, y, z) 0就叫做曲面S 的方程,而 曲面S 就叫做方程的图形.
19
研究空间曲面的两个基本问题: (1)已知曲面作为点的轨迹时,求曲面方程. (2)已知坐标间的关系式,研究曲面形状.
bx by bz
a//
b
ax ay az bx by bz
10
请归纳向量的数量积和向量积
在几何中的用途
(①1求)向数量量的积模(1:) a
a
|
a
|2
.
②求两向量的 夹 角: a b | a ||
b
|
cos
cos
a
b
,
| a || b |
空间解析几何与向量代数知识讲解
空间解析几何与向量代数论文空间解析几何与向量代数呼伦贝尔学院计算机科学与技术学院服务外包一班2013级2014.5.4小组成员:宋宝文柏杨白鸽李强白坤龙空间解析几何与向量代数摘要:深入了解空间解析几何与向量代数的概念,一一讲述他们的区别和用途。
向量的集中加减乘法和运算规律,还有空间直线与平面的关系。
关键词:向量;向量代数;空间几何 第一部分:向量代数第一节:向量一.向量的概念:向量:既有大小,又有方向的量成为向量(又称矢量)。
表示法:有向线段a或a 。
向量的模:向量的打小,记作|a|。
向径(矢径):起点为原点的向量。
自由向量:与起点无关的向量。
单位向量:模为1的向量。
零向量:模为0的向量,记作.0或0若向量a 与b 大小相等,方向相同,则称a 与b 相等,记作a =b;若向量a与b 方向相同或相反,则称a 与b 平行,记作a //b规定:零向量与任何向量平行;与a 的模相同,但方向相反的向量称为a的负向量,记作-a;因平行向量可平移到同一直线上,故两向量平行又称两向量共线。
若K 3个向量经平移可移到同一平面上,则称此K 个向量共面。
二.向量的线性运算1.向量的加法平行四边形法则:a三角形法则:a +b ba运算规律:交换律a +b =b +aa与b结合律:(a +b )+c =a+(b +c )三角形法则可推广到多个向量相加。
2.向量的减法b -a =b +(a )ab -ab b -a a特别当b =a 时,有a -a =a (a)=0 ; 三角不等式:|b +a |; |a -b|;3.向量与数的乘法是一个数,与a 的乘积是一个新向量,记作a。
规定: a 与a 同向时,|a |=|a|; 总之:|a | | |a|三.向量的模、方向角1.向量的模与两点间的距离公式设r(x,y,z ),作om r ,则有r op oq or由勾股定理得: |r | |OM|BA对两点A ()与B ()因AB OB OA () 得两点间的距离公式: |AB| |AB | 第二节:数量积 向量积一.两向量的数量积引例:设一物体在常力F 作用下,沿与力为夹角的直线移动,位移为S ,则力F 所做的功为W|F | |S |1.定义:设向量b ,a 的夹角为,称|a ||b | b a 为b 与a的数量积(点积)。
空间解析几何与向量代数》知识点、公式总结
空间解析几何与向量代数》知识点、公式总结空间解析几何与向量代数是数学中非常重要的分支,它们在物理、工程、计算机科学等领域得到了广泛的应用。
以下是一些知识点和公式的总结:一、向量的数量积与向量积1. 向量的数量积:两个向量 a 和 b 的数量积 (也叫数量积或点积) 定义为一个新的向量,记作 a·b,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 c,(a·b)·c=a·(b·c)。
2. 向量积:两个向量 a 和 b 的向量积 (也叫向量积或叉积)定义为一个新的向量,记作 a×b,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 c,(a×b)·c=a·(b×c)。
二、向量的混合积1. 向量的混合积:三个向量的混合积 (也叫叉积) 定义为一个新的向量,记作 (ab)c,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 d,(ab)c·d=a·(b·c)d。
2. 向量共面的条件:三个向量 a、b、c 共面的条件是它们对应的三条法向量共面。
三、空间平面及其方程1. 空间平面的方程:空间中两个不共线的平面的方程分别为Px+My+Nz=C 和 Px+My+Nz=D,其中 P、M、N 为平面上的任意三个点,C 和D 为已知常数。
2. 平面的点法式方程:设 M(x0,y0,z0) 为平面上的已知点,n(A,B,C) 为法向量,M(x,y,z) 为平面上的任一点,则平面的点法式方程为 A(x-x0)B(y-y0)C(z-z0)=0。
四、空间直线及其方程1. 空间直线的方程:空间中一条直线的方程为 x+My+Nz=C,其中 P、M、N 为直线上的任意三个点,C 为已知常数。
2. 空间直线的参数方程:空间中一条直线的参数方程为x=f(t),y=g(t),z=h(t),其中 t 为参数,f、g、h 分别为直线上的点的 x、y、z 坐标。
高等数学向量代数与空间解析几何总结
高等数学向量代数与空间解析几何总结高等数学是大学数学学科的一门重要基础课程,其中向量代数与空间解析几何是其重要的内容之一、本文将对向量代数与空间解析几何的主要内容进行总结,让我们一起来了解一下吧!向量代数是研究向量的代数性质和运算法则的数学分支,旨在通过研究向量的各种运算进行分析与求解问题。
空间解析几何则是研究点、线、面等几何对象在三维空间中的位置关系和几何性质的学科。
首先,我们先来了解一下向量代数的基本概念和运算法则。
在向量代数中,向量是具有大小和方向的量,通常用一个有向线段表示。
向量的加法是指两个向量相加,得到一个新的向量,其结果是由两个向量的平行四边形法则确定的。
向量的乘法有数量乘法和点乘法两种形式。
数量乘法是指数与向量相乘,得到一个新的向量,其长度与原向量的长度相乘,方向与原向量相同或相反。
点乘法是指两个向量进行点乘,得到一个实数结果,其大小等于两个向量的长度相乘再乘以它们的夹角的余弦值,方向与夹角为锐角的原向量相同,为钝角时与原向量相反。
向量代数的运算法则包括交换律、结合律和分配律。
接下来,我们来了解一下空间解析几何的基本内容。
空间解析几何主要研究三维空间中的点、直线和平面的位置关系和几何性质。
其中,点是空间中没有大小、没有方向的对象,用坐标表示。
直线是由无数个点组成的无限延伸的几何对象,可以通过两点确定一条直线,也可以通过点和方向向量确定一条直线。
平面是由无数个点组成的无限延伸的几何对象,可以通过三个点确定一个平面,也可以通过点和法向量确定一个平面。
空间解析几何要求我们掌握点与点之间的距离、点与直线之间的关系、直线与直线之间的关系、点与平面之间的关系、直线与平面之间的关系等内容。
对于这些关系,我们可以通过向量的性质和运算进行解决。
在向量代数与空间解析几何中,还有一些重要的概念与定理需要了解。
例如,向量的模长是指向量的长度,可以通过向量的坐标和勾股定理求得。
向量的单位向量是指长度为1的向量,可以通过将向量的坐标除以其模长得到。
空间解析几何知识点
, , }
二、向量的运算
定义
坐标表示
备注
向量的数量积
向量的向量积
方向与 、 都垂直,且 、 与 成右手系
=
与 平行
三、几类常见的二次曲面及其标准方程
曲面名称
方程
旋转曲面
曲线 绕 轴旋转构成
绕 轴旋转构成
球面
,半径 ,球心
椭球面
, 为椭球面的半径
圆柱面
, ,
椭圆柱面
, ,
抛物柱面
, ; , ; , ( 为正数)
空间解析几何知识点
第七章空间解析几何与向量代数
一、向量的有关定义和性质
定义
坐标表示
备注
向量
(矢量)
具有大小和方向的量
将 的起点放原点,其终点坐标为 ,则 =
=
①向量:
②零向量:
③设
,
则
向量
的模
向量的大小(或长度)
设 , 则
向量的方向余弦
设 与三坐标轴正向的夹角为 、 、 ,则 、 、 为 的方向余弦
五、直线的表示
方程的形式
相关系数的意义
参数式方程
为直线上一点, 为直线的方向向量
标准方程(对称式)
同上
一般式方程
直线的方向向量为
两点式方程
, 为直线上两点,直线的方向向量为
双曲柱面
, , ( 为正数)
圆锥面
,由直线 或 绕 轴旋转而成
椭圆抛物面
, , ( 为正数)
双曲抛物面
, , ( 为正数)
单叶双曲面
, ,
双叶双曲面
,
四、平面的表示
方程的形式
相关系数的意义
空间解析几何与向量代数知识点总结
空间解析几何与向量代数知识点总结
以下是空间解析几何与向量代数的一些重要知识点总结:
1.三维坐标系:空间解析几何中,我们使用三维坐标系来描述点的位置。
常见的三维坐标系有直角坐标系和球坐标系。
2.点、向量和直线:点是空间中的一个位置,向量是由起点和终点确定的有方向的线段。
直线是空间中一组满足某种几何性质的点的集合。
3.向量的表示和运算:向量可以用坐标表示,常见的表示方法有行向量和列向量。
向量的运算包括加法、减法、数量乘法、点乘和叉乘等。
4.向量的长度和方向:向量的长度可以用模长表示,方向可以用单位向量表示。
单位向量是长度为1的向量,可以通过将向量除以其模长得到。
5.平面和曲面:平面是空间中一组满足某种几何性质的点的集合,可以用法向量和一个过点的向量表示。
曲面是空间中一组满足某种几何性质的点的集合。
6.点到直线和点到平面的距离:点到直线的距离可以通过求取点到直线的垂直距离得到,点到平面的距离可以通过求取点到平面的垂直距离得到。
7.向量的线性相关性和线性独立性:向量的线性相关性表示向量之间存在线性关系,线性独立性表示向量之间不存在线性关系。
8.平面的交线和平面的夹角:两个平面的交线是同时在两个平面上的点的集合,平面的夹角是两个平面的法向量之间的夹角。
9.点积和叉积的应用:点积可以用来计算向量的夹角和投影,叉积可以用来计算向量的长度、面积和法向量。
10.直线和平面的方程:直线可以用参数方程和对称方程表示,平面可以用点法式方程和一般式方程表示。
大学数学微积分第七章 向量代数与空间解析几何平面与直线知识点总结
第七章 向量代数与空间解析几何§7.2 平面与直线一、 空间解析几何1 空间解析几何研究的基本问题。
(1)已知曲面(线)作为点的几何轨迹,建立这曲面(线)的方程, (2)已知坐标x ,y 和z 间的一个方程(组),研究这方程(组)所表示的曲面(线)。
2 距离公式 空间两点()111,,A x y z 与()222,,B x y z 间的距离d 为d =3 定比分点公式(),,M x y z 是AB 的分点:AMMBλ=,点A,B 的坐标为()111,,A x y z ,()222,,B x y z ,则 121x x x λλ+=+,121y y y λλ+=+,121z z z λλ+=+ 当M 为中点时, 122x x x +=,122y y y +=,122z zz += 二、平面及其方程。
1 法向量: 与平面π垂直的非零向量,称为平面π的法向量,通常记成n 。
对于给定的平面π,它的法向量有无穷多个,但它所指的方向只有两个。
2 点法式方程: 已知平面π过()000,,M x y z 点,其法向量n ={A,B,C},则平面π的方程为 ()()()0000A x x B y y C z z -+-+-= 或()00n r r ⋅-=其中 {}{}0000,,,,,r x y z r x y z ==3 一般式方程:0Ax By Cz D +++=其中A, B, C 不全为零. x, y, z 前的系数表示π的法线方向数,n ={A,B,C}是π的法向量 特别情形: 0Ax By Cz ++=,表示通过原点的平面。
0Ax By D ++=,平行于z 轴的平面。
0Ax D +=,平行yOz 平面的平面。
x =0表示yOz 平面。
4 三点式方程:设()111,,A x y z ,()222,,B x y z ,()333,,C x y z 三点不在一条直线上。
则通过A,B,C 的平面方程为: 1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 5 平面束:设直线L 的一般式方程为1111222200A x B y C z D A x B y C z D +++=⎧⎨+++=⎩,则通过L的所有平面方程为1K ()1111A xB yC zD ++++2K ()22220A x B y C z D +++=,其中()()12,0,0k k ≠6 有关平面的问题两平面为 1π:11110A x B y C z D +++= 2π:22220A x B y C z D +++=7 设平面π的方程为0Ax By Cz D +++=,而点()111,,M x y z 为平面π外的一点,则M 到平面π的距离d : d =三 直线及其方程1 方向向量:与直线平行的非零向量S ,称为直线L 的方向向量。