柯西不等式另两种形式的应用

合集下载

柯西不等式各种形式的证明及其应用(一)

柯西不等式各种形式的证明及其应用(一)

柯西不等式各种形式的证明及其应用(一)柯西不等式各种形式的证明及其应用1. 柯西不等式的原始形式证明•柯西不等式的原始形式为:对任意的实数序列a1,a2,...,a n和b1,b2,...,b n,有下列不等式成立:(a1b1+a2b2+...+a n b n)2≤(a12+a22+...+a n2)(b12+b22+...+b n2)•证明思路:1.定义辅助函数f(t)=(a1t+a2t+...+a n t)2−(a12t2+a22t2+...+a n2t2)。

2.利用二次函数的性质证明f(t)≥0,即可得到柯西不等式的原始形式。

2. 柯西不等式的向量形式证明•柯西不等式的向量形式为:对任意的n维向量a=[a1,a2,...,a n]和b=[b1,b2,...,b n],有下列不等式成立:|a⋅b|2≤∥a∥2⋅∥b∥2•证明思路:1.将n维向量a和b表示为列向量形式。

2. 利用矩阵转置、乘法和内积的定义证明不等式成立。

3. 柯西不等式的积分形式证明• 柯西不等式的积分形式为:对任意的可积函数f (x )和g (x ),有下列不等式成立:|∫f b a (x )g (x )dx|2≤∫|f (x )|2b a dx ⋅∫|g (x )|2ba dx• 证明思路:1. 构造辅助函数ℎ(t )=∫(f (t )x +g (t ))2b a dt −∫|f (t )|2badt ⋅∫|g (t )|2b a dt 。

2. 利用积分和函数的性质证明ℎ(t )≥0,即可得到柯西不等式的积分形式。

应用一:线性代数中的向量内积• 柯西不等式可以用于证明向量内积的性质。

• 例如,在证明向量的模长定义中,可以利用柯西不等式证明模长的非负性。

• 另外,柯西不等式也广泛应用于线性代数中的向量正交、投影等问题。

应用二:凸函数的判定• 柯西不等式可以用于判定函数的凸性。

•若函数f(x)在区间[a,b]上满足柯西不等式中的积分形式,即″(x)dx≥0,则f(x)为该区间上的凸函数。

思维拓展 柯西不等式与权方和不等式的应用(新高考通用)学生版--2025届新高考数学一轮复习

思维拓展 柯西不等式与权方和不等式的应用(新高考通用)学生版--2025届新高考数学一轮复习

思维拓展 柯西不等式与权方和不等式(精讲+精练)一、知识点梳理一、柯西不等式1.二维形式的柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2(a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)2.二维形式的柯西不等式的变式(1)a 2+b 2⋅c 2+d 2≥ac +bd (a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)(2)a 2+b 2⋅c 2+d 2≥ac +bd (a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)(3)(a +b )(c +d )≥(ac +bd )2(a ,b ,c ,d ≥0,当且仅当ad =bc 时,等号成立.)3.扩展:a 21+a 22+a 23+⋯+a 2n b 21+b 22+b 23+⋯+b 2n ≥(a 1b 1+a 2b 2+a 3b 3+⋯+a n b n )2,当且仅当a 1:b 1=a 2:b 2=⋯=a n :b n 时,等号成立.注:有条件要用;没有条件,创造条件也要用.比如,对a 2+b 2+c 2,并不是不等式的形状,但变成13•12+12+12 •a 2+b 2+c 2 就可以用柯西不等式了.二、权方和不等式权方和不等式:若a ,b ,x ,y >0,则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by 时,等号成立.证明1:∵a ,b ,x ,y >0要证a 2x +b 2y ≥(a +b )2x +y 只需证ya 2+xb 2xy ≥(a +b )2x +y即证xya 2+y 2a 2+x 2b 2+xyb 2≥xya 2+2xyab +xyb 2故只要证y 2a 2+x 2b 2≥2xyab (ya −xb )2≥0当且仅当ya −xb =0时,等号成立即a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by时,等号成立.证明2:对柯西不等式变形,易得a 2x +b 2y(x +y )≥(a +b )2在a ,b ,x ,y >0时,就有了a 2x +b 2y ≥(a +b )2x +y当a x =by时,等号成立.推广1:a 2x +b 2y +c 2z ≥(a +b +c )2x +y +z ,当a x =b y =c z时,等号成立.2025届新高考数学一轮复习推广:2:若a i >0,b i >0,则a 21b 1+a 22b 2+⋯+a 2nb n ≥(a 1+a 2+⋯+a n )2b 1+b 2+⋯+b n,当a i =λb i 时,等号成立.推广3:若a i >0,b i >0,m >0,则a m +11b m 1+a m +12b m 2+⋯+a m +1nb m n≥(a 1+a 2+⋯+a n )m +1b 1+b 2+⋯+b nm,当a i =λb i 时,等号成立.二、题型精讲精练1实数x 、y 满足x 2+y 2=4,则x +y 的最大值是.2设x ,y ,z ∈R ,且x +y +z =1.(1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.3已知a >1,b >12,且2a +b =3,则1a -1+12b -1的最小值为()A.1B.92C.9D.12【题型训练-刷模拟】1.柯西不等式一、单选题4(2024·全国·模拟预测)柯西不等式最初是由大数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的.而后来有两位数学家Buniakowsky 和Schwarz 彼此独立地在积分学中推而广之,才能将这一不等式应用到近乎完善的地步.该不等式的三元形式如下:对实数 a 1,a 2,a 3 和 b 1,b 2,b 3 ,有a 21+a 22+a 23 b 21+b 22+b 23 ≥a 1b 1+a 2b 2+a 3b 3 2等号成立当且仅当a 1b 1=a 2b 2=a3b 3已知 x 2+y 2+z 2=14 ,请你用柯西不等式,求出 x +2y +3z 的最大值是()A.14B.12C.10D.85(23-24高二下·山东烟台·阶段练习)已知空间向量OA =1,12,0 ,OB =1,2,0 ,OC =0,1,12,OP =xOA +yOB +zOC ,且x +2y +z =2,则OP 的最小值为()A.2B.3C.2D.4二、填空题6(2024·山西·二模)柯西不等式是数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的一个重要不等式,而柯西不等式的二维形式是同学们可以利用向量工具得到的:已知向量a=x 1,y 1 ,b =x 2,y 2 ,由a ⋅b ≤a b 得到x 1x 2+y 1y 2 2≤x 21+y 21 x 22+y 22 ,当且仅当x 1y 2=x 2y 1时取等号.现已知a ≥0,b ≥0,a +b =9,则2a +4+b +1的最大值为.7(22-23高二下·浙江·阶段练习)已知x 2+y 2+z 2=1,a +3b +6c =16,则x -a 2+y -b 2+z -c 2的最小值为.8(22-23高一·全国·课堂例题)若不等式x +y ≤k 5x +y 对任意正实数x ,y 都成立,则实数k 的最小值为.9(22-23高三上·河北衡水·期末)若⊙C :x -a 2+y -b 2=1,⊙D :x -6 2+y -8 2=4,M ,N 分别为⊙C ,⊙D 上一动点,MN 最小值为4,则3a +4b 取值范围为.10已知正实数a ,b ,c ,d 满足a +b +c +d =1,则1a +b +c +1b +c +d +1c +d +a +1d +a +b的最小值是.三、解答题11(2024·四川南充·三模)若a ,b 均为正实数,且满足a 2+b 2=2.(1)求2a +3b 的最大值;(2)求证:4≤a 3+b 3 a +b ≤92.12(2024·四川·模拟预测)已知a ,b ,c 均为正实数,且满足9a +4b +4c =4.(1)求1a +1100b-4c 的最小值;(2)求证:9a 2+b 2+c 2≥1641.13(2024高三·全国·专题练习)已知实数a,b,c满足a+b+c=1.(1)若2a2+b2+c2=12,求证:0≤a≤2 5;(2)若a,b,c∈0,+∞,求证:a21-a +b21-b+c21-c≥12.2.权方和不等式一、填空题14已知x>-1,y>0且满足x+2y=1,则1x+1+2y的最小值为.15已知x>0,y>0,且x+y=1则x2x+2+y2y+1的最小值是.16已知a>0,b>0,且2a+2+1a+2b=1,则a+b的最小值是.17(23-24高一上·辽宁沈阳·阶段练习)权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a,b,x,y>0,则a2x+b2y≥(a+b)2x+y,当且仅当ax=by时等号成立.根据权方和不等式,函数f x =2x+91-2x0<x<12的最小值.18(2023高三·全国·专题练习)已知正数x,y,z满足x+y+z=1,则x2y+2z+y2z+2x+z2x+2y的最小值为19(2023高三·全国·专题练习)已知x+2y+3z+4u+5v=30,求x2+2y2+3z2+4u2+5v2的最小值为20(2023高三·全国·专题练习)已知θ为锐角,则1sinθ+8cosθ的最小值为.21(2023高三·全国·专题练习)已知正实数x、y且满足x+y=1,求1x2+8y2的最小值.22(2024高三·全国·专题练习)已知a>1,b>1,则a2b-1+b2a-1的最小值是.23(2023高三·全国·专题练习)已知实数x,y满足x>y>0,且x+y=2,M=3x+2y+12x-y的最小值为.24(2024高三·全国·专题练习)已知x,y>0,1x+22y=1,则x2+y2的最小值是.25(2023高三·全国·专题练习)已知正数x,y满足4x+9y=1,则42x2+x+9y2+y的最小值为。

柯西不等式的3种变式及其应用

柯西不等式的3种变式及其应用

柯西不等式的3种变式及其应用
柯西不等式证明可以用构造法、数形结合法等。

柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。

柯西不等式:ai,bi∈r,求
证:(a1^2+a2^2+...+an^2)*(b1^2+b2^2+...+bn^2)≥(a1*b1+a2*b2+...+an*bn)^2。

结构法,结构n佩向量:α=(a1,a2,...,an),β=(b1,b2,...,bn),

√(a1^2+a2^2+...+an^2)*√(b1^2+b2^2+...+bn^2)=|α|*|β|≥|α|*|β|*cos\ucα,β\ue=α*β=a1*b1+a2*b2+...+an*bn,
两边同时平方得:
(a1^2+a2^2+...+an^2)*(b1^2+b2^2+...+bn^2)≥(a1*b1+a2*b2+...+an*bn)^2。

还有其他方法:数形结合法:
柯西不等式的公理化读法就是:记两列数分别就是ai, bi,则存有
(∑ai^2) * (∑bi^2) ≥ (∑ai * bi)^2
我们令f(x) = ∑(ai + x * bi)^2
= (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)
则我们晓得恒存有
f(x) ≥ 0
用二次函数并无实根或只有一个实根的条件,就存有
δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0
移项获得结论。

柯西不等式的变形及应用

柯西不等式的变形及应用

柯西不等式的变形及应用
柯西不等式是一种乘积与和的比较,由法国数学家Augustin Louis Cauchy在19世纪中叶首次提出,因此被称为柯西不等式:
若a,b,c∈R,则有:ab+bc+ca≥3abc
柯西不等式可以进行多种变形,其中,将a,b,c分别替换成正实数x,y,z,可以得到更一般形式的柯西不等式,即:
若x,y,z∈R,则有:xy+yz+zx≥xyz
另外,把x,y,z分别替换成实数α,β,γ,和实数N,可以得到一种特殊形式,即:
若α,β,γ,N∈R,且N≤0,则有:αβ+βγ+γα≤Nαβγ
柯西不等式有广泛的应用,在几何学、代数学、微积分等数学领域均有深入的研究。

例如,可以使用柯西不等式来证明三角形的内角和大于180˚;在概率论中,可以使用柯西不等式来证明伯努利定理,即在两次独立事件中,发生任意一次事件的概率大于等于发生两次事件的概率;在算法学中,可以使用柯西不等式来证明Karush-Kuhn-Tucker条件的有效性;此外,柯西不等式还可以用于证明几何问题的精确性,解决拓扑学问题,以及最优化问题等。

思维拓展 柯西不等式与权方和不等式的应用(新高考通用)解析版

思维拓展 柯西不等式与权方和不等式的应用(新高考通用)解析版

思维拓展 柯西不等式与权方和不等式(精讲+精练)一、知识点梳理一、柯西不等式1.二维形式的柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2(a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)2.二维形式的柯西不等式的变式(1)a 2+b 2⋅c 2+d 2≥ac +bd (a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)(2)a 2+b 2⋅c 2+d 2≥ac +bd (a ,b ,c ,d ∈R ,当且仅当ad =bc 时,等号成立.)(3)(a +b )(c +d )≥(ac +bd )2(a ,b ,c ,d ≥0,当且仅当ad =bc 时,等号成立.)3.扩展:a 21+a 22+a 23+⋯+a 2n b 21+b 22+b 23+⋯+b 2n ≥(a 1b 1+a 2b 2+a 3b 3+⋯+a n b n )2,当且仅当a 1:b 1=a 2:b 2=⋯=a n :b n 时,等号成立.注:有条件要用;没有条件,创造条件也要用.比如,对a 2+b 2+c 2,并不是不等式的形状,但变成13•12+12+12 •a 2+b 2+c 2 就可以用柯西不等式了.二、权方和不等式权方和不等式:若a ,b ,x ,y >0,则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by 时,等号成立.证明1:∵a ,b ,x ,y >0要证a 2x +b 2y ≥(a +b )2x +y 只需证ya 2+xb 2xy ≥(a +b )2x +y即证xya 2+y 2a 2+x 2b 2+xyb 2≥xya 2+2xyab +xyb 2故只要证y 2a 2+x 2b 2≥2xyab (ya −xb )2≥0当且仅当ya −xb =0时,等号成立即a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by时,等号成立.证明2:对柯西不等式变形,易得a 2x +b 2y(x +y )≥(a +b )2在a ,b ,x ,y >0时,就有了a 2x +b 2y ≥(a +b )2x +y当a x =by时,等号成立.推广1:a 2x +b 2y +c 2z ≥(a +b +c )2x +y +z ,当a x =b y =c z时,等号成立.推广:2:若a i >0,b i >0,则a 21b 1+a 22b 2+⋯+a 2nb n ≥(a 1+a 2+⋯+a n )2b 1+b 2+⋯+b n,当a i =λb i 时,等号成立.推广3:若a i >0,b i >0,m >0,则a m +11b m 1+a m +12b m 2+⋯+a m +1nb m n≥(a 1+a 2+⋯+a n )m +1b 1+b 2+⋯+b nm,当a i =λb i 时,等号成立.二、题型精讲精练1实数x 、y 满足x 2+y 2=4,则x +y 的最大值是.解:x 2+y 2 12+12 ≥x +y 2,则8≥x +y 2所以x +y ≤22,当且仅当x =y =2时等号成立.答案:222设x ,y ,z ∈R ,且x +y +z =1.(1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.【分析】(1)根据条件x +y +z =1,和柯西不等式得到(x -1)2+(y +1)2+(z +1)2≥43,再讨论x ,y ,z 是否可以达到等号成立的条件.(2)恒成立问题,柯西不等式等号成立时构造的x ,y ,z 代入原不等式,便可得到参数a 的取值范围.【详解】(1)[(x -1)2+(y +1)2+(z +1)2](12+12+12)≥[(x -1)+(y +1)+(z +1)]2=(x +y +z +1)2=4故(x -1)2+(y +1)2+(z +1)2≥43等号成立当且仅当x -1=y +1=z +1而又因x +y +z =1,解得x =53y =-13z =-13时等号成立,所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)因为(x -2)2+(y -1)2+(z -a )2≥13,所以[(x -2)2+(y -1)2+(z -a )2](12+12+12)≥1.根据柯西不等式等号成立条件,当x -2=y -1=z -a ,即x =2-a +23y =1-a +23z =a -a +23 时有[(x -2)2+(y -1)2+(z -a )2](12+12+12)=(x -2+y -1+z -a )2=(a +2)2成立.所以(a +2)2≥1成立,所以有a ≤-3或a ≥-1.3已知a >1,b >12,且2a +b =3,则1a -1+12b -1的最小值为()A.1B.92C.9D.12【详解】因为2a +b =3,所以4a +2b =6由权方和不等式a 2x +b 2y ≥(a +b )2x +y可得1a -1+12b -1=44a -4+12b -1=224a -4+122b -1≥2+1 24a -4+2b -1=9当且仅当24a -4=12b -1,即a =76,b =23时,等号成立.【答案】C【题型训练-刷模拟】1.柯西不等式一、单选题4(2024·全国·模拟预测)柯西不等式最初是由大数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的.而后来有两位数学家Buniakowsky 和Schwarz 彼此独立地在积分学中推而广之,才能将这一不等式应用到近乎完善的地步.该不等式的三元形式如下:对实数 a 1,a 2,a 3 和 b 1,b 2,b 3 ,有a 21+a 22+a 23 b 21+b 22+b 23 ≥a 1b 1+a 2b 2+a 3b 3 2等号成立当且仅当a 1b 1=a 2b 2=a3b 3已知 x 2+y 2+z 2=14 ,请你用柯西不等式,求出 x +2y +3z 的最大值是()A.14 B.12C.10D.8【答案】A 【分析】利用柯西不等式求出即可.【详解】由题干中柯西不等式可得x +2y +3z 2≤x 2+y 2+z 2 12+22+32 =14×14=196,所以x +2y +3z 的最大值为14,当且仅当x =1,y =2,z =3时取等号.故选:A5(23-24高二下·山东烟台·阶段练习)已知空间向量OA =1,12,0 ,OB =1,2,0 ,OC =0,1,12,OP =xOA +yOB +zOC ,且x +2y +z =2,则OP 的最小值为()A.2B.3C.2D.4【答案】B【分析】由空间向量的坐标表示计算OP =xOA +yOB +zOC ,然后由柯西不等式求解即可.【详解】因为OP =xOA +yOB +zOC =x 1,12,0 +y 1,2,0 +z 0,1,12 =x +y ,12x +2y +z ,12z ,所以OP 2=x +y 2+12x +2y +z 2+12z 2=13x +y 2+12x +2y +z 2+12z 2 1+1+1 ≥13x +y +12x +2y +z +12z2=1332x +3y +32z 2=34x +2y +z 2=3,当且仅当x +y =12x +2y +z =12z 时等号成立,即x =2,y =-1,z =2时等号成立.所以OP ≥3,所以OP 的最小值为 3.故选:B二、填空题6(2024·山西·二模)柯西不等式是数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的一个重要不等式,而柯西不等式的二维形式是同学们可以利用向量工具得到的:已知向量a=x 1,y 1 ,b =x 2,y 2 ,由a ⋅b ≤a b 得到x 1x 2+y 1y 2 2≤x 21+y 21 x 22+y 22 ,当且仅当x 1y 2=x 2y 1时取等号.现已知a ≥0,b ≥0,a +b =9,则2a +4+b +1的最大值为.【答案】6【分析】令x 1=2,y 1=1,x 2=a +2,y 2=b +1,代入公式即可得解.【详解】令x 1=2,y 1=1,x 2=a +2,y 2=b +1,又a ≥0,b ≥0,a +b =9,所以2a +4+b +1 2≤2+1 a +2+b +1 =3×12=36,所以2a +4+b +1≤6,当且仅当2⋅b +1=a +2,即a =6,b =3时取等号,所以2a +4+b +1的最大值为6.故答案为:67(22-23高二下·浙江·阶段练习)已知x 2+y 2+z 2=1,a +3b +6c =16,则x -a 2+y -b 2+z -c 2的最小值为.【答案】9【分析】根据柯西不等式求解最小值即可.【详解】∵a +3b +6c =16≤12+32+6 2a 2+b 2+c 2=4a 2+b 2+c 2∴a 2+b 2+c 2≥4,当且仅当a 1=b 3=c6时等号成立,即a =1,b =3,c =6,∵x -a 2+y -b 2+z -c 2=1-2xa +by +cz +a 2+b 2+c 2≥1-2x 2+y 2+z 2a 2+b 2+c 2+a 2+b 2+c 2=1-2a 2+b 2+c 2+a 2+b 2+c 2=a 2+b 2+c 2-1 2≥9,当且仅当a x =b y =c z 时等号成立,可取x =14,y =34,z =64故答案为:98(22-23高一·全国·课堂例题)若不等式x +y ≤k 5x +y 对任意正实数x ,y 都成立,则实数k的最小值为.【答案】305/1530【分析】运用柯西不等式进行求解即可.【详解】由柯西不等式的变形可知5x +y =x 215+y21≥x +y15+1,整理得x +y5x +y≤305,当且仅当x15=y 1,即y =25x 时等号成立,则k 的最小值为305.故答案为:3059(22-23高三上·河北衡水·期末)若⊙C :x -a 2+y -b 2=1,⊙D :x -6 2+y -8 2=4,M ,N 分别为⊙C ,⊙D 上一动点,MN 最小值为4,则3a +4b 取值范围为.【答案】15,85【分析】先根据MN 的最小值求出CD =7,即a -6 2+b -8 2=49,再使用柯西不等式求出取值范围.【详解】由于MN 最小值为4,圆C 的半径为1,圆D 的半径为2,故两圆圆心距离CD =4+1+2=7,即a -6 2+b -8 2=49,由柯西不等式得:a -6 2+b -8 2 ⋅32+42 ≥3a -6 +4b -8 2,当且仅当a -63=b -84,即a =515,b =685时,等号成立,即3a +4b -50 2≤25×49,解得:15≤3a +4b ≤85.故答案为:15,8510已知正实数a ,b ,c ,d 满足a +b +c +d =1,则1a +b +c +1b +c +d +1c +d +a +1d +a +b的最小值是.【答案】163/513【分析】利用配凑法及柯西不等式即可求解.【详解】由题意可知,1a +b +c +1b +c +d +1c +d +a +1d +a +b=133a +b +c +d ×1a +b +c +1b +c +d +1c +d +a +1d +a +b=13a +b +c +b +c +d +c +d +a +d +a +b ×(1a +b +c +1b +c +d +1c +d +a +1d +a +b)≥131+1+1+1 2=163,当且仅当a =b =c =d =14时取“=”号.所以原式的最小值为163.故答案为:163.三、解答题11(2024·四川南充·三模)若a ,b 均为正实数,且满足a 2+b 2=2.(1)求2a +3b 的最大值;(2)求证:4≤a 3+b 3 a +b ≤92.【答案】(1)26(2)证明见解析【分析】(1)利用柯西不等式直接求解;(2)由分析法转化为求证4≤4+2ab -2a 2b 2≤92,换元后由函数单调性得证.【详解】(1)由柯西不等式得:a 2+b 2 22+32 ≥2a +3b 2,即2a +3b 2≤26,故2a +3b ≤26,当且仅当3a =2ba 2+b 2=2 ,即a =22613b =32613时取得等号,所以2a +3b 的最大值为26.(2)要证:4≤a 3+b 3 a +b ≤92,只需证:4≤a 4+b 4+ab a 2+b 2 ≤92,只需证:4≤a 2+b 2 2+ab a 2+b 2 -2a 2b 2≤92,即证:4≤4+2ab -2a 2b 2≤92,由a ,b 均为正实数,且满足a 2+b 2=2可得2=a 2+b 2≥2ab ,当且仅当a =b 时等号成立,即0<ab ≤1,设ab =t ∈(0,1],则设f t =-2t 2+2t +4,t ∈0,1 ,∵f (x )在0,12 上单调递增,在12,1 上单调递减,又f (0)=f (1)=4,f 12=94,∴4≤f t ≤92,即4≤a 3+b 3 a +b ≤92.12(2024·四川·模拟预测)已知a ,b ,c 均为正实数,且满足9a +4b +4c =4.(1)求1a +1100b-4c 的最小值;(2)求证:9a2+b2+c2≥1641.【答案】(1)12 5(2)证明见解析【分析】(1)结合已知等式,将1a+1100b-4c化为1a+9a+1100b+4b-4,利用基本不等式,即可求得答案;(2)利用柯西不等式,即可证明原不等式.【详解】(1)因为a,b,c均为正实数,9a+4b+4c=4,所以1a+1100b-4c=1a+1100b+9a+4b-4=1a+9a+1100b+4b-4≥21a×9a+21100b ×4b-4=125,当且仅当1a=9a1100b=4b,即a=13,b=120,c=15时等号成立.(2)证明:根据柯西不等式有9a2+b2+c232+42+42≥(9a+4b+4c)2=16,所以9a2+b2+c2≥16 41.当且仅当3a3=b4=c4,即a=441,b=c=1641时等号成立,即原命题得证.13(2024高三·全国·专题练习)已知实数a,b,c满足a+b+c=1.(1)若2a2+b2+c2=12,求证:0≤a≤2 5;(2)若a,b,c∈0,+∞,求证:a21-a +b21-b+c21-c≥12.【答案】(1)证明见解析(2)证明见解析【分析】(1)由题意可得b+c=1-a,又12-2a2=b2+c2,结合基本不等式可得12-2a2≥1-a22,化简求得0≤a≤25,得证;(2)法一,由已知条件得a21-a +1-a4≥2a21-a⋅1-a4=a,同理可得b21-b+1-b4≥b,c21-c+1-c 4≥c,三式相加得证;法二,根据已知条件可得121-a+1-b+1-c=1,所以a21-a+b2 1-b +c21-c=121-a+1-b+1-ca21-a+b21-b+c21-c,利用柯西不等式求解证明.【详解】(1)因为a+b+c=1,所以b+c=1-a.因为2a2+b2+c2=1 2,所以12-2a2=b2+c2≥b+c22=1-a22,当且仅当b=c时等号成立,整理得5a2-2a≤0,所以0≤a≤2 5.(2)解法一:因为a+b+c=1,且a,b,c∈0,+∞,所以1-a>0,1-b>0,1-c>0,所以a21-a+1-a4≥2a21-a⋅1-a4=a,同理可得b21-b+1-b4≥b,c21-c+1-c4≥c,以上三式相加得a21-a+b21-b+c21-c≥54a+b+c-34=12,当且仅当a=b=c=13时等号成立.解法二:因为a+b+c=1,且a,b,c∈0,+∞,所以1-a>0,1-b>0,1-c>0,且121-a+1-b+1-c=1,所以a21-a+b21-b+c21-c=121-a+1-b+1-ca21-a+b21-b+c21-c≥121-a⋅a1-a+1-b⋅b1-b+1-c⋅c1-c2=12a+b+c2=12,当且仅当a=b=c=13时等号成立.2.权方和不等式一、填空题14已知x>-1,y>0且满足x+2y=1,则1x+1+2y的最小值为.【答案】9 2【分析】由x>-1知:x+1>0,为保证分母和为定值,对所求作适当的变形1x+1+2y=1x+1+42y,然后就可以使用权方和不等式了.【解析】1a-2b +4b=1a-2b+123b≥1+122a-2b+3b=14+46(等号成立条件,略).15已知x>0,y>0,且x+y=1则x2x+2+y2y+1的最小值是.【答案】1 4【解析】x2x+2+y2y+1≥x+y2x+y+3=14当xx+2=yy+1,即x=23,y=13时,等号成立.16已知a >0,b >0,且2a +2+1a +2b=1,则a +b 的最小值是.【答案】12+2【解析】1=2a +2+1a +2b ≥2+1 22a +2b +2当2a +2=1a +2b,即a =2,b =12时,等号成立,a +b min =12+2.17(23-24高一上·辽宁沈阳·阶段练习)权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a ,b ,x ,y >0,则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =b y 时等号成立.根据权方和不等式,函数f x =2x +91-2x 0<x <12的最小值.【答案】25【分析】由f x =2x +91-2x =42x +91-2x ,再利用权方和不等式即可得解.【详解】由0<x <12,得1-2x >0,由权方和不等式可得f x =2x +91-2x =42x +91-2x ≥2+3 22x +1-2x=25,当且仅当22x =31-2x ,即x =15时取等号,所以函数f x =2x +91-2x 0<x <12的最小值为25.故答案为:25.18(2023高三·全国·专题练习)已知正数x ,y ,z 满足x +y +z =1,则x 2y +2z +y 2z +2x +z 2x +2y 的最小值为【答案】13【分析】根据权方和不等式可得解.【详解】因为正数x ,y 满足x +y +z =1,所以x 2y +2z +y 2z +2x +z 2x +2y ≥x +y +z 2y +2z +z +2x +x +2y =13,当且仅当x y +2z =y z +2x =z x +2y 即x =y =z =13时取等号.故答案为:13.19(2023高三·全国·专题练习)已知x +2y +3z +4u +5v =30,求x 2+2y 2+3z 2+4u 2+5v 2的最小值为【答案】60【分析】应用权方和不等式即可求解.【详解】x 2+2y 2+3z 2+4u 2+5v 2=x 21+2y 22+3z 23+4u 24+5v 25≥x +2y +3z +4u +5v 21+2+3+4+5=30215=60当且仅当x =y =z =u =v 时取等号故答案为:6020(2023高三·全国·专题练习)已知θ为锐角,则1sin θ+8cos θ的最小值为.【答案】55【分析】利用权方和不等式:b n +1a n +d n +1c n ≥b +d n +1a +cn求解.【详解】1sin θ+8cos θ=132sin 2θ12+432cos 2θ12≥1+432sin 2θ+cos 2θ12=532=55当且仅当1sin 2θ=4cos 2θ即sin θ=55,cos θ=255时取“=”.故答案为:5521(2023高三·全国·专题练习)已知正实数x 、y 且满足x +y =1,求1x 2+8y 2的最小值.【答案】27【分析】设x =cos 2α,y =sin 2α,α∈0,π2 ,由权方和不等式计算可得.【详解】设x =cos 2α,y =sin 2α,α∈0,π2,由权方和不等式,可知1x 2+8y 2=13cos 2α 2+23sin 2α 2≥1+2 3cos 2α+sin 2α2=27,当且仅当1cos 2α=2sin 2α,即x =13,y =23时取等号,所以1x 2+8y 2的最小值为27.故答案为:2722(2024高三·全国·专题练习)已知a >1,b >1,则a 2b -1+b 2a -1的最小值是.【答案】8【分析】利用权方和不等式求解最值即可.【详解】令a +b -2=t >0,则a 2b -1+b 2a -1≥a +b 2a +b -2=t +2 2t =t +4t +4≥24+4=8,当a +b -2=2a b -1=ba -1时,即a =2,b =2时,两个等号同时成立,原式取得最小值8.故答案为:823(2023高三·全国·专题练习)已知实数x ,y 满足x >y >0,且x +y =2,M =3x +2y +12x -y的最小值为.【答案】85/1.6【分析】巧妙运用权方和不等式求解和式的最小值问题,关键是找到所求式的两个分母与题设和式的内在联系.【详解】要求最小值,先来证明权方和不等式,即:∀a >0,b >0,x >0,y >0,有a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =by时取等号.证明:利用柯西不等式:m ,n ,x ,y >0,(m 2+n 2)(x 2+y 2)≥(mx +ny )2,当且仅当m x =ny时取等号,要证a 2x +b 2y ≥(a +b )2x +y ,只须证(x +y )a 2x +b 2y≥(a +b )2,因a >0,b >0,x >0,y >0,则(x +y )a 2x +b 2y =[(x )2+(y )2]ax2+b y2≥x ⋅a x +y ⋅by2=(a +b )2,当且仅当xax=yby时,即a x =by时取等号.不妨令m (x +2y )+(2x -y )=n (x +y ),整理得(m +2)x +(2m -1)y =nx +ny ,则m +2=n 2m -1=n,解得m =3n =5 ,则M =3x +2y +12x -y =93x +6y +12x -y =93x +6y +12x -y=323x +6y +122x -y ≥(3+1)25(x +y )=85,当且仅当33x +6y =12x -y 时等式成立,由33x +6y =12x -y x +y =2解得:x =32y =12,即当x =32,y =12时,M =3x +2y +12x -y 的最小值为85.故答案为:85.24(2024高三·全国·专题练习)已知x ,y >0,1x +22y=1,则x 2+y 2的最小值是.【答案】33【分析】利用权方和不等式求解最值即可.【详解】由题意得,1=1x +22y=132x 212+232y 212≥1+232x 2+y 212=33x 2+y2.(权方和的一般形式为:a m +11b m 1+a m +12b m 2+a m +13b m 3+⋯+a m +1nb m n ≥a 1+a 2+a 3+⋯+a n m +1b 1+b 2+b 3+⋯+b nm,a i >0,b i >0,当且仅当a i =λb i 时等号成立)当1x 2=2y 21x +22y=1,即x =3,y =32时,x 2+y 2取得最小值33.故答案为:3325(2023高三·全国·专题练习)已知正数x ,y 满足4x +9y =1,则42x 2+x +9y 2+y的最小值为【答案】118【分析】运用权方和不等式求和式的最小值,关键在于找到所求和式的两个分母与题设和式之间的联系,满足条件则迅速求解.【详解】要求最小值,先来证明权方和不等式,即:∀a >0,b >0,x >0,y >0,有a 2x +b 2y ≥(a +b )2x +y ,当且仅当ax =by时取等号.证明:利用柯西不等式:m ,n ,x ,y >0,(m 2+n 2)(x 2+y 2)≥(mx +ny )2,当且仅当m x =ny时取等号,要证a 2x +b 2y ≥(a +b )2x +y ,只须证(x +y )a 2x +b 2y≥(a +b )2,因a >0,b >0,x >0,y >0,则(x +y )a 2x +b 2y =[(x )2+(y )2]ax2+b y2≥x ⋅a x +y ⋅by2=(a +b )2,当且仅当xax=yby时,即a x =by时取等号.故由42x 2+x +9y 2+y =4242x 2+x +929y 2+y =42x 28+4x +92y 29+9y ≥4x +9y24x +9y+17=118当且仅当4x8+4x =9y9+9y 时取等号.由4x +9y =14x 8+4x =9y 9+9y,解得:x =172y =17 ,即当x =172,y =17时,42x 2+x +9y 2+y的最小值为118.故答案为:118.。

柯西施瓦茨不等式的应用

柯西施瓦茨不等式的应用

柯西施瓦茨不等式的应用柯西施瓦茨不等式是数学中一种重要的不等式,具有广泛的应用。

它得名于法国数学家柯西和德国数学家施瓦茨,被广泛应用于线性代数、概率论、几何学等多个领域。

本文将介绍柯西施瓦茨不等式的数学表达形式,以及它在不同领域的应用。

一、柯西施瓦茨不等式的数学表达形式柯西施瓦茨不等式的最基本形式如下:对于实数a1, a2, ..., an和b1, b2, ..., bn,有:(a1b1 + a2b2 + ... + anbn)² ≤ (a₁² + a₂² + ... + an²)(b₁² + b₂² + ... + bn²)其中等号成立的条件是两个向量之间存在线性依赖关系。

这一不等式可以用向量的内积来表示,形式如下:|<a, b>|² ≤ <a, a> • <b, b>其中,a和b是n维向量,<a, b>代表a和b的内积。

二、柯西施瓦茨不等式在线性代数中的应用柯西施瓦茨不等式在线性代数中被广泛应用。

其中一个重要的应用是证明向量的正交性。

如果两个向量的内积等于零,那么它们就是正交的。

这可以通过柯西施瓦茨不等式来证明。

另一个应用是证明向量的长度和内积之间的关系。

根据柯西施瓦茨不等式,两个向量的内积的绝对值小于等于两个向量的长度的乘积。

这意味着向量的长度越大,它们之间的内积的绝对值就越大。

三、柯西施瓦茨不等式在概率论中的应用柯西施瓦茨不等式在概率论中也有重要的应用。

在概率论中,两个随机变量的协方差可以通过柯西施瓦茨不等式来估计。

协方差描述了两个随机变量之间的线性关系。

柯西施瓦茨不等式告诉我们,两个随机变量的协方差的绝对值小于等于它们的标准差的乘积。

这为我们估计随机变量之间的相关性提供了一个重要的工具。

四、柯西施瓦茨不等式在几何学中的应用柯西施瓦茨不等式在几何学中也有广泛的应用。

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用
1.柯西不等式的证明:
柯西不等式的最常见的证明是基于构造内积的思路。

假设有两个n维
向量a=(a1,a2,…,an)和b=(b1,b2,…,bn),我们可以定义它们的内积为a·b=a1b1+a2b2+…+anbn。

柯西不等式就是说,对于任意两个向量a和b,有,a·b,≤,a,b。

这个不等式可以通过构造内积的平方来进行证明。

具体的证明过程可以参考高等数学相关教材或参考资料。

2.柯西不等式的应用:
-线性代数:柯西不等式可以用来证明向量范数的性质,如欧几里得
范数和曼哈顿范数的非负性、三角不等式等。

-概率论:柯西不等式可以用来证明概率论中的一些重要定理,比如
马尔可夫不等式、切比雪夫不等式等。

-信号处理:柯西不等式可以用来证明信号处理中的一些重要性质,
比如能量守恒定理、奇异值分解等。

-函数分析:柯西不等式可以用来证明函数分析中的一些重要定理,
比如巴拿赫空间的完备性定理等。

-矩阵论:柯西不等式可以用来证明矩阵论中的一些重要性质,比如
矩阵的条件数、病态度等。

总之,柯西不等式是一条十分重要的不等式,具有广泛的应用价值。

它不仅是高等数学中的重要工具,还可以应用于其他学科的研究中。

通过
了解柯西不等式的证明和应用,我们可以更好地理解和运用它,进一步深
化数学和相关学科的学习。

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用(a1b1 + a2b2 + … + anbn),≤ √(a1^2 + a2^2 + … + an^2) * √(b1^2 + b2^2 + … + bn^2)其中a1, a2, …, an和b1, b2, …, bn为实数或者复数。

下面将介绍几种柯西不等式的证明以及其应用。

证明1:使用向量的点乘形式证明柯西不等式。

设有两个n维向量A = (a1, a2, …, an)和B = (b1, b2, …, bn),则根据向量的点乘定义:A·B, = ,a1b1 + a2b2 + … + anbn,≤ ,a1,b1, + ,a2,b2,+ … + ,an,bn根据向量的模的定义,有:A·B,≤ √(a1^2 + a2^2 + … + an^2) * √(b1^2 + b2^2 + …+ bn^2)这就是柯西不等式的一种证明方法。

证明2:使用函数的积分形式证明柯西不等式。

设函数f(x)和g(x)在区间[a,b]上连续,那么根据积分的定义,有:∫[a,b] (f(x)g(x)) dx ≤ √(∫[a,b] (f^2(x)) dx) * √(∫[a,b] (g^2(x)) dx)假设f(x) = 1,g(x) = sqrt(1/x),那么有:∫[1,2] (sqrt(1/x)) dx ≤ √(∫[1,2] (1^2) dx) * √(∫[1,2] (sqrt(1/x))^2 dx)化简得:√(ln 2) ≤ √(∫[1,2] (1/x) dx)继续化简得:√(ln 2) ≤ √(ln 2)这也是柯西不等式的一种证明方法。

应用1:在实数范围内,柯西不等式可以用于证明其他不等式的成立。

例如,可以利用柯西不等式证明三角不等式,即,a+b,≤,a,+,b。

应用2:柯西不等式可以推导出协方差不等式,协方差是一种度量两个变量之间线性关系紧密程度的指标。

根据柯西不等式的形式,对于任意两个随机变量X和Y,有:Cov(X, Y)^2 ≤ Var(X) * Var(Y)其中Cov(X, Y)表示X和Y的协方差,Var(X)和Var(Y)分别表示X和Y的方差。

柯西不等式在中学数学中的应用

柯西不等式在中学数学中的应用

柯西不等式在中学数学中的应用以《柯西不等式在中学数学中的应用》为标题,写一篇3000字的中文文章柯西不等式是一种数学定理,它可以用来描述和解决各种类型的问题。

我们在中学阶段学习数学时就会接触到这一重要定理,它对数学的理解与运用都具有重要的作用。

本文将简要介绍柯西不等式在中学数学中的应用。

柯西不等式包括三种情况:柯西不等式,柯西-拉宾不等式和柯西-科瓦兹不等式。

柯西不等式可以表示为:a pm b leq c pm d,可以用来比较两个函数的大小;柯西-拉宾不等式可以表示为:|a-b| leq c,可以用来求解等式的最优解;柯西-科瓦兹不等式可以表示为:f(x) leq g(x),可以用来求解极大值和极小值。

在中学数学中,柯西不等式主要应用于比较函数大小、求解等式最优解和求解极值问题。

首先,柯西不等式应用于比较函数大小。

当我们需要比较两个函数的大小时,可以使用柯西不等式,例如,当我们需要比较函数f(x)=x^2g(x)=4-x^2大小时,可以使用柯西不等式来得出结果,即0 leq x leq 2时,f(x)geq g(x),其他情况则g(x) geq f(x),从而得出结论。

其次,柯西不等式也可以用来求解等式最优解。

例如,有以下等式:2x+3y=10,要求求得z=xy的最大值,这时可以使用柯西-拉宾不等式,即|2x+3y-10|leq c,将c=0,可以得出2x+3y=10,由于x、y是未知数,可以使用求导法,得出x=2、y=2,替换入原式,得出z=xy=2times2=4,也就是z的最大值是4。

最后,柯西不等式也可以用来求解极值问题,即极大值和极小值。

例如,求函数f(x)=x^3+2x^2-5x+1的极值,可以使用柯西-科瓦兹不等式求解。

将f(x)求导,得出f(x)=3x^2+4x-5,得出有效区间[frac{-4-sqrt{32}}{6},frac{-4+sqrt{32}}{6}],令f(x)=0,得出x_1=frac{-4-sqrt{32}}{6}, x_2=frac{-4+sqrt{32}}{6},替换入原式,得出f(x_1)approx -1.19、f(x_2)approx 4.19,也就是说函数f(x)的极小值为-1.19,极大值为4.19。

柯西不等式及应用

柯西不等式及应用

柯西不等式及应用————————————————————————————————作者: ————————————————————————————————日期:柯西不等式及应用武胜中学周迎新柯西不等式:设a1,a2,…an,b1,b2…b n均是实数,则有(a1b1+a2b2+…+a n b n)2≤(a12+a22+…an2)(b12+b22+…bn2)等号当且仅当ai=λb i(λ为常数,i=1,2.3,…n)时取到。

注:二维柯西不等式:(一)、柯西不等式的证明柯西不等式有多种证明方法,你能怎么吗?证法一:判别式法:令f(x)=(a1x+b1)2+(a2x+b2)2+…+(a n x+b n)2=(a12+a22+…+a n2)x2+2(a1b1+a2b2+…+an b n)x +(b12+b22+…+bn2)∵f(x)≥0∴△≤0 即 (a1b1+a2b2+…+a n b n)2≤(a12+a22+…+an2)(b12+b22+…+bn2)等号仅当 ai=λbi时取到。

证法二:(二)、柯西不等式的应用柯西不等式是一个非常重要的不等式,其结构和谐,应用灵活广泛,灵活巧妙的运用它,可以使一些较为困难的问题迎刃而解,并且柯西不等式本身的证明方法也值得在不等式证明中借鉴。

使用一些方法构造符合柯西不等式的形式及条件,继而达到使用柯西不等式解决有关的问题。

1. 证明不等式利用柯西不等式证明某些不等式显得特别方便,而利用柯西不等式的技巧也有很多。

如常数的巧拆、结构的巧变、巧设数组等,(1)巧拆常数:例1:设a 、b 、c 为正数且各不相等。

求证:c b a a c c b b a ++>+++++9222 分析∵a 、b 、c 均为正∴为证结论正确只需证:9]111)[(2>+++++++a c c b b a c b a 而)()()()(2a c c b b a d b a +++++=++ 又2)111(9++=(2)重新安排某些项的次序:例2:a 、b 为非负数,a +b =1,+∈R x x 21,求证:212121))((x x ax bx bx ax ≥++ 分析:不等号左边为两个二项式积,+-∈∈R x x R b a 21,,,,每个两项式可以使柯西不等式,直接做得不到预想结论,当把节二个小括号的两项前后调换一下位置,就能证明结论了。

(完整版)柯西不等式各种形式的证明及其应用

(完整版)柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。

但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。

柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。

柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。

一、柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //== 扩展:()()()222222222123123112233nn n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc=等号成立条件:三角形式的证明:222111nn n k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233222222312322222222112233123123=,,,,,,,,,cos ,cos ,cos ,1n n n n n n n n n nm a a a a n b b b b m n a b a b a b a b m n m na a ab b b b m nm n a b a b a b a b a a a a b b b b =⋅=++++==++++++++≤∴++++≤++++++++令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===n k k k nk k nk k b a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。

柯西不等式的形式、证明及其应用

柯西不等式的形式、证明及其应用

柯西不等式的形式、证明及其应用作者:李斌来源:《中学生导报·教学研究》2013年第07期摘要:柯西不等式是高等数学中的重要内容,这一不等式的应用范围非常广泛,能够很多比较复杂的问题迎刃而解,掌握柯西不等式的证明及其应用,是对数学专业研究生阶段学习的一项重要要求,本文根据现有的研究资料,详细论述了柯西不等式的形式及其证明,并就柯西不等式在证明不等式、解三角形、求函数最值、解方程组等问题中的应用阐述了自己的意见。

关键词:柯西(Cauchy)不等式;证明;应用一、柯西不等式及其证明。

1.柯西不等式定理柯西不等式定理:设ai,bi∈R(i=1,2,3…,n),则∑ni=1a2i∑ni=1b2i≥∑ni=1aibi2,当且仅当ai=λbi,即a1b1=a2b2=……anbn=λ等号成立。

这一不等式也就是所谓的为柯西不等式。

在学习和掌握这一不等式的过程中应该注意三个问题”第一,由于“∑ni = 1ai 2 = 0,∑ni = 1bi 2 = 0,∑ni=1aibi=0”情况之一出现时,不等式是单个然不成立的,因此,在下面的讨论中需要先假设∑ni = 1ai 2≠0,∑ni = 1bi 2≠0,∑ni=1aibi≠0都成立。

第二,柯西不等式取等号的条件常常写成比例形式a1b1=a2b2=……anbn,并约定:分母为0时,相应的分子也为0。

“等号成立”是柯西不等式应用的一个重要组成部分。

第三,柯西不等式在应用过程中相对于其它不等式的一个优势是,对任意的两组实数都成立,也就是说在应用的过程中对于任意两组数a1,a2,……an,b1,b2,……bn,其对应项“相乘”之后、“求和”、再“平方”这三种运算不满足交换律,先各自平方,然后求和,最后相乘,运算的结果不会变小。

2.柯西不等式证明柯西不等式的证明过程相对来说比较复杂,在证明的过程中有不同的证明方法,常见的证明方法主要有三种,具体的证明及过程如下:证明1:构造二次函数(1)当时n=1,右式=(a1b1),左式=a1 2b1 2,显然,左式=右式。

二维形式的柯西不等式(2)

二维形式的柯西不等式(2)

(x + y ) + (x + y ) ≥ (x1 − x2) +( y1 − y2 ) .
2 1 2 1 2 2 2 2 2 2
二维形式的三角不等式) 三角不等式 定理 3(二维形式的三角不等式) 设 x 1 , y 1 , x 2 , y 2 , x 3 , y 3 ∈ R , 那么
(x1 − x3 ) +( y1 − y3) + (x2 − x3 ) +( y2 − y3 )
变式:已知3 x + 4 y = 5, 求x 2 + 2 y 2的最小值
归纳
利用二维的柯西不等式可求以下函数最值:
类型一:求y = m ax − b + n c − dx(ad>0)的最大值
类 型 二 : 已 知 mx 2 + ny 2 = c(m, n, c > 0) , 求 Ax + By( AB ≠ 0) 的最大值.
2 2 2
ቤተ መጻሕፍቲ ባይዱ
2
≥ (x1 − x2 ) +( y1 − y2 )
2
2
练习
1.设 1.设 x 1 , y 1 , x 2 , y 2 ∈ R , 那么
(x + y ) + (x + y ) ≥ (x1 + x2 ) +( y1 + y2 ) .
2 1 2 1 2 2 2 2 2 2
2.设 x 1 , y 1 , x 2 , y 2 ∈ R , 那么
y
y
P1 ( x1 , y 1 )
P1 ( x1 , y1 )
O
P2 ( x 2 , y 2 )
x
P2 ( x2 , y 2 )

柯西不等式的几种形式

柯西不等式的几种形式

柯西不等式的几种形式柯西不等式是数学中的一种重要不等式,它有多种形式,下面我们来分别介绍一下。

一、柯西-施瓦茨不等式柯西-施瓦茨不等式是柯西不等式的一种形式,它是指对于任意两个向量a和b,有以下不等式成立:|a·b| ≤ |a|·|b|其中,a·b表示向量a和向量b的点积,|a|表示向量a的模长。

这个不等式的意义是,两个向量的点积的绝对值不大于它们的模长的乘积。

这个不等式在数学中有着广泛的应用,比如在证明向量的正交性、证明函数的内积空间等方面都有着重要的作用。

二、柯西-布尔查兹不等式柯西-布尔查兹不等式是柯西不等式的另一种形式,它是指对于任意两个函数f(x)和g(x),有以下不等式成立:|∫f(x)g(x)dx| ≤ ∫|f(x)|·|g(x)|dx其中,∫f(x)g(x)dx表示函数f(x)和函数g(x)的积分,|f(x)|表示函数f(x)的绝对值。

这个不等式的意义是,两个函数的积分的绝对值不大于它们的绝对值的积分。

这个不等式在数学中有着广泛的应用,比如在证明函数的正交性、证明函数的内积空间等方面都有着重要的作用。

三、柯西-施瓦茨不等式的向量形式柯西-施瓦茨不等式还有一种向量形式,它是指对于任意n个向量a1、a2、...、an和b1、b2、...、bn,有以下不等式成立:|(a1·b1)+(a2·b2)+...+(an·bn)| ≤ √(a1²+a2²+...+an²)·√(b1²+b2²+...+b n²)其中,a1·b1表示向量a1和向量b1的点积,√(a1²+a2²+...+an²)表示向量a1、a2、...、an的模长的平方根。

这个不等式的意义是,n个向量的点积的绝对值不大于它们的模长的乘积的和。

这个不等式在数学中有着广泛的应用,比如在证明向量的正交性、证明函数的内积空间等方面都有着重要的作用。

柯西不等式及应用

柯西不等式及应用

柯西不等式及应用一、二维形式的柯西不等式:22222()()()a b c d ac bd ++≥+(,,,) a b c d R ∈,当且仅当ad bc =时取等号;二、二维形式的柯西不等式的变式:bd ac d c b a +≥+⋅+2222)1((,,,) a b c d R ∈,当且仅当ad bc =时取等号;bd ac d c b a +≥+⋅+2222)2((,,,) a b c d R ∈,当且仅当ad bc =时取等号;2(3)()()a b c d ++≥(,,,0)a b c d ≥,当且仅当ad bc =时取等号;三、n 维形式的柯西不等式:设,(1,2,3,)i i a b i n = 为实数,则22212()n a a a +++ 22212()n b b b +++ 21122()n n a b a b a b ≥+++ ,当且仅当0(1,2,3,)i b i n == 或存在一个实数k ,使得(1,2,3,)i i a kb i n == 时等号成立。

四、二维形式的柯西不等式的向量形式:αβαβ⋅≤ ,当且仅当0β= 或存在实数k ,使k αβ= 时取等号;五、基本方法:利用柯西不等式常常根据所求解(证)的式子结构入手,观察是否符合柯西不等式形式或有相似之处,将其配成相关结构形式是解决问题的突破口,有时往往要进行添项、拆项、重组、配方、换序等方法的处理.六、应用:1、证明恒等式:已知0,1a b ≤≤且1,求证:221a b +=.2、解方程(组):12(1)x x =++.3、求最值(范围):若实数x ,y ,z 满足232x y z ++=,求222x y z ++的最小值.4、证明不等式:已知正数,,a b c 满足1a b c ++= 证明: 2223333a b c a b c ++++≥.六、巩固练习:1.已知22223102x y z ++=,则32x y z ++的最小值为 .2. 已知实数,,a b c ,d 满足3a b c d +++=, 22222365a b c d +++=,则a 的最大值为 ,最小值为 .3.在实数集内方程组22294862439x y z x y z ⎧++=⎪⎨⎪-+-=⎩的解为 . 4.设❒ABC 之三边长x ,y ,z 满足20x y z -+=及320x y z +-=,则❒ABC 的最大角的大小是 .5.设6 ),2,1,2(=-=b a ,则b a ⋅之最小值为 ,此时=b .6.设a = (1,0,- 2),b = (x ,y ,z),若22216x y z ++=,则a b ⋅ 的最大值为 .7.空间二向量(1,2,3)a = ,(,,)b x y z =,已知b = a b ⋅ 的最大值为 ,此时b = .8.设a 、b 、c 为正数,则4936()()a b c a b c++++的最小值为 .9.设x ,y ,z ∈ R ,且满足2225x y z ++=,则23x y z ++之最大值为 ,此时(x ,y ,z) = .10.设,,x y z R ∈,22225x y z ++=,则22x y z -+的最大值为 ,最小值为 .11.设622 , , ,=--∈z y x z y x R ,则222z y x ++之最小值为 .12.,,x y z R ∈,226x y z --=,则222x y z ++的最小值为 ,此时x = ,y = ,z = .13.设,,x y z R ∈,2280x y z +++=,则222(1)(2)(3)x y z -+++-之最小值为 .14.设,,x y z R ∈,若332=+-z y x ,则222)1(z y x +-+之最小值为 ,又此时=y15.设,,a b c R +∈且a + b + c = 9,则cb a 1694++之最小值为 . 16.设,,a bc R +∈,且232=++c b a ,则c b a 321++之最小值为 ,此时=a . 17.空间中一向量a 与x 轴,y 轴,z 轴正向之夹角依次为,,αβγ,则γβα222sin 9sin 4sin 1++的最小值为 .18.空间中一向量a 的方向角分别为,,αβγ,则22292516sin sin sin αβγ++的最小值为 . 19.设,,x y z R ∈,若4)2()1(222=+++-z y x ,则z y x 23--之范围为 ;又z y x 23--取最小值时,=x20.设,,x y z R ∈且14)3(5)2(16)1(222=-+++-z y x ,则x y z ++之最大值为 ,最小值为 .21.求2sin sin cos cos θθϕθϕ-的最大值与最小值.22.设a 、b 、c 为正数且各不相等。

柯西不等式的证明与应用

柯西不等式的证明与应用

柯西不等式的证明及其应用摘要:柯西不等式是一个非常重要的不等式,本文用五种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。

关键词:柯西不等式,证明,应用。

说明:不等式是数学的重要组成部分,它遍及数学的每一个分支。

本文主要介绍著名不等式——柯西不等式的证明方法及其在初等数学解题中的应用。

柯西不等式是一个非常重要的不等式,本文用几种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用。

一、相关定理柯西不等式是指下面的定理定理 设,(1,2,...,),i i a b R i n ∈=则222111()()()nnni i i i i i i a b a b ===≤∑∑∑当数组a 1,a 2,…,a n ,b 1,b 2,…,b n 不全为0时,等号成立当且仅当(1)i i b a i n λ=≤≤.柯西不等式有两个很好的变式:变式1 设,0(1,2,...,),i a R bi i n ∈>= 221()ni i i i ia ab b =≥∑∑∑,等号成立当且仅当(1)i i b a i n λ=≤≤变式2 设a i ,b i 同号且不为0(i=1,2,…,n )则21()ni i i i i ia ab a b =≥∑∑∑,二、柯西不等式的证明: 常用的证明柯西不等式的方法有: 1)配方法:作差:因为222111()()()nnniji i i j i a b a b ===-∑∑∑221111()()()()n n n niji i j j i j i j a b a b a b =====-∑∑∑∑221111n n n ni ji i j ji j i j a b a b a b =====-∑∑∑∑22221111111(2)2n n n n n ni j j i i j j i i j i j i j a b a b a b a b =======+-∑∑∑∑∑∑2222111(2)2n n i j i j j i j i i j a b a b a b a b ===-+∑∑ 2111()02n ni j j i i j a b a b ===-≥∑∑所以222111()()()n n n iji i i j i a b a b ===-∑∑∑0≥,即222111()()()n n niji i i j i a b a b ===≥∑∑∑即 (2222222)11221212()()()n n n n a b a b a b a a a b b b +++≤++++++当且仅当……0(,1,2,,)i j j i a b a b i j n -== 即…………(1,2,,;1,2,,;0)ji j i ja a i n j nb b b ===≠时等号成立。

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用

柯西不等式各样形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy) 在研究数学分nnn2析中的“流数”问题时获得的。

但从历史的角度讲,该不等 a k 2 b k2a kb k式应该称为 Cauchy-Buniakowsky-Schwarz不等式,由于,k 1k 1 k1正是后两位数学家相互独立地在积分学中推而广之,才将这一不等式应用到近乎完美的地步。

柯西不等式特别重要,灵巧奇妙地应用它,能够使一些较为困难的问题水到渠成。

柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面获得应用。

一、柯西不等式的各样形式及其证明二维形式在一般形式中, 令 n 2, a 1 a, a 2 b,b 1 c,b 2d ,得二维形式a 2b 2c 2d 2ac bd 2等号成立条件: ad bc a / b c / d扩展: a 12a 22 a 32a n 2b 12b 22b 32 b n 2a 1b 1 a 2b 2 a 3b 3a nb n 2当 a i或时, a i 和 b i 都等于 , 等号成立条件:0 ba 1 :b 1 a 2 : b 2a n: b n不考虑 a i : b i ,i1,2,3, , n二维形式的证明:a 2b 2c 2d 2a, b, c, d Ra 2 c 2b 2 d 2 a 2 d 2 b 2c 2a 2 c 22abcdb 2 d 2 a 2d 2 2abcdb 2c 2acbd 2ad2bcac bd 2等号在且仅在 ad bc 0即 ad =bc 时成立三角形式a 2b 2c 2d 22 2a cb d等号成立条件: ad bc三角形式的证明 :a 2b 2c 2 2a 2b 2c 2d 2 2 a 2 b 2 c 2 d 2d 2a 2b 2c 2d 2 2 acbd注: 表示绝对值a 2 2ac c 2b 2 -2bd d 2a 2b d 2c两边开根号,得a 2b 2c 2d 2a 22c b d向量形式, = a 1, a 2 , a 3 ,a n ,b 1, b 2 ,b 3 , b nn N , n 2等号成立条件:为零向量,或=R向量形式的证明 :r ur令 m= a 1, a 2 , a 3 ,L , a n , n b 1, b 2 ,b 3,L , b nur r ur r L ur rm n a 1b 1 a 2b 2 a 3b 3 a n b n m n cos m, na 12 a 22a 32 L a n 2b 12 b 22 b 32 Lb n 2 ur rcos m , nur r 1 Q cos m, nab a b a b L a ba 2 a 2a 2 L a 2b 2b 2 b 2 L b 21 12 23 3n n123n123n一般形式nnn222a kb ka kb kk 1k 1k 1等号成立条件: a 1 : b 1 a 2 : b 2a n :b n ,或 a i 、 b i 均为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柯西不等式另两种形式的应用
柯西不等式是非常重要的不等式,它的应用很广泛、且应用过程也相当灵活,真正可以体现“数学是思维的体操”,本文介绍柯西不等式另两种形式的应用,供参考:
1.柯西不等式的向量形式
设是两个向量,则,当且仅当是零向量或存在实数,使时,等号成立;这是柯西不等式的向量形式,下面谈谈这一形式在解题中的应用。

例1已知,若恒成立,求的最大值。

解析:设,由得:
,即。

例2设,求的最小值。

解析:设。

由得:,
即,故的最小值为。

例3求函数的最大值及最小值。

解析:由原函数式得,设
,由得,
故最大值及最小值分别为与。

点评:对于上述三道例题都是通过构造向量,利用柯西不等式的向量形式完成求解的。

恰当、合理的构造向量是求解的关键,有一定的灵活性,当然也有一定的难度,突破它要靠平时多留心、多积累。

2.柯西不等式的三角形式
设都是实数,则。

此为柯西不等式的三角形式,可以借助三角形任意两边和大于第三边加以理解。

下面谈谈这一形式在解题中的应用。

例4求函数的最小值。

解析:由,
得,。

点评:在应用三角形式求最小值时,我们要注意两点:①在使用公式过程中,要能够抵消变量;②要尽可能的使定值最大。

比如本题若变成虽产生结论,但“2”并不是最小值。

例5求函数的最大值;
解析:由三角形式稍作变化,即得,
由于。

点评:在应用三角形式求最大值时,我们也要注意两点:①在使用公式过程中,要能够抵消变量;②要尽可能的使定值最小。

比如本题若变成
虽产生结论,但并不最大值。

至此,我们看出了柯西不等式另两种形式的应用,也许对你以后的解题会有所启发,使你的解题思路就得格外活跃。

相关文档
最新文档