模拟电路知识点复习总结复习过程
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在本征半导体中掺入某些微量元素作为杂质, 可使半导体的导电性发生显著变化。掺入的杂质 主要是三价或五价元素。掺入杂质的本征半导体 称为杂质半导体。
N型半导体——掺入五价杂质元素(如磷)的 半导体。
P型半导体——掺入三价杂质元素(如硼)的半 导体。
3.2.1 载流子的漂移与扩散
漂移运动: 由电场作用引起的载流子的运动称为漂移运动。
o
u+ - u-
-Uo(sat)
理想运算放大器
理想运放及其分析依据
1)开环电压放大倍数 Auo→∞ 理想化条件: 2)差模输入电阻 rid→∞
3)开环输出电阻 ro→0 4)共模抑制比 KCMRR→∞
+
+
Vp
-
-
vN
+
-
+
Avo(vp-vN)
-
vo
理想运算放大器的特性
理想运算放大器具有“虚短”和“虚断”的特性, 这两个特性对分析线性运用的运放电路十分有用。为 了保证线性运用,运放必须在闭环(负反馈)下工作。
RS ii
uS
ui
信号源 输入端
Ri
Au
输出端
输入电阻:
Ri=ui / ii
一般来说, Ri越大越好。 (1)Ri越大,ii就越小,从信号源索取的电流越小。 (2)当信号源有内阻时, Ri越大, ui就越接近uS。
3. 输出电阻Ro——从放大电路输出端看进 去的等效电阻。决定了放大电路带负载的能力。
iD /mA
V (BR) IS
反 向
反向特性 O
正向特性 Vth uD /V
Vth = 0.5 V (硅管) 0.1 V (锗管)
其中
IS ——反向饱和电流 VT ——温度的电压当量
且在常温下(T=300K)
VT
=
kT q
= 0.026V
= 26mV
PN结的伏安特性
3.2.4 PN结的反向击穿
当PN结的反向电压 增加到一定数值时,反 向电流突然快速增加, 此现象称为PN结的反向 击穿。
热击穿——不可逆
雪崩击穿 齐纳击穿
电击穿——可逆
3.3.2 二极管的伏安特性
一、PN 结的伏安方程
iD = IS (euD /nVT 1)
反向饱和电流 10-8---10-14A
温度的 电压当量
玻尔兹曼常数 1.38*10-23J/K
VT
=
kT q
电子电量
当 T = 300(27C):
VT = 26 mV
二、二极管的伏安特性
0 V Vth iD = 0
内电场阻止多子扩散
最后,多子的扩散和少子的漂移达到动态平衡。
3.2.3 PN结的单向导电性
PN结加正向电压时,呈现低电阻, 具有较大的正向扩散电流;
PN结加反向电压时,呈现高电阻, 具有很小的反向漂移电流。
由此可以得出结论:PN结具有单向 导电性。
PN结V-I 特性表达式
iD = IS (evD /VT 1)
f
通频带: fBW=fH–fL
第二章 运算放大器
主讲: 胡仕刚
湖南科技大学信息与电气工程学院
开环电压放大倍数高(104-107); 输入电阻高(约几百KΩ); 输出电阻低(约几百Ω); 漂移小、可靠性高、体积小、重量轻、价格低 。
电压传输特性 Vo=Avo(vp-vN)
+Uo(sat)
理想特性 实际特性
扩散运动: 由载流子浓度差引起的载流子的运动称为扩散运动。
3.2.2 PN结形成
在一块本征半导体两侧通过扩散不同的杂质,分 别形成N型半导体和P型半导体。此时将在N型半 导体和P型半导体的结合面上形成如下物理过程:
因浓度差
多子的扩散运动 由杂质离子形成空间电荷区
空间电荷区形成内电场
内电场促使少子漂移
根据放大电路输入信号的条件和对输出信号的要求,放大器 可分为四种类型,所以有四种放大倍数的定义。
(1)电压放大倍数定义为: (2)电流放大倍数定义为: (3)互阻增益定义为: (4)互导增益定义为:
AU=UO/UI
AI=IO/II
Ar=UO/II Ag=IO/UI
2. 输入电阻Ri——从放大电路输入端看进去的等效电 阻,决定Βιβλιοθήκη Baidu放大电路从信号源吸取信号幅值的大小。
输出端
uS ~
Au
Ro
输出端
u’o
输出电阻的定义:
.
Ro
=
U’o
.
I’o
RL =∞ ,
US =0
输出电阻是表明放大电路带负载的能力,Ro越小,放 大电路带负载的能力越强,反之则差。
4. 通频带 A
Am 0.7Am
放大倍数随频率 变化曲线——幅 频特性曲线
3dB带宽
fL 下限截 止频率
上限截 fH 止频率
(1)虚短
由于运放的电压放大倍数很大,而运放的输出电 压是有限的,一般在10 V~14 V。因此运放的差模输入 电压不足1 mV,两输入端近似等电位,相当于 “短 路”。开环电压放大倍数越大,两输入端的电位越接 近相等。
“虚短”是指在分析运算放大器处于线性状态时, 可把两输入端视为等电位,这一特性称为虚假短路,简 称虚短。显然不能将两输入端真正短路。
模拟电路知识体系
• 总的来说就是以三极管为核心,以集成运放为主 线。
• 集成运放内部主要组成单元是差分输入级、电压 放大级、功率放大级、偏置电路。
• 集成运放的两个不同工作状态:线性和非线性应 用。
• 模拟电路主要就是围绕集成运放的内部结构、外 部特性及应用、性能改善、工作电源产生、信号 源产生等展开。
(2)虚断
由于运放的差模输入电阻很大,一般都在1 M 以上。因此流入运放输入端的电流往往不足1 A, 远小于输入端外电路的电流。故通常可把运放的两 输入端视为开路,且输入电阻越大,两输入端越接 近开路。 “虚断”是指在分析运放处于线性状态时, 可以把两输入端视为等效开路,这一特性称为虚假 开路,简称虚断。显然不能将两输入端真正断路。
下面举两个例子说明虚短和虚断的运用。
几种常见的基本运算电路
• 反相比例运算 • 同相比例运算 • 电压跟随器 • 加法电路 • 减法电路 • 积分电路
3.1 半导体的基本知识 3.2 PN结的形成及特性 3.3 半导体二极管 3.4 二极管基本电路及其分析方法 3.5 特殊二极管
3.1.4 杂质半导体
第一章 绪 论
主讲: 胡仕刚
湖南科技大学信息与电气工程学院
1.2 放大电路基本知识
一、放大电路的表示方法
放大电路主要用于放大微弱的电信号,输出电压或电流 在幅度上得到了放大。放大电路为双口网络,即一个信号 输入口和一个信号输出口。
1.3 放大电路的主要技术性能指 标
1.放大倍数(增益)——表征放大器的放大能力
N型半导体——掺入五价杂质元素(如磷)的 半导体。
P型半导体——掺入三价杂质元素(如硼)的半 导体。
3.2.1 载流子的漂移与扩散
漂移运动: 由电场作用引起的载流子的运动称为漂移运动。
o
u+ - u-
-Uo(sat)
理想运算放大器
理想运放及其分析依据
1)开环电压放大倍数 Auo→∞ 理想化条件: 2)差模输入电阻 rid→∞
3)开环输出电阻 ro→0 4)共模抑制比 KCMRR→∞
+
+
Vp
-
-
vN
+
-
+
Avo(vp-vN)
-
vo
理想运算放大器的特性
理想运算放大器具有“虚短”和“虚断”的特性, 这两个特性对分析线性运用的运放电路十分有用。为 了保证线性运用,运放必须在闭环(负反馈)下工作。
RS ii
uS
ui
信号源 输入端
Ri
Au
输出端
输入电阻:
Ri=ui / ii
一般来说, Ri越大越好。 (1)Ri越大,ii就越小,从信号源索取的电流越小。 (2)当信号源有内阻时, Ri越大, ui就越接近uS。
3. 输出电阻Ro——从放大电路输出端看进 去的等效电阻。决定了放大电路带负载的能力。
iD /mA
V (BR) IS
反 向
反向特性 O
正向特性 Vth uD /V
Vth = 0.5 V (硅管) 0.1 V (锗管)
其中
IS ——反向饱和电流 VT ——温度的电压当量
且在常温下(T=300K)
VT
=
kT q
= 0.026V
= 26mV
PN结的伏安特性
3.2.4 PN结的反向击穿
当PN结的反向电压 增加到一定数值时,反 向电流突然快速增加, 此现象称为PN结的反向 击穿。
热击穿——不可逆
雪崩击穿 齐纳击穿
电击穿——可逆
3.3.2 二极管的伏安特性
一、PN 结的伏安方程
iD = IS (euD /nVT 1)
反向饱和电流 10-8---10-14A
温度的 电压当量
玻尔兹曼常数 1.38*10-23J/K
VT
=
kT q
电子电量
当 T = 300(27C):
VT = 26 mV
二、二极管的伏安特性
0 V Vth iD = 0
内电场阻止多子扩散
最后,多子的扩散和少子的漂移达到动态平衡。
3.2.3 PN结的单向导电性
PN结加正向电压时,呈现低电阻, 具有较大的正向扩散电流;
PN结加反向电压时,呈现高电阻, 具有很小的反向漂移电流。
由此可以得出结论:PN结具有单向 导电性。
PN结V-I 特性表达式
iD = IS (evD /VT 1)
f
通频带: fBW=fH–fL
第二章 运算放大器
主讲: 胡仕刚
湖南科技大学信息与电气工程学院
开环电压放大倍数高(104-107); 输入电阻高(约几百KΩ); 输出电阻低(约几百Ω); 漂移小、可靠性高、体积小、重量轻、价格低 。
电压传输特性 Vo=Avo(vp-vN)
+Uo(sat)
理想特性 实际特性
扩散运动: 由载流子浓度差引起的载流子的运动称为扩散运动。
3.2.2 PN结形成
在一块本征半导体两侧通过扩散不同的杂质,分 别形成N型半导体和P型半导体。此时将在N型半 导体和P型半导体的结合面上形成如下物理过程:
因浓度差
多子的扩散运动 由杂质离子形成空间电荷区
空间电荷区形成内电场
内电场促使少子漂移
根据放大电路输入信号的条件和对输出信号的要求,放大器 可分为四种类型,所以有四种放大倍数的定义。
(1)电压放大倍数定义为: (2)电流放大倍数定义为: (3)互阻增益定义为: (4)互导增益定义为:
AU=UO/UI
AI=IO/II
Ar=UO/II Ag=IO/UI
2. 输入电阻Ri——从放大电路输入端看进去的等效电 阻,决定Βιβλιοθήκη Baidu放大电路从信号源吸取信号幅值的大小。
输出端
uS ~
Au
Ro
输出端
u’o
输出电阻的定义:
.
Ro
=
U’o
.
I’o
RL =∞ ,
US =0
输出电阻是表明放大电路带负载的能力,Ro越小,放 大电路带负载的能力越强,反之则差。
4. 通频带 A
Am 0.7Am
放大倍数随频率 变化曲线——幅 频特性曲线
3dB带宽
fL 下限截 止频率
上限截 fH 止频率
(1)虚短
由于运放的电压放大倍数很大,而运放的输出电 压是有限的,一般在10 V~14 V。因此运放的差模输入 电压不足1 mV,两输入端近似等电位,相当于 “短 路”。开环电压放大倍数越大,两输入端的电位越接 近相等。
“虚短”是指在分析运算放大器处于线性状态时, 可把两输入端视为等电位,这一特性称为虚假短路,简 称虚短。显然不能将两输入端真正短路。
模拟电路知识体系
• 总的来说就是以三极管为核心,以集成运放为主 线。
• 集成运放内部主要组成单元是差分输入级、电压 放大级、功率放大级、偏置电路。
• 集成运放的两个不同工作状态:线性和非线性应 用。
• 模拟电路主要就是围绕集成运放的内部结构、外 部特性及应用、性能改善、工作电源产生、信号 源产生等展开。
(2)虚断
由于运放的差模输入电阻很大,一般都在1 M 以上。因此流入运放输入端的电流往往不足1 A, 远小于输入端外电路的电流。故通常可把运放的两 输入端视为开路,且输入电阻越大,两输入端越接 近开路。 “虚断”是指在分析运放处于线性状态时, 可以把两输入端视为等效开路,这一特性称为虚假 开路,简称虚断。显然不能将两输入端真正断路。
下面举两个例子说明虚短和虚断的运用。
几种常见的基本运算电路
• 反相比例运算 • 同相比例运算 • 电压跟随器 • 加法电路 • 减法电路 • 积分电路
3.1 半导体的基本知识 3.2 PN结的形成及特性 3.3 半导体二极管 3.4 二极管基本电路及其分析方法 3.5 特殊二极管
3.1.4 杂质半导体
第一章 绪 论
主讲: 胡仕刚
湖南科技大学信息与电气工程学院
1.2 放大电路基本知识
一、放大电路的表示方法
放大电路主要用于放大微弱的电信号,输出电压或电流 在幅度上得到了放大。放大电路为双口网络,即一个信号 输入口和一个信号输出口。
1.3 放大电路的主要技术性能指 标
1.放大倍数(增益)——表征放大器的放大能力