数理统计答案(汪荣鑫)
数理统计答案第四章汪荣鑫
P1682解:假设01234:H μμμμ=== 11234:H μμμμ不全为零1234454562024.52r n n n n n X =======经计算可得下列反差分析表:查表得0.05(3,16) 3.24F =0.0517.88370.4745(3,16)37.6887F F ==<故接受0H 即可认为四个干电池寿命无显着差异 3 解:假设0123:H μμμ==1123:H μμμ不全相等12336140.9278r n n n X =====经计算可得下列方差分析表:0.050.05(2,15) 3.684.373 3.68(2,15)F F F ==>=∴拒绝0H 故可认为该地区三所小学五年级男生平均身高有显着差异。
4 解: 假设01234:H μμμμ===11234:H μμμμ不全相等123445100.535r n n n n X ======0.05(3,16) 3.24F = 0.05(3,16) 3.24F F >=∴拒绝0H 故可认为这几支伏特计之间有显着差异。
5 解:假设012345:H μμμμμ====112345:H μμμμμ不全相等60 123455389.6r n n n n n X =======0.050.05(4,10) 3.4815.18(4,10)F F F ==>∴拒绝0H 故可认为温度对得率有显着影响215151511(,())X X N n n μμσ--+ 由T 检验法知:()T t n r =-给定的置信概率为10.95α-=0.025{()}0.95P T t n r <-=故15μμ-的置信概率为的置信区间为150.025150.025((,()E E X X t n r X X t n r ----+-2.236E S === 0.025(10) 2.2281t =由上面的数据代入计算可得:150.025150.0259084 2.2281 2.236 1.932210.0678E E X X t X X t --=--⨯=-+=故15μμ-的置信区间为( , )234343411(,())X X N n n μμσ--+ 由T 检验法知:()X X T t n r =-34μμ-的置信区间为:340.025340.025((,()E E X X t n r X X t n r ----+-代入数据计算得:340.025340.02510 2.2281 2.236 5.932714.0678E E X X t X X t --=-⨯=-+=故34μμ-的置信区间为( , ) 8 解:假设01123:0H ααα=== 假设021234:0H ββββ====r0.01(2,6)10.92F = 0.01(3,6)9.78F = 0.01(2,6)A F F < 0.01(3,6)B F F >故接受01H ,拒绝02H即可认为不同加压水平对纱支强度无显着差异;既可认为不同机器对纱支强度有显着差异。
数理统计(汪荣鑫版)习题答案详细版
所以
X1 + X 2 + X3 N (0,1)
3
X1
+
X2 3
+
X3
2
χ 2 (1)
同理
X4
+
X5 3
+
X
6
2
χ 2 (1)
由于 χ2 分布的可加性,故
D X1 + X2 + X3 =1 3
1Y 3
=
X1
+
X2 3
+
X3
2
+
X4
+
X5 3
+
X6
2
可知
C=1
3
16. 解:(1)因为 ( ) Xi N 0,σ 2
题的结果可知
x = 2000 + y = 2240.444
sx2
=
s
2 y
= 197032.247
5. 解:变换
yi = 100( xi − 80)
i
1
2
3
4
5
6
7
8
9 10 11 12 13
xi 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05 80.03 80.02 80.00 80.02
y
∫ FY4
( y) =
P {Y4
≤
y} =
P σY42
≤
y σ2
=
σ2 0
fχ2(1) ( x)dx
fχ2
(y) =
F' Y4
(y) =
y fχ2 (1) σ 2
数理统计答案(汪荣鑫)(2)
i
xi
)
1 n
i
Exi
1 n
n
1
1
1
Dx D( n
i
xi ) n2
i
Dxi n2
i
Dx n
13.设X1,X2,…,Xn是区间(-1,1)上均匀分 布的母体的一个子样,试求子样平均数的
均值和方差。
解:x U (1,1), Ex 11 0, Dx 22 1
2
12 3
1
1
Ex E( n
解:作变换
yi
xi
100, a
100,
y
1 n
i
yi
10 5
0
x a y 100
sx2
sy2
1 n
i
yi 2
2
y
1 5
[(8)2
(6)2
32
52
62]
0
34
12.设X1,X2,…,Xn是参数为的泊松分布的母体 的一个子样,是子样平均数,试求EX 和DX。
解:
x
p(), E x E(1
2
0 )为(2.125 0.0041)
n
(2)若 未知
构造函数 T x t(n 1)
S* / n
给定置信概率90%,查得t0.05(15) 1.7531,有
p( T t (n 1)) 1
2
∴母体平均数 的置信概率为90%的置信
区间为(x t0.05 (15)
s* )
n
,即(2.125±0.0075)
a
cyi
xi (a cyi ),nx na cny,x a c y
i
i
而sx2
数理统计习题答案汪鑫荣版
数理统计习题答案第一章1.解: ()()()()()()()12252112222219294103105106100511100519210094100103100105100106100534n i i n i i i i X x n S x x x n ===++++====-=-⎡⎤=-+-+-+-+-⎣⎦=∑∑∑2. 解:子样平均数 *11li i i X m x n ==∑()118340610262604=⨯+⨯+⨯+⨯=子样方差 ()22*11l i i i S m x x n ==-∑()()()()222218144034106422646018.67⎡⎤=⨯-+⨯-+⨯-+⨯-⎣⎦=子样标准差 2 4.32S S == 3. 解:因为i i x ay c-=所以 i i x a cy =+11ni i x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a cy==+=+∑ 所以 x a cy =+ 成立()2211nxi i s x x n ==-∑()()()22122111ni i ini i nii a cy a c y n cy c yn c y y n====+--=-=-∑∑∑因为 ()2211nyi i s y yn ==-∑ 所以222x ys c s = 成立 ()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====4. 解:变换 2000i i y x =-i1 2 3 4 5 6 7 8 9 i x 1939 1697 3030 2424 2020 2909 1815 2020 2310 i y-61-303103042420909-1852031011n i i y y n ==∑()161303103042420909185203109240.444=--++++-++=()2211n y i i s y y n ==-∑()()()()()()()()()222222222161240.444303240.4441030240.4449424240.44420240.444909240.444185240.44420240.444310240.444197032.247=--+--+-+⎡⎣-+-+-+⎤--+-+-⎦=利用3题的结果可知2220002240.444197032.247xyx y s s =+===5. 解:变换 ()10080i i y x =-i1 2 3 4 5 6 7 8 9 10 11 12 13 i x 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05 80.03 80.02 80.00 80.02 i y-2424334-3532213111113n i i i i y y y n ====∑∑ []12424334353202132.00=-++++++-+++++=()2211n y i i s y y n ==-∑()()()()()()22222212 2.0032 2.005 2.0034 2.001333 2.003 2.005.3077=--+⨯-+-+⨯-⎡⎣⎤+⨯-+--⎦=利用3题的结果可知2248080.021005.30771010000yx yx s s -=+===⨯ 6. 解:变换()1027i i y x =-*i x23.5 26.1 28.2 30.4 i y -35 -9 12 34 i m234111li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=-2710yx =+=26.85 ()2211lyi i i s m y y n ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s ==7解:身高 154158 158162 162166 166170 170174 174178 178182 组中值 156 160 164 168 172 176180学生数101426281282*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11l i i i s m x x n ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦=8解:将子样值重新排列(由小到大)-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====9解: 121211121211n n i ji j n x n x n n x n n ==+=+∑∑112212n x n xn n +=+()12221121n n i i s x x n n +==-+∑10.某射手进行20次独立、重复的射手,击中靶子的环数如下表所示:环数 10 9 8 7 6 5 4 频数23942试写出子样的频数分布,再写出经验分布函数并作出其图形。
数理统计王荣鑫答案
数理统计习题答案第一 章1.解: ()()()()()()()12252112222219294103105106100511100519210094100103100105100106100534n i i n i i i i X x n S x x x n ===++++====-=-⎡⎤=-+-+-+-+-⎣⎦=∑∑∑2. 解:子样平均数 *11li i i X m x n ==∑()118340610262604=⨯+⨯+⨯+⨯=子样方差 ()22*11li i i S m x x n ==-∑()()()()222218144034106422646018.67⎡⎤=⨯-+⨯-+⨯-+⨯-⎣⎦=子样标准差 4.32S == 3. 解:因为i i x ay c-=所以 i i x a cy =+11ni i x x n ==∑()1111ni i ni i a c y n n a c y n ===+⎛⎫=+ ⎪⎝⎭∑∑1ni i ca y n a c y==+=+∑所以 x a c y =+ 成立()2211nxi i s x x n ==-∑()()()22122111ni i ini i nii a cy a c y n cy c yn c y y n====+--=-=-∑∑∑因为 ()2211nyi i s y yn ==-∑ 所以222x y s c s = 成立()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====4. 解:变换 2000i i y x =-11n i i y y n ==∑()61303103042420909185203109240.444=--++++-++= ()2211n y i i s y y n ==-∑()()()()()()()()()222222222161240.444303240.4441030240.4449424240.44420240.444909240.444185240.44420240.444310240.444197032.247=--+--+-+⎡⎣-+-+-+⎤--+-+-⎦=利用3题的结果可知2220002240.444197032.247x y x y s s =+===5. 解:变换 ()10080i i y x =-13111113n i i i i y y y n ====∑∑[]12424334353202132.00=-++++++-+++++=()2211nyi i s y y n ==-∑()()()()()()22222212 2.0032 2.005 2.0034 2.001333 2.003 2.005.3077=--+⨯-+-+⨯-⎡⎣⎤+⨯-+--⎦=利用3题的结果可知2248080.021005.30771010000yx yx s s -=+===⨯6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=-2710yx =+=26.85 ()2211lyi ii s m y y n ==-∑()()()()222212351.5391.54121.5341.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s ==162 *11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯= ()22*11li i i s m x x n ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦= 8解:将子样值重新排列(由小到大)-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--====9解: 121211121211n n i ji j n x n x n n x n n ==+=+∑∑112212n x n x n n +=+ ()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n iji j x xn n x xn x n x n n n n n s x n s x n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n sn n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n s n n n n +-++++-=+++-+=+++解:()200.1460.3670.75790.9910110x x F x x x x ⎧⎪≤<⎪⎪≤<=⎨≤<⎪⎪≤<⎪≥⎩158 162 166 170 174 178 18212. 解:()ix P λ i Ex λ= i Dx λ= 1,2,,i n =⋅⋅⋅1122111111n n i i i i nni i i i n E X E x Ex n n n n DX Dx Dx n n n nλλλλ============∑∑∑∑13.解:(),ix U a b 2i a bEx += ()212i b a Dx -= 1,2,,i n =⋅⋅⋅ 在此题中 ()1,1ix U - 0i Ex = 13i Dx = 1,2,,i n =⋅⋅⋅112111101113n ni i i i nni i i i E X E x Ex n n DX Dx Dx n n n==========∑∑∑∑14.解:因为 ()2,iX N μσ 0i X Eμσ-= 1i X Dμσ-=所以()0,1i X N μσ- 1,2,,i n =⋅⋅⋅ 由2χ分布定义可知 ()222111nni ii i X Y Xμμσσ==-⎛⎫=-= ⎪⎝⎭∑∑服从2χ分布所以 ()2Yn χ15. 解:因为 ()0,1i X N 1,2,,i n =⋅⋅⋅ ()1230,3X X X N ++0=1= 所以()0,1N()221χ同理()221χ由于2χ分布的可加性,故()222123Y χ=+可知 13C =16. 解:(1)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑(){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x d xσχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为 ()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ ⎪⎪⎝⎭⎪≥⎩所以 ()21122202200n y n n Y y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ ⎪⎪⎝⎭⎪≤⎩(2) 因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑(){}()22222220nyY nYny F y P Y y P f x dx σχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故 ()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ ⎪⎪⎝⎭⎪≤⎩(3)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()10,1ni N =所以()22311ni Y n χσ=⎛= ⎝(){}()()22333210yn Y Y F y P Y y P y f x dx n σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故 ()232000y n Y y f y y σ-⎧>=≤⎩(4)因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅ 所以()()1224210,11ni ni N Y χσ==⎛= ⎝(){}()()()()()224224442210'2211yY Y Y y F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰ 故 ()242000y Y y f y y σ-⎧>=≤⎩17.解:因为 ()X t n存在相互独立的U ,V()0,1UN ()2Vn χ使X =()221U χ则 221U X V n=由定义可知 ()21,F n χ18解:因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()10,1ni N =()221n mi i n X m χσ+=+⎛⎫⎪⎝⎭∑所以()1nniX Y t m ==(2)因为()0,1iX N σ1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑所以 ()221122211,ni n i ii n m n mi ii n i n X m X n Y F n m X n X m σσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑19.解:用公式计算()20.010.019090χ= 查表得 0.012.33U =代入上式计算可得 ()20.01909031.26121.26χ=+= 20.解:因为 ()2X n χ 2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N{}P X c P≤=≤22lim tnP dt-→∞-∞≤==Φ故{}P X c≤≈Φ第二章1.00,0()0,0()()1()111xxx xxe xf xxE x f x xdx xe dxxe e d xexλλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有1xλ∧=2.()111121).()(1)(1)1111k kx xE x k p p p k pppp∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p=X所以有1pX∧=2).其似然函数为1`11()(1)(1)nix i in X nniL P P p p p-=-=∑=-=-∏1ln()ln()ln(1)niiL P n p X n p==+--∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12n i i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=-⎪⎨⎪=+⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b 2()a 4. 解:(1)设12,,n x x x 为样本观察值则似然函数为:111()(),01,1,2,,ln ()ln ln ln ln 0n ni i i nii inii L x x i nL n x d L nxd θθθθθθθθ-====<<==+=+=∏∑∑(-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:11()1nii X x n E x X X Xθ=∧===-∑令得5.。
数理统计课后习题答案答案(汪荣鑫版本)
i 1
n
k
( k 1) !
xi
k 1
e
xi
(
1 ( k 1) !
)
n
nk
( xi )
i 1
n
k 1
xi
i
e
ln L n ln ( k 1) ! n k ln ln ( x i )
i 1
n
k 1
i
xi
d ln L d
1 i n
12设母体X服从正态分布 N ( ,1), ( X 1 , X 2 ) 是 从此母体中抽取的一个子样。试验证下面三 个估计量 2 1 (1)^ X 1 X 2 1
2 (2)^
3 1
(3)^ 3
4 1
X1
3 3
都是 的无偏估计,并求出每个估计量的 方差。问哪一个方差最小? 2 1 2 1 2 1 解:^ E ( x x ) E x E x E
2 2
X
2
U
2
2
/n
,由 F 分 布 定 义 X
2
F (1, n )
Page 6
8设母体 X N (40, 5 ) ,从中抽取容量n的样本
2
求(1)n=36时, (3 8 P 解: x N ( 4 0, 5 )
2
x 4 3)
64
P 3 8 x 4 3 P{
i i i i
D x D(
1
n
i
xi )
1 n
2
Dx
i
i
1 n
(完整版)汪荣鑫版数理统计习题答案chapitre1
n i 1n i 1n i 1第一章1•在五块条件基本相同的田地上种植某种作物,亩产量分别为 (单位:斤) ,求子样平均数和子样方差。
解: -1 nX x i 100n i 121 n2 —2SX i x 34n i 12•从母体中抽取容量为 60的子样,它的频数分布求子样平均数与子样方差,并求子样标准差。
s .18.67 4.322 2 2x a cy,s x c s y 。
解:由变换y inX ii 1X i a 即X icy i ,nxa cy ina cnycnai 1X a cy由2 1n _21 n2c 2 n_ 2 2 2而s xX i Xa cy i a cy yi y C解:—1l* .Xmi i X4n i 1 2 1* 2 — 2sm i x i x 18.67ni 192, 94, 103, 105, 1063•子样平均数和子样方差的简化计算如下:设子样值 X i ,X 2, ,X n 的平均数为为x 。
作变换 y占一a ,得到y i , y 2,c,y n ,它的平均数为— 2y 和方差为S y X 和方差。
试证:ni 110得到它的子样的下列观测数据 (单位:磅/英寸2): 1815, 2020, 2310后利用第3题中的公式获得X 和s 2的数值。
i*m i y i4.对某种混凝土的抗压强度进行研究,1939, 1697, 3030, 2424, 2020, 2909,采用下面简化计算法计算子样平均数和方差。
先作变换 y iX i2000,再计算y 与s :,然解:作变换yX i2000,a 2000Y i2164 240.442240.444 2S X2Sy1 nn 2 — y iyi 12197032.2475.在冰的溶解热研究中, 测量从0.72 r 的冰变成 0c 的水所需热量,取作试验得到热量数据如下 :79.98, 80.04, 80.02,80.04,80.03,80.03, 80.04,79.97, 80.05, 80.03, 80.02, 80.00,80.02试用变换y i 100X i 80 简化计算法计算子样平均数和子样方差。
数理统计(汪荣鑫)答案第三章
2
∴接受 H0 。 4.某电器零件的平均电阻一直保持在 2.64Ω 。 改变加工工艺后, 测得 100 个零件的 平均电阻为 2.62Ω, 电阻标准差 (s) 为 0.06Ω , 问新工艺对此零件的电阻有无显著影响
(α = 0.01 )? 解: n = 100 , x = 2.62 , s = 0.06 ①建立原假设 H0 : µ = 2.64Ω
= Φ(0.575)
= 0.719
3.某批矿砂的 5 个样品中的镍含量经测定为
x(%) 3.25, 3.27, 3.24, 3.26, 3.24
数理统计(汪荣鑫)Chapitre 3
设测定值服从正态分布。问在α = 0.01 下能否接受假设:这批矿砂的(平均)镍含量为 3.25。 解:设 x ~ N (µ,σ 2 ) ,σ 2 未知,计算得 x = 3.252 , s* = 0.013
问此段时间内该机工作是否正常(α = 5% )?假定金属棒长度服从正态分布。
解: n = 15 , x = 10.48 , s* = 0.2366
①建立原假设 H0 : µ = 10,5
②在 H 0 成立前提下,构造统计量 T
=
x − µ0 s* / n
~ t(n −1)
{ } ③给定α = 0.05 ,查得 tα (14) = 2.1448 ,使 p T > tα (n −1) = α
=
x − µ0 σn
~
N (0,1)
③给定显著水平α = 0.05 ,有 µα = 1.96 ,使
2
{ } P µ ≥ µα
=
α
即
⎧ P⎨
x
−
µ0
⎫ ≥ 1.96⎬ = 0.05
数理统计 (汪荣鑫著) 西安交通大学出版社 课后答案
.c om
课后答案网
证明:令
w
da
kh
w
w
w
.k
若侵犯了您的版权利益,敬请来信通知我们! ℡
om
课
U2 X = 2 ,由F 分布定义 ∴ X 2 ∼ F (1, n) χ /n
2
后 答
χ 2 ∼ χ 2 (n), 且U 与χ 2独立,U 2亦与χ 2独立
om
课
课后答案网
kh
w
w
立, 2 Z2 Z 22 ∼ N (0,1), ∼ χ (1) 3 3 2 2 且与χ 相互独立。由 χ 分布可加性,
Z12 Z 2 2 1 2 1 1 + = ( Z1 + Z 2 2 ) = Y ∼ χ 2 (2),∴ c = 3 3 3 3 3
θ −1
+∞
hd 案网 aw kh .c da om w .c
1
2矩法估计
课后答案网
后 答
da
试求 σ 的最大似然估计;并问所得估计量是 否的无偏估计. ∑x x n n 1 −σ 1 n − σ 解:
w
.c om
1 −σ e , −∞ < x < ∞ 5.设母体X的密度为 f ( x) = 2σ
w
da
课
后 答
xi − a c
课后答案网
da
yi = xi − 100, a = 100, y =
kh
w
w
w
.k
sx 2 = s y 2 =
课
x = a + y = 100
2 1 1 yi 2 − y = × [( −8)2 + ( −6)2 + 32 + 52 + 62 ] − 0 = 34 ∑ 5 n i
数理统计课后题答案完整版(汪荣鑫)
第一章3. 解:因为i i x ay c-=所以 i i x a cy =+11nii x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a c y==+=+∑所以 x a c y =+ 成立因为 ()2211nxi i s x xn ==-∑()()()22122111ni i ini i nii a cy a c y n cy c y n c y y n====+--=-=-∑∑∑又因为 ()2211n y i i s y yn ==-∑所以 222xys c s = 成立 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=- 2710yx=+= ()2211lyi i i s m y yn ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s == 7解: 6266707478*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯= ()22*11li i i s m x xn ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦=8解:将子样值重新排列(由小到大) -4,,,,,0,0,,,,,,()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--==== 9解:121211121211n n i ji j n x n x n n x n n ==+=+∑∑112212n x n x n n +=+()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n i ji j x xn n x x n x n x n n n n n s x n sx n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n s n n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n s n n n n +-++++-=+++-+=+++12. 解:()ix P λ i Ex λ= i Dx λ= 1,2,,i n =⋅⋅⋅1122111111n n i i i i nni ii i n E X E x Ex n n n n DX Dx Dxn nn nλλλλ============∑∑∑∑13.解:(),ix U a b 2i a b Ex += ()212i b a Dx -= 1,2,,i n =⋅⋅⋅ 在此题中 ()1,1i x U - 0i Ex = 13i Dx = 1,2,,i n =⋅⋅⋅112111101113n ni i i i nni ii i E X E x Ex n n DX Dx Dxn nn==========∑∑∑∑14.解:因为()2,iX N μσ 0i X Eμσ-= 1i X Dμσ-=所以 ()0,1i X N μσ- 1,2,,in =⋅⋅⋅由2χ分布定义可知()222111nni ii i X Y Xμμσσ==-⎛⎫=-=⎪⎝⎭∑∑服从2χ分布 所以 ()2Yn χ15. 解:因为()0,1iX N1,2,,i n =⋅⋅⋅()1230,3X X X N ++0=1=所以()0,1N()221χ同理()221χ由于2χ分布的可加性,故()222123Y χ=+可知 13C=16. 解:(1)因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑(){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x dx σχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为 ()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≥⎩所以 ()21122202200n yn nY y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(2) 因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑(){}()22222220nyY nYny F y P Y y P f x dx σχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(3)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()10,1ni N =所以()22311n i Y n χσ=⎛= ⎝(){}()()22333210yn Y Y F y P Y y P y f x dx n σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故()232000y n Y y f y y σ-⎧>=≤⎩(4)因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅所以()()1224210,11ni ni N Y χσ==⎛= ⎝(){}()()()()()224224442210'2211y Y Y Yy F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰故()242000y Y y f y y σ-⎧>=≤⎩17.解:因为 ()Xt n存在相互独立的U ,V()0,1UN ()2Vn χ使X = ()221Uχ则 221U X V n=由定义可知 ()21,F n χ18解:因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =()221n mi i n X m χσ+=+⎛⎫ ⎪⎝⎭∑所以()1nniX Yt m ==(2)因为()0,1iX N σ1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑所以 ()221122211,ni n i ii n mn mi ii n i n X m X n Y F n m X n X mσσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑19.解:用公式计算()20.010.019090χ=查表得 0.01 2.33U =代入上式计算可得()20.01909031.26121.26χ=+=20.解:因为()2Xn χ 2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N{}P X c P ≤=≤22lim t n P dt -→∞-∞≤==Φ 故 {}PX c ≤≈Φ第 二 章 1. 0,0()0,0()()1()111x x x x xe xf x x E x f x xdx xe dxxe e d x e xλλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有 1x λ∧=2.()111121).()(1)(1)1111k k x x E x k p p p k p ppp ∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p =X所以有1p X ∧=2).其似然函数为1`11()(1)(1)ni x i i nX nni L P P p p p -=-=∑=-=-∏1ln ()ln ()ln(1)ni i L P n p X n p ==+--∑1ln 1()01ni i d L n X n dp p p ==--=-∑解之得11nii np X X∧===∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12ni i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=⎪⎨⎪=⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b2()a 4. 解:(1)设12,,n x x x 为样本观察值则似然函数为111()(),01,1,2,,ln ()ln ln ln ln 0nni i i nii ini i L x x i nL n x d L nx d θθθθθθθθ-====<<==+=+=∏∑∑(-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:11()1ni i X x n E x X X Xθ=∧===-∑令得5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d ln L nk k ^ k = − ∑ xi = 0,∴^ = 或β = β dβ β x x i
β
7.设母体X具有均匀分布密度 , 从中抽得容量为6的子样数值 1.3,0.6,1.7,2.2,0.3,1.1,试求母体平均数和方差 的最大似然估计量的值. 解: X ∼ U (0, β ) ,β 的最大似然估计 ^ = max x = 2.2 β i ^ β ^ β µ = EX = ,∴ µ = = 1.1
+∞
λe−λ x , x ≥ 0 0, x < 0
∞
(λ
−λx
>0
)
Ex =
−∞
∫
xf ( x) dx = ∫ xλ e
0
1 dx = λ
用样本 x
1 ^ 1 估计Ex,则有 x = ,∴ λ = λ x
12. X , 12.设母体X具有几何分布,它的分布列为 P{X=k}=(1-p)k-1p,k=1,2,… p,k=1,2,… p , p 先用矩法求p 的估计量, 再求p 的最大似然估 . 计. 解 :( 1) 1)矩法分布为的正态母体的一个
1 子样,求 Y = σ 2
n
( X i − µ ) 2的概率分布。 ∑
i =1
xi − µ ∵ X ∼ N ( µ , σ ), 则yi = ∼ N (0,1), 且Y1 ,..., Yn 之间相互独立 σ
2
解:
xi − µ 2 1 2 2 Y = 2 ∑ ( xi − µ ) = ∑ ( ) = ∑ yi σ σ i i i χ 2 分布定义Y ∼ χ 2 ( n),Y服从自由度为n的 由 χ 2分布。
都是 µ 的无偏估计,并求出每个估计量的 方差。问哪一个方差最小? 2 1 2 1 2 1 解:^ = E ( x1 + x2 ) = Ex1 + Ex2 = µ + µ = µ E µ1 ^ 同理: 2和µ3 都是 µ 的无偏估计。 µ ^
3 3 3 3 3 3
2 2 1 2 5 1 2 3 2 5 1 2 1 2 1 Dµ1 = ( ) + ( ) = , Dµ2 = ( ) + ( ) = , Dµ3 = ( ) + ( ) = ^ ^ ^ 3 3 9 4 4 8 2 2 2
f ( x) =
1 ,0 ≤ x ≤ β β
2 2 2 β 1 ^2 2 2 σ = DX = ,∴^ = β = 0.4033 σ 12 12
8.设母体X的分布密度为
e ,x ≥θ f(x)= 0, x < 0
试求 θ 解: 的最大似然估计。
− ( x −θ )
e− ( x −θ ) , x ≥ θ X ∼ f ( x) = 0, x < 0
13. X [a,b]上的均匀分布, , 13.设母体X 具有在区间[a,b] 其分布密度为 f(x)=
1 ,a ≤ x ≤ b b−a 0, 其他
其中 a,b 是未知参数 , 试用矩法求 a 与 b 的估计 . 量. a+b 1 2 , DX = (b − a ) : 解: X ∼ U [a, b], EX =
n i =1 n i =1
似然函数
L = ∏ f ( xi ) = ∏ e − ( xi −θ )
d ln L ln L = −(∑ xi − nθ ), = 0无解 dθ i 为了使L达到最大, x − nθ ≥ 0,尽可能 ∑ i i 小, 尽可能大,而^ ≤ xi ,∴θ = min xi = x(1) θ
yi = xi − a c
i
i
∑x = ∑(a + cy ), nx = na + cny,∴x =a+ cy
i i i i
1 1 c2 而 s2 = ∑(xi − x)2 = ∑(a + cyi − a − cy)2 = ∑( yi − y)2 = c2sy2 x n i n i n i
12. 在五块条件基本相同的田地上种植某种 92 94,103 105, 农作物,亩产量分别为92 94 103 105 92,94 103,105 106 106(单位:斤),求子样平均数和子样方 差。 解:作变换
i i
∏
i =1
i
∏ 2σ
i =1
2σ
∑x
ln L = −n ln 2 − n ln σ −
i d ln L n =− + i 2 =0 dσ σ σ 1 σ 得 ^= ∑ xi
i
i
σ
∑x
n
i
+∞
E xi = E X =
+∞
∫
−∞
x f ( x )dx
∞ −
=
∫
−∞
1 x e 2σ
x − σ
1 dx = 2 ∫ x ⋅ e dx = σ 2σ 0
∞
EX = ∑ k ⋅ (1 − p )
k −1
x −1 x −1 1 ((∑ −(1 − x ) ) ' = [ ]' = ( )' = 2 ) 1 − (1 − x ) x x i
i
1 ∴^= p x
k =1
1 1 ⋅ p = p ∑ [−(1 − p ) ]' = p ⋅ 2 = p p k
k
i
2矩法估计
+∞
θ EX = ∫ x ⋅ f ( x) dx = ∫ x ⋅ θ ⋅ x dx = θ +1 −∞ 0
θ −1
1
用 X 估计EX
X ∴θ = 1− X
1 e 5.设母体X的密度为 f ( x) = 2σ
−
x σ
, −∞ < x < ∞
试求 σ 的最大似然估计;并问所得估计量是 否的无偏估计. ∑x x n n 1 −σ 1 n − σ 解: = f ( x ) = L e =( ) e
1 1 yi = xi − 100, a = 100, y = ∑ yi = × 0 = 0 n i 5
x = a + y = 100
2 1 1 2 sx = s y = ∑ yi − y = × [( −8)2 + ( −6)2 + 32 + 52 + 62 ] − 0 = 34 n i 5 2 2
x ∼ f ( x) =
1最大似然估计 L = ∏ θ ⋅ xiθ −1 = θ n ⋅ ∏ xiθ −1
i =1 i =1
0, 其他 n
( θ >0 )
n
ln L = n ln θ + (θ − 1) ∑ ln xi
i
d ln L n n = + ∑ ln xi = 0,∴^ − θ= dθ θ i ∑ ln xi
1≤i ≤ n
θ
3 3 1 3 µ2 (2)^ = X 1 + X 2 4 4 1 1 (3)^ = X 1 + X 2 µ3 2 2
12设母体X服从正态分布 N ( µ ,1), ( X 1 , X 2 ) 是 从此母体中抽取的一个子样。试验证下面三 个估计量 2 1 (1)^ = X 1 + X 2 µ1
x σ
1 1 ∴ Eσ = E ( ∑ xi ) = ∑ E xi = σ n i n i
^ 是 σ 的无偏估计. σ
6.设母体X具有分布密度 f(x)=
βk x k −1e − β x , x > 0 (k − 1)! 0, 其他
其中k是已知的正整数,试求未知参数的最大 似然估计量. 解:似然函数
λ ∑ Dx = n i
X -1 4.设X1,X2,…,Xn是区间(-1 1)上均匀分 -1,1 布的母体的一个子样,试求子样平均数的 均值和方差。 −1 + 1 22 1 解: ∼ U (−1,1), Ex = x = 0, Dx = =
2 12 3
1 1 xi ) = ∑ Exi = Ex = 0 ∑ n i n i 1 1 1 Dx = D( ∑ xi ) = ⋅ Dx = n i n 3n
52 x ∼ N (40, ) 64
x − 40 1 8 ∴ P{ x − 40 < 1} = P{ < } = p{U < } 5/8 5/8 5
8 = 2Φ( ) − 1 = 0.8904 5
第二章 参数估计 X 1.设母体X具有负指数分布,它的分布密度 为 λ e−λ x , x ≥ 0 f(x)= 0, x < 0 其中 λ > 0 。试用矩法求的估计量。 解:x ∼ e(λ ) f(x)=
16.设母体X具有正态分布 N(0,1),从此母体 6 x 中取一容量为6的子样(x1,x2,x3,x4,x5,x6)。 C, 又设 Y = ( X + X + X ) + ( X + X + X )。试决定常数C, C,使 2 CY 得随机变量CY CY服从 χ 分布。 解: X ∼ N (0,1), Z1 = X 1 + X 2 + X 3 ∼ N (0, 3),
2
64
38 − 40 x − 40 43 − 40 ∴ P 38 ≤ x ≤ 43 = P{ ≤ ≤ } 5/ 6 5/ 6 5/ 6
{
}
= P{−2.4 ≤ U ≤ 3.6} = Φ (3.6) − Φ (−2.4) = Φ (2.4) = 0.9918
(2)n=64时,求 P{ x − 40 < 1} 解:
7.已知 X ∼ t (n) ,求证 X ∼ F (1, n)
2
证明:令
2 2
X=
U χ /n
2
∼ t ( n), 其中U ∼ N (0,1)