2017年天津市滨海新区中考数学一模试卷有答案

合集下载

2017年天津中考数学试题及答案

2017年天津中考数学试题及答案

2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于( )A .2B .﹣2C .8D .﹣82.(3分)cos60°的值等于( )A .√3B .1C .√22D .123.(3分)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡张.将用科学记数法表示为( )A .0.1263×108B .1.263×107C .12.63×106D .126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6.(3分)估计√38的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 7.(3分)计算a a+1+1a+1的结果为( ) A .1 B .a C .a +1 D .1a+18.(3分)方程组{y =2x 3x +y =15的解是( )A .{x =2y =3B .{x =4y =3C .{x =4y =8D .{x =3y =69.(3分)如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD=∠EB .∠CBE=∠C C .AD ∥BC D .AD=BC10.(3分)若点A (﹣1,y 1),B (1,y 2),C (3,y 3)在反比例函数y =−3x 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 311.(3分)如图,在△ABC 中,AB=AC ,AD 、CE 是△ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP +EP 最小值的是( )A .BCB .CEC .AD D .AC12.(3分)已知抛物线y=x 2﹣4x +3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( )A .y=x 2+2x +1B .y=x 2+2x ﹣1C .y=x 2﹣2x +1D .y=x 2﹣2x ﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x 7÷x 4的结果等于 .14.(3分)计算(4+√7)(4−√7)的结果等于 .15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.(3分)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.(3分)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。

天津市2017年中考数学试卷(附答案)

天津市2017年中考数学试卷(附答案)

2017年天津市初中毕业生学业考试试卷数 学一、选择题:1.计算5)3(+-的结果等于( )A .2B .2-C .8D .8-2.060cos 的值等于( ) A 3 B .1 C .22 D .21 3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .8101263.0⨯B .710263.1⨯C .61063.12⨯D .5103.126⨯5.右图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.估计38的值在( )A .4和5之间B .5和6之间 C. 6和7之间 D .7和8之间7.计算111+++a a a 的结果为( ) A .1 B .a C. 1+a D .11+a 8.方程组⎩⎨⎧=+=1532y x x y 的解是( ) A .⎩⎨⎧==32y x B .⎩⎨⎧==34y x C. ⎩⎨⎧==84y x D .⎩⎨⎧==63y x 9.如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD =10.若点),1(1y A -,),1(2y B ,),3(3y C 在反比例函数xy 3-=的图象上,则321,,y y y 的大小关系是( )A .321y y y <<B .132y y y << C. 123y y y << D .312y y y <<11.如图,在ABC ∆中,AC AB =,CE AD ,是ABC ∆的两条中线,P 是AD 上一个动点,则下列线段的长度等于EP BP +最小值的是( )A .BCB .CE C. AD D .AC12.已知抛物线342+-=x x y 与x 轴相交于点B A ,(点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点'M 落在x 轴上,点B 平移后的对应点'B 落在y 轴上,则平移后的抛物线解析式为( )A .122++=x x yB .122-+=x x y C. 122+-=x x yD .122--=x x y二、填空题13.计算47x x ÷的结果等于 .14.计算)74)(74(-+的结果等于 .15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数kx y =(k 是常数,0≠k )的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点C B A ,,均在格点上.(1)AB 的长等于 ;(2)在ABC ∆的内部有一点P ,满足2:1:::=∆∆∆PCA PBC PAB S S S ,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题19.解不等式组⎩⎨⎧+≤≥+34521x x x 请结合题意填空,完成本题的解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为 ,图①中m 的值为 ;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.①②21.已知AB 是⊙O 的直径,AT 是⊙O 的切线,050=∠ABT ,BT 交⊙O 于点C ,E 是AB 上一点,延长CE 交⊙O 于点D .(1)如图①,求T ∠和CDB ∠的大小;(2)如图②,当BC BE =时,求CDO ∠的大小.22.如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数).参考数据:05.264tan ,44.064cos ,90.064sin 000≈≈≈,2取414.1.23.用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数).(1)根据题意,填写下表:(2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出21y y ,关于x 的函数关系式;(3)当70>x 时,顾客在哪家复印店复印花费少?请说明理由.24.将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标;(2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).25.已知抛物线32-+=bx x y (b 是常数)经过点)0,1(-A .(1)求该抛物线的解析式和顶点坐标;(2))1,(m P 为抛物线上的一个动点,P 关于原点的对称点为'P .①当点'P 落在该抛物线上时,求m 的值;②当点'P 落在第二象限内,2'A P 取得最小值时,求m 的值.。

(含参考答案)2017年天津市中考数学试卷

(含参考答案)2017年天津市中考数学试卷

2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣82.(3分)cos60°的值等于()A.B.1 C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.6.(3分)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算的结果为()A.1 B.a C.a+1 D.8.(3分)方程组的解是()A.B.C.D.9.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC10.(3分)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD 上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC12.(3分)已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x7÷x4的结果等于.14.(3分)计算的结果等于.15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.(3分)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。

2017年天津市中考数学试卷-答案

2017年天津市中考数学试卷-答案

1cos60=.2【解析】3638<【解析】ABC △绕点60得DBE △60,AB 三角形,60DAB ∴∠=,DAB CBE ∴∠=∠,AD BC ∴∥.60,AB 【解析】30k =-<,10y >,【提示】根据反比例函数的性质判断即可【考点】反比例函数的图象和性质,AB AC =+≥,∴P、C、E共线时,PB PEPE PC CE+的值最小,最小值为CE的长度.,平移该抛物线,使点【解析】共【解析】若正比例函数.P直角45,∴△11EG=+【提示】(1)利用勾股定理即可解决问题;(2)如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G .连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求.【考点】勾股定理,平行线的性质,平行四边形的性质,三角形的面积三、解答题19.【答案】(1)解不等式①,得1x ≥;(2)解不等式②,得3x ≤;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为13x ≤≤.【提示】(1)移项、合并同类项即可求得答案;(2)移项、合并同类项、系数化为1即可求得答案;(3)根据不等式解集在数轴上的表示方法,画出即可;(4)根据各不等式解集在数轴上的表示,由公共部分即可确定不等式组的解集.【考点】解不等式组20.【答案】(1)4030(2)平均数为15众数为16中位数为15【解析】(1)410%40÷=(人),10027.5257.51030m =----=;(2)平均数(134141015111612173)4015=⨯+⨯+⨯+⨯+⨯÷=,16出现12次,次数最多,众数为16;按大小顺序排列,中间两个数都为15,中位数为15.【提示】(1)÷=频数所占百分比样本容量,10027.5257.51030m =----=;(2)根据平均数、众数和中位数的定义求解即可.【考点】统计的初步知识运用21.【答案】(1)40T ∠=40CDB ∠=(2)15CDO ∠=【解析】(1)如图①,连接AC ,AT 是⊙O 切线,AB 是⊙O 的直径,AT AB ∴⊥,即90TAB ∠=,50ABT ∠=,9040T ABT ∴∠=-∠=;由AB 是⊙O 的直径,得90ACB ∠=,9040CAB ABC ∴∠=-∠=,40CDB CAB ∴∠=∠=;(2)如图②,连接AD ,在BCE △中,BE BC =,50EBC ∠=,65BCE BEC ∴∠=∠=,65BAD BCD ∴∠=∠=,OA OD =,65ODA OAD ∴∠=∠=,50ADC ABC ∠=∠=,655015CDO ODA ADC ∴∠=∠-∠=-=.【提示】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得90TAB ∠=,根据三角形内角和得T ∠的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得CDB ∠的度数;(2)如图②,连接AD ,根据等边对等角得65BCE BEC ∠=∠=,利用同圆的半径相等知OA OD =,同理65ODA OAD ∠=∠=,由此可得结论.【考点】圆的切线性质,三角形的内角和定理,圆的相关性质,等腰三角形的性质22.【答案】BP 的长为153海里BA 的长为161海里64,45B ∠,PA sin120sin64PA A =,cos 120cos64AC PA A =;PCB 中,45B ∠=,PC BC ∴,1200.901534522PC ⨯=≈120cos64120sin641200.90+≈⨯所以BP 的长为153海里,BA 的长为161海里.)点A B OB '⊥90,在Rt A OB '△2OA OB '-∴P 60,180120BPO ∴∠∠=-,120OPA '=∠,180,OB ∴,又OB PA =,∴四边形OPA A B OP '=3)设(P x45, (,)P x y ,32P ⎛-∴ ⎝30,OA 30BPA '∠=,∴∠OA AP '∴∥PA '∥∴四边形OAPA 30A ∠=,PM ∴把32y =30时,点60,求出120,由折叠的性质得:120,PA',得出四边形OPA是平行四边形,即可得出45,30,OA)抛物线2=y x-(2)①由点点抛物线的顶点坐标为PA-,,(10)2(P A'∴=m>,∴m的值为11 / 11。

天津市2017中考试题数学卷(含解析)

天津市2017中考试题数学卷(含解析)

2017年天津市初中毕业生学业考试试卷数 学一、选择题:1.计算(3) 5的结果等于( )A. 2 B2C . 8D .8【答案】 A.【解析】试题分析 根据有理数的加法法则即可得原式-2,故选A.2. COS600的值等于( )A 品B.1C 2D1 2【答案】D.【解析】试题分析;棍据特殊角的三角函数值可得3丸0匸:,故选D3.在一些美术字中,有的汉子是轴对称图形 •下面4个汉字中,可以看作是轴对称图形的 是( )礼迎全运CA )(B ) (C ) (D )【答案】C. 【解析】试题分析:根据轴对称图形的定义可知,只有选项C 是轴对称图形,故选 C.4. 据《天津日报》报道,天津市社会保障制度更加成熟完善,截止 放社会保障卡12630000张•将12630000用科学记数法表示为()【答案】B.2017年4月末,累计发 8 7A. 0.1263 10 B . 1.263 106C . 12.63 105D . 126.3 10试题分析:学记数法的表示形式为a x I0n的形式,其中1w|a|v 10, n为整数,n的值为这个数的整数位数减1,所以=1.263 107.故选B.5. 右图是一个由4个相同的正方体组成的立体图形,它的主视图是()第<5)IS (O【答案】D.【解析】试题分析:从正面看可得从下往上有2列正方形,个数依次为3, 1,故选D.6. 估计.38的值在()A. 4和5之间 B . 5和6之间C. 6和7之间D . 7和8之间【答案】C.【解析】试題分析:由即可得X ,烦<匚故选C7.计算a1的结果为()a 1 a 11A. 1B.aC. a 1Da 1【答案】A.【解析】试题分析:根据同分母的分式相加减的法则可得,原式=a 1 1,故选A.a 1y2x8.方程组J的解是()3x y15x2x4x4x3A.B C. D .y3y3y8y6(A>iD)【解析】试题分析:把方程①代入方程②可得,3x+2x=15,解得x=3,把x=3代入方程①可得y=6,所以方程组的解为X 3,故选D.y 69.如图,将ABC绕点B顺时针旋转600得DBE,点C的对应点E恰好落在AB延长线上,连接AD .下列结论一定正确的是()【答案】C.【解析】试题分析;WilSC绕点鸟顺时针谄专6L富3EE ,由此可得遊吧厶BXZEBWr ;即可得△ABD为等边三对略根据等边三角形的性贡可得4期司o° ,所以4蛇立瑰,所以,化”比,其它结论都不能够推岀,故选c10.若点A(1, y i) , B(1,y2), C(3,y3)在反比例函数y3的图象上,贝UXy1,y2, y3 的大小关系是()A. y i y2y3 B . y2 y3 屮 C. y3y2 y1 D . y2 y1 y3【答案】B.【解析】试题分析:把A( 1,yJ , B(1, y2), 53小)分别代入y -可得,Xy i 3,y23,y3 1,即可得y2 y3 y i,故选B.CBE C. AD//BC D . AD BCAABD E A.11.如图,在ABC中,AB AC , AD,CE是ABC的两条中线,P是AD上一个动点,EP最小值的是(C. AD D . AC【解试题分析:在ABC 中,AB AC , AD是ABC的中线,可得点B和点D关于直线AD对称,连结CE交AD于点P,此时BP EP最小,为EC的长,故选 B.12.已知抛物线y x2 4x 3与x轴相交于点A,B (点A在点B左侧),顶点为M .平移该抛物线,使点M平移后的对应点M '落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()2 2 2A. y x 2x 1 B . y x 2x 1 C. y x 2x 1D. y x2 2x 1【答案】A.【解析】试题分析=令 E 即r-4A+3 = 0 ;解得口或3,即可得A (b 0), 抛物线+ 3 = 的顶点坐标为(初・1人平移该挞物袋,使点胚平移后的对应点M落在工轴上点B平移后的对应点B'落在>■轴上,也就是把该抽物线问上平移1个单仏向左平移3个单位,抿協抛物线平移规律可得新抛物线的解析式九丄二0+=$ + 2工+1「故选A.二、填空题13.计算x7 x4的结果等于_____________ .【答案】X3.【解析】试题分析:根据同底数幕的除法法则计算即可,即原式=x3.14. 计算(4 7)(4 . 7)的结果等于________ .【答案】9.【解析】试题分析:根据平方差公式计算即可,即原式=16-7=9.15. 不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【答案】5.6【解析】试题分析:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是5.616. 若正比例函数y kx ( k是常数,k 0 )的图象经过第二、四象限,贝U k的值可以是(写出一个即可).【答案】k<0,只要符合条件的k值都可,例如k=-1.【解析】试題分析=正比例酗"是常数,的團象经过第二HW限’根16正比例函数的性质可得Z 只要符合条件的k值都可』例如k-h17. 如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.【解析】 试题分析:连结 AC 根据正方形的性质可得 A 、E C 三点共线,连结FG 交AC 于点M ,因正 方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC=FG= 2 ,AC=3 ;2 ,即可得AE=2 2 ,因P 为AE 的中点,可得PE=AP= 2 ,再由正方形的GM=EM=Z ,FG 垂直于 AC,在 Rt △ PGM 中,PM 丄22 2PG=.5.【答案】(1) .17 ;( 2)详见解析 【解析】试题分析:⑴根据勾股定理即可求得AB-, 17 ; (2)如图,AC 与网络线相交,得点D 、E ,取格点F ,连结FB 并延长,与网格线相交,得点 M 、N ,连结DN 、EM ,DN 与EM 相交于性质可得由勾股定理即可求得18. 如图,在每个小正方形的边长为 1的网格中,点 代B,C 均在格点上.(1)AB 的长等于 ___________ ;(2 )在ABC 的内部有一点P ,满足S PAB : S PBC :: S PCA 1:2,请在如图所示的网格中, 用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证 明)点P,点P即为所求•三、解答题19. 解不等式组X 1 2 ①5x 4x 3 ②请结合题意填空,完成本题的解答•(1) ___________________________ 解不等式①,得;(2) ___________________________ 解不等式②,得;(3 )把不等式①和②的解集在数轴上表示出来:0 12 3 4 5(4)原不等式组的解集为__________ •【答案】(1)x > 1; (2) x< 3; (3)详见解析;(4) K x w 3.【解析】试题分析:⑴ 移莎合并同类项即可求得答案;⑵ 移项、合并同类臥系数化为1即可求得答案:⑶ 根据不等式解集在数轴上的表示方法』画出即可,(4)找出这两个不等式解集的公共咅吩』即可得不等式组的解集.试题解析:(1)x > 1 ;(2) x w 3;(J 2 3^5(3)(3) 1 w x w 3.20.某跳水队为了解运动员的年龄情况, 作了一次年龄调查,根据跳水运动员的年龄 (单位:岁),绘制出如下的统计图①和图② •请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为(2 )求统计的这组跳水运动员年龄数据的平均数、众数和中位数 【答案】(1)40, 30;( 2)15,16,15.【解析】试題分析:(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,祁可得本^接受调查的跳水运动 员人如用泊岁年龄的人数除以本次接登调查的跳水运动员人数即可求得m 的怪<2>根据统计囲中给出 的信息,结合求平t 渊、介数、中位数的方法求解即可.试题解析:(1)40,30; (2)观察条形统计图,-13 4 14 10 15 11 16 12 17 3 , J x ---------------------------------------------------- 15 ,40•••这组数据的平均数为 15;•••在这组数据中,16出现了 12次,出现的次数最多, •这组数据的众数为 16;15 15•••将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15 15 15 ,2•这组数据的中位数为 15.21.已知AB 是O O 的直径,AT 是O O 的切线,ABT 50° , BT 交O O 于点C , E 是,图①中m 的值为AB上一点,延长CE交O O于点D .(1) 如图①,求T和CDB的大小;(2) 如图②,当BE BC时,求CDO的大小.【答案】(1) / T=40。

2017年天津中考数学试题及答案

2017年天津中考数学试题及答案

2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣3)+5的结果等于( )A .2B .﹣2C .8D .﹣82.(3分)cos60°的值等于( )A .√3B .1C .√22D .123.(3分)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .4.(3分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .0.1263×108B .1.263×107C .12.63×106D .126.3×1055.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6.(3分)估计√38的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间7.(3分)计算a a+1+1a+1的结果为( ) A .1 B .a C .a +1 D .1a+18.(3分)方程组{y =2x 3x +y =15的解是( )A .{x =2y =3B .{x =4y =3C .{x =4y =8D .{x =3y =69.(3分)如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .∠ABD=∠EB .∠CBE=∠C C .AD ∥BC D .AD=BC10.(3分)若点A (﹣1,y 1),B (1,y 2),C (3,y 3)在反比例函数y =−3x 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 311.(3分)如图,在△ABC 中,AB=AC ,AD 、CE 是△ABC 的两条中线,P 是AD 上一个动点,则下列线段的长度等于BP +EP 最小值的是( )A .BCB .CEC .AD D .AC12.(3分)已知抛物线y=x 2﹣4x +3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( )A .y=x 2+2x +1B .y=x 2+2x ﹣1C .y=x 2﹣2x +1D .y=x 2﹣2x ﹣1二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算x 7÷x 4的结果等于 .14.(3分)计算(4+√7)(4−√7)的结果等于 .15.(3分)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.(3分)若正比例函数y=kx (k 是常数,k ≠0)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.(3分)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.(3分)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分。

2017年天津市中考数学试卷(附详细答案)

2017年天津市中考数学试卷(附详细答案)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前天津市2017年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算(3)5-+的结果等于( ) A .2B .2-C .8D .8- 2.cos60的值等于( )AB .1 CD .123.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是 ( )4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截至2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )A .80.126310 ⨯ B .71.26310⨯ C .612.6310⨯ D .5126.310⨯ 5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 7.计算111a a a +++的结果为( )A .1B .aC .1a +D .11a + 8.方程组2,315y x x y =⎧⎨+=⎩的解是( )A .2,3x y =⎧⎨=⎩B .4,3x y =⎧⎨=⎩C .4,8x y =⎧⎨=⎩D .3,6x y =⎧⎨=⎩9.如图,将ABC △绕点B 顺时针旋转60得DBE △,点C 的对应点E 恰好落在AB 的延长线上,连接AD .下列结论一定正确的是 ( )A .ABD E ∠=∠B .CBEC ∠=∠ C .AD BC ∥ D .AD BC =10.若点1(1,)A y -,2(1,)B y ,3(3,)C y 在反比例函数3y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .231y y y <<C .321y y y <<D .213y y y <<11. 如图,在ABC △中,AB AC =,AD ,CE 是ABC △的两条中线,P 是AD 上的一个动点,则下列线段的长等于BP EP +最小值的是( )A .BCB .CEC .ADD .AC12.已知抛物线243y x x =-+于x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为( )A .221y x x =++B .221y x x =+-ABCDABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)C .221y x x =-+D .221y x x =--第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 13.计算74xx ÷的结果等于 .14.计算(4的结果等于 .15.不透明袋子中装有6个球,其中有5个红球,1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第二、四象限,则k 的值可以是 (写出一个即可).17.如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为 .18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于 ; (2)在ABC △的内部有一点P ,满足::1:2:3PAB PBC PCA S S S =△△△,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解不等式组12,54 3.x x x +⎧⎨+⎩≥①≤②请结合题意填空,完成本题的解答. (1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为 . 20.(本小题满分8分)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:图1 图2(1)本次接受调查的跳水运动员人数为 ,图1中m 的值为 ; (2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数. 21.(本小题满分10分)已知AB 是O 的直径,AT 是O 的切线,50ABT ∠=,BT 交O 于点C ,E 是AB上一点,延长CE 交O 于点D .图1图2(1)如图1,求T ∠和CDB ∠的大小;(2)如图2,当BE BC =时,求CDO ∠的大小.22.(本小题满分10分)如图,一艘海轮位于灯塔P 的北偏东64方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45方向上的B 处,求BP 和BA 的长(结果取整数).参考数据:sin 640.90≈,cos640.44≈,tan 64 2.05≈1.414.数学试卷 第5页(共28页) 数学试卷 第6页(共28页)23.(本小题满分10分)用A4纸复印文件.在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)(2)1212关于x 的函数关系式;(3)当70x >时,顾客在哪家复印店复印花费少?请说明理由.24.(本小题满分10分)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点A ,点(0,1)B ,点(00)O ,.P 是边AB 上的一点(点P 不与点A ,B 重合),沿着OP 折叠该纸片,得点A 的对应点A '.图1 图2(1)如图1,当点A '在第一象限,且满足A B OB '⊥时,求点A '的坐标; (2)如图2,当P 为AB 中点时,求A B '的长;(3)当30BPA '∠=时,求点P 的坐标(直接写出结果即可).25.(本小题满分10分)已知抛物线23y x bx =+-(b 是常数)经过点(1,0)A -. (1)求该抛物线的解析式和顶点坐标;(2)(,)P m t 为抛物线上的一个动点,P 关于原点的对称点为P '. ①当点P '落在该抛物线上时,求m 的值;②当点P '落在第二象限内,2P A '取得最小值时,求m 的值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共28页)数学试卷 第8页(共28页)1cos602=. 【解析】36<【解析】ABC△绕点60得DBE△60,AB 三角形,60DAB∴∠=,DAB CBE∴∠=∠,AD BC∴∥.60,AB【解析】3k=-<,1y>,【提示】根据反比例函数的性质判断即可,AB AC=5 / 14数学试卷 第11页(共28页)数学试卷 第12页(共28页)PE PC CE +≥,∴P 、C 、E 共线时,PB PE +的值最小,最小值为CE 的长度.,平移该抛物线,使点【解析】共【解析】若正比例函数.P直角45,∴△EG+=7 / 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)22(3)把不等式①和②的解集在数轴上表示出来:9 / 14大小顺序排列,中间两个数都为15,中位数为15.【提示】(1)÷=频数所占百分比样本容量,10027.5257.51030m =----=; (2)根据平均数、众数和中位数的定义求解即可. 【考点】统计的初步知识运用 21.【答案】(1)40T ∠=40CDB ∠= (2)15CDO ∠=【解析】(1)如图①,连接AC , AT 是⊙O 切线,AB 是⊙O 的直径,AT AB ∴⊥,即90TAB ∠=,50ABT ∠=,9040T ABT ∴∠=-∠=; 由AB 是⊙O 的直径,得90ACB ∠=,9040CAB ABC ∴∠=-∠=, 40CDB CAB ∴∠=∠=; (2)如图②,连接AD ,在BCE △中,BE BC =,50EBC ∠=,65BCE BEC ∴∠=∠=,65BAD BCD ∴∠=∠=,OA OD =,65ODA OAD ∴∠=∠=,50ADC ABC ∠=∠=,655015CDO ODA ADC ∴∠=∠-∠=-=.【提示】(1)根据切线的性质:圆的切线垂直于经过切点的半径,得90TAB ∠=,根据三角形内角和得T∠的度数,由直径所对的圆周角是直角和同弧所对的圆周角相等得CDB ∠的度数;(2)如图②,连接AD ,根据等边对等角得65BCE BEC ∠=∠=,利用同圆的半径相等知OA OD =,同理65ODA OAD ∠=∠=,由此可得结论.【考点】圆的切线性质,三角形的内角和定理,圆的相关性质,等腰三角形的性质 22.【答案】BP 的长为153海里数学试卷 第20页(共28页)64,45B ∠,PAsin 120sin 64PA A =,cos 120cos64AC PA A =; PCB 中,45B ∠=,PC BC ∴,1200.901534522PC ⨯=≈120cos64120sin 641200.90+≈⨯所以BP 的长为153海里,BA 的长为161海里.)点A B OB '⊥90,在Rt A OB '△2'P 60,180120BPO ∴∠∠=-,120OPA '=,180,OB ∴,又OB PA =,∴四边形OPA A B OP '=3)设(P x45, (,)P x y ,32P ⎛-∴ 30,OA 30BPA '∠=,∴∠OA AP '∴∥PA '∥∴四边形OAPA 30A ∠=,PM ∴把32y =30时,点60,求出120,由折叠的性质得:120,PA,得出四边形是平行四边形,即可得出45,30,OA')抛物线2=y x-(2)①由点点抛物线的顶点坐标为PA-,,(10)2(∴=P A'm>,∴∴m的值为。

2017年天津市中考数学试卷(Word版含答案)

2017年天津市中考数学试卷(Word版含答案)

2017年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)。

1•计算(-3)+5的结果等于()。

A. 2B.- 2C. 8D.- 82. cos60°的值等于()。

3. 在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()。

4. 据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()。

A. 0.1263X 108B. 1.263X 107C. 12.63X 106D. 126.3X 1056.估计的值在(A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间y=2x8.方程组0十y"5|的解是()A.匚B. 1C.D.A.礼B.迎C全D.运D.5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是(B. . __—IC.D.7.计算的结果为(9.如图,将△ ABC绕点B 顺时针旋转60°得厶DBE 点C 的对应点E 恰好落在 F 列结论一定正确的是( )oA .Z ABD=Z EB .Z CBE 2C C. AD // BC D . AD=BC10.若点A (- 1, yl ), B (1, y2), C (3, y3)在反比例函数丨 的图象上,则y1, y2, y3的大小关系是(11.如图,在△ ABC 中,AB=AC 动点,则下列线段的长度等于 BP+ER 最小值的是(12 .已知抛物线y=x2- 4x+3与x 轴相交于点A , B (点A 在点B 左侧),顶点为 M .平移该抛物线,使点 M 平移后的对应点M'落在x 轴上,点B 平移后的对应 点B'落在y 轴上,则平移后的抛物线解析式为( )o A. y=x2+2x+1 B . y=x2+2x- 1 C. y=x2- 2x+1 D. y=x2- 2x - 1 二、填空题(本大题共6小题,每小题3分,共18分) 13.计算x 7十x 4的结果等于14 .计算(4人刀)(心何)15. _____________________________________________________ 不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无A . yl v y2v y3B . y2v y3v y1 C. y3v y2v y1 D. y2v yl v y3AD 、。

天津市2017届中考数学试卷(附答案解析)

天津市2017届中考数学试卷(附答案解析)

2017年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣8【考点】19:有理数的加法.【分析】依据有理数的加法法则计算即可.【解答】解:(﹣3)+5=5﹣3=2.故选:A.2.cos60°的值等于()A.B.1 C.D.【考点】T5:特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:cos60°=,故选:D.3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不可以看作是轴对称图形,故本选项错误;B、不可以看作是轴对称图形,故本选项错误;C、可以看作是轴对称图形,故本选项正确;D、不可以看作是轴对称图形,故本选项错误.故选C.4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108 B.1.263×107C.12.63×106D.126.3×105【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于12630000有8位,所以可以确定n=8﹣1=7.【解答】解:12630000=1.263×107.故选:B.5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C. D.【考点】U2:简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有一个正方形.故选D.6.估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【考点】2B:估算无理数的大小.【分析】利用二次根式的性质,得出<<,进而得出答案.【解答】解:∵<<,∴6<<7,∴的值在整数6和7之间.故选C.7.计算的结果为()A.1 B.a C.a+1 D.【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式==1,故选(A)8.方程组的解是()A.B.C.D.【考点】98:解二元一次方程组.【分析】利用代入法求解即可.【解答】解:,①代入②得,3x+2x=15,解得x=3,将x=3代入①得,y=2×3=6,所以,方程组的解是.故选D.9.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC【考点】R2:旋转的性质.【分析】由旋转的性质得到∠ABD=∠CBE=60°,AB=BD,推出△ABD是等边三角形,得到∠DAB=∠CBE,于是得到结论.【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,∴∠ABD=∠CBE=60°,AB=BD,∴△ABD是等边三角形,∴∠DAB=60°,∴∠DAB=∠CBE,∴AD∥BC,故选C.10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3【考点】G6:反比例函数图象上点的坐标特征.【分析】根据反比例函数的性质判断即可.【解答】解:∵k=﹣3<0,∴在第四象限,y随x的增大而增大,∴y2<y3<0,∵y1>0,∴y2<y3<y1,故选:B.11.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC【考点】PA:轴对称﹣最短路线问题;KH:等腰三角形的性质.【分析】如图连接PC,只要证明PB=PC,即可推出PB+PE=PC+PE,由PE+PC≥CE,推出P、C、E共线时,PB+PE的值最小,最小值为CE.【解答】解:如图连接PC,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PB+PE=PC+PE,∵PE+PC≥CE,∴P、C、E共线时,PB+PE的值最小,最小值为CE,故选B.12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出A,B,M点坐标,进而得出平移方向,即可得出平移后解析式.【解答】解:当y=0,则0=x2﹣4x+3,(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,∴A(1,0),B(3,0),y=x2﹣4x+3=(x﹣2)2﹣1,∴M点坐标为:(2,﹣1),∵平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,∴平移后的解析式为:y=(x+1)2=x2+2x+1.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)13.计算x7÷x4的结果等于x3.【考点】48:同底数幂的除法.【分析】根据同底数幂的除法即可求出答案.【解答】解:原式=x3,故答案为:x314.计算的结果等于9.【考点】79:二次根式的混合运算.【分析】根据平方差公式进行计算即可.【解答】解:=16﹣7=9.故答案为:9.15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共6个球,有5个红球,∴从袋子中随机摸出一个球,它是红球的概率为.故答案为:.16.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是﹣2(写出一个即可).【考点】F7:一次函数图象与系数的关系.【分析】据正比例函数的性质;当k<0时,正比例函数y=kx的图象在第二、四象限,可确定k的取值范围,再根据k的范围选出答案即可.【解答】解:∵若正比例函数y=kx的图象在第二、四象限,∴k<0,∴符合要求的k的值是﹣2,故答案为:﹣2.17.如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.【考点】LL:梯形中位线定理;KQ:勾股定理;LE:正方形的性质.【分析】延长GE交AB于点O,作PH⊥OE于点H,则PH是△OAE的中位线,求得PH的长和HG的长,在Rt△PGH中利用勾股定理求解.【解答】解:延长GE 交AB 于点O ,作PH ⊥OE 于点H .则PH ∥AB .∵P 是AE 的中点,∴PH 是△AOE 的中位线,∴PH=OA=(3﹣1)=1.∵直角△AOE 中,∠OAE=45°,∴△AOE 是等腰直角三角形,即OA=OE=2,同理△PHE 中,HE=PH=1.∴HG=HE +EG=1+1=2.∴在Rt △PHG 中,PG===.故答案是:.18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上. (1)AB 的长等于;(2)在△ABC 的内部有一点P ,满足S △PAB :S △PBC :S △PCA =1:2:3,请在如图所示的网格中,用无刻度...的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明) 如图AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N .连接DN ,EM ,DN 与EM 相交于点P ,点P 即为所求. .【考点】N4:作图—应用与设计作图;KQ:勾股定理.【分析】(1)利用勾股定理即可解决问题;(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.【解答】解:(1)AB==.故答案为.(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.理由:平行四边形ABME的面积:平行四边形CDNB:平行四边形DEMG=1:2:3,△PAB的面积=平行四边形ABME的面积,△PBC的面积=平行四边形CDNB 的面积,△PAC的面积=△PNG的面积=△DGN的面积=平行四边形DEMG的面积,∴S △PAB :S △PBC :S △PCA =1:2:3.三、解答题(本大题共7小题,共66分。

2017年天津市中考数学试卷及答案(可修改)

2017年天津市中考数学试卷及答案(可修改)

2017年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2017•天津)计算(﹣3)+5的结果等于()A.2 B.﹣2 C.8 D.﹣8【解答】解:(﹣3)+5=5﹣3=2.故选:A.2.(3分)(2017•天津)cos60°的值等于()A.B.1 C.D.【解答】解:cos60°=,故选:D.3.(3分)(2017•天津)在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B.C.D.【解答】解:A、不可以看作是轴对称图形,故本选项错误;B、不可以看作是轴对称图形,故本选项错误;C、可以看作是轴对称图形,故本选项正确;D、不可以看作是轴对称图形,故本选项错误.故选C.4.(3分)(2017•天津)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263×108B.1.263×107C.12.63×106D.126.3×105【解答】解:12630000=1.263×107.故选:B.5.(3分)(2017•天津)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解答】解:从正面看易得第一层有3个正方形,第二层中间有一个正方形.故选D.6.(3分)(2017•天津)估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【解答】解:∵<<,∴6<<7,∴的值在整数6和7之间.故选C.7.(3分)(2017•天津)计算的结果为()A.1 B.a C.a+1 D.【解答】解:原式==1,故选(A)8.(3分)(2017•天津)方程组的解是()A.B.C.D.【解答】解:,①代入②得,3x+2x=15,解得x=3,将x=3代入①得,y=2×3=6,所以,方程组的解是.故选D.9.(3分)(2017•天津)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,∴∠ABD=∠CBE=60°,AB=BD,∴△ABD是等边三角形,∴∠DAB=60°,∴∠DAB=∠CBE,∴AD∥BC,故选C.10.(3分)(2017•天津)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数。

天津市滨海新区2017届中考数学一模试卷(解析版)

天津市滨海新区2017届中考数学一模试卷(解析版)

2017年天津市滨海新区中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣5)×(﹣1)的结果等于()A.5 B.﹣5 C.1 D.﹣12.2cos30°的值等于()A.1 B.C.D.23.下列图标,既可以看作是中心对称图形又可以看作是轴对称图形的是()A.B.C.D.4.据中国绿色时报3月30日报道,去年秋冬季造林,我市共完成238000亩.将238000用科学记数法表示,应为()A.2.38×105B.0.238×106C.23.8×104D.238×1035.如图,是由5个相同的正方体组成的立体图形,从上面观察这个立体图形,得到的平面图形是()A.B. C.D.6.方程+=1的解为()A.﹣1 B.1 C.4 D.57.计算﹣•的结果是()A.B.C.D.8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°9.如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,则a,b的值分别为()A.1,3 B.1,2 C.2,1 D.1,110.已知点A(﹣3,a)、B(﹣1,b)、C(2,c)在反比例函数y=(k>0)的图象上,则且a、b、c的大小关系是()A.a>b>c B.b>a>c C.c>b>a D.c>a>b11.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C'处,BC'交AD于点E,则线段AE的长为()A.B.3 C.D.12.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3二、填空题(本大题共6小题,每小题3分,共18分)13.计算x2•x的结果等于.14.计算(+1)(﹣1)的结果等于.15.已知一次函数的图象经过(﹣1,2)和(﹣3,4),则这个一次函数的解析式为.16.同时掷两枚质地均匀的骰子,则两枚骰子点数的和是9的概率为.17.△ABC是边长为18的正三角形,点D、E分别在边AB、BC上,且BD=BE.若四边形DEFG是边长为6的正方形时,则点F到AC的距离等于.18.如图,在每个小正方形的边长为1的网格中,A,B为小正方形边的中点,C,D为格点,E为BA,CD的延长线的交点.(Ⅰ)CD的长等于;(Ⅱ)若点N在线段BE上,点M在线段CE上,且满足AN=NM=MC,请在如图所示的网格中,用无刻度的直尺,画出线段MN,并简要说明点M,N的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组:,请结合题意填空,完成本题的回答.(I)解不等式①,得;(II)解不等式②,得;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为.20.(8分)某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数、中位数;(3)请你计算平均数,并估计这260名学生共植树多少棵?21.(10分)已知⊙O中,弦AB⊥AC,且AB=AC=6,点D在⊙O上,连接AD,BD,CD.(1)如图1,若AD经过圆心O,求BD,CD的长;(2)如图2,若∠BAD=2∠DAC,求BD,CD的长.22.(10分)如图,从A地到B地的公路需经过C地,图中AC=50km,∠CAB=25°,∠CBA=45°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(Ⅰ)求改直的公路AB的长;(Ⅱ)问公路改直后比原来缩短了多少km?(sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,取1.414)(结果保留小数点后一位)23.(10分)服装店准备购进甲乙两种服装共100件,费用不得超过7500元.甲种服装每件进价80元,每件售价120元;乙种服装每件进价60元,每件售价90元.(I)设购进甲种服装x件,试填写表:表一购进甲种服装的数量/件1020x购进甲种服装所用费用/元8001600购进乙种服装所用费用/元5400表二购进甲种服装的数量/件1020x甲种服装获得的利润/元800乙种服装获得的利润/元27002400(II)给出能够获得最大利润的进货方案,并说明理由.24.(10分)如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M 是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设△BCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.25.(10分)已知抛物线的解析式为y=x2﹣x+,P是抛物线上的一个动点,R(1,1)是抛物线对称轴上的一点.(I)求抛物线的顶点及与y轴交点的坐标;(II)l是过点(0,﹣1)且平行于x轴的直线,l与抛物线的对称轴的交点为N,PM⊥MN,垂足为点M,连接PR,RM.①当△RPM是等边三角形时,求P点的坐标;②求证:PR=PM.2017年天津市滨海新区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣5)×(﹣1)的结果等于()A.5 B.﹣5 C.1 D.﹣1【考点】1C:有理数的乘法.【分析】根据有理数的乘法,两数相乘,同号得正,异号得负,并把绝对值相乘,即可解答.【解答】解:(﹣5)×(﹣1)=5×1=5,故选:A.【点评】本题考查了有理数的乘法,解决本题的关键是熟记两数相乘,同号得正,异号得负,并把绝对值相乘.2.2cos30°的值等于()A.1 B.C.D.2【考点】T5:特殊角的三角函数值.【分析】根据特殊角的三角函数值直接解答即可.【解答】解:2cos30°=2×=.故选C.【点评】此题考查了特殊角的三角函数值,是需要识记的内容.3.下列图标,既可以看作是中心对称图形又可以看作是轴对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、可以看作是中心对称图形,不可以看作是轴对称图形,故本选项错误;B、既可以看作是中心对称图形,又可以看作是轴对称图形,故本选项正确;C、既不可以看作是中心对称图形,又不可以看作是轴对称图形,故本选项错误;D、既不可以看作是中心对称图形,又不可以看作是轴对称图形,故本选项错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.据中国绿色时报3月30日报道,去年秋冬季造林,我市共完成238000亩.将238000用科学记数法表示,应为()A.2.38×105B.0.238×106C.23.8×104D.238×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将238000用科学记数法表示,应为2.38×105.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图,是由5个相同的正方体组成的立体图形,从上面观察这个立体图形,得到的平面图形是()A.B. C.D.【考点】U2:简单组合体的三视图.【分析】从上面看:共分3列,从左往右分别有1,1,2个小正方形.据此可画出图形.【解答】解:从上面观察这个立体图形,得到的平面图形是.故选:D.【点评】考查简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.6.方程+=1的解为()A.﹣1 B.1 C.4 D.5【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣1=x﹣2,解得:x=4,经检验x=4是分式方程的解.故选C【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.7.计算﹣•的结果是()A.B.C.D.【考点】79:二次根式的混合运算.【分析】先进行二次根式的乘法法则运算,然后化简后合并即可.【解答】解:原式=3﹣=3﹣=.故选C.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°【考点】MC:切线的性质;M4:圆心角、弧、弦的关系.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.9.如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,则a,b的值分别为()A.1,3 B.1,2 C.2,1 D.1,1【考点】Q3:坐标与图形变化﹣平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB 向右平移1个单位,向上平移1个单位,进而可得a、b的值.【解答】解:∵A、B两点的坐标分别为(2,0)、(0,1),平移后A1(3,b),B1(a,2),∴线段AB向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,故选:D.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.10.已知点A(﹣3,a)、B(﹣1,b)、C(2,c)在反比例函数y=(k>0)的图象上,则且a、b、c的大小关系是()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【解答】解:∵比例函数y=(k>0)中,k>0,∴此函数图象在一、三象限,∵﹣3<﹣1<0,∴点A(﹣3,a)、B(﹣1,b)在第三象限,∵函数图象在第三象限内为减函数,∴0>a>b,∵2>0,∴C(2,c)在第一象限,∴c>0,∴a、b、c的大小关系是c>a>b,故选D.【点评】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.关键是根据反比例函数的增减性解题.11.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C'处,BC'交AD于点E,则线段AE的长为()A.B.3 C.D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程求出ED,即可得出AE的长.【解答】解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,AD=BC=6,AB=CD=3,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=,∴ED=.∴AE=AD﹣ED=6﹣=故选:A.【点评】本题主要考查了几何变换中的翻折变换、矩形的性质、勾股定理;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程是关键.12.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3【考点】H5:二次函数图象上点的坐标特征.【分析】先判断出抛物线开口方向上,进而求出对称轴即可求解.【解答】解:∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a﹣5b+c>9a+3b+c,∴<1,∴﹣>﹣1,∴x0>﹣1∴x0的取值范围是x0>﹣1.故选:B.【点评】本题考查了二次函数图象上点坐标特征,主要利用了二次函数的增减性与对称性,根据顶点的纵坐标最小确定出抛物线开口方向上是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.计算x2•x的结果等于x3.【考点】46:同底数幂的乘法.【分析】根据同底数幂相乘,底数不变,指数相加,即可解答.【解答】解:x2•x=x3,故答案为:x3.【点评】本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂相乘,底数不变,指数相加.14.计算(+1)(﹣1)的结果等于2.【考点】79:二次根式的混合运算.【分析】利用平方差公式计算.【解答】解:原式=3﹣1=2.故答案为2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.15.已知一次函数的图象经过(﹣1,2)和(﹣3,4),则这个一次函数的解析式为y=﹣x+1.【考点】FA:待定系数法求一次函数解析式.【分析】设设一次函数解析式为y=kx+b,将两点坐标代入求出k与b的值,即可确定出解析式.【解答】解:设一次函数解析式为y=kx+b,将(﹣1,2)与(﹣3,4)代入得:,解得:k=﹣1,b=1,则一次函数解析式为y=﹣x+1.故答案为:y=﹣x+1【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.16.同时掷两枚质地均匀的骰子,则两枚骰子点数的和是9的概率为.【考点】X6:列表法与树状图法.【分析】画树状图展示所有36种等可能的结果数,再找出两枚骰子点数的和是9的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是9的结果数为4,所以两枚骰子点数的和是9的概率==,故答案为:.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.17.△ABC是边长为18的正三角形,点D、E分别在边AB、BC上,且BD=BE.若四边形DEFG是边长为6的正方形时,则点F到AC的距离等于6﹣6.【考点】LE:正方形的性质;KK:等边三角形的性质.【分析】如图,作BL⊥AC于L交DE于H,交FG于K.只要证明FG∥AC,求出KL即可解决问题.【解答】解:如图,作BL⊥AC于L交DE于H,交FG于K.∵△ABC是等边三角形,AC=BC=AB=18,∴∠B=90°,BL=BC•sin60°=9,∵BE=BD,∴△BED是等边三角形,∴BE=BD=DE=6,BH=EB•sin60°=3,∵HK=EF=6,∴BK=3+6,∴KL=BL﹣BK=9﹣(3+6)=6﹣6,∵∠BED=∠C=60°,∴DE∥BC,∵DE∥FG,∴FG∥AC,∴点F到AC的距离=6﹣6.故答案为6﹣6.【点评】本题考查正方形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.18.如图,在每个小正方形的边长为1的网格中,A,B为小正方形边的中点,C,D为格点,E为BA,CD的延长线的交点.(Ⅰ)CD的长等于2;(Ⅱ)若点N在线段BE上,点M在线段CE上,且满足AN=NM=MC,请在如图所示的网格中,用无刻度的直尺,画出线段MN,并简要说明点M,N的位置是如何找到的(不要求证明).【考点】N4:作图—应用与设计作图;KQ:勾股定理.【分析】(Ⅰ)根据勾股定理可求CD的长;(Ⅱ)CE与网格线相交,得点M,取格点F,连结CF并延长与BE交于N,连接MN,则线段MN即为所求.【解答】解:(Ⅰ)CD==2;(Ⅱ)如图,CE与网格线相交,得点M,取格点F,连结CF并延长与BE交于N,连接MN,则线段MN即为所求.证明:以A为原点建立平面直角坐标系,则A(0,0),C(1.5,6),E(﹣5.5,2.5),D(﹣2.5,4),∴直线AE的解析式y AE=﹣x,直线BD的解析式为y BF=0.5x+5.25,设N(n,﹣n),M(m,0.5m+5.25),∴AN2=n2+(﹣n)2=n2,MN2=(m﹣n)2+(﹣n﹣0.5n﹣5.25)2CM2=(m﹣1.5)2+(0.5n﹣0.75)2=1.25(n﹣1.5)2,∵AN=NM=MC,∴n2=(m﹣n)2+(﹣n﹣0.5n﹣5.25)2=1.25(n﹣1.5)2,解得.∴M(﹣1.5,4.5),N(﹣3,).故答案为:2.【点评】本题考查了作图﹣应用与设计作图,勾股定理,正确的作出图形是解题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组:,请结合题意填空,完成本题的回答.(I)解不等式①,得;(II)解不等式②,得;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为﹣2≤x<1.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣2,把不等式①和②的解集在数轴上表示出来:∴不等式组的解集为﹣2≤x<1,故答案为:﹣2≤x<1【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数、中位数;(3)请你计算平均数,并估计这260名学生共植树多少棵?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W2:加权平均数;W4:中位数;W5:众数.【分析】(1)利用总人数20乘以对应的百分比即可求得D类的人数,从而补全直方图;(2)根据众数、中位数的定义即可直接求解;(3)首先求得调查的20人的平均数,乘以总人数260即可.【解答】解(1)D类的人数是:20×10%=2(人).;(2)众数为5棵,中位数为5棵(3)==5.3(棵).估计260名学生共植树5.3×260=1378(棵)【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)(2017•天津一模)已知⊙O中,弦AB⊥AC,且AB=AC=6,点D在⊙O上,连接AD,BD,CD.(1)如图1,若AD经过圆心O,求BD,CD的长;(2)如图2,若∠BAD=2∠DAC,求BD,CD的长.【考点】M5:圆周角定理;KW:等腰直角三角形.【分析】(1)由AD经过圆心O,利用圆周角定理得∠ACD=∠ABD=90°,又因为AB⊥AC,且AB=AC=6,易得四边形ABCD为正方形,易得结果;(2)连接OC,OB,OD,由∠BAD=2∠DAC,AB⊥AC,由圆周角定理得BC为直径,易得∠CAD=30°,∠BAD=60°,BO=CO=DO=BC=3,由圆周角定理得∠COD=60°,∠BOD=120°,△COD为等边三角形,求得CD,BD.【解答】解:(1)∵AD经过圆心O,∴∠ACD=∠ABD=90°,∵AB⊥AC,且AB=AC=6,∴四边形ABCD为正方形,∴BD=CD=AB=AC=6;(2)连接OC,OB,OD,过O点作OE⊥BD,∵AB⊥AC,AB=AC=6,∴BC为直径,∴BC=6,∴BO=CO=DO=BC=3,∵∠BAD=2∠DAC,∴∠CAD=30°,∠BAD=60°,∴∠COD=60°,∠BOD=120,∴△COD为等边三角形,∠BOE=60°,∴CD=CO=DO=3,BE=,∵OE⊥BD,∴BD=2BE=3.【点评】本题主要考查了圆周角定理,垂径定理,数形结合,作出适当的辅助线是解答此题的关键.22.(10分)(2017•天津一模)如图,从A地到B地的公路需经过C地,图中AC=50km,∠CAB=25°,∠CBA=45°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(Ⅰ)求改直的公路AB的长;(Ⅱ)问公路改直后比原来缩短了多少km?(sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,取1.414)(结果保留小数点后一位)【考点】T8:解直角三角形的应用.【分析】(1)过点C作CD⊥AB与D,根据AC=50千米,∠CAB=25°,求出CD、AD,根据∠CBA=45°,求出BD、BC,最后根据AB=AD+BD列式计算即可,(2)根据AC和BC的长度,即可得出公路改直后该段路程比原来缩短的路程.【解答】解:(1)过点C作CD⊥AB与D,∵AC=50千米,∠CAB=25°,∴CD=sin∠CAB•AC=sin25°×50≈0.42×50=21(千米),AD=cos∠CAB•AC=cos∠25°×50≈0.91×50=46.5(千米),∵∠CBA=45°,∴BD=CD=21(千米),BC==≈29.7(千米),∴AB=AD+BD=46.5+29.7=76.2(千米),(2)∵AC=50千米,BC=29.7千米,∴公路改直后该段路程比原来缩短50+29.7﹣76.7=3千米.【点评】此题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键.23.(10分)(2017•天津一模)服装店准备购进甲乙两种服装共100件,费用不得超过7500元.甲种服装每件进价80元,每件售价120元;乙种服装每件进价60元,每件售价90元.(I)设购进甲种服装x件,试填写表:表一购进甲种服装的数量/件1020x购进甲种服装所用费用/元800160080x购进乙种服装所用费用/元540048006000﹣60x表二购进甲种服装的数量/件1020x甲种服装获得的利润/元40080040x乙种服装获得的利润/元270024003000﹣30x(II)给出能够获得最大利润的进货方案,并说明理由.【考点】FH:一次函数的应用.【分析】(1)设购进甲种服装x件,则购进乙种服装(100﹣x)件,根据总价=单价×数量结合利润=售价﹣进价即可得出结论;(2)由进货费用不得超过7500元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,设获得的利润为y元,则可得出y关于x的一次函数关系式,根据一次函数的性质即可解决最值问题.【解答】解:(1)设购进甲种服装x件,则购进乙种服装(100﹣x)件,当x=10时,甲种服装获得的利润为(120﹣80)×10=400(元);当x=20时,购进乙种服装所用费用为60×(100﹣20)=4800(元);当购进甲种服装x件时,购进甲种服装所用费用80x元,购进乙种服装所用费用60(100﹣x)=6000﹣60x元,销售甲种服装获得的利润为(120﹣80)x=40x元,销售乙种服装获得的利润为(90﹣60)(100﹣x)=3000﹣30x元.故答案为:4800;80x;6000﹣60x;400;40x;3000﹣30x.(2)∵80x+6000﹣60x≤7500,∴x≤75.设获得的利润为y元,则y=40x+3000﹣30x=10x+3000,∴当x=75时,y取最大值,最大值为3750.故当购进甲种服装75件,购进乙种服装25件时,销售利润最高.【点评】本题考查了一次函数的应用以及列代数式,解题的关键是:(1)根据数量关系列出代数式;(2)根据一次函数的性质解决最值问题.24.(10分)(2017•天津一模)如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设△BCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.【考点】KY:三角形综合题.【分析】(I)作辅助线,分别求OG和MG的长即可;(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=t,AF=MG=2,分别表示EC和BE的长,代入面积公式可求得S与t的关系式;(III)证明△ABO∽△CAF,根据勾股定理表示AC和BC的长,计算其和,根据二次根式的意义得出当t=0时,值最小.【解答】解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2,∵M是AB的中点,∴G是AO的中点,∴OG=OA=1,MG是△AOB的中位线,∴MG=OB=×4=2,∴M(1,2);(II)如图1,同理得:OG=AG=t,∵∠BAC=90°,∴∠BAO+∠CAF=90°,∵∠CAF+∠ACF=90°,∴∠BAO=∠ACF,∵∠MGA=∠AFC=90°,MA=AC,∴△AMG≌△CAF,∴AG=CF=t,AF=MG=2,∴EC=4﹣t,BE=OF=t+2,=EC•BE=(4﹣t)(t+2)=﹣t2+t+4;∴S=S△BCE(III)如图1,易得△ABO∽△CAF,∴=2,∴AF=2,CF=t,由勾股定理得:AC===,BC===,∴BC+AC=(+1),∴当t=0时,BC+AC有最小值.【点评】本题考查了坐标平面内几何图形的多种性质,难度适中.涉及到的知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,第(3)问还考查了几何图形的空间想象能力.本题涉及考点众多,内涵丰富,对考生的数学综合能力要求较高.25.(10分)(2017•天津一模)已知抛物线的解析式为y=x2﹣x+,P是抛物线上的一个动点,R(1,1)是抛物线对称轴上的一点.(I)求抛物线的顶点及与y轴交点的坐标;(II)l是过点(0,﹣1)且平行于x轴的直线,l与抛物线的对称轴的交点为N,PM⊥MN,垂足为点M,连接PR,RM.①当△RPM是等边三角形时,求P点的坐标;②求证:PR=PM.【考点】HF:二次函数综合题.【分析】(Ⅰ)把抛物线解析式化为顶点式可求得顶点坐标,令x=0则可求得抛物线与y轴的交点坐标;(Ⅱ)设P(x,x2﹣x+,),①过R作RC⊥PM于点C,利用等边三角形的性质,可求得CM=2,且PM=2CM,可得到关于x的方程,可求得P点坐标;②利用勾股定理可分别用x表示出PR和PM的长,可证得结论.【解答】解:(Ⅰ)∵y=x2﹣x+=(x﹣1)2,∴抛物线顶点坐标为(1,0),在y=x2﹣x+中,令x=0可求得y=,∴抛物线与y轴的交点坐标为(0,);(Ⅱ)设P(x,x2﹣x+,),①如图,过R作RC⊥PM于点C,∵R(1,1),△PRM为等边三角形,∴PM=2CM=2×[1﹣(﹣1)]=4,∴x2﹣x++1=4,解得x=1+2或x=1﹣2,∴P点坐标为(1+2,3)或(1﹣2,3);②∵R(1,1),P(x,x2﹣x+),M(x,﹣1),∴PR2=(x﹣1)2+(x2﹣x+﹣1)2=(x﹣1)4+(x﹣1)2+1,PM2=(x2﹣x++1)2=(x﹣1)4+(x﹣1)2+1,∴PR=PM.【点评】本题为二次函数的综合应用,涉及二次函数的性质、等边三角形的性质、勾股定理、方程思想等知识.在(Ⅰ)中把抛物线化为顶点式是解题的关键,在(Ⅱ)①中设出P点坐标,根据等边三角形的性质得到关于P点坐标的方程是解题的关键,在(Ⅱ)②中用勾股定理表示出PR和PM的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

(完整版)2017年天津中考数学试题及答案,推荐文档

(完整版)2017年天津中考数学试题及答案,推荐文档

3 2017 年天津市中考数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分。

在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(3 分)计算(﹣3)+5 的结果等于( ) A .2B .﹣2C .8D .﹣82.(3 分)cos60°的值等于()1A .B .1C .2 D .23.(3 分)在一些美术字中,有的汉子是轴对称图形.下面 4 个汉字中,可以看作是轴对称图形的是()A .B .C .D .4.(3 分)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止 2017 年 4 月末,累计发放社会保障卡 12630000 张.将 12630000 用科学记数法表示为()A .0.1263×108B .1.263×107C .12.63×106D .126.3×1055.(3 分)如图是一个由 4 个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D . 6.(3 分)估计 38的值在()A .4 和 5 之间B .5 和 6 之间C .6 和 7 之间D .7 和 8 之间 +17.(3 分)计算 +1+ 1的结果为()2{1A .1B .aC .a +1D . + 18.(3 分)方程组 {3+ = 2= 15的解是( ){2 = A . =3{4= B . = 3{4 =C . =8= 3 D . = 69.(3 分)如图,将△ABC 绕点 B 顺时针旋转 60°得△DBE ,点 C 的对应点 E 恰好落在 AB 延长线上,连接 AD .下列结论一定正确的是()A .∠ABD=∠EB .∠CBE=∠C C .AD ∥BC D .AD=BC10.(3 分)若点 A (﹣1,y 1),B (1,y 2),C (3,y 3)在反比例函数象上,则 y 1,y 2,y 3 的大小关系是()A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 3y =‒ 3的图11.(3 分)如图,在△ABC 中,AB=AC ,AD 、CE 是△ABC 的两条中线,P 是 AD 上一个动点,则下列线段的长度等于 BP +EP 最小值的是()A .BCB .CEC .AD D .AC12.(3 分)已知抛物线 y=x 2﹣4x +3 与 x 轴相交于点 A ,B (点 A 在点 B 左侧),顶点为 M .平移该抛物线,使点 M 平移后的对应点 M'落在 x 轴上,点 B 平移后的对应点 B'落在 y 轴上,则平移后的抛物线解析式为( ) A .y=x 2+2x +1B .y=x 2+2x ﹣1C .y=x 2﹣2x +1D .y=x 2﹣2x ﹣1二、填空题(本大题共6 小题,每小题3 分,共18 分)13.(3 分)计算x7÷x4的结果等于.14.(3 分)计算(4 + 7)(4 ‒ 7)的结果等于.15.(3 分)不透明袋子中装有6 个球,其中有5 个红球、1 个绿球,这些球除颜色外无其他差别.从袋子中随机取出1 个球,则它是红球的概率是.16.(3 分)若正比例函数y=kx(k 是常数,k≠0)的图象经过第二、四象限,则k 的值可以是(写出一个即可).17.(3 分)如图,正方形ABCD 和正方形EFCG 的边长分别为3 和1,点F,G 分别在边BC,CD 上,P 为AE 的中点,连接PG,则PG 的长为.18.(3 分)如图,在每个小正方形的边长为1 的网格中,点A,B,C 均在格点上.(1)AB 的长等于;(2)在△ABC 的内部有一点P,满足S△PAB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P 的位置是如何找到的(不要求证明).三、解答题(本大题共7 小题,共66 分。

【中考模拟2017】天津市 2017年九年级数学中考模拟试卷 一(含答案)

【中考模拟2017】天津市 2017年九年级数学中考模拟试卷 一(含答案)

2017年九年级数学中考模拟试卷一、选择题:1.计算﹣2﹣1的结果是()A.﹣3B.﹣2C.﹣1D.32.在Rt△ABC中,∠ABC=90°、tanA=,则sinA的值为()A. B. C. D.3.在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是( )4.2014年5月,中俄两国签署了供气购销合同,从2018年起,俄罗斯开始向我国供气,最终达到每年380亿立方米.380亿这个数据用科学记数法表示为( )A.3.8×109B.3.8×1010C.3.8×1011D.3.8×10125.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()6.下列实数中是无理数的是()A.0.38B.πC.D.7.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为()A.9.63×10﹣5B.96.3×10﹣6C.0.963×10﹣5D.963×10﹣48.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根9.函数y=﹣中的自变量x的取值范围是( )A.x≥0B.x<0且x≠1C.x<0D.x≥0且x≠110.如图,平行四边形ABCD中,DE⊥AB于E,DF⊥BC于F,若□ABCD的周长为48,DE=5,DF=10,则□ABCD的面积等于( )A.87.5 B.80 C.75 D.72.511.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A.两条直角边成正比例 B.两条直角边成反比例C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例12.二次函数y=a(x﹣3)2+4(a≠0)的图象在1<x<2这一段位于x轴的上方,在5<x<6这一段位于x轴的下方,则a的值为()A.1B.-1C.2D.﹣2二、填空题:13.分解因式:a3﹣4ab2= .14.×= ; = .15.在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球个.16.已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,-2)和点B(1,0),则b=________,k=________.17.如图,锐角三角形ABC的边AB,AC上的高线EC,BF相交于点D,请写出图中的两对相似三角形____________(用相似符号连接).18.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则AB离地面的距离为______m.三、解答题:19.解不等式组:20.某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:根据图中提供的信息,解答下列问题:(1)a = ,b= ;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A、B、C)和2位女同学(D、E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.21.如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.22.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,求巡逻船从出发到成功拦截捕鱼船所用的时间.23.我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,(1).求一次至少买多少只,才能以最低价购买?(2).写出该专卖店当一次销售x(时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?24.已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△AQP∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.25.如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.参考答案1.A2.A3.C4.B5.D6.B7.A8.B9.D10.B11.B12.B13.答案为:a(a+2b)(a﹣2b).14.答案为:2,.15.答案为:20;16.答案为:-2,2;17.答案不唯一,如△ABF∽△DBE或△ACE∽△DCF或△EDB∽△FDC等18.答案为:1.8;19.解:由不等式①得,x-3x+6≤4,所以x≥1,不等式②去分母得,2(2x-1)>6x-15,解得x<6.5,∴不等式组的解集是1≤x<6.5。

2017年天津市中考数学试题(含解析)

2017年天津市中考数学试题(含解析)

2017年天津市中考数学试卷满分:120分版本:人教版第Ⅰ卷(选择题,共36分)一、选择题(第小题3分,共12小题,合计36分)1.(2017天津)计算(-3)+5的结果等于A.2 B.-2 C.8 D.-8答案:A,解析:根据有理数的加法法则“绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

”可得,(-3)+5=+(5-3)=2,故选A.2.(2017天津)cos60°的值等于A B.1C.2D.12答案:D,解析:根据余弦的定义及特殊角度的三角函数值,可得cos60°=12,故选D.3.(2017天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是礼迎全运A.B.C.D.答案:C,解析:根据轴对称图形的定义“将一个图形沿着某条直线对折后,直线两旁的部分能够完全重合的图形叫做轴对称图形”,可知“全”是轴对称图形,故选C.4.(2017天津)据《天津日报》报道,天津市社会保障制度更加成熟完善,截至2017年4月末,累计发放社会保障卡12 630 000张.将12 630 000用科学记数法表示为A.0.1263×108B.1.263×107C.12.63×106D.126.3×105答案:B,解析:根据科学记数法的定义“将一个大于1的数表示成a×10n(其中1≤|a|<10,n为整数,且等于原数的整数位数减去1)的形式,可知12 630 000=1.263×107,故选B. 5.(2017天津)右图是一个由4个相同的正文体组成的立体图形,它的主视图是A B第5题C D答案:D,解析:从正面看立体图形,有两行三列,从下往上数,个数分别是3,1,且第二层的正方形在第一层的正中间,故选D.6.(2017天津)A.4和5之间B.5和6之间C.6和7之间D.7和8之间答案:C,解析:由36<38<49,可得67,故选C.7.(2017天津)计算111aa a+++的结果为A.1B.aC.a+1 D.11 a+答案:A,解析:根据同分母分式的加法法则“分母不变,分子相加”可得,原式=11 aa+ +=1,故选A.8.(2017天津)方程组2315y xx y=⎧⎨+=⎩的解是A.23xy=⎧⎨=⎩B.43xy=⎧⎨=⎩C.48xy=⎧⎨=⎩D.36xy=⎧⎨=⎩答案:D,解析:运用“代入消元法”,将方程①代入方程②可得:3x+2x=15,解得x=3,将x=3代入方程①中可得y=6,故选D.9.(2017天津)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点恰好落在AB的延长线上,连接A D.下列结论一定正确的是A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC第9题答案:C,解析:根据旋转的性质,可得AB=DB,CB=EB,∠ABD=∠CBE=60°,所以△ABD 是等边三角形,所以∠DAB=∠CBE=60°,根据“同位角相等,两直线平行”可得:AD∥BC,故选C.10.(2017天津)若点A(-1,y1),B(1,y2),C(3,y3)在反比例函数y= -3x的图象上,则y1,y2,y3的大小关系是A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y3答案:B,解析:将x=-1,1,3分别代入函数解析式,可得y1=3,y2=-3,y3=-1,所以y2<y3<y1,故选B.11.(2017天津)如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是A.BC B.CE C.AD D.AC第11题答案:B,解析:由AB=AC,可得△ABC是等腰三角形,根据“等腰三角形的三线合一性质”可知点B与点C关于直线AD对称,BP=CP,因此连接CE,BP+CP的最小值为CE,故选B. 12.(2017天津)已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M’落在x轴上,点B平移后的对应点B’落在y轴上.则平移后的抛物线解析式为A.y=x2+2x+1 B.y=x2+2x-1C.y=x2-2x+1 D.y=x2-2x-1答案:A ,解析:令y =0可得x 2-4x +3=0,解得x 1=1,x 2=3,可得A (1,0),B (3,0),根据抛物线顶点坐标公式可得M (2,-1),由M 平移后的对应点M ’落在x 轴上,点B 平移后的对应点B ’落在y 轴上,可知抛物线分别向左平移3个单位,再向上平移1个单位,根据抛物线平移规律,可知平移后的抛物线为y =(x +1)2=x 2+2x +1,故选A .第Ⅱ卷(非选择题,共84分)二、填空题(每小题3分,共6小题,合计18分) 13.(2017天津)计算x 7÷x 4的结果等于________.答案:x 3,解析:根据同底数幂的除法法则“底数不变,指数相减”,可得x 7÷x 4=x 3.14.(2017天津)计算的结果等于________.答案:9,解析:根据平方差公式,可得2-2=16-7=9.15.(2017天津)不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是________.答案:56,解析:依题意可知,共有6种等可能结题,其中取出1个球是红球的可能结果有5种,因此它是红球的概率是56.16.(2017天津)若正比例函数y =kx (k 是常数,k ≠0)的图象经过第二、第四象限,则k 的值可以是________(写出一个即可).答案:-1(答案不唯一,只需小于0即可),解析:根据正比例函数的性质,若函数图象经过第二、第四象限,则k <0,因此k 的值可以是任意负数.17.(2017天津)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点F ,G 分别在边BC ,CD 上,P 为AE 的中点,连接PG ,则PG 的长为________. 第17题G F A第17题GF BAD(如图),延长GE 交AB 于点N ,过点P 作PM ⊥GN 于M .由正方形的性质可知:AN =AB -BN =AB -EF =2,NE =GN -GE =BC -FC =2.根据点P 是AE 的中点及PM ∥AN ,可得PM 为△ANE的中位线,所以ME=12NE=1,PM=12AN=1,因此MG=2.根据勾股定理可得:PG18.(2017天津)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)AB的长等于________;(Ⅱ)在△ABC的内部有一点P,满足S△P AB:S△PBC:S△PCA=1:2,请在如图所示的网格中,用无刻..度.的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)________.答案:(Ⅰ;(Ⅱ)解析:(Ⅰ)根据勾股定理可得=(Ⅱ)如图,AC与网络线相交,得点D、E,取格点F,连结FB并延长,与网格线相交,得点M、N,连结DN、EM,DN与EM相交于点P,点P即为所求.三、解答题(共7小题,合计66分)19.(2017天津)(本小题满分8分)解不等式组,.1≥2 ①5≤43②x x x +⎧⎨+⎩,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得________; (Ⅱ)解不等式②,得________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:12345(Ⅳ)原不等式组的解集为______________.答案:(Ⅰ)x ≥1;(Ⅱ)x ≤3;(Ⅲ)123450;(Ⅳ)1≤x ≤3.解析:(Ⅰ)移项,可得x ≥1;(Ⅱ)移项,可得5x -4x ≤3;合并同类项,可得x ≤3;(Ⅲ)根据解集在数轴上的表示方法“大于向右,小于向左;有等号实心点,无等号空心圈”,可表示,详图见答案;(Ⅳ)根据不等式解集的定义“不等式解集的公共部分”可得原不等式的解集为1≤x ≤3.20.(2017天津)(本小题8分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:图②31211104人数年龄/岁12108642(Ⅰ)本次接受调查的跳水运动员人数为________;图①中m 的值为________;(Ⅱ)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.答案:(Ⅰ)40;30;(Ⅱ)15;16;15.解析:(Ⅰ)从两副统计图中可知:13岁的运动员共4人,占10%,因此接受调查的跳水运动员人数为4÷10%=40;由于16岁的运动员共12人,因此16岁运动员所占百分比为12÷40×100%=30%,故m =30;(Ⅱ)根据平均数的计算方法,可知13414101511161217340x ⨯+⨯+⨯+⨯+⨯==15,因此这组数据的平均数为15;由于在这组数据中,16出现了12次,出现的次数最多,故这组数据的众数为16;将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,根据中位数的定义,取中间两个数的平均数,可得这组数据的中位数为15.21.(2017天津)(本小题10分)已知AB 是⊙O 的直径,AT 是⊙O 的切线,∠ABT =50°,BT 交⊙O于点C ,E 是AB 上一点,延长CE 交⊙O 于点D.第21题图②图①(Ⅰ)如图①,求∠T 和∠CDB 的大小; (Ⅱ)如图②,当BE =BC 时,求∠CDO 的大小.思路分析: (Ⅰ)①根据切线的性质,可知∠BAT =90°, 结合已知条件∠ABT =50°,利用三角形的内角和定理,可得∠T =40°; ②连接AC ,根据直径所对的圆周角是直角,可得∠BCA =50°, 结合已知条件∠ABT =50°,利用三角形的内角和定理,可得∠BAC =40°,由同弧所对的圆周角相等,可得∠CDB 为40°.(Ⅱ)①连接AD ,根据BE =BC 及∠ABT =50°可计算出∠BCE ;②由同弧所对的圆周角相等,可计算出∠OAD 及∠ADC 的度数;③由OA=OD 可得∠ODA 的度数;④根据∠CDO =∠ODA -∠CDA 可得.解:(Ⅰ)如图,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线, ∴AT ⊥AB ,即∠TAB =90°. ∵∠ABT =50°,∴∠T=90°-∠ABT=40°∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABC=40°∴∠CDB=∠CAB=40°.图①(Ⅱ)如图,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°∵OA=OD∴∠ODA=∠OAD=65°∵∠ADC=∠ABC=50°∴∠CDO=∠ODA-∠ADC=15°.图②22.(2017天津)(本小题10分)如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B片.求BP 和BA的长(结果取整数)参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05取1.414.思路分析:过点P 作PM ⊥AB 于M ,由题意可知,∠A =64°,∠B =45°,P A =120米,在Rt △APM 中利用三角函数可求得PM ,AM 的长;在Rt △BPM 中利用三角函数可求得BM 、PB 的长;根据线段之和求得AB 的长.M解:过点P 作PM ⊥AB 于M ,由题意可知,∠A =64°,∠B =45°,P A =120.在Rt △APM 中PM =P A ·sin ∠A =P A ·sin64°≈108,AM =P A ·cos ∠A =P A ·cos64°≈52.8. 在Rt△BPM 中∵∠B=45°∴BM =PM ≈108,PM ≈153 ∴BA =BM +AM ≈108+52.8≈161答: BP 长约为153海里,BA 长约为161海里.23.(2017天津)(本小题10分)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元. 设在同一家复印店一次复印文件的页数为x (x 为非负整数).(Ⅰ)根据题意,填写下表:(Ⅱ)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式;(Ⅲ)当x>70时,顾客在哪家复印店复印花费少?请说明理由. 解:(Ⅰ)根据题意得:(Ⅱ)依题意得:y1与x的函数关系式为:y1=0.1x(x≥0).y2与x的函数关系式为:当0≤x≤20时,y2=0.12x;当x>20时,y2=0.12×20+0.09(x-20)=0.09x+0.6;综上所述,y2与x的函数关系式为:y2=0.12 (020) 0.090.6 (20)x xx x≤≤⎧⎨+>⎩.(Ⅲ)顾客在乙复印店复印花费少.当x>70时,有y1=0.1x,y2=0.09x+0.6∴y1- y2=0.1x-(0.09x+0.6)=0.01x-0.6记y= 0.01x-0.6由0.01>0,y随x的增大而增大,又x=70时,有y=0.1.∴x>70时,有y>0.1,即y>0∴y1>2y∴当x>70时,顾客在乙复印店复印花费少.24.(2017天津)(本小题10分)将一个直角三角形纸片ABO放置在平面直角坐标系中,点A0),点B(0,1),点O(0,0).P是AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.(Ⅰ)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;(Ⅱ)如图②,当P为AB中点时,求A'B的长;(Ⅲ)当∠BP A'=30°时,求点P的坐标(直接写出结果即可).x y x y第24题图②A'BA OA'B A O PP 解:(Ⅰ)∵A (3,0),点B (0,1),∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A'OP ≌△AOP . ∴OA'=OA =3,由A 'B ⊥OB ,得∠A 'BO =90°.在Rt △A 'OB 中,A 'B =22'OA OB -=2,∴点A'21).(Ⅱ) 在Rt △AOB 中,OA 3,OB =1,∴22OA OB +∵当P 为AB 中点,∴AP =BP =1,OP =12AB =1.∴OP =OB =BP ,∴△BOP 是等边三角形∴∠BOP =∠BPO =60°,∴∠OP A =180°-∠BPO =120°.由(Ⅰ)知,△A'OP ≌△AOP ,∴∠OP A'=∠OP A =120°,P'A =P A =1,又OB =P A ’=1,∴四边形OP A ’B 是平行四边形.∴A 'B =OP =1. (Ⅲ)3333(,)22--或2333(,)22- . 25.(2017天津)(本小题10分)已知抛物线y =x 2+bx -3(b 是常数)经过点A (-1,0).(Ⅰ) 求该抛物线的解析式和顶点坐标;(Ⅱ) P (m ,t )为抛物线上的一个动点,P 关于原点的对称点为P '.①当点P '落在该抛物线上时,求m 的值;②当点P '落在第二象限内,P 'A 2取得最小值时,求m 的值.解:(1)∵抛物线y =x 2+bx -3经过点A (-1,0),∴0=1-b -3,解得b =-2.∴抛物线的解析式为y =x 2-2x -3,∵y =x 2-2x -3=(x -1)2-4,∴顶点的坐标为(1,-4).(2)①由点P (m ,t )在抛物线y =x 2-2x -3上,有t =m 2-2m -3.∵P 关于原点的对称点为P ',有P ’(-m ,-t ).∴-t=(-m)2-2(-m)-3,即t =-m 2-2m +3∴m 2-2m -3=-m 2-2m +3.解得m 1=3,m 2=-3②由题意知,P '(-m ,-t )在第二象限,∴-m <0,-t >0,即m >0,t <0.又∵抛物线y =x 2-2x -3的顶点坐标为(1,-4),得-4≤t <0.过点P '作P 'H ⊥x 轴于H ,则H (-m ,0)又A (-1,0),t = m 2-2m -3则P 'H 2=t 2,AH 2= (-m +1)2=m 2-2m +1=t +4当点A 和H 不重合时,在Rt △P ’AH 中,P 'A 2= P 'H 2+AH 2当点A 和H 重合时,AH =0,P 'A 2= P 'H 2,符合上式.∴P 'A 2= P 'H 2+AH 2,即P 'A 2= t 2+t +4(-4≤t ≤0)记y '=t 2+t +4(-4≤t ≤0),则y '=(t +12)2+154, ∴当t =-12时,y '取得最小值.把t=-12代入t=m2-2m-3,得-12=m2-2m-3解得m1m2.由m>0,可知m不符合题意.∴m。

2017届天津市滨海新区中考数学一模试卷(解析版)

2017届天津市滨海新区中考数学一模试卷(解析版)

2017年天津市滨海新区中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣5)×(﹣1)的结果等于()A.5 B.﹣5 C.1 D.﹣12.2cos30°的值等于()A.1 B.C.D.23.下列图标,既可以看作是中心对称图形又可以看作是轴对称图形的是()A.B.C.D.4.据中国绿色时报3月30日报道,去年秋冬季造林,我市共完成238000亩.将238000用科学记数法表示,应为()A.2.38×105B.0.238×106C.23.8×104D.238×1035.如图,是由5个相同的正方体组成的立体图形,从上面观察这个立体图形,得到的平面图形是()A.B. C.D.6.方程+=1的解为()A.﹣1 B.1 C.4 D.57.计算﹣•的结果是()A.B.C.D.8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°9.如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,则a,b的值分别为()A.1,3 B.1,2 C.2,1 D.1,110.已知点A(﹣3,a)、B(﹣1,b)、C(2,c)在反比例函数y=(k>0)的图象上,则且a、b、c的大小关系是()A.a>b>c B.b>a>c C.c>b>a D.c>a>b11.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C'处,BC'交AD于点E,则线段AE的长为()A.B.3 C.D.12.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3二、填空题(本大题共6小题,每小题3分,共18分)13.计算x2•x的结果等于.14.计算(+1)(﹣1)的结果等于.15.已知一次函数的图象经过(﹣1,2)和(﹣3,4),则这个一次函数的解析式为.16.同时掷两枚质地均匀的骰子,则两枚骰子点数的和是9的概率为.17.△ABC是边长为18的正三角形,点D、E分别在边AB、BC上,且BD=BE.若四边形DEFG是边长为6的正方形时,则点F到AC的距离等于.18.如图,在每个小正方形的边长为1的网格中,A,B为小正方形边的中点,C,D为格点,E为BA,CD的延长线的交点.(Ⅰ)CD的长等于;(Ⅱ)若点N在线段BE上,点M在线段CE上,且满足AN=NM=MC,请在如图所示的网格中,用无刻度的直尺,画出线段MN,并简要说明点M,N的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组:,请结合题意填空,完成本题的回答.(I)解不等式①,得;(II)解不等式②,得;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为.20.(8分)某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数、中位数;(3)请你计算平均数,并估计这260名学生共植树多少棵?21.(10分)已知⊙O中,弦AB⊥AC,且AB=AC=6,点D在⊙O上,连接AD,BD,CD.(1)如图1,若AD经过圆心O,求BD,CD的长;(2)如图2,若∠BAD=2∠DAC,求BD,CD的长.22.(10分)如图,从A地到B地的公路需经过C地,图中AC=50km,∠CAB=25°,∠CBA=45°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(Ⅰ)求改直的公路AB的长;(Ⅱ)问公路改直后比原来缩短了多少km?(sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,取1.414)(结果保留小数点后一位)23.(10分)服装店准备购进甲乙两种服装共100件,费用不得超过7500元.甲种服装每件进价80元,每件售价120元;乙种服装每件进价60元,每件售价90元.(I)设购进甲种服装x件,试填写表:表一表二(II)给出能够获得最大利润的进货方案,并说明理由.24.(10分)如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M 是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设△BCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.25.(10分)已知抛物线的解析式为y=x 2﹣x +,P 是抛物线上的一个动点,R (1,1)是抛物线对称轴上的一点. (I )求抛物线的顶点及与y 轴交点的坐标;(II )l 是过点(0,﹣1)且平行于x 轴的直线,l 与抛物线的对称轴的交点为N ,PM ⊥MN ,垂足为点M ,连接PR ,RM . ①当△RPM 是等边三角形时,求P 点的坐标; ②求证:PR=PM .2017年天津市滨海新区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(﹣5)×(﹣1)的结果等于()A.5 B.﹣5 C.1 D.﹣1【考点】1C:有理数的乘法.【分析】根据有理数的乘法,两数相乘,同号得正,异号得负,并把绝对值相乘,即可解答.【解答】解:(﹣5)×(﹣1)=5×1=5,故选:A.【点评】本题考查了有理数的乘法,解决本题的关键是熟记两数相乘,同号得正,异号得负,并把绝对值相乘.2.2cos30°的值等于()A.1 B.C.D.2【考点】T5:特殊角的三角函数值.【分析】根据特殊角的三角函数值直接解答即可.【解答】解:2cos30°=2×=.故选C.【点评】此题考查了特殊角的三角函数值,是需要识记的内容.3.下列图标,既可以看作是中心对称图形又可以看作是轴对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、可以看作是中心对称图形,不可以看作是轴对称图形,故本选项错误;B、既可以看作是中心对称图形,又可以看作是轴对称图形,故本选项正确;C、既不可以看作是中心对称图形,又不可以看作是轴对称图形,故本选项错误;D、既不可以看作是中心对称图形,又不可以看作是轴对称图形,故本选项错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.据中国绿色时报3月30日报道,去年秋冬季造林,我市共完成238000亩.将238000用科学记数法表示,应为()A.2.38×105B.0.238×106C.23.8×104D.238×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将238000用科学记数法表示,应为2.38×105.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图,是由5个相同的正方体组成的立体图形,从上面观察这个立体图形,得到的平面图形是()A .B .C .D .【考点】U2:简单组合体的三视图.【分析】从上面看:共分3列,从左往右分别有1,1,2个小正方形.据此可画出图形.【解答】解:从上面观察这个立体图形,得到的平面图形是.故选:D .【点评】考查简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.6.方程+=1的解为( ) A .﹣1 B .1C .4D .5【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣1=x ﹣2, 解得:x=4,经检验x=4是分式方程的解. 故选C【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.7.计算﹣•的结果是( )A .B .C .D .【考点】79:二次根式的混合运算.【分析】先进行二次根式的乘法法则运算,然后化简后合并即可.【解答】解:原式=3﹣=3﹣=.故选C.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°【考点】MC:切线的性质;M4:圆心角、弧、弦的关系.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.9.如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,则a,b的值分别为()A.1,3 B.1,2 C.2,1 D.1,1【考点】Q3:坐标与图形变化﹣平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB 向右平移1个单位,向上平移1个单位,进而可得a、b的值.【解答】解:∵A、B两点的坐标分别为(2,0)、(0,1),平移后A1(3,b),B1(a,2),∴线段AB向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,故选:D.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.10.已知点A(﹣3,a)、B(﹣1,b)、C(2,c)在反比例函数y=(k>0)的图象上,则且a、b、c的大小关系是()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【解答】解:∵比例函数y=(k>0)中,k>0,∴此函数图象在一、三象限,∵﹣3<﹣1<0,∴点A(﹣3,a)、B(﹣1,b)在第三象限,∵函数图象在第三象限内为减函数,∴0>a>b,∵2>0,∴C(2,c)在第一象限,∴c>0,∴a、b、c的大小关系是c>a>b,故选D.【点评】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.关键是根据反比例函数的增减性解题.11.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C'处,BC'交AD于点E,则线段AE的长为()A.B.3 C.D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程求出ED,即可得出AE的长.【解答】解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,AD=BC=6,AB=CD=3,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=,∴ED=.∴AE=AD﹣ED=6﹣=故选:A.【点评】本题主要考查了几何变换中的翻折变换、矩形的性质、勾股定理;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程是关键.12.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>﹣5 B.x0>﹣1 C.﹣5<x0<﹣1 D.﹣2<x0<3【考点】H5:二次函数图象上点的坐标特征.【分析】先判断出抛物线开口方向上,进而求出对称轴即可求解.【解答】解:∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a﹣5b+c>9a+3b+c,∴<1,∴﹣>﹣1,∴x0>﹣1∴x0的取值范围是x0>﹣1.故选:B.【点评】本题考查了二次函数图象上点坐标特征,主要利用了二次函数的增减性与对称性,根据顶点的纵坐标最小确定出抛物线开口方向上是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.计算x2•x的结果等于x3.【考点】46:同底数幂的乘法.【分析】根据同底数幂相乘,底数不变,指数相加,即可解答.【解答】解:x2•x=x3,故答案为:x3.【点评】本题考查了同底数幂的乘法,解决本题的关键是熟记同底数幂相乘,底数不变,指数相加.14.计算(+1)(﹣1)的结果等于2.【考点】79:二次根式的混合运算.【分析】利用平方差公式计算.【解答】解:原式=3﹣1=2.故答案为2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.15.已知一次函数的图象经过(﹣1,2)和(﹣3,4),则这个一次函数的解析式为y=﹣x+1.【考点】FA:待定系数法求一次函数解析式.【分析】设设一次函数解析式为y=kx+b,将两点坐标代入求出k与b的值,即可确定出解析式.【解答】解:设一次函数解析式为y=kx+b,将(﹣1,2)与(﹣3,4)代入得:,解得:k=﹣1,b=1,则一次函数解析式为y=﹣x+1.故答案为:y=﹣x+1【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.16.同时掷两枚质地均匀的骰子,则两枚骰子点数的和是9的概率为.【考点】X6:列表法与树状图法.【分析】画树状图展示所有36种等可能的结果数,再找出两枚骰子点数的和是9的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是9的结果数为4,所以两枚骰子点数的和是9的概率==,故答案为:.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.17.△ABC是边长为18的正三角形,点D、E分别在边AB、BC上,且BD=BE.若四边形DEFG是边长为6的正方形时,则点F到AC的距离等于6﹣6.【考点】LE:正方形的性质;KK:等边三角形的性质.【分析】如图,作BL⊥AC于L交DE于H,交FG于K.只要证明FG∥AC,求出KL即可解决问题.【解答】解:如图,作BL⊥AC于L交DE于H,交FG于K.∵△ABC是等边三角形,AC=BC=AB=18,∴∠B=90°,BL=BC•sin60°=9,∵BE=BD,∴△BED是等边三角形,∴BE=BD=DE=6,BH=EB•sin60°=3,∵HK=EF=6,∴BK=3+6,∴KL=BL﹣BK=9﹣(3+6)=6﹣6,∵∠BED=∠C=60°,∴DE∥BC,∵DE∥FG,∴FG∥AC,∴点F到AC的距离=6﹣6.故答案为6﹣6.【点评】本题考查正方形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.18.如图,在每个小正方形的边长为1的网格中,A,B为小正方形边的中点,C,D为格点,E为BA,CD的延长线的交点.(Ⅰ)CD的长等于2;(Ⅱ)若点N在线段BE上,点M在线段CE上,且满足AN=NM=MC,请在如图所示的网格中,用无刻度的直尺,画出线段MN,并简要说明点M,N的位置是如何找到的(不要求证明).【考点】N4:作图—应用与设计作图;KQ:勾股定理.【分析】(Ⅰ)根据勾股定理可求CD的长;(Ⅱ)CE与网格线相交,得点M,取格点F,连结CF并延长与BE交于N,连接MN,则线段MN即为所求.【解答】解:(Ⅰ)CD==2;(Ⅱ)如图,CE与网格线相交,得点M,取格点F,连结CF并延长与BE交于N,连接MN,则线段MN即为所求.证明:以A为原点建立平面直角坐标系,则A(0,0),C(1.5,6),E(﹣5.5,2.5),D(﹣2.5,4),∴直线AE的解析式y AE=﹣x,直线BD的解析式为y BF=0.5x+5.25,设N(n,﹣n),M(m,0.5m+5.25),∴AN2=n2+(﹣n)2=n2,MN2=(m﹣n)2+(﹣n﹣0.5n﹣5.25)2CM2=(m﹣1.5)2+(0.5n﹣0.75)2=1.25(n﹣1.5)2,∵AN=NM=MC,∴n2=(m﹣n)2+(﹣n﹣0.5n﹣5.25)2=1.25(n﹣1.5)2,解得.∴M(﹣1.5,4.5),N(﹣3,).故答案为:2.【点评】本题考查了作图﹣应用与设计作图,勾股定理,正确的作出图形是解题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.解不等式组:,请结合题意填空,完成本题的回答.(I)解不等式①,得;(II)解不等式②,得;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为﹣2≤x<1.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣2,把不等式①和②的解集在数轴上表示出来:∴不等式组的解集为﹣2≤x<1,故答案为:﹣2≤x<1【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数、中位数;(3)请你计算平均数,并估计这260名学生共植树多少棵?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W2:加权平均数;W4:中位数;W5:众数.【分析】(1)利用总人数20乘以对应的百分比即可求得D类的人数,从而补全直方图;(2)根据众数、中位数的定义即可直接求解;(3)首先求得调查的20人的平均数,乘以总人数260即可.【解答】解(1)D类的人数是:20×10%=2(人).;(2)众数为5棵,中位数为5棵(3)==5.3(棵).估计260名学生共植树5.3×260=1378(棵)【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)(2017•天津一模)已知⊙O中,弦AB⊥AC,且AB=AC=6,点D在⊙O上,连接AD,BD,CD.(1)如图1,若AD经过圆心O,求BD,CD的长;(2)如图2,若∠BAD=2∠DAC,求BD,CD的长.【考点】M5:圆周角定理;KW:等腰直角三角形.【分析】(1)由AD经过圆心O,利用圆周角定理得∠ACD=∠ABD=90°,又因为AB⊥AC,且AB=AC=6,易得四边形ABCD为正方形,易得结果;(2)连接OC,OB,OD,由∠BAD=2∠DAC,AB⊥AC,由圆周角定理得BC为直径,易得∠CAD=30°,∠BAD=60°,BO=CO=DO=BC=3,由圆周角定理得∠COD=60°,∠BOD=120°,△COD为等边三角形,求得CD,BD.【解答】解:(1)∵AD经过圆心O,∴∠ACD=∠ABD=90°,∵AB⊥AC,且AB=AC=6,∴四边形ABCD为正方形,∴BD=CD=AB=AC=6;(2)连接OC,OB,OD,过O点作OE⊥BD,∵AB⊥AC,AB=AC=6,∴BC为直径,∴BC=6,∴BO=CO=DO=BC=3,∵∠BAD=2∠DAC,∴∠CAD=30°,∠BAD=60°,∴∠COD=60°,∠BOD=120,∴△COD为等边三角形,∠BOE=60°,∴CD=CO=DO=3,BE=,∵OE⊥BD,∴BD=2BE=3.【点评】本题主要考查了圆周角定理,垂径定理,数形结合,作出适当的辅助线是解答此题的关键.22.(10分)(2017•天津一模)如图,从A地到B地的公路需经过C地,图中AC=50km,∠CAB=25°,∠CBA=45°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(Ⅰ)求改直的公路AB的长;(Ⅱ)问公路改直后比原来缩短了多少km?(sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,取1.414)(结果保留小数点后一位)【考点】T8:解直角三角形的应用.【分析】(1)过点C作CD⊥AB与D,根据AC=50千米,∠CAB=25°,求出CD、AD,根据∠CBA=45°,求出BD、BC,最后根据AB=AD+BD列式计算即可,(2)根据AC和BC的长度,即可得出公路改直后该段路程比原来缩短的路程.【解答】解:(1)过点C作CD⊥AB与D,∵AC=50千米,∠CAB=25°,∴CD=sin∠CAB•AC=sin25°×50≈0.42×50=21(千米),AD=cos∠CAB•AC=cos∠25°×50≈0.91×50=46.5(千米),∵∠CBA=45°,∴BD=CD=21(千米),BC==≈29.7(千米),∴AB=AD+BD=46.5+29.7=76.2(千米),(2)∵AC=50千米,BC=29.7千米,∴公路改直后该段路程比原来缩短50+29.7﹣76.7=3千米.【点评】此题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键.23.(10分)(2017•天津一模)服装店准备购进甲乙两种服装共100件,费用不得超过7500元.甲种服装每件进价80元,每件售价120元;乙种服装每件进价60元,每件售价90元.(I)设购进甲种服装x件,试填写表:表一表二(II)给出能够获得最大利润的进货方案,并说明理由.【考点】FH:一次函数的应用.【分析】(1)设购进甲种服装x件,则购进乙种服装(100﹣x)件,根据总价=单价×数量结合利润=售价﹣进价即可得出结论;(2)由进货费用不得超过7500元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,设获得的利润为y元,则可得出y关于x的一次函数关系式,根据一次函数的性质即可解决最值问题.【解答】解:(1)设购进甲种服装x件,则购进乙种服装(100﹣x)件,当x=10时,甲种服装获得的利润为(120﹣80)×10=400(元);当x=20时,购进乙种服装所用费用为60×(100﹣20)=4800(元);当购进甲种服装x件时,购进甲种服装所用费用80x元,购进乙种服装所用费用60(100﹣x)=6000﹣60x元,销售甲种服装获得的利润为(120﹣80)x=40x元,销售乙种服装获得的利润为(90﹣60)(100﹣x)=3000﹣30x元.故答案为:4800;80x;6000﹣60x;400;40x;3000﹣30x.(2)∵80x+6000﹣60x≤7500,∴x≤75.设获得的利润为y元,则y=40x+3000﹣30x=10x+3000,∴当x=75时,y取最大值,最大值为3750.故当购进甲种服装75件,购进乙种服装25件时,销售利润最高.【点评】本题考查了一次函数的应用以及列代数式,解题的关键是:(1)根据数量关系列出代数式;(2)根据一次函数的性质解决最值问题.24.(10分)(2017•天津一模)如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设△BCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.【考点】KY:三角形综合题.【分析】(I)作辅助线,分别求OG和MG的长即可;(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=t,AF=MG=2,分别表示EC和BE的长,代入面积公式可求得S与t的关系式;(III)证明△ABO∽△CAF,根据勾股定理表示AC和BC的长,计算其和,根据二次根式的意义得出当t=0时,值最小.【解答】解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2,∵M是AB的中点,∴G是AO的中点,∴OG=OA=1,MG是△AOB的中位线,∴MG=OB=×4=2,∴M(1,2);(II)如图1,同理得:OG=AG=t,∵∠BAC=90°,∴∠BAO+∠CAF=90°,∵∠CAF+∠ACF=90°,∴∠BAO=∠ACF,∵∠MGA=∠AFC=90°,MA=AC,∴△AMG≌△CAF,∴AG=CF=t,AF=MG=2,∴EC=4﹣t,BE=OF=t+2,=EC•BE=(4﹣t)(t+2)=﹣t2+t+4;∴S=S△BCE(III)如图1,易得△ABO∽△CAF,∴=2,∴AF=2,CF=t,由勾股定理得:AC===,BC===,∴BC+AC=(+1),∴当t=0时,BC+AC有最小值.【点评】本题考查了坐标平面内几何图形的多种性质,难度适中.涉及到的知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,第(3)问还考查了几何图形的空间想象能力.本题涉及考点众多,内涵丰富,对考生的数学综合能力要求较高.25.(10分)(2017•天津一模)已知抛物线的解析式为y=x 2﹣x +,P 是抛物线上的一个动点,R (1,1)是抛物线对称轴上的一点. (I )求抛物线的顶点及与y 轴交点的坐标;(II )l 是过点(0,﹣1)且平行于x 轴的直线,l 与抛物线的对称轴的交点为N ,PM ⊥MN ,垂足为点M ,连接PR ,RM . ①当△RPM 是等边三角形时,求P 点的坐标; ②求证:PR=PM .【考点】HF :二次函数综合题.【分析】(Ⅰ)把抛物线解析式化为顶点式可求得顶点坐标,令x=0则可求得抛物线与y 轴的交点坐标;(Ⅱ)设P (x , x 2﹣x +,),①过R 作RC ⊥PM 于点C ,利用等边三角形的性质,可求得CM=2,且PM=2CM ,可得到关于x 的方程,可求得P 点坐标; ②利用勾股定理可分别用x 表示出PR 和PM 的长,可证得结论. 【解答】解:(Ⅰ)∵y=x 2﹣x +=(x ﹣1)2, ∴抛物线顶点坐标为(1,0),在y=x 2﹣x +中,令x=0可求得y=,∴抛物线与y 轴的交点坐标为(0,);(Ⅱ)设P (x , x 2﹣x +,), ①如图,过R 作RC ⊥PM 于点C ,∵R(1,1),△PRM为等边三角形,∴PM=2CM=2×[1﹣(﹣1)]=4,∴x2﹣x++1=4,解得x=1+2或x=1﹣2,∴P点坐标为(1+2,3)或(1﹣2,3);②∵R(1,1),P(x,x2﹣x+),M(x,﹣1),∴PR2=(x﹣1)2+(x2﹣x+﹣1)2=(x﹣1)4+(x﹣1)2+1,PM2=(x2﹣x++1)2=(x﹣1)4+(x﹣1)2+1,∴PR=PM.【点评】本题为二次函数的综合应用,涉及二次函数的性质、等边三角形的性质、勾股定理、方程思想等知识.在(Ⅰ)中把抛物线化为顶点式是解题的关键,在(Ⅱ)①中设出P点坐标,根据等边三角形的性质得到关于P点坐标的方程是解题的关键,在(Ⅱ)②中用勾股定理表示出PR和PM的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017 年滨海新区初中毕业生学业考试模拟(一)
第Ⅰ卷
注意事项:
1. 每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动, 用橡皮擦干净后,再选涂其他答案标号的信息点。

2. 本卷共12题,共36分。

一、选择题: 1.计算 (-5)
×(-1) 的结果等于( ) A.5 B.5 C.1 D.1 2. 2 cos 30° 的值等于( )
A.21
B.3
C.1
D.23
3.下列图标,既可以看作是中心对称图形又可以看作是轴对称图形的是( )
4.据中国绿色时报3月30日报道,去年秋冬季造林,我市共完成238000 亩.将238000用科学记数法表示,应为( )
A.2.38×105
B.0.238×106
C.23.8×104
D.238×103
5.如图,是由5个相同的正方体组成的立体图形,从上面观察这个立体图形,得到的平面图形是( )
6.方程
12123=-+-x
x 的解为( ) A.-1 B.1 C.4 D.5
7.计算3
2
827⨯
-的结果是( ) A.3 B.
334 C.3
3
5 D.32 8.如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心O.若∠B=25°,则∠C=( )
A.20°
B.25°
C.40°
D.50°
9.如图,平面直角坐标系中,A 、B 两点的坐标分别为(2,0)、(0,1),若将线段AB 平移至A 1B 1,则a ,b 的值分别为( )
A.1,3
B.1,2
C.2,1
D.1,1
k(k>0)的图象上,则且a、b、c的大小关系是( ) 10.已知点A(-3,a)、B(-1,b)、C(2,c)在反比例函数y=
x
A.a>b>c
B.b>a>c
C.c>b>a
D.c>a>b
11.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C/处,BC交AD于点E,则线段AE的长为( )
A.2.25
B.3
C.3.75
D.7.5
12.已知两点A(-5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是抛物线的顶点,若y1>y2>y0,则x0的取值范围是( )
A.x0>-5
B.x0>-1
C.-5<x0<1
D.-2<x0<3
第Ⅱ卷
二、填空题:
13.计算x2∙x的结果等于__________.
14.计算)1
3
+的结果等于__________.
(-
3
)(
1
15.已知一次函数的图象经过两个点(-1,2)和(-3,4),则这个一次函数的解析式为__________.
16.同时掷两枚质地均匀的骰子,则两枚骰子点数的和是9的概率为_________.
17.△ABC是边长为18的正三角形,点D、E分别在边AB、BC上,且BD=BE.若四边形DEFG是边长为6的正方形时,则点F 到AC的距离等于__________.
18.如图,在每个小正方形的边长为1的网格中,A,B为小正方形边的中点,C,D为格点,E为BA,CD的延长线的交点.
(Ⅰ)CD的长等于__________;
(Ⅱ)若点N在线段BE上,点M在线段CE上,且满足AN=NM=MC,请在如图所示的网格中,用无刻度的直尺,画出线段MN,并简要说明点M,N的位置是如何找到的(不要求证明).
三、解答题:
19.(本小题8分)解不等式组:
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得__________;
(Ⅱ)解不等式②,得__________;
(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不等式组的解集为__________.
20.(本小题8分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5 棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图①)和条形图(如图②).
回答下列问题:
(Ⅰ)补全条形统计图;
(Ⅱ)写出这20名学生每人植树量的众数、中位数;
(Ⅲ)求这20名学生每人植树量的平均数,并估计这260名学生共植树多少棵.
21.(本小题10分)已知AB,AC是⊙O的两条弦,且AB⊥AC,AB=AC=6,点D在⊙O上,连接AD,BD,CD.
(Ⅰ)如图①,若AD经过圆心O,求BD,CD的长;
(Ⅱ)如图②,若∠BAD=2∠DAC,求BD,CD的长.
22.(本小题10分)如图,从A地到B地的公路需经过C地,图中AC=50km,CAB=250,CBA=450,因城市规划的需要,将在A,B两地之间修建一条笔直的公路.
(Ⅰ)求改直的公路AB的长;
(Ⅱ)问公路改直后比原来缩短了多少千米?
(sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,2取1.414.)(结果保留小数点后一位)
23.(本小题10分)服装店准备购进甲乙两种服装共100件,费用不得超过7500元.甲种服装每件进价80元,每件售价120元;乙种服装每件进价60元,每件售价90元.
(Ⅰ)设购进甲种服装x件,试填写下表:
购进甲种服装的数量/件10 20 x
购进甲种服装所用费用/元800 1600
购进乙种服装所用费用/元5400
表二:
购进甲种服装的数量/件10 20 x
甲种服装获得的利润/元800
乙种服装获得的利润/元2700 2400
(Ⅱ)给出能够获得最大利润的进货方案,并说明理由.
24.(本小题10分)如图,点A是x轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转900得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.
(Ⅰ)当t=2时,求点M的坐标;
(Ⅱ)设△BCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;
(Ⅲ)当t为何值时,BC+CA取得最小值.
25.(本小题10分)已知抛物线的解析式为y=0.25x2-0.5x+0.25,P是抛物线上的一个动点,R(1,1)是抛物线对称轴上的一点.
(Ⅰ)求抛物线的顶点及与y轴交点的坐标;
(Ⅱ)1是过点(0,-1)且平行于x轴的直线,l与抛物线的对称轴的交点为N,PM=MN,垂足为点M,连接PR,RM.
(ⅰ)当△RPM是等边三角形时,求P点的坐标;
(ⅱ)求证:PR=PM.
2017 年滨海新区初中毕业生学业考试模拟(一)数学参考答案一、选择题:
(1) A (2) B (3) B (4) A (5) D (6) C
(7) C (8) C (9) D (10) D (11) A (12) B。

相关文档
最新文档