柯西不等式另两种形式的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柯西不等式另两种形式的应用

柯西不等式是非常重要的不等式,它的应用很广泛、且应用过程也相当灵活,真正可以体现“数学是思维的体操”,本文介绍柯西不等式另两种形式的应用,供参考:

1.柯西不等式的向量形式

设是两个向量,则,当且仅当是零向量或存在实数,使时,等号成立;这是柯西不等式的向量形式,下面谈谈这一形式在解题中的应用。

例1已知,若恒成立,求的最大值。

解析:设,由得:

,即。

例2设,求的最小值。

解析:设。

由得:,

即,故的最小值为。

例3求函数的最大值及最小值。

解析:由原函数式得,设

,由得,

故最大值及最小值分别为与。

点评:对于上述三道例题都是通过构造向量,利用柯西不等式的向量形式完成求解的。恰当、合理的构造向量是求解的关键,有一定的灵活性,当然也有一定的难度,突破它要靠平时多留心、多积累。

2.柯西不等式的三角形式

设都是实数,则。此为柯西不等式的三角形式,可以借助三角形任意两边和大于第三边加以理解。下面谈谈这一形式在解题中的应用。

例4求函数的最小值。

解析:由,

得,

点评:在应用三角形式求最小值时,我们要注意两点:①在使用公式过程中,要能够抵消变量;②要尽可能的使定值最大。比如本题若变成虽产生结论,但“2”并不是最小值。

例5求函数的最大值;

解析:由三角形式稍作变化,即得,

由于

点评:在应用三角形式求最大值时,我们也要注意两点:①在使用公式过程中,要能够抵消变量;②要尽可能的使定值最小。比如本题若变成

虽产生结论,但并不最大值。

至此,我们看出了柯西不等式另两种形式的应用,也许对你以后的解题会有所启发,使你的解题思路就得格外活跃。

相关文档
最新文档