三余弦定理在全国卷立体几何压轴题的妙用

合集下载

巧用三线三角余弦公式妙解立体几何题

巧用三线三角余弦公式妙解立体几何题

巧用三线三角余弦公式妙解立体几何题
王峰
【期刊名称】《中学数学教学》
【年(卷),期】2008(000)003
【摘要】若直线AB是平面α的一条斜线,A’B’是AB在平面α内的射影,l 为平面α内不同于A’B’的一条直线,且AB与l的夹角为θ,A’B’与l的夹角为θ1,AB与平面α所成的角为θ2,则易知cosθ=cosθ1·cosθ2,为了便于学生记忆和灵活使用,笔者不妨将此公式称为三线三角余弦公式,
【总页数】3页(P42-44)
【作者】王峰
【作者单位】安徽省临泉一中,236400
【正文语种】中文
【中图分类】O1
【相关文献】
1.巧用延伸性知识代数法妙解几何题 [J], 李咪丽;
2.巧用旋转法,妙解几何题 [J], 杨永琴;
3.巧用仿射变换妙解高考解析几何题 [J], 彭耿铃
4.巧用仿射变换妙解高考解析几何题 [J], 彭耿铃
5.巧用曲线系方程妙解解析几何题 [J], 刘海涛
因版权原因,仅展示原文概要,查看原文内容请购买。

(压轴题)高中数学必修二第一章《立体几何初步》检测题(有答案解析)(3)

(压轴题)高中数学必修二第一章《立体几何初步》检测题(有答案解析)(3)
20.在四棱锥 中,平面 平面 ,且 为矩形, , , , ,则四棱锥 的外接球的体积为________.
三、解答题
21.如图,在四棱锥 中, 平面 ,四边形 是直角梯形, , , , .
(1)证明:平面 平面 ;
(2)求三棱锥 的体积.
22.如图(1)在 中, , 、 、 分别是 、 、 边的中点,现将 沿 翻折,使得平面 平面 .如图(2)
故选:A.
【点睛】
本题主要考查了空间中点、线、面间的距离问题,其中解答中通过构造平行平面寻找得到点 的位置是解答的关键,意在考查空间想象能力与运算能力,属于中档试题.
5.D
解析:D
【分析】
先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.
【详解】
由三视图可知几何体为图中的四棱锥 ,
由题得 ,所以几何体的高为 .
【详解】
如图, 是 的外心, 是球心, 平面 ,当 是 的延长线与球面交点时, 到平面 距离最大,
由 , ,得 ,则 ,
, ,
, ,
又 ,
所以最大的 .
故选:A.
【点睛】
本题考查求三棱锥的体积,解题关键是确定三棱锥体积最大时 点在球面上的位置,根据球的性质易得结论.当底面 固定, 是 外心,当 平面 ,且球心 在线段 上时, 到平面 距离最大.
圆锥的体积 .
当且仅当 ,即 时取等号.
该圆锥体积的最小值为 .
内切球体积为 .
该圆锥体积与其内切球体积比 .
故选:A.
【点睛】
方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.

高考数学立体几何的解题技巧

高考数学立体几何的解题技巧

2019年高考数学立体几何的解题技巧1.平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合找寻证题思路。

(2)利用题设条件的性质适当添加协助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中运用的频率最高,在证明线线垂直时应优先考虑。

2.空间角的计算方法与技巧:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算.(3)二面角①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.3.空间距离的计算方法与技巧:(1)求点到直线的距离:常常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能干脆作出公垂线的状况下,可转化为线面距离求解(这种状况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”干脆求距离;有时干脆利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

4.熟记一些常用的小结论,诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。

弄清晰棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。

5.平面图形的翻折、立体图形的绽开等一类问题,要留意翻折前、绽开前后有关几何元素的“不变性”与“不变量”。

三余弦公式的巧用

三余弦公式的巧用

三余弦公式的巧用1AO AO AO 12αθααθθθθθ2 如图:斜线和平面所成的角为,斜线在平面上的射影A B ,A C 为平面内异于A B 的直线,A B 与A C 的夹角为,与A C 的夹角,则有:cos =cos cos该公式本质上反映了线面角与线线角之间的数量关系,其本质特征是由两个平面互相垂直,两个平面内的三条直线所成角的定量关系。

在处理异面直线所成角、线面角的问题时效果明显。

下面通过近年高考试题予以说明。

例一: (2005全国卷I 第18题)已知四棱锥P-ABCD 的底面为直角梯形,AB CD ∥,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点。

(Ⅱ)求AC 与PB 所成的角;常规解法:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角. 连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD得∠PEB=90°在Rt △PEB中BE=2,PB=5,.510cos ==∠∴PB BE PBE .510arccos 所成的角为与PB AC ∴ 析:已知条件中有PA ⊥底面ABCD 若使用三余弦公式则:PB 在平面ABCD 上的射影AB ,222210cos ,cos 22555PBA BAC AC PB ∠=∠==∴与夹角的余弦值= .510arccos所成的角为与PB AC ∴ 评:只要找到三线的夹角即可,无需作图求解。

例二(2006福建卷)如图,四面体ABCD 中,αACBOABMDEOCO 、E 分别BD 、BC 的中点,CA =CB =CD =BD =2 (Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的大小; 常规方法方法一: (I )证明:连结OC ,,.BO DO AB AD AO BD ==∴⊥,,.BO DO BC CD CO BD ==∴⊥ 在AOC ∆中,由已知可得1,AO CO ==而2,AC = 222,AO CO AC ∴+= 90,o AOC ∴∠=即.AO OC ⊥,BD OC O = AO ∴⊥平面BCD(II )解:取AC 的中点M ,连结OM 、ME 、OE ,由E 为BC 的中点知ME ∥AB,OE ∥DC ∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角 在OME ∆中,11,1,222EM AB OE DC ====OM 是直角AOC ∆斜边AC 上的中线,11,2OM AC ∴==cos OEM ∴∠= ∴异面直线AB 与CD所成角的大小为 方法二:(II )解:以O 为原点,如图建立空间直角坐标系,则(1,0,0),(1,0,0),B D -1(0,0,1),(,(1,0,1),(1,22C A E BA CD =-=-.2cos ,,4BA CD BA CD BA CD∴<>==∴异面直线AB 与CD 所成角的大小为arccos4由(Ⅰ)知:AO ⊥平面BCD ;AB 在平面平面BCD 上的射影在BD 上1cos 22ABD CDB ∠=∠=∴异面直线AB 与CD 所成角的大小为y例三(2006湖南卷)如图,已知两个正四棱锥P-ABCD 与Q-ABCD 的高分别为1和2,AB=4.(Ⅰ)证明PQ ⊥平面ABCD;(Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离.解法一: (Ⅰ).连结AC 、BD ,设O BD AC = .由P -ABCD 与Q -ABCD 都是正四棱锥, 所以PO ⊥平面ABCD ,QO ⊥平面ABCD .从而P 、O 、Q 三点在一条直线上,所以PQ ⊥平面ABCD . (II )由题设知,ABCD 是正方形,所以AC BD ⊥. 由(I )知:231223,3,cos ,cos 333AO PB AQO BPO ==∠==∠=∴AQ=22 从而异面直线AQ 与PB 所成的角是3arccos9. 例四(2006江西卷)如图,已知三棱锥O ABC -的侧棱OA OB OC ,,两两垂直,且1OA =,2OB OC ==,E 是OC 的中点.(2)求异面直线BE 与AC 所成的角; 常规方法: 取OA 的中点M ,连EM 、BM ,则EM ∥,AC BEM ∠是异面直线BE 与AC 所成的角. 求得:22221517,5,.222===-==+=EM AC BE OB OE BM OM OB 22222cos ,arccos .255+-∠==∴∠=⋅BE ME BM BEM BEM BE ME(2,0,0)(0,1,0)(2,1,0),(0,2,1).=-=-=-坐标法EB AC cos <,EB AC >22,555-==-⋅所以QBCPADAOECB异面直线BE 与AC 所成的角2arccos 5.利用三余弦公式求解:BE 在平面AOC 上的射影OE=1,BE=5,525cos ,cos 55BEO ACO ∠=∠=所以异面直线BE 与AC 所成的角2arccos 5. 立体几何中的计算,尤其是客观题的解答,如果过分依赖坐标法这个“鸡肋”将阻碍立体几何对空间思维能力的提升,阻碍“降维”转化思想方法的形成,从而削弱立体几何应有的思维训练价值。

立体几何三余弦定理公式

立体几何三余弦定理公式

立体几何三余弦定理公式立体几何是几何的一个分支,它研究三维空间中的图形和物体。

而在立体几何中,三余弦定理公式是一个非常重要的定理,它可以帮助我们计算和解决关于三维空间中的图形和物体的一些问题。

在本文中,我们将详细讨论三余弦定理公式。

三余弦定理公式是一种计算空间正三角形三边的长度的公式,在立体几何中非常常用。

如果一个正三角形的边长为a,那么我们可以使用三余弦定理公式来计算它的三条边的长度。

在三余弦定理公式中,我们需要知道一个三维空间的概念:向量。

向量是一种有方向的量,它由起点和终点表示。

在立体几何中,向量通常被表示为一个有序的三元组(x, y, z),其中x、y和z分别表示向量在x、y和z轴上的分量。

回顾一下平面几何中的余弦定理公式,即c^2=a^2+b^2-2ab*cos(C),其中a、b和c是三角形的三条边,C是夹角的度数。

在立体几何中,三余弦定理公式与这个公式非常类似,它的表达式为:a^2 = b^2 + c^2 - 2bc*cos(A)b^2 = a^2 + c^2 - 2ac*cos(B)c^2 = a^2 + b^2 - 2ab*cos(C)在这个公式中,a、b、c是正三角形的三条边的长度,而A、B和C是它们对应的内角的大小。

三余弦定理公式的使用十分灵活。

例如,如果我们知道某个正方体的一个面的面积是S,那么我们可以使用三余弦定理公式来计算正方体的体积V。

我们可以将正方体的一条边的长度表示为a,则正方体的体积的计算公式就是:V = a^3。

而正方体的表面积的计算公式为:S = 6a^2当我们知道正方体的表面积时,我们可以使用下列公式来计算正方体的体积:V = S^(3/2)/6以上仅仅是三余弦定理公式的一些简单应用,当然,这个公式的实际应用是非常广泛的,还包括圆柱体、圆锥体和球体等等的计算。

而在计算中,我们也可以使用相似三角形的性质来简化计算。

总之,三余弦定理公式是立体几何中的一个重要公式,它可以帮助我们计算三维空间的各种图形和物体的长度、面积和体积等等。

高考数学立体几何中与角有关的四大定理及其证明

高考数学立体几何中与角有关的四大定理及其证明

则 cosθ = cos2β + cos2γ - 2cosαcosβcosγ sinα
证明:设 ∠HAC = θ1,∠HAB = θ2 ⇒ α = θ1 + θ2,
由三余弦定理得:
cos β cosγ
= =
cosθ cosθ
cosθ1 cosθ2
① ②
由①和②得 cosθ = cosβ = cosγ ③ cosθ1 cosθ2
α

γ
P α : 线面角 β : 斜线角 γ : 射影角 则 cosβ = cosαcosγ ⇒ β > α,β > γ
Q
B
证明:cosβ =
AB PA
,cosα =
QA PA
,cosγ =
AB QA
⇒ cosβ = cosαcosγ
·1·
3. 三夹角公式
P
θ

γ
α
C H
B
若 θ 为 PA 与平面 ABC 的夹角

HO BO
AH AO

BH BO
= cosθ - cosθ1cosθ2 sinθ1sinθ2
注:若 φ =
π 2
,
则该定理退化为三余弦定理
·3·
立体几何中与角有关的四大定理及其证明
1. 三正弦定理
β α
A
γ
B
P
α : 线面角 β : 线棱角 γ : 二面角 则 sinα = sinβsinγ Q ⇒ α ≤ β,α ≤ γ
证明:sinα =
PQ PA
,sinβ =
PB PA
,sinγ =
PQ PB
⇒ sinα = sinβsinγ

压轴题05 立体几何压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用-文)

压轴题05 立体几何压轴题(原卷版)--2023年高考数学压轴题专项训练(全国通用-文)

压轴题05立体几何压轴题题型/考向一:点、线、面间的位置关系和空间几何体的体积、表面积题型/考向二:外接球、内切球等相关问题题型/考向三:平面关系、垂直关系、体积、表面积等综合问题一、空间几何体的体积、表面积热点一空间几何体的侧面积、表面积柱体、锥体、台体和球的表面积公式:(1)若圆柱的底面半径为r,母线长为l,则S侧=2πrl,S表=2πr(r+l).(2)若圆锥的底面半径为r,母线长为l,则S侧=πrl,S表=πr(r+l).(3)若圆台的上、下底面半径分别为r′,r,则S侧=π(r+r′)l,S表=π(r2+r′2+r′l +rl).(4)若球的半径为R,则它的表面积S=4πR2.热点二空间几何体的体积柱体、锥体、台体和球的体积公式:(1)V柱体=Sh(S为底面面积,h为高);Sh(S为底面面积,h为高);(2)V锥体=13(S上+S下+S上S下)h(S上、S下分别为上、下底面面积,h为高);(3)V台体=13(4)V球=4πR3.3二、外接球、内切球问题类型一外接球问题考向1墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:考向2对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R )2=a 2+b 2+c 2(长方体的长、宽高分别为a ,b ,c ),即R 2=18(x 2+y 2+z 2),如图.考向3汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h 2,所以R 2=r 2+h 24.考向4垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O 的位置是△CBD 的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.类型二内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r,建立等式V P-ABC=V O-ABC+V O-P AB+V O-P AC+V O-PBC⇒V P-ABC=13S△ABC·r+13S△P AB·r+13S△P AC·r+13S PBC·r=13(S△ABC+S△P AB+S△P AC+S△PBC)r;第三步:解出r=3V P-ABCS△ABC+S△P AB+S△P AC+S△PBC.类型三球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).三、平行关系和垂直关系的证明、二面角等热点一空间线、面位置关系的判定判断空间线、面位置关系的常用方法(1)根据空间线面平行、垂直的判定定理和性质定理逐项判断,解决问题.(2)利用直线的方向向量、平面的法向量判断.(3)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线、面的位置关系,并结合有关定理进行判断.热点二几何法证明平行、垂直1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面○热○点○题○型一点、线、面间的位置关系和空间几何体的体积、表面积一、单选题1.设l ,m 是两条不同的直线,α,β,γ是三个不同的平面,下列说法正确的是()A .若//l α,//m α,则//l mB .若//l α,//l β,则//αβC .若l α⊥,m α⊥,则//l mD .若αγ⊥,βγ⊥,则//αβ2.将半径为6的半圆卷成一个无底圆锥(钢接处不重合),则该无底圆锥的体积为()A .273πB .27πC .3πD .9π3.在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A ,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB4.如图是一款多功能粉碎机的实物图,它的进物仓可看作正四棱台,已知该四棱台的上底面边长为40cm ,下底面边长为10cm ,侧棱长为30cm ,则该款粉碎机进物仓的容积为()A .32cmB .386003cmC .3105002cmD .33cm5.已知在春分或秋分时节,太阳直射赤道附近.若赤道附近某地在此季节的日出时间为早上6点,日落时间为晚上18点,该地有一个底面半径为4m 的圆锥形的建筑物,且该建筑物在一天中恰好有四个小时在地面上没有影子,则该建筑物的体积为()A .643πB .π3C .16π3D .π36.攒尖是古代中国建筑中屋顶的一种结构形式,依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑.如故宫中和殿的屋顶为四角攒尖顶,它的主要部分的轮廓可近似看作一个正四棱锥,设正四棱锥的侧面等腰三角形的顶角为60°,则该正四棱锥的侧面积与底面积的比为()A .4B 3C D 7.在三棱锥A BCD -中,4AB AC BD CD BC =====,平面α经过AC 的中点E ,并且与BC 垂直,则α截此三棱锥所得的截面面积的最大值为()A B .34C 2D .328.已知圆台的母线长为4,上底面圆和下底面圆半径的比为1:3,其侧面展开图所在扇形的圆心角为π2,则圆台的高为()A .BC .4D .二、多选题9.已知平面α,β,直线l ,m ,则下列命题正确的是()A .若αβ⊥,,,m l m l αβα⋂=⊥⊂,则l β⊥B .若l αβα⊂∥,,m β⊂,则//l mC .若m α⊂,则“l α⊥”是“l m ⊥”的充分不必要条件D .若m α⊂,l α⊄,则“l α∥”是“l m ”的必要不充分条件10.下列说法正确的是()A .若直线a 不平行于平面α,a α⊄,则α内不存在与a 平行的直线B .若一个平面α内两条不平行的直线都平行于另一个平面β,则αβ∥C .设l ,m ,n 为直线,m ,n 在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的充要条件D .若平面α⊥平面1α,平面β⊥平面1β,则平面α与平面β所成的二面角和平面1α与平面1β所成的二面角相等或互补三、解答题11.已知直棱柱1111ABCD A B C D -的底面ABCD 为菱形,且2AB AD BD ===,1AA =,点E 为11B D 的中点.(1)证明://AE 平面1BDC ;(2)求三棱锥1E BDC -的体积.12.如图,在三棱柱111ABC A B C -中,ABC 为边长为2的正三角形,D 为BC 的中点,12AA =,且160CCB ∠= ,平面11BB C C ⊥平面ABC .(1)证明:1C D AB ⊥;(2)求三棱锥111B AA C -的体积.○热○点○题○型二外接球、内切球等相关问题一、单选题1.已知ABC 是边长为3的等边三角形,其顶点都在球O 的球面上,若球O 的体积为323π,则球心O 到平面ABC 的距离为()AB .32C .1D .22.已知三棱锥-P ABC 的底面ABC 是边长为1的正三角形,侧棱,,PA PB PC 两两垂直,若此三棱锥的四个顶点都在同一个球面上,则该球的表面积是()A .3πB .πC .3π4D .3π23.一个圆锥的底面圆和顶点都恰好在一个球面上,且这个球的半径为5,则这个圆锥的体积的最大值时,圆锥的底面半径为()A .103B .2C .3D 4.已知圆锥的侧面积为2π,母线与底面所成角的余弦值为12,则该圆锥的内切球的体积为()A .4π3B C D 5.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为A ,圆柱的上、下底面的圆心分别为B 、C ,若该几何体Ω存在外接球(即圆锥的顶点与底面圆周在球面上,且圆柱的底面圆周也在球面上).已知24BC AB ==,则该组合体的体积等于()A .56πB .70π3C .48πD .64π6.已知矩形ABCD 的顶点都在球心为O 的球面上,3AB =,BC =,且四棱锥O ABCD-的体积为,则球O 的表面积为()A .76πB .112πCD 7.水平桌面上放置了4个半径为2的小球,4个小球的球心构成正方形,且相邻的两个小球相切.若用一个半球形的容器罩住四个小球,则半球形容器内壁的半径的最小值为()A .4B .2C .2D .68.已知三棱锥-P ABC 的四个顶点均在球O 的球面上,2PA BC ==,PB AC ==PC AB =Q 为球O 的球面上一动点,则点Q 到平面PAB 的最大距离为()A 2211B C 2211D 二、填空题9.在三棱锥-P ABC 中,PA ⊥平面ABC ,14AB AC PA AB AC ⊥=+=,,,当三棱锥的体积最大时,三棱锥-P ABC 外接球的体积为______.10.如图,在直三棱柱111ABC A B C -中,1AA AB BC ==.设D 为1AC 的中点,三棱锥D ABC -的体积为94,平面1A BC ⊥平面11ABB A ,则三棱柱111ABC A B C -外接球的表面积为______.11.如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则直三棱柱111ABC A B C -的体积为___________.12.如图所示的由4个直角三角形组成的各边长均相等的六边形是某棱锥的侧面展开图,若该六边形的面积为12,则该棱锥的内切球半径为___.○热○点○题○型三平面关系、垂直关系、体积、表面积等综合问题1.已知直棱柱1111ABCD A B C D -的底面ABCD 为菱形,且2AB AD BD ===,1AA =,点E 为11B D 的中点.(1)证明://AE 平面1BDC ;(2)求三棱锥1E BDC -的体积.2.如图,在四棱锥P ABCD -中,PAD 是等边三角形,底面ABCD 是棱长为2的菱形,平面PAD ⊥平面ABCD ,O 是AD 的中点,π3DAB ∠=.(1)证明:OB ⊥平面PAD ;(2)求点O 到平面PAB 的距离.3.如图,在三棱柱111ABC A B C -中,ABC 为边长为2的正三角形,D 为BC 的中点,12AA =,且160CCB ∠= ,平面11BB C C ⊥平面ABC .(1)证明:1C D AB ⊥;(2)求三棱锥111B AAC -的体积.4.如图1,在直角梯形ABCD 中,90ADC ∠=︒,AB CD ,122AD CD AB ===,E 为AC 的中点,将ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,如图2.在图2所示的几何体D ABC -中:(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD EF ,求几何体F BCE -的体积.5.在如图所示的几何体中,四边形ABCD 为菱形,60BCD ∠=︒,4AB =,EF CD ∥,2EF =,4CF =,点F 在平面ABCD 内的射影恰为BC 的中点G .(1)求证:平面ACE 平面BED;(2)求该几何体的体积.。

余弦定理在立体几何中的妙用

余弦定理在立体几何中的妙用

余弦定理在立体几何中的妙用1.引言1.1 概述余弦定理是立体几何中一项非常重要且妙用广泛的定理,它是三角形中的一个关键定理。

通过利用余弦定理,我们可以解决各种与三角形有关的问题,如计算边长、角度,判断三角形的形状等。

此外,余弦定理还能够拓展到解决立体几何问题中,为我们提供了解决空间中的各种几何难题的有力工具。

在本文中,我们将分析余弦定理的定义和公式,并重点讨论它在解决立体几何问题中的应用。

通过具体的例子和推导过程,我们将展示余弦定理的实际运用,并探讨其背后的原理和逻辑。

在接下来的章节中,我们将首先介绍余弦定理的定义和公式,以便读者了解其基本概念和数学表达方式。

然后,我们将探讨余弦定理在三角形中的应用,并通过实际问题进行演示和解答。

最后,我们将详细讨论余弦定理在解决立体几何问题中的妙用,并总结其优势和适用范围。

通过本文的阅读,读者将能够深入了解余弦定理在立体几何中的妙用,掌握利用余弦定理解决各类几何问题的方法和技巧。

希望本文能够为读者提供灵感和启示,帮助读者更好地应用余弦定理解决实际问题,进一步提升他们在几何学领域的知识和能力。

1.2 文章结构文章结构部分的内容可以按照以下方式进行编写:文章结构部分主要介绍了本文的整体结构,帮助读者了解文章的大致内容安排。

本文主要分为引言、正文和结论三个部分。

引言部分概述了本文的主题和目的。

本文通过讨论余弦定理在立体几何中的应用,旨在探讨余弦定理在解决立体几何问题中的妙用。

引言部分也简要介绍了本文的结构,包含了概述、文章结构和目的三个小节。

正文部分是本文的主要内容,主要分为两个小节进行阐述。

首先是2.1节,介绍了余弦定理的定义和公式。

该部分将详细介绍余弦定理的概念和公式表达,为后续的应用部分做好准备。

接着是2.2节,重点探讨了余弦定理在三角形中的应用。

通过具体的例子和推理,阐述了余弦定理在解决三角形内角、边长关系等问题中的作用。

结论部分总结了本文的主要观点和内容,给出了余弦定理在解决立体几何问题中的妙用。

正、余弦定理在近年高考题中的应用

正、余弦定理在近年高考题中的应用

(Ⅰ)求索道 AB的长; (Ⅱ)问乙出发多少分钟后,乙在缆车上与甲的距离最 短; (Ⅲ)为使两位游客在 C 处互相等待的时间不超过 3 分 钟,乙步行的速度应控制在什么范围内? 小结:本题难度不大,它是正弦定理在实际问题中的应 用,将实际问题转化为具体图形,具体数学问题,再通过求 解数学问题得出答案,主要考查了我们利用数学知识解决实 际问题的能力 . 3. 结语 通过对正、余弦定理在近年高考中的应用的讨论,可以 看出在解决边、角、判断三角形的形状、求解三角形的面积 等问题时往往会考虑正、余弦定理,但试题一般不会单独考 查公式的直接应用,需要我们灵活运用三角形的内角和定理、 三角恒等变换、三角形的面积公式及均值不等式等与正、余 弦定理综合解决 . 对于正、余弦定理的应用,有的需要我们 利用正、余弦定理将边角关系转化为纯粹的边的关系、角的 关系,然后得出结论,有的需要我们利用正、余弦定理求出 某个角、某条边的具体值,然后解决问题 . 此类问题往往考 查了合理利用公式的能力、计算能力和转化的数学思想,这 些与平时的积累是息息相关的 . 只有注意平时积累,才能在 考试中迅速解决问题,节约考试时间 .
正、余弦定理在近年高考题中的应用
摘 要: 正、余弦定理是高中数学的重要组成部分,
本文主要对近年全国各省高考题中的相关问题进行相应的
分析,并结合试题的特点及常规思路提出了一些复习建议
.
1. 引言
正、余弦定理是高中数学中三角函数知识的重要组成部
分,又是高考考查的重点之一,在近年高考题中占有一定的
地位 . 我们往往以正、 余弦定理为工具, 结合三角恒等变换,
有可能,并且每年试题的题量都相对较稳定 . 从近几年的情
况来看,正、余弦定理往往运用于解答题中的某一个问中,

三余弦定理在全国卷立体几何压轴题的妙用

三余弦定理在全国卷立体几何压轴题的妙用

1 32 淘宝上博约书斋店铺(唯一正版)《高观点下全国卷高考数学压轴题解题研究三部曲》对高考压轴题作了深度分析,给出了精彩的点评、变式和拓展。

《立体几何的微观深入和宏观把握》。

三余弦定理在全国卷立体几何压轴题的妙用1.(2019 全国 1 卷文科第 16 题)已知∠ACB=90°,P 为平面 ABC 外一点,PC =2,点 P 到∠ACB 两边 AC ,BC 的距离均为 ,那么 P 到平面 ABC 的距离为.【 解 析 】 如 上 图 , 由 对 称 性 知∠OCD = 45o , 由 三 余 弦 定 理 得cos ∠PCD = cos ∠PCO cos ∠OCD ,即 1 = cos ∠PCO ⋅ 2 ,所以cos ∠PCO = 2 。

2 2 2则 PO = OC = 。

2.(2017 全国 3 卷理科第 16 题)a ,b 为空间中两条互相垂直的直线,等腰直角三角形 ABC的直角边 AC 所在直线与 a ,b 都垂直,斜边 AB 以直线 AC 为旋转轴旋转,有下列结论:①当直线 AB 与 a 成 60°角时,AB 与 b 成 30°角;②当直线 AB 与 a 成 60°角时,AB 与 b 成 60°角;③直线 AB 与 a 所称角的最小值为 45°;④直线 AB 与 a 所称角的最大值为 60°;【解析】过 M 作 b 的垂线,则 AM 与 MN 所成的角为 AM 与 a 所成的角,由三余弦公式得cos ∠AMN = cos ∠AMC ⋅ cos ∠CMN =2 ⨯ cos ∠CMN 2, 若 所 成 角 为 60 ° , 则 有 1= 2 ⨯ cos ∠CMN ,则∠CMN 22 = 450 ,CM 平分角∠BCE ,所以此时 AM 与两直线所成的角都为 60°。

正、余弦定理在近年高考题中的应用

正、余弦定理在近年高考题中的应用

正、余弦定理在近年高考题中的应用摘要:正、余弦定理是高中数学的重要组成部分,本文主要对近年全国各省高考题中的相关问题进行相应的分析,并结合试题的特点及常规思路提出了一些复习建议.关键词:高考正弦定理余弦定理1.引言正、余弦定理是高中数学中三角函数知识的重要组成部分,又是高考考查的重点之一,在近年高考题中占有一定的地位.我们往往以正、余弦定理为工具,结合三角恒等变换,具体求解三角形的某条边、某个角,判断某个角的取值范围、三角形的形状及求解三角形的面积等问题.此类问题灵活多变,涉及的知识面比较广泛,不容易完全做对,重点考查的是学生熟练掌握公式、灵活运用公式的能力,计算能力,以及转化的数学思想.就近三年高考试题而言,频繁考查了正、余弦定理问题,且其在高考中多以中档题出现,选择题、填空题、解答题均有可能,并且每年试题的题量都相对较稳定.从近几年的情况来看,正、余弦定理往往运用于解答题中的某一个问中,占的分值比较稳定,通常在6分左右.在选择题或者在填空题中出现的分值更是稳定,通常在5分左右.下面我就近年全国相关高考数学题,谈谈正、余弦定理的几种应用.2.正、余弦定理的几种应用2.1利用正、余弦定理求解三角形的某条边或两边的比值此类问题往往是已知三角形的两边一角,要求其另一边,我们会直接利用正、余弦定理求解,如果是已知边与角的关系,要求其边的比值,那么我们通常会利用正、余弦定理将题目中的边角关系转化为纯粹的边的关系或角的关系,再进行求解.小结:本题难度不大,主要考查对余弦定理的应用,解题的关键是将角全转化为边,考查我们灵活运用公式的能力及转化的数学思想.2.2利用正、余弦定理求解三角形的某个角此类问题有时会已知三角形的两边和其中一边的对角,要求其他两角,我们将通过正弦定理直接求出一个角,再通过内角和定理求出另一个角,但通常会已知边角关系,这时我们需要利用正、余弦定理将其转化为纯粹的边的关系或角的关系,进而求出角的值.小结:本题难度不大,关键是利用正弦定理将角的关系转化为边的关系,再结合余弦定理联立求解,是正弦定理与余弦定理的综合考查,主要考查处理数据的能力及运算能力.2.3利用正、余弦定理判断某个角的范围此类问题通常是已知三角形三边的关系,要求某个角的范围,我们需要利用余弦定理,再结合均值不等式得到角的取值范围.综上,此题答案为①②③.小结:本题的难度比较大,每个选项中都已知了三角形三边的关系,要求角的范围,我们利用余弦定理进行计算,并结合均值不等式得出结论.此题是余弦定理和均值不等式的结合应用,主要考查熟练掌握及灵活运用公式的能力.2.4利用正、余弦定理判断三角形的形状判断三角形的形状,往往会转化为判断角的取值或者边的关系.此类问题往往需要我们利用正弦定理将角的关系转化为边的关系或者是利用余弦定理将边角关系转化为纯粹的边的关系或角的关系,再结合三角形的内角和定理及三角恒等变换确定某个角的大小判断三角形的形状.小结:本题难度比较大,主要考查余弦定理及三角形面积公式,同时考查利用余弦定理解决三角形面积的实际能力与计算能力.2.6正、余弦定理与其他知识的交汇对正、余弦定理的考查,伴随着与其他知识的融合,通常会出现正、余弦定理与向量、数列等的交汇应用,此类问题往往会利用已知条件中的向量关系或者数列关系求出三角函数中边与角的关系,再转化为前面的几种类型,其本质上是对正、余弦定理的应用.例6(2014年陕西(理)第16题第(Ⅱ)问6分)△ABC的内角A,B,C所对应的边分别是a,b,c.(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin (A+C);(Ⅱ)若a,b,c成等比数列,求cosB的最小值.小结:本题属于中档题,是对等比数列、余弦定理与均值不等式的综合应用,等比数列是前提,核心是余弦定理,最终利用均值不等式求出最小值,主要考查灵活运用公式的能力及优化的数学思想.2.7正、余弦定理在立体几何中的应用立体几何中通常会出现求解某个角的值,某条边的值或者某个角的取值范围,这实际上就是类型2.1,2.2,2.3的应用.小结:本题难度比较大,它是立体几何中涉及关于角的取值范围的问题,考查了余弦定理,利用特殊的位置作为临界点,这样有利于节约时间,考查我们的逻辑思维能力及转化的数学思想.2.8正、余弦定理在实际问题中的应用此类问题是将生活中的实际问题抽象出来,通过画示意图反映真实情况,从而转化为数学问题,再通过正、余弦定理,三角恒等变换,三角形的内角和定理等计算出我们要找的某个角或某条边.(Ⅰ)求索道AB的长;(Ⅱ)问乙出发多少分钟后,乙在缆车上与甲的距离最短;(Ⅲ)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?小结:本题难度不大,它是正弦定理在实际问题中的应用,将实际问题转化为具体图形,具体数学问题,再通过求解数学问题得出答案,主要考查了我们利用数学知识解决实际问题的能力.3.结语通过对正、余弦定理在近年高考中的应用的讨论,可以看出在解决边、角、判断三角形的形状、求解三角形的面积等问题时往往会考虑正、余弦定理,但试题一般不会单独考查公式的直接应用,需要我们灵活运用三角形的内角和定理、三角恒等变换、三角形的面积公式及均值不等式等与正、余弦定理综合解决.对于正、余弦定理的应用,有的需要我们利用正、余弦定理将边角关系转化为纯粹的边的关系、角的关系,然后得出结论,有的需要我们利用正、余弦定理求出某个角、某条边的具体值,然后解决问题.此类问题往往考查了合理利用公式的能力、计算能力和转化的数学思想,这些与平时的积累是息息相关的.只有注意平时积累,才能在考试中迅速解决问题,节约考试时间.参考文献:[1]张泉.世纪金榜――高中新课标全程复习方略(数学)[M].吉林:延边大学出版社,2010:66-70.[2]黄汉禹.对正弦定理和余弦定理的研讨[J].数学通报,2011,50(6):21-23,26.[3]姜如军.例谈正弦定理、余弦定理的应用[J].理科考试研究(数学版),2013,20(8):16.[4]陆海波.正弦定理的应用[J].郴州师范高等专科学校学报,2001,22(2):30-34.[5]王荣汉.正弦定理和余弦定理在解题中的应用例析[J].物理教学探讨,2011,29(4):51-52.基金项目:贵州省遵义师范学院基础教育研究项目(13ZYJ029)。

二级结论专题9 立体几何

二级结论专题9  立体几何

二级结论专题9立体几何二级结论1:三余弦定理与三正弦定理【结论阐述】三余弦定理(又称最小角定理):如图①,AB 是平面的一条斜线,BC 是平面内的一条直线,OA ⊥平面π于O ,OC BC ⊥于C ,则cos =cos cos ABC OBC OBA ∠∠⋅∠,即斜线与平面内一条直线夹角γ的余弦值等于斜线与平面所成角α的余弦值乘以射影与平面内直线夹角β的余弦值:cos =cos cos γα⋅β;说明:为方便记忆,我们约定γ为线线角,α为线面角,β为射影角,则由三余弦定理可得线面角是最小的线线角,即平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成角中的最小者.三正弦定理(又称最大角定理):如图②,设二面角--AB θδ的平面角为α,AC ⊂平面θ,CO ⊥平面δ,OB AB ⊥,设=,=CAB CAO ∠β∠γ,则sin =sin sin γα⋅β.说明:为方便记忆,我们约定α为二面角,β为线棱角,γ为线面角,则由三正弦定理可得二面角是最大的线面角,即对于一个锐二面角,在其中一个半平面内的任一条直线与另一个半平面所成的线面角的最大值等于该二面角的平面角.【应用场景】空间三类角,即两条异面直线所成角、直线与平面所成角、二面角是立体几何的核心内容,也是高考重点考查的内容之一,几乎在每一份数学高考试卷中都会涉及.建立空间直角坐标系,通过空间向量的坐标运算,是求解空间三类角问题的常用方法.但此法存在两个缺陷:一是若图形不规则或不容易建立坐标系,则该法常常行不通;二是运算量较大.运用“最小(大)角”定理和“三余(正)弦”定理,不仅关联了线线角、线面角和二面角,而且利用它解决立体几何中的三类角问题,不需要建立坐标系,运算量也很小.【典例指引1】(2022年高考浙江卷8)1.如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则()A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤【典例指引2】(2019年高考浙江卷8)2.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<【针对训练】(2018年高考浙江8)3.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤(2022·浙江·高三开学考试)4.在正方体1111ABCD A B C D -中,M 是棱11A D 上的点且1112A M MD =,N 是棱CD 上的点,记MN 与BC 所成的角为α,MN 与底面ABCD 所成的角为β,二面角M CD A --的平面角为γ,则()A .αβγ≥≥B .αγβ≥≥C .γαβ≥≥D .γβα≥≥(2022·北京大兴·高一期末)5.如图,在正方体1111ABCD A B C D -中,M 是棱AB 的中点.令直线1D M 与1AA 所成的角为1θ,直线1D M 与平面1111D C B A 所成的角为2θ,二面角1D AM C --的平面角为3θ,则()A .123θθθ>=B .132θθθ>>C .123θθθ=<D .132θθθ<<(2022·河南新乡·高二期末)6.已知直线l 是平面θ的斜线,且与平面θ交于点M ,l 在平面θ上的射影为m ,在平面θ内过点M 作一条直线n ,直线n 和直线m 不重合,直线l 与平面θ所成的角为α,直线m 与直线n 所成的角为β,直线l 与直线n 所成的角为γ,则()A .cos cos cos αβγ=⋅B .cos cos cos βαγ=⋅C .cos cos cos γαβ=⋅D .以上说法都不对(2022·山西省长治市第二中学校高一期末)7.在空间,若60,AOB BOC COA ∠=∠=∠=︒直线OA 与平面OBC 所成角为θ,则cos θ=()A .13B .12C .2D .38.如图所示,在侧棱垂直于底面的三棱柱111ABC A B C -中,P 是棱BC 上的动点,记直线1A P 与平面ABC 所成的角为1θ,与直线BC 所成的角为2θ,则1θ,2θ的大小关系是A .12θθ=B .12θθ>C .12θθ<D .不能确定(2022·江西省万载中学高二期中)9.已知点A 、B 分别在二面角l αβ--的两个面α、β上,AC ⊥l ,BD ⊥l ,C 、D 为垂足,AC BD CD ==,若AB 与l 成60º角,则二面角l αβ--为()A .30ºB .45ºC .60ºD .120º10.已知二面角AB αβ--是直二面角,P 为棱AB 上一点,PQ 、PR 分别在平面α、β内,且45QPB RPB ∠=∠=︒,则QPR ∠为()A .45°B .60°C .120°D .150°11.ABC 的AB 边在平面α内,C 在平面α外,AC 和BC 分别在与平面α成30 和45 的角,且平面ABC 与平面α成60 的二面角,那么sin ACB ∠的值为()A .1B .13C .3D .1或13(2022·上海市七宝中学高二开学考试)12.正方体中1111ABCD A B C D -,过1D 作直线l ,若直线l 与平面ABCD 中的直线所成角的最小值为6π,且直线l 与直线1BC 所成角为π4,则满足条件的直线l 的条数为_________.(2022·河南省上蔡第一高级中学高三月考)13.在四面体SABC 中,SA ⊥平面,,ABC AB AC SB SC BC ⊥===若直线l 与SA 所成的角为6π,则直线l 与平面SBC 所成角的取值范围是__________.(2022·浙江宁波·高二期末)14.已知三棱锥-P ABC 的棱长均为1,BC ⊂平面,E α为PB 中点,l α⊥.记l 和直线AE 所成角为θ,则该三棱锥绕BC 旋转的过程中,sin θ的最小值是___________.15.三角形ABC 的一条边AB 在平面α内,π=2A ∠,=AB a ,AC ,若AC 与平面α所成角为π4,则直线BC 与平面α所成角的正弦值为___________.二级结论2:多面体的外接球和内切球【结论阐述】类型一球的内切问题(等体积法)例如:如图①,在四棱锥P ABCD -中,内切球为球O ,求球半径.方法如下:------=++++P ABCD O ABCD O PBC O PCD O PAD O PABV V V V V V即:-11111=++++33333P ABCD ABCD PBC PCD PAD PAB V S r S r S r S r S r ⋅⋅⋅⋅⋅,可求出.类型二球的外接问题1.公式法正方体或长方体的外接球的球心为其体对角线的中点2.补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD ,AD=BC ,AC=BD )3.单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥-P ABC 中,选中底面ABC ∆,确定其外接圆圆心1O (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2=sin a r A);②过外心1O 做(找)底面ABC ∆的垂线,如图中1PO ⊥面ABC ,则球心一定在直线(注意不一定在线段1PO 上)1PO 上;③计算求半径R :在直线1PO 上任取一点O 如图:则==OP OA R ,利用公式22211=+OA O A OO 可计算出球半径R .4.双面定球心法(两次单面定球心)如图:在三棱锥-P ABC 中:①选定底面ABC ∆,定ABC ∆外接圆圆心1O ;②选定面PAB ∆,定PAB ∆外接圆圆心2O ;③分别过1O 做面ABC 的垂线,和2O 做面PAB 的垂线,两垂线交点即为外接球球心O .【应用场景】多面体外接球问题是立体几何中的重难点内容之一,在高考中频繁出现.解决此类问题的关键是确定球心的位置,运用常见模型可以很方便的确定球心的位置从而准确求解.【典例指引1】(2022·山西吕梁·一模)16.在《九章算术·商功》中,将四个面都为直角三角形的四面体称为鳖臑,如图在鳖臑ABCD 中,AB ⊥平面BCD ,1AB BC CD ===,BC CD ⊥,则鳖臑ABCD 内切球的表面积为()A .3πB .(3π-C .12πD .(3π+【典例指引2】17.已知三棱锥-P ABC ,在底面ABC 中,30A =,1BC =,PA ⊥面ABC ,PA =则此三棱锥的外接球的表面积为()A .163πB .C .323πD .16π【针对训练】(2022·湖北黄冈·高一期末)18.若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积是球体积两倍时,该圆锥的高为()A .2B .4CD .(2022·青海·海南藏族自治州高级中学高三开学考试)19.如图正四棱柱1111ABCD A B C D -中,底面面积为36,11A BC V 的面积为棱锥111B A B C -的外接球的表面积为()A .68πB .C .172πD .(2022·全国·高三专题练习)20.已知四面体-P ABC 中,PA ⊥平面ABC ,2PA AB ==,BC =,且3tan2ABC ∠=,则四面体-P ABC 的外接球的表面积为()A .15πB .17πC .18πD .20π(2022·江苏·金陵中学高一期末)21.前一段时间,高一年级的同学们参加了几何模型的制作比赛,大家的作品在展览中获得了一致好评.其中一位同学的作品是在球当中放置了一个圆锥,于是就产生了这样一个有趣的问题:已知圆锥的顶点和底面圆周都在球O 面上,若圆锥的侧面展开图的圆心角为23π,面积为3π,则球O 的表面积等于()A .818πB .812πC .1218πD .1212π(2022·云南·弥勒市一中高二阶段练习)22.设直三棱柱111ABC A B C -的所有顶点都在一个球面上,且球的体积是3,1AB AC AA ==,120BAC ∠=︒,则此直三棱柱的高是()A .1B .2C .D .4(2022·重庆·西南大学附中高一期末)23.已知正方形ABCD 中,2AB =,E 是CD 边的中点,现以AE 为折痕将ADE V 折起,当三棱锥D ABE -的体积最大时,该三棱锥外接球的表面积为()A .525π48B .5π4C .25π4D .25π(2022·广西·柳铁一中高三阶段练习)24.在三棱锥A BCD -中,3AB AD BC ===,5CD =,4BD =,AC =锥外接球的表面积为()A .63π10B .64π5C .128π5D .126π5(2022·江西省南丰县第二中学高一学业考试)25.已知四棱锥S ABCD -,SA ⊥平面ABCD ,AB BC ⊥,BCD DAB π∠+∠=,2SA =,BC =S BC A --的大小为3π.若四面体S ACD -的四个顶点都在同一球面上,则该球的体积为()A .3B .C .10πD .323π二、填空题(2022·河南焦作·一模)26.已知三棱锥-P ABC 的每条侧棱与它所对的底面边长相等,且ABC 是底边长为2的等腰三角形,则该三棱锥的外接球的表面积为___________.(2022·河南驻马店·高三期末)27.在三棱锥-P ABC 中,底面是以AB 为斜边的等腰直角三角形,4AB =,PA PB PC ===-P ABC 外接球的表面积为______.(2022·全国·模拟预测)28.已知A 、B 、C 、D 为空间不共面的四个点,且2BC BD AB ===A BCD -体积最大时,其外接球的表面积为______.(2022·安徽马鞍山·一模)29.三棱锥-P ABC 中,PAC △是边长为2AB BC ==,平面PAC ⊥平面ABC ,则该三棱锥的外接球的体积为______30.在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,1PA =,2PB =,3PC =,则该三棱锥的外接球的表面积为()A .494πB .56πC .3D .14π(2022·湖北荆州·高一期中)31.如图,在一个底面边长为2的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的表面积为______.答案第1页,共23页参考答案:1.A【分析】先用几何法表示出αβγ,,,再根据边长关系即可比较大小.【详解】如图所示,过点F 作FP AC ⊥于P ,过P 作PM BC ⊥于M ,连接PE,则EFP α=∠,FEP β=∠,FMP γ=∠,tan 1PE PE FP AB α==≤,tan 1FP AB PE PE β==≥,tan tan FP FPPM PEγβ=≥=,所以αβγ≤≤,故选:A .2.B【解析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ)由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin α=α=β=γ= B.【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.3.D【分析】分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.【详解】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO 、SN 、OM ,则SO 垂直于底面ABCD ,OM 垂直于AB ,因此123,,,SEN SEO SMO θθθ∠=∠=∠=从而123tan ,tan ,tan ,SN SN SO SO EN OM EO OMθθθ====因为SN SO EO OM ≥≥,,所以132tan tan tan ,θθθ≥≥即132θθθ≥≥,选D.【点睛】线线角找平行,线面角找垂直,面面角找垂面.4.B【分析】作MH AD ⊥于H ,过N 作//NE BC 交AB 于E ,过M 作MF NE ⊥于F ,可得MNF α=∠,MDA γ=∠,MNH β∠=,在正方体中求得它们的正切值比较大小后可得结论.【详解】作MH AD ⊥于H ,则1//MH AA ,1A M AH =,从而1HD MD =,而1AA ⊥平面ABCD ,因此有MH ⊥平面ABCD ,过N 作//NE BC 交AB 于E ,过M 作MF NE ⊥于F ,则MNF α=∠,tan MF MNF FN∠=,由正方体性质易知MDA ∠为二面角M CD A --的平面角,即MDA γ=∠,1113tan 223AA MH MDA DH A D ∠===,NF ⊂平面ABCD ,则MH NF ⊥,同理MH HN ⊥,MF MH M = ,,MF MH ⊂平面MFH ,所以NF ⊥平面MFH ,又HF ⊂平面MFH ,所以FN HF ⊥,所以HDNF 是矩形,FN DH =,由MH ⊥平面ABCD 知MNH β∠=,tan MH MNH HN∠=,由MF MH ≥,HN HD ≥得MF MH MH FN HD NH ≥≥,即tan tan tan αγβ≥≥,,,αβγ均为锐角,所以αγβ≥≥,N 与D 重合时,三角相等.故选:B .5.B【分析】取11A B 的中点N ,再根据几何关系,结合线线角线面角与二面角的定义,分析123,,θθθ的正切值大小结合正切的单调性判断即可【详解】取11A B 的中点N ,连接如图.易得1//AA MN ,故直线1D M 与1AA 所成的角11D MN θ=∠.又直线1D D ⊥平面1111D C B A ,故1D M 与平面1111D C B A 所成的角21MD N θ=∠.又AB ⊥平面11AA D D ,故二面角1D AM C --的平面角3145D AD θ=∠=o .因为1111tan 1D N D A MN MNθ=>=,3tan 1θ=,21tan 1MN D N θ=<,故132tan tan tan θθθ>>,又123,,θθθ均为锐角,故132θθθ>>故选:B6.C【分析】过直线l 上一点A (与M 不重合)作平面θ的垂线交平面θ于O ,过点O 在平面θ内作直线n 的垂线交直线n 于点N ,连接ON ,求出cos α、cos β、cos γ的表达式,由此可得出合适的选项.【详解】如图,过直线l 上一点A (与M 不重合)作平面θ的垂线交平面θ于O ,过点O 在平面θ内作直线n 的垂线交直线n 于点N ,连接ON ,由线面角的定义可得AMO α=∠,则cos MO AMα=,因为AO ⊥平面θ,MN ⊂平面θ,AO MN ∴⊥,ON MN ⊥ ,AO ON O = ,MN ∴⊥平面AON ,AN ⊂ 平面AON ,AN MN ∴⊥,所以,cos cos MN OMN OM β=∠=,cos cos MN AMN AMγ=∠=,因此,cos cos cos γαβ=.故选:C.7.D 【分析】根据线面角定义,结合线面垂直的判定定理进行求解即可.【详解】如图,过点A 作AH ⊥平面BOC 于H ,连接OH ,则AOH ∠为直线OA 与平面OBC 所成的角θ,分别作HE OB ⊥,交OB 于点E ,HF OC ⊥,交OC 于点F ,连接AE 、AF ,因为OB ⊂平面BOC ,所以AH OB ⊥,因为,,AH HE H AH HE =⊂ 平面AEH ,所以OB ⊥平面AEH ,而AE ⊂平面AEH ,所以AE OB ⊥,同理AF OC ⊥,因为60AOB AOC ∠=∠=︒,OEA OFA ∠=∠,OA OA =,所以OEA △≌OFA ,所以AE AF =,OE OF =,所以EH FH =,则OH 为BOC ∠的角平分线,由60BOC ∠=︒,可得30FOH ∠=︒,令HF a =,则2OH a =,OF =,即OE OF ==,在直角三角形AOE 中,因为60AOB ∠=︒,所以cos 60AO ==︒,于是在直角三角形AOH 中,cosOH AOH OA ∠==即cos 3θ=.故选:D8.C【详解】分析:首先要明确有关最小角定理,之后对其中的角加以归类,从而得到两角的关系,即可得结果.详解:根据线面角是该直线与对应平面内的任意直线所成角中最小的角,所以有12θθ<,故选C.点睛:该题考查的是有关角的大小的比较问题,在思考的过程中,需要明确角的意义,从而结合最小角定理,得到结果.9.D【分析】由题意画出图形,作出直线AB 与l 所成角及二面角l αβ--的平面角,设AC BD CD a ===,由已知直线AB 与l 所成角大小,即可求解二面角l αβ--的大小.【详解】解:如图,在β内,过B 作//BE DC ,且BE DC =,连接,CE AE ,由BD l ⊥,则四边形DCEB 为矩形,可得CE l ⊥,CE BD CD ==,AC l ⊥ ,得ACE ∠为二面角l αβ--的平面角,且l ⊥平面ACE即BE ⊥平面ACE ,则BE AE⊥设AC BD CD a ===,则CE BE a ==,又直线AB 与l 所成角为60º,60ABE ∴∠=︒,得AE ,∴在ACE △中,2221cos 22AC CE AE ACE AC CE +-∠=-⋅.120∴∠=︒ACE 故二面角l αβ--的大小为120︒.故选:D .10.B【解析】在正方体中构造符合条件的图形,由正方体的性质即可求解.【详解】以正方体为模型,构造满足条件的几何图形如下图所示,连接QR ,由正方体的性质可得PQR 为等边三角形,故60QPR ∠=︒,故选:B.【点睛】本题主要考查了直二面角,正方体的性质,属于中档题.11.D【分析】从C 向平面α作垂线CD ,作CE AB ⊥,证得DE AB ⊥,分ABC ∠为锐角和钝角,由线面角及二面角结合勾股定理及余弦定理求解即可.【详解】从C 向平面α作垂线CD ,连接,AD BD ,作CE AB ⊥,连接DE ,AB α⊂,则CD AB ⊥,,,CD CE C CD CE ⋂=⊂平面CDE ,则AB ⊥平面CDE ,又DE ⊂平面CDE ,则DE AB ⊥,如图所示:设,45,,30,22CD h CBD BC CAD AC CD h =∠=︒=∠=︒==,CED ∠是二面角的平面角,60,CED CE ∠=︒=,由勾股定理,AE BE ==,当ABC ∠为锐角,CE 在ABC 内,AB AE BE =+=,))()2222,h =+ 即222AB BC AC =+,90,sin 1ACB ACB ∴∠=︒∠=;当ABC ∠为钝角,CE 在ABC 之外,3AB AE BE h =-=,根据余弦定理,2222cos ,AB AC BC AC BC ACB =+-∠())222222cos3h h h ACB ⎛⎫=+-⨯⨯∠ ⎪ ⎪⎝⎭cos 3ACB ⇒∠=,1sin 3ACB ∠,综上:sin ACB ∠的值为1或13.故选:D .12.2【分析】作出辅助线,得到1DD 为轴的圆锥母线(母线与1DD 成60︒)是直线l 的运动轨迹,1D A 为轴的圆锥母线(母线与1D A 成45︒)是直线l 的运动轨迹,两个圆锥的交线即为满足条件的直线l 的条数.【详解】设立方体的棱长为1,过1D 作直线l ,若直线l 与平面ABCD 中的直线所成角的最小值为6π,即l 与平面ABCD 所成角为6π,1DD 为轴的圆锥母线(母线与1DD 成60︒)是直线l 的运动轨迹,连接1D A ,由题意得11D A BC ∥,直线l 与直线1BC 所成角为π4,直线l 与直线1D A 所成角为π4.此时1D A 为轴的圆锥母线(母线与1D A 成45︒)是直线l 的运动轨迹,两个圆锥相交得到两条交线.故答案为:213.,62ππ⎡⎤⎢⎣⎦【分析】设BC 的中点为D ,连接,SD AD ,根据等腰与直角三角形的性质可得ADS ∠为二面角S BC A --的平面角,3ASD π∠=,且直线l 不妨看作以SA 为轴,轴截面的顶角为3π的圆锥母线所在的直线,进而求得线面角的最大值与最小值即可.【详解】如图,设BC 的中点为D ,连接,SD AD .因为SA ⊥平面,ABC SB SC ==AB AC =,所以,AD BC BC SD ⊥⊥,所以ADS ∠为二面角S BC A --的平面角.又,AB AC BC ⊥=1AB AC AD SA ====,故3ASD π∠=.直线l 不妨看作以SA 为轴,轴截面的顶角为3π的圆锥母线所在的直线,所以直线l 与平面SBC 所成角的最小值为366πππ-=,最大值为362πππ+=,故直线l 与平面SBC 所成角的取值范围是,62ππ⎡⎤⎢⎥⎣⎦.故答案为:,62ππ⎡⎤⎢⎥⎣⎦14【分析】把l 和直线AE 所成角转化为AE 与平面α所成角,结合线面角的性质可求答案.【详解】设AE 与平面α所成角为1θ,因为l α⊥,l 和直线AE 所成角为θ,所以1sin cos θ=θ;取CD 的中点F ,连接,EF AF ,因为,E F 分别为中点,所以//EF BC ,AEF ∠或其补角是AE 与BC 所成角;在AEF △中,12AE AF EF ===,所以cos 6AEF ∠=且AEF ∠为锐角.三棱锥绕BC 旋转的过程中,由线面角的性质可知,1AEF θ≤∠,所以1cos cos 6AEF θ≥∠=,即sin θ15【分析】过点C 作CO α⊥,垂足为O ,连,OA OB ,则CBO ∠是直线BC 与平面α所成的角,CAO ∠是AC 与平面α所成的角,利用直角三角形可求出结果.【详解】解:过点C 作CO α⊥,垂足为O ,连,OA OB,则CBO ∠是直线BC 与平面α所成的角,CAO ∠是AC 与平面α所成的角,则π=4CAO ∠,∵AC ,∴==CO OA a ,在直角三角形ABC 中,π=2A ∠,=AB a,AC∴BC ,在直角三角形COB中,sin =CO CBO BC ∠∴直线BC 与平面α.16.B 【分析】根据鳖臑的性质,结合四面体内切球的性质、棱锥的体积公式、棱锥和球的表面积公式进行求解即可.【详解】解:因为四面体ABCD 四个面都为直角三角形,AB ⊥平面BCD ,BC CD ⊥,所以AB BD ⊥,AB BC ⊥,BC CD ⊥,AC CD ⊥,设四面体ABCD 内切球的球心为O ,则()13ABCD O ABC O ABD O ACD O BCD ABC ABD ACD BCD V V V V V r S S S S ----=+++=+++△△△△内,所以3ABCDV r S =内,因为四面体ABCD的表面积为1ABCD ABC ABD ACD BCD S S S S S =+++=△△△△,又因为四面体ABCD 的体积16ABCD V =,所以312V r S ==内,所以24(3S r ππ==-球,故选:B【点睛】关键点睛:利用棱锥的等积性进行求解是解题的关键.17.D【分析】利用正弦定理求出ABC 的外接圆半径为1,结合PA ⊥面ABC ,PA =接球半径,进而求出外接球的表面积.【详解】设ABC 的外接圆半径为R ,因为30A = ,1BC =,由正弦定理得:122sin sin 30BC R A ===︒,所以ABC 的外接圆半径为1,设球心O 在ABC 的投影为D ,则DA =1,因为PA ⊥面ABC ,PA =12OD PA ==2OA ==,即此三棱锥的外接球的半径为2,故外接球表面积为24π216π⨯=.故选:D 18.B【分析】先设出未知量,即圆锥半径为r ,圆锥高为h ,分析组合体轴截面图,找出h 与r 的一组关系式,再根据题意中圆锥与球体的体积关系找出另一组h 与r 的关系式即可求出答案.【详解】如下图组合体的轴截面,设圆锥半径为r ,圆锥高为h ,则CF r =,1AO h =-,AC ,由sin sin OAE CAF =∠∠得OE CFOA CA=,代入得222220h r hr h --=①,由“该圆锥体积是球体积两倍”可知23142(1)33V r h =⋅=⨯⨯ππ,即28hr =②,联立两式得4h =.故选:B19.C【分析】根据正四棱柱的性质求得棱柱的高,三棱锥111B A B C -的外接球即为正四棱柱的外接球,棱柱的对角线即为其外接球的直径,求得球半径后可得表面积.【详解】设正四棱柱1111ABCD A B C D -的高为h ,因为正方形ABCD 的面积为36,所以11116A B B C ==,在111Rt A B C △中,由勾股定理得11A C =在1Rt BCC 中,由勾股定理得22136BC h =+,11A B BC =,因为11 A BC △的面积为所以12⋅=10h =,依题意,三棱锥111B A B C -的外接球即为正四棱柱1111ABCD A B C D -的外接球,其半径为12R ==,所以三棱锥111B A B C -的外接球的表面积为24172ππ⋅=.故选:C .20.B【分析】根据题意可求得ABC 的外接圆半径,再根据勾股定理求出四面体-P ABC 的外接球的半径,即可求解.【详解】解:如图所示:在ABC 中,3tan 2ABC ∠=,又22sin cos 1ABC ABC ∠+∠= 且()0,ABC π∠∈,故解得:cos ,sin 1313ABC ABC ∠=∠=,由余弦定理得:2222cos AC AB BC AB BC ABC =+-⋅⋅∠,即222222=913AC =+-⨯⨯,故3AC =,设ABC 的外接圆半径为r ,则2sin 13ACr ABC===∠,设ABC 的外接圆圆心为1O ,四面体-P ABC 的外接球球心为O ,则222222211117124OA OO O A PA r ⎛⎫=+=+=+= ⎪⎝⎭⎝⎭,∴四面体-P ABC 的外接球的表面积为:174=174ππ⨯.故选:B.21.A【分析】设球半径为R ,圆锥的底面半径为r ,利用扇形的弧长和面积公式求得R ,即可求解.【详解】圆锥的顶点和底面圆周都在球O 面上,圆锥的侧面展开图的圆心角为23π,面积为3π,设母线为l ,则212323l ππ⨯⨯=,可得:3l =,由扇形的弧长公式可得:223r l ππ=,所以1r =,圆锥的高1OO ==,由()222r RR +=,解得:R =所以球O 的表面积等于2818144328R πππ=⨯=,故选:A 22.B【分析】先确定底面ABC 的外接圆圆心及半径,再确定球心位置,并利用球心和圆心的连线垂直于底面,得到直角三角形,利用勾股定理求解.【详解】设12AB AC AA m ===,三角形ABC 外接圆1O 的半径为r ,直三棱柱111ABC A B C -外接球O 的半径为R .因为120BAC ∠=︒,所以30ACB ∠=︒,于是24sin 30r ABm ==︒,2r m =,12O C m =.又球心O 到平面ABC 的距离等于侧棱长1AA 的一半,所以1OO m =.在1Rt OO C 中,由22211OC OO O C =+,得2224R m m =+,R =.所以球的体积34)33V π==,解得1m =.于是直三棱柱的高是122AA m ==.故选:B.23.C【分析】设棱锥D ABE -的外接球球心为O ,半径为R ,则OM ⊥平面BCEF ,因为ABE 的面积为定值,所当高最大时,三棱锥D ABE -的体积最大,过D 作DF AE ⊥于F ,设点M 为ABE 的外心,则有222222(),DF OM FM R OM EM R -+=+=通过计算可得点M 为外接球的球心,从而可求得结果【详解】解:过D 作DF AE ⊥于F ,设点M 为ABE 的外心,G 为AE 的中点,连接,MG MF ,因为正方形ABCD 中,2AB =,E 是CD 边的中点,所以1DE =,则AE BE ===,2EG =,AD DE DF AE ⋅=所以EF ===12MG EG ==,54EM =,所以2510FG EG EF =-=,所以20FM =,设棱锥D ABE -的外接球球心为O ,半径为R ,则OM ⊥平面BCEF ,设OM x =,因为ABE 的面积为定值,所当高最大时,三棱锥D ABE -的体积最大,此时平面ADE ⊥平面BCEF ,因为DF AE ⊥,平面ADE 平面BCEF AE =,所以DF ⊥平面BCEF ,所以222222(),DF OM FM R OM EM R -+=+=,所以2222()DF OM FM OM EM -+=+,所以2222DF DF OM FM EM -⋅+=,所以461252558016OM -⨯+=,解得0OM =,所以ABE 的外心为三棱锥D ABE -外接球的球心,所以54R EM ==所以三棱锥外接球的表面积为2252544164R πππ=⨯=24.D【分析】由已知条件先判定出球心的位置,然后运用正弦定理、余弦定理和勾股定理计算出球的半径,即可计算出外接球的表面积.【详解】如图,由3AB BC ==,AC =,得222AB BC AC +=,∴AB BC ⊥,由3BC =,4BD =,5CD =,得222BC BD CD +=,∴BC BD ⊥,又AB BD B = ,∴BC ⊥平面ABD ,设ABD △的外心为G ,过G 作底面的垂线GO ,使12GO BC =,则O 为三棱锥外接球的球心,在ABD △中,由3AB AD ==,4BD =,得2223341cos 2339BAD +-∠==⨯⨯,sin BAD ∠=,设ABD △的外接圆的半径为r ,则r =,32OG =,∴2223126220OB ⎛⎫=+= ⎪⎝⎭.∴三棱锥外接球的表面积为21261264π4ππ205R =⨯=.25.A【分析】先确定出三角形ACD 外接圆的圆心O ',然后过O '作垂直于平面ABCD 的垂线l ,再过SA 中点M 向l 作垂线,垂足即为球心,根据线段长度可求解出球的半径,则球的体积可求.【详解】因为AB BC ⊥,BCD DAB π∠+∠=,所以222CDA ππππ∠=--=,所以CD AD ⊥,所以ACD 外接圆的圆心为AC 的中点,记为O ',过O '作直线l 使得l ⊥平面ABCD ,取SA 中点M ,过M 作MO l ⊥垂足为O ,则OA OS OC OD ===,所以O 为四面体S ACD -外接球的球心,因为,,SA BC AB BC SA AB A ⊥⊥= ,所以BC ⊥平面SAB ,BC SB ⊥,又AB BC ⊥,所以二面角S BC A --的平面角为SBA ∠,所以3SBA π∠=,因为2SA =,所以3tan3SA AB π==,所以2AC ==,所以112AO MO AC '===,又因为112AM SM OO AS '====,所以AO ==所以四面体S ACD -外接球的体积为34=33π,故选:A.26.34π【分析】把三棱锥放入一个长方体中,转化为求长方体外接球的半径即可得解.【详解】三棱锥-P ABC 可以嵌入一个长方体内,且三棱锥的每条棱均是长方体的面对角线,如图,设PA BC ==,PB AC PC AB x ====,长方体交于一个顶点的三条棱长为a ,b ,c ,则122ABCS =⨯=△,解得5x =.由题得(222218a b PA +===,22225a c AC +==,22225b c PC +==,解之得3a =,3b =,4c =.所以该三棱锥的外接球的半径为R ==,所以该三棱锥的外接球的表面积为2244342S R πππ⎛⎫==⨯= ⎪ ⎪⎝⎭.故答案为:34π27.169π9##169π9【分析】取AB 的中点D 可得PD AB ⊥,由222PD CD PC +=得PD CD ⊥,根据线面垂直的判断定理得PD ⊥平面ABC ,得三棱锥-P ABC 外接球的球心O 在线段PD 上,由()2222R PD OD OD AD =-=+可得答案.【详解】如图,取AB 的中点D ,连接PD ,CD .由题意可得2AD BD CD ===,因为PA PB =,所以PD AB ⊥,因为PA =,所以3PD =,所以222PD CD PC +=,所以90PDC ∠= ,即PD CD ⊥.因为AB CD D = ,所以PD ⊥平面ABC ,设三棱锥-P ABC 外接球的球心为O ,由题意易得三棱锥-P ABC 外接球的球心O 在线段PD 上,如下图则三棱锥-P ABC 外接球的半径R 满足()2222R PD OD OD AD =-=+,解得56=OD ,所以513366=-=R ,216936R =;若三棱锥-P ABC 外接球的球心O 在线段PD 的延长线上,如下图,则三棱锥-P ABC 外接球的半径R 满足()2222=+=+R PD OD OD AD ,()22232+=+OD OD ,无解;所以,三棱锥-P ABC 外接球的表面积2169π4π9S R ==.故答案为:169π9.28.18π【分析】由题可得当BA 、BC 、BD 两两垂直时,三棱锥的体积最大,将三棱锥补形为一个长宽高分别为.【详解】当BA 、BC 、BD 两两垂直时,如图三棱锥A BCD -的底面BCD △的面积和高同时取得最大值,则三棱锥的体积最大,此时将三棱锥补形为一个长宽高分别为长方体的外接球即为三棱锥的外接球,球的半径r =,表面积为24π18πr =.故答案为:18π.29【分析】计算出外接球的半径,进而求得外接球的体积.【详解】等边三角形PAC 的高为πsin 33⨯==,等边三角形PAC 的外接圆半径为222sin6π=三角形ABC 的外接圆半径为22sin3π=,设12,O O 分别是等边三角形PAC 、等边三角形ABC 的中心,设O 是三棱锥-P ABC 的外接球的球心,R 是外接球的半径,则2222215R OA R ==+=⇒=,所以外接球的体积为34π3R =.故答案为:330.D 【分析】将三棱锥P -ABC 补全为长方体,长方体的外接球就是所求的外接球,长方体的对角线就是外接球直径,计算出半径后可得表面积.【详解】将三棱锥P -ABC 补全为长方体,则长方体的外接球就是所求的外接球,设球半径为R ,则()222224214R R PA PB PC ==++=,所以球的表面积为2414S R ππ==.故选:D .31.2π【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,可画出内切球的切面图,分别求出大球和小球的半径分别为2R =和4r =,从而求出小球2O 的表面积.【详解】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N 为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==,∴22R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴224R r ==,故小球2O 的表面积242r ππ=.故答案为:2π。

高考满分数学压轴题14 立体几何的动态问题(可编辑可打印)

高考满分数学压轴题14 立体几何的动态问题(可编辑可打印)

一.方法综述立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性.一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等.动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口.求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围.对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题.具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证.二.解题策略类型一 立体几何中动态问题中的角度问题例1. 已知平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将ABD △折起到PBD △的位置,使得平面PBD ⊥平面BCD ,如图,若M ,N 均是线段PD 的三等分点,点Q 是线段MN 上(包含端点)的动点,则二面角Q BC D --的正弦值的取值范围为( )A .12,23⎡⎤⎢⎥⎣⎦B .14192⎡⎢⎣⎦C .24193⎡⎢⎣⎦D .11,32⎡⎤⎢⎥⎣⎦【来源】2021年浙江省新高考测评卷数学(第五模拟) 【答案】B【解析】在ABD △中,1AB =,2AD =,60BAD ∠=︒,所以由余弦定理得3BD =,所以222AB BD AD +=,所以AB BD ⊥,由翻折的性质可知,PB BD ⊥.又平面PBD ⊥平面BCD ,平面PBD 平面BCD BD =,所以PB ⊥平面BCD ,过点Q 作//QQ PB ',交BD 于点Q ',则QQ '⊥平面BCD ,所以QQ BC '⊥,过Q '作Q T BC '⊥,垂足为T ,连接QT ,则BC ⊥平面QQ T ',立体几何的动态问题所以QTQ '∠为二面角Q BC D --的平面角. 设2QD a =(1233a ≤≤),则QQ a '=,3DQ a '=,33BQ a '=-,()113322Q T BQ a ''==-,所以2222211(33)76322QT QQ Q T a a a a ⎡⎤''=+=+-=-+⎢⎥⎣⎦, 所以22222sin 136176373142QQ aQTQ QT a a a aa ''∠====⎛⎫-+-+-+ ⎪⎝⎭. 由二次函数的单调性知,21314y a ⎛⎫=-+ ⎪⎝⎭在12,33⎡⎤⎢⎥⎣⎦上的值域为19,164⎡⎤⎢⎥⎣⎦,所以221419sin ,2191314QTQ a ⎡⎤'∠=∈⎢⎥⎣⎦⎛⎫-+ ⎪⎝⎭,即二面角Q BC D --的正弦的取值范围为1419,219⎡⎤⎢⎥⎣⎦. 故选:B.【举一反三】1.(2020·黑龙江牡丹江一中高三(理))如图,在正方体1111ABCD A B C D -中,O 是AC 中点,点P 在线段11A C 上,若直线OP 与平面11A BC 所成的角为θ,则sin θ的取值范围是( ).A .23⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .33⎣⎦D .11,43⎡⎤⎢⎥⎣⎦【答案】A【解析】如图,设正方体棱长为1,()11101A PAC λλ=≤≤.以D 为原点,分别以DA ,DC ,1DD 所在直线为x ,y ,z 轴建立空间直角坐标系. 则11,,022O ⎛⎫ ⎪⎝⎭,()1,,1P λλ-,所以11,,122OP λλ⎛⎫=--⎪⎝⎭.在正方体1111ABCD A B C D -中,可证1B D ⊥平面11A BC , 所以()11,1,1B D =---是平面11A BC 的一个法向量.所以122211()()122sin cos ,1113163222OP B D λλθλλλ-----===⎛⎫⎛⎫⎛⎫⨯-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以当12λ=时,sin θ30λ=或1时,sin θ取得最小值23. 所以23sin 3θ∈⎣⎦.故选A . 2.(2020·广东高考模拟)在正方体1111ABCD A B C D -中,E 是侧面11ADD A 内的动点,且1B E //平面1BDC ,则直线1B E 与直线AB 所成角的正弦值的最小值是( )A .13 B .33 C .12 D .22【答案】B【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -中棱长为1, 设E(a,0,c),0a 1≤≤,0c 1≤≤,1B (1,1,1),B(1,1,0), D(0,0,0),1C (0,1,1),()1B E a 1,1,c 1=---,DB (1,=1,0),1DC (0,=1,1),设平面1DBC 的法向量n (x,=y ,z),则1n DB 0n DC 0x y y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x 1=,得()n 1,1,1=-,1B E //平面1BDC ,1B E n a 11c 10∴⋅=-++-=,解得a c 1+=,()222a c a c 2ac 12ac ∴+=+-=-,2a c 1ac 24+⎛⎫≤=⎪⎝⎭,设直线1B E 与直线AB 所成角为θ,AB (0,=1,0),()()1221AB B E 1cos θAB B Ea 11c 1⋅∴==⋅-++-2a c 1ac 24+⎛⎫≤= ⎪⎝⎭,322ac 2∴-≥,1222ac 3∴≤-,()()()222211sin θ11a c 2a c 3a 11c 1∴=-=-+-++-++-221123111a c 122ac 33=-=-≥-=++-. ∴直线1B E 与直线AB 所成角的正弦值的最小值是33.3.(2020·浙江台州中学高三)如图,已知正方体ABCD EFGR -的上底面中心为H ,点O 为AH 上的动点,P 为FG 的三等分点(靠近点F ),Q 为EF 的中点,分别记二面角P OQ R --,Q OR P --,R OP Q --的平面角为,,αβγ,则( )A .γαβ<<B .αγβ<<C .αβγ<<D .βαγ<<【答案】D【解析】分析:建立空间直角坐标系,对动点O 选取一个特殊位置,然后求出三个侧面的法向量,根据向量夹角的余弦值求得三个二面角的余弦值,比较后可得二面角的大小.详解:建立如图所示的空间直角坐标系E xyz -.考虑点O 与点A 重合时的情况.设正方体的棱长为1,则()()111,,0,Q ,0,0,R 01,0,O 0,0,132P ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭. 设平面OPQ 的一个法向量为1(,,)n x y z =,由111(,,)(,0,1)02211(,,)(,,0)02323x n OQ x y z z x y n PQ x y z ⎧⋅=⋅-=-=⎪⎪⎨⎪⋅=⋅--=--=⎪⎩,得322x y x z ⎧=-⎪⎪⎨⎪=⎪⎩,令2x =,得1(2,3,1)n =-.同理可得平面OPR 和平面OQR 的法向量分别为23(2,3,3),(6,3,7)n n ==. 结合图形可得:1323521cos cos ,,cos cos ,7471147n n n n αβ====⨯⨯12cos cos ,711n n γ==⨯∴cos cos cos γαβ<<,又0,,γαβπ<<,∴γαβ>>.故选D . 类型二 立体几何中动态问题中的距离问题【例2】(2020·山西高三)设点M 是棱长为2的正方体ABCD -A 1B 1C 1D 1的棱AD 的中点,点P 在面BCC 1B 1所在的平面内,若平面D 1PM 分别与平面ABCD 和平面BCC 1B 1所成的锐二面角相等,则点P 到点C 1的最短距离是( ) A 25B .22C .1D .63【答案】A【解析】如图,过点P 作1D M 的平行线交BC 于点Q 、交11B C 于点E ,连接MQ ,则PQ 是平面1D PM 与平面11BCC B 的交线,MQ 是平面1D PM 与平面ABCD 的交线.EF 与1BB 平行,交BC 于点F ,过点F 作FG 垂直MQ 于点G ,则有,MQ 与平面EFG 垂直,所以,EG 与MQ 垂直,即角EGF 是平面1D PM 与平面ABCD 的夹角的平面角,且sin EFEGF EG∠=, MN 与CD 平行交BC 于点N ,过点N 作NH 垂直EQ 于点H ,同上有:sin MNMHN MH∠=,且有EGF MHN ∠=∠,又因为EF MN AB ==,故EG MH =, 而2EMQ S EG MQ MH EQ ∆=⨯=⨯,故MQ EQ =,而四边形1EQMD 一定是平行四边形,故它还是菱形,即点E 一定是11B C 的中点, 点P 到点1C 的最短距离是点1C 到直线BE 的距离,以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立空间直角坐标系,()2,1,2E ,()2,0,0B , ()12,2,2C ,()0,1,2BE =, ()10,2,2BC =,∴点P 到点1C 的最短距离:22111||625||1()221()5||||58BE BC d BC BE BC =-=⨯-=⨯.故选:A .【指点迷津】求两点间的距离或其最值.一种方法,可建立坐标系,设点的坐标,用两点间距离公式写出距离,转化为求函数的最值问题;另一种方法,几何法,根据几何图形的特点,寻找那两点间的距离最大(小),求其值. 【举一反三】1.(2020·四川高三(理))已知三棱锥S ABC -中,1SA SB SC ===,且SA 、SB 、SC 两两垂直,P 是三棱锥S ABC -外接球面上一动点,则P 到平面ABC 的距离的最大值是( )A .33B .3C .233D .433【答案】C 【解析】【分析】,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,三棱锥S ABC -外接球就是正方体MNQB ADCS -的外接球,由正方体及球的几何性质可得点P 与N 重合时,点P 到平面ABC 的距离最大,求出平面ABC 的法向量,由点到直线的距离公式即可得结果. 【详解】三棱锥S ABC -,满足,,SA SB SC 两两垂直,且,,1SA SB SC =,∴如图,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 则()()()()()0,0,0,1,0,1,0,1,1,0,0,1,1,1,0B A C S N ,()()()1,0,1,0,1,1,1,1,0BA BC BN ===,设平面ABC 的法向量(),,n x y z =,则00n BA x z n BC y z ⎧⋅=+=⎨⋅=+=⎩,取1x =,得()1,1,1n =-,三棱锥S ABC -外接球就是棱长为1的正方体MNQB ADCS -的外接球,P 是三棱锥S ABC -外接球上一动点,∴由正方体与球的几何性质可得,点P 点与N 重合时,点P 到平面ABC 的距离最大,∴点P 到平面ABC 的距离的最大值为1102333BN n d n⋅++===.故选C. 2.已知四边形ABCD 是边长为5的菱形,对角线8BD =(如图1),现以AC 为折痕将菱形折起,使点B 达到点P 的位置.棱AC ,PD 的中点分别为E ,F ,且四面体PACD 的外接球球心落在四面体内部(不含边界,如图2),则线段EF 长度的取值范围为( )A .14,42⎛⎫ ⎪ ⎪⎝⎭B .141,2⎛⎫⎪ ⎪⎝⎭C .14,62⎛⎫⎪ ⎪⎝⎭D .()3,4【来源】江西省鹰潭市2021届高三高考二模数学(文)试题 【答案】A 【解析】由题意可知△APC 的外心1O 在中线PE 上, 设过点1O 的直线1l ⊥平面APC ,可知1l ⊂平面PED , 同理△ADC 的外心2O 在中线DE 上,设过点2O 的直线2l ⊥平面ADC ,则2l ⊂平面PED , 由对称性知直线12,l l 的交点O 在直线EF 上.根据外接球的性质,点O 为四面体PACD 的外接球的球心. 由题意得3,4EA PE ==,而2221111,4O A O E EA O A O E PE =++==所以178O E =. 令PEF θ∠=,显然02πθ<<,所以cos 4cos 4EF PE θθ==<. 因为1cos EF O EPE OEθ==, 所以172OE EF O E PE ⋅=⋅=, 又OE EF <,所以272EF >,即142EF >. 综上可知1442EF <<. 故选:A.3(2020广西柳州市模考)如图,在正方体中,棱长为1,点为线段上的动点(包含线段端点),则下列结论错误的是( )A .当时,平面B .当为中点时,四棱锥的外接球表面为C .的最小值为D .当时,平面【答案】C【解析】对于,连结,,,则,,,设到平面的距离为,则,解得,∴.∴当时,为与平面的交点.∵平面∥平面, ∵平面,∴∥平面,故A 正确. 又由以上分析可得,当时,即为三棱锥的高,∴平面,所以D 正确. 对于B ,当为中点时,四棱锥为正四棱锥, 设平面的中心为,四棱锥的外接球为,所以,解得,故四棱锥的外接球表面积为,所以B 正确.对于C ,连结,,则, ∴,由等面积法得的最小值为,∴的最小值为.所以C 不正确.故选:C.类型三 立体几何中动态问题中的面积、体积问题【例3】(2020·河南高三(理))在棱长为3的正方体1111ABCD A B C D -中,E 是1AA 的中点,P 是底面ABCD 所在平面内一动点,设1PD ,PE 与底面ABCD 所成的角分别为12θθ,(12θθ,均不为0),若12θθ=,则三棱锥11P BB C -体积的最小值是( ) A .92B .52C .32D .54【答案】C【解析】建系如图,正方体的边长为3,则(3E ,0,3)2,1(0D ,0,3),设(P x ,y ,0)(0x ,0)y ,则(3PE x =-,y -,3)2,1(PD x =-,y -,3),12θθ=,(0z =,0,1),12cos cos θθ∴=,即11||||||||||||PD z PE z PE z PD z =,代入数据,得:222233299(3)4x y x y =++-++,整理得:228120x y x +-+=,变形,得:22(4)4(02)x y y -+=, 即动点P 的轨迹为圆的一部分,过点P 作PF BC ⊥,交BC 于点F ,则PF 为三棱锥11P BB C -的高∴点P 到直线AD 的距离的最大值是2.则min 321PF =-=.1111119332212BB C BB B C S ∆=⋅⋅=⨯⨯=,1111193132213P BB C BB C V PF S -∆=⨯⨯⋅⋅=∴=故选:C .【指点迷津】求几何体体积的最值,先观察几何图形三棱锥,其底面的面积为不变的几何量,求点P到平面BCD 的距离的最大值,选择公式,可求最值. 【举一反三】1.(2020·四川高三期末)长方体1111ABCD A B C D -中,2AB =,1BC =,12AA =,P 为该正方体侧面11CC D D 内(含边界)的动点,且满足tan tan 22PAD PBC ∠+∠=.则四棱锥P ABCD -体积的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦B .22,33⎡⎤⎢⎥⎣⎦ C .40,3⎛⎤ ⎥⎝⎦D .24,33⎡⎤⎢⎥⎣⎦ 【答案】B【解析】如图所示:在RT PAD 中,tan PD PAD PD AD ∠==,在RT PBC 中,tan PCPBC PC BC∠==, 因为tan tan 22PAD PBC ∠+∠=,所以22PD PC +=.因为222PD PC CD +=>=,所以点P 的轨迹是以,C D 为焦点 222a =的椭圆. 如下图所示:2a =1c =,211b =-=,椭圆的标准方程为:2212x y +=.1(0,1)P联立22112x x y =⎧⎪⎨+=⎪⎩,解得:2y =.所以22()P -,32P . 当点P 运动到1P 位置时,此时四棱锥P ABCD -的高最长, 所以max 1112()21333P ABCD ABCD V S PO -=⨯⨯=⨯⨯=. 当点P 运动到2P 或3P 位置时,此时四棱锥P ABCD -的高最短,所以min 21122()23323P ABCD ABCD V S P D -=⨯⨯=⨯⨯=. 综上所述:2233P ABCD V -≤≤. 2.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14 B .23 C 151-D 51- 【答案】A【解析】设过A 与DE 垂直的线段长为a ,则tan AE α=,150tan 2α<<,1cos DE α=,sin a α=,则四棱锥A BCDE '-的高πsin sin sin sin cos 2h a βαααα⎛⎫=⋅=⋅-=⎪⎝⎭, 则111515tan 1sin cos 3222A BCDE V ααα'-⎛=⨯⨯-+⨯⨯ ⎝⎭)115tan sin cos 6ααα=⨯ )2115cos sin 6ααα=- )11152cos 21212αα=+- 115112cos 234412αα⎛⎫=+- ⎪ ⎪⎝⎭()11sin 2312αϕ=+-,15tan 15ϕ⎛⎫= ⎪ ⎪⎝⎭, ∴四棱锥A BCDE '-体积的最大值为1113124-=. 故选:A.3.(2020·重庆市松树桥中学校高三)如图,在单位正方体1111ABCD A B C D -中,点P 在线段1AD 上运动,给出以下四个命题:①异面直线1A P 与1BC 间的距离为定值;②三棱锥1D BPC -的体积为定值;③异面直线1C P 与直线1CB 所成的角为定值; ④二面角1P BC D --的大小为定值.其中真命题有( ) A .1个 B .2个 C .3个 D .4个【答案】D【解析】对于①,异面直线1A P 与1BC 间的距离即为两平行平面11ADD A 和平面11BCC B 间的距离,即为正方体的棱长,为定值.故①正确.对于②,由于11D BPC P DBC V V --=,而1DBC S ∆为定值,又P ∈AD 1,AD 1∥平面BDC 1,所以点P 到该平面的距离即为正方体的棱长,所以三棱锥1D BPC -的体积为定值.故②正确.对于③,由题意得在正方体1111ABCD A B C D -中,B 1C ⊥平面ABC 1D 1,而C 1P ⊂平面ABC 1D 1,所以B 1C ⊥C 1P ,故这两条异面直线所成的角为90︒.故③正确;对于④,因为二面角P −BC 1−D 的大小,即为平面ABC 1D 1与平面BDC 1所成的二面角的大小,而这两个平面位置固定不变,故二面角1P BC D --的大小为定值.故④正确.综上①②③④正确.选D .类型四 立体几何中动态问题中的轨迹问题【例4】(2020南充高考一模)如图,直二面角AB αβ--,P α∈,C β∈,D β∈,且AD AB ⊥,BC AB ⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.一条直线D.两条直线【答案】A【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系,设点(),P x y ,()30A -,,()3,0B ,AD AB ⊥,BC AB ⊥,则AD α⊥,BC α⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,Rt APDRt CPB∴∆∆,()()22223511023x y APAD BPBC x y ++∴====-+ ,即()()2222343x y x y ⎡⎤-+=++⎣⎦,整理得:()22516x y ++=,故点P 的轨迹是圆的一部分,故选A .【指点迷津】空间轨迹问题的求解策略:1.利用侧面展开或展到一个平面上寻求轨迹;2.利用圆锥曲线定义求轨迹;3.这辗转过程中动点的轨迹;4.利用函数观点探求轨迹 【举一反三】1.已知正方体1111ABCD A B C D -的棱长为23M ,N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积63PMN S =△P 的轨迹长度为( )A .269π B .263π C .469π D .463π 【答案】B【解析】如图所示:连接11BC B C O =,因为四边形11BCC B 是正方形,所以11BC B C ⊥,因为11D C ⊥平面11BCC B ,1B C ⊂平面11BCC B ,所以11D C ⊥1B C , 又11111,BC D C C BC =⊂平面11BC D ,11D C ⊂平面11BC D ,所以1B C ⊥平面11BC D ,所以11B C D B ⊥, 同理可知:11B A D B ⊥,又因为1B C ⊂平面1ACB ,1B A ⊂平面1ACB ,111B C B A B =,所以1D B ⊥平面1ACB ,根据题意可知:11136,26D B AB AB BC AC =====所以1ACB 为正三角形,所以160∠=︒B AC ,所以11326266322ACB S=⨯⨯⨯=,设B 到平面1ACB 的距离为h , 因为11B ACB B ABC V V --=,所以111133ACB ACBSh S BB ⋅⋅=⋅⋅,所以11ACB ACBSh SBB ⋅=⋅,所以()232323262342h ⨯⨯⨯=⨯,所以1123h D B ==,所以h BN =, 所以N 即为1D B 与平面1ACB 的交点,由题意可知:1D B ⊥平面1ACB ,所以MN PN ⊥,所以11262223PMNSMN PN PN PN =⋅=⋅⋅==,再如下图所示:在正三角形1ACB 中,高3sin 6026322AO AC =︒== 所以内切圆的半径16233r AO ==<,且623AN <=,取1B C 的两个三等分点,E F ,连接,EN FN ,所以1//,//NE AB NF AC ,所以NEF 是以PN 长度为边长的正三角形,所以P 的轨迹是以N 为圆心,半径等于263的圆,圆的周46π,在1ACB 内部的轨迹是三段圆弧,每一段圆弧的圆心角为60︒,所以对应的轨迹长度是圆周长的一半为63π,故选:B. 2、(2020贵阳高考模拟)在正方体1111ABCD A B C D -中,已知点P 为平面11AA D D 中的一个动点,且点P 满足:直线1PC 与平面11AA D D 所成的角的大小等于平面PBC 与平面11AA D D 所成锐二面角的大小,则点P 的轨迹为( )A .直线B .椭圆C .圆D .抛物线 【答案】DF E P C 1B 1D 1A 1DCBA z yx3.几何中常用表示L 的测度,当L 为曲线、平面图形和空间几何体时,L 分别对应其长度、面积和体积.在ABC 中,3AB =,4BC =,5AC =,P 为ABC 内部一动点(含边界),在空间中,到点P 的距离为1的点的轨迹为L ,则L 等于( ) A .612π+B .2263π+ C .20123π+ D .22123π+ 【来源】安徽省合肥市2021届高三下学期第三次教学质量检测理科数学试题 【答案】D【解析】空间中,到点P 的距离为1的点的轨迹所构成的空间几何体在垂直于平面ABC 的角度看,如下图所示:其中:BCDF ,ACEI 和ABGH 区域内的几何体为底面半径为1的半圆柱;CDE ,BFG ,AHI 区域内的几何体为被两平面所截得的部分球体,球心分别为,,C B A ;ABC 区域内的几何体是高为2的直三棱柱. 四边形BCDF 和ACEI 为矩形,2DCB ECA π∴∠=∠=,2DCE ACB ACB πππ∴∠=--∠=-∠,同理可得:FBG ABC π∠=-∠,HAI CAB π∠=-∠,()332DCE FBG HAI ACB ABC CAB ππππ∴∠+∠+∠=-∠+∠+∠=-=,∴CDE ,BFG ,AHI 区域内的几何体合成一个完整的,半径为1的球,则CDE ,BFG ,AHI 区域内的几何体的体积之和3144133V ππ=⨯=; 又BCDF ,ACEI 和ABGH 区域内的几何体的体积之和()221134562V ππ=⨯⨯++=;ABC 区域内的直三棱柱体积31342122V =⨯⨯⨯=,4226121233L πππ∴=++=+.故选:D.三.强化训练1.(2020·内蒙古高三期末)如图,棱长为1的正方体1111ABCD A B C D -中,M 是线段1A B 上的动点,则下列结论正确的是( ).①异面直线AD 与1CB 所成的角为45︒②11DC D M ⊥③三棱锥1M DCC -的体积为定值 ④1AM MD +的最小值为2. A .①②③ B .①②④C .③④D .②③④【答案】A【解析】①∵AD ∥BC ,∴异面直线AD 与1CB 所成的角即为BC 与1CB 所成的角, 可得夹角为45︒,故①正确;②连接1CD ,∵1DC ⊥平面A 1BCD 1,1D M ⊂平面A 1BCD 1, ∴11DC D M ⊥,故②正确;③∵1A B ∥平面DCC 1D 1,∴线段A 1B 上的点M 到平面DCC 1D 1的距离都为1, 又△DCC 1的面积为定值12, 因此三棱锥M −DCC 1的体积1111326V =⨯⨯=为定值,故③正确; ④将面AA 1B 与面A 1BCD 1沿A 1B 展成平面图形,线段AD 1即为AP +PD 1的最小值, 在△D 1A 1A 中,∠D 1A 1A =135°, 利用余弦定理解三角形得111211135222AD cos =+-⨯⨯⨯︒=+<,故④不正确.因此只有①②③正确.故选:A .2.(2020河南省焦作市高三)在棱长为4的正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别在棱AA 1和AB 上,且C 1E ⊥EF ,则|AF|的最大值为( )A .B .1C .D .2【答案】B【解析】以AB ,AD ,AA 1所在直线为x ,y ,z 轴,建立空间直角坐标系如图所示,则C 1(4,4,4),设E (0,0,z ),z ∈[0,4],F (x ,0,0),x ∈[0,4],则|AF|=x .=(4,4,4﹣z ),=(x ,0,﹣z ).因为C 1E ⊥EF ,所以,即:z 2+4x ﹣4z =0,x =z ﹣.当z =2时,x 取得最大值为1.|AF|的最大值为1.故选:B .3.(2020·重庆巴蜀中学高三(理))棱长为2的正方体1111ABCD A B C D -中,N 为1CC 的中点,P 在底面ABCD 内运动,1D P 与平面ABCD 所成角为1θ,NP 与平面ABCD 所成角为2θ,若12θθ=,则AP 的最小值为( ) A .2 B .83C .4D .1【答案】A【解析】分析:先证明PD=2PC ,再在底面ABCD 内建立如图所示的直角坐标系,求出211680sin()99PA αϕ=-+,再利用三角函数的图象和性质求出|AP|的最小值. 【详解】设12θθθ==,所以12tan tan DD PD θθ==,1PC tan tan CN θθ==,所以PD=2PC. 在底面ABCD 内建立如图所示的直角坐标系,设点P(x,y),则2222(1)2(+1)x y x y -+=+整理得22516454(),cos ,sin 39333x y x y αα++=∴=-=, 所以2224841168011680(cos )(sin 2)sin()43339999PA αααϕ=-+-=-+≥-=, 即||2AP ≥,所以|AP|的最小值为2.故选:A4.已知三棱锥A BCD -的所有棱长均为2,E 为BD 的中点,空间中的动点P 满足PA PE ⊥,PC AB ⊥,则动点P 的轨迹长度为( ) A .1116πB 3πC 11πD 3π【来源】浙江省五校2021届高三下学期5月联考数学试题 【答案】C【解析】正四面体A BCD -2,建立空间直角坐标系如图所示,()()22,,2,2,2,0,0,2,222E C B ⎛⎫ ⎪ ⎪⎝⎭,设(),,P x y z ,()22,,2,,,22PE x y z AP x y z ⎛⎫=---= ⎪ ⎪⎝⎭,()2,2,PC x y z =---.由于PA PE ⊥,PC AB ⊥,所以00AP PE PC AB ⎧⋅=⎨⋅=⎩,即()()2220222220x x y y z z y z ⎧⎛⎫⎛⎫-+-+-=⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=⎪⎩,即22222202220x x y y z z y z ⎧-+-+-=⎪⎨⎪+-=⎩, 即2222223442420x y z y z ⎧⎛⎫⎛⎫⎛⎫⎪-+-+-= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎝⎭⎪+-=⎪⎩, 22222234424x y z ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭表示球心为222,,442⎛⎫ ⎪ ⎪⎝⎭,半径为32R =的球. 20y z +-=表示垂直于yAz 平面的一个平面.所以P 的轨迹是上述平面截球面所得圆.球心222,,442⎛⎫ ⎪ ⎪⎝⎭到平面20y z +-=的距离为22222142411d +-==+, 所以截得的圆的半径2231114164r R d =-=-=, 所以截得的圆,也即P 点的轨迹的长度为11112242r πππ=⨯=. 故选:C5.(2020郑州一中高三期末)在三棱锥中,平面,M是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是()A.B.C.D.【答案】C【解析】如图所示:三棱锥中,平面,M是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以:,在中,设外接圆的直径为,则:,所以:外接球的半径,则:,故选:C.(2020九江高三一模)在长方体中,,,分别是棱6.的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为()A.B.C.D.【答案】C【解析】补全截面EFG为截面EFGHQR如图,其中H 、Q 、R 分别为、的中点,易证平面ACD 1∥平面EFGHQR ,∵直线D 1P 与平面EFG 不存在公共点, ∴D 1P∥面ACD 1,∴D 1P 面ACD 1,∴P ∈AC ,∴过P 作AC 的垂线,垂足为K ,则BK=,此时BP 最短,△PBB 1的面积最小, ∴三角形面积的最小值为,故选:C .7.(2020·浙江高三期末)在三棱锥P ABC -中,2,3PA PB PC AB AC BC ======,点Q 为ABC ∆ 所在平面内的动点,若PQ 与PA 所成角为定值θ,π(0,)4θ∈,则动点Q 的轨迹是 A .圆 B .椭圆C .双曲线D .抛物线【答案】B【解析】建立空间直角坐标系,根据题意,求出Q 轨迹方程,可得其轨迹.由题,三棱锥P ABC -为正三棱锥,顶点P 在底面ABC 的射影O 是底面三角形ABC 的中心,则以O 为坐标原点,以OA 为x 轴,以OP 为z 轴,建立如图所示的空间直角坐标系,根据题意可得1OA OP ==,设Q 为平面ABC 内任 一点,则()()()()()1,0,0,0,0,1,,,0,1,0,1,,,1A P Q x y PA PQ x y =-=- ,由题PQ 与PA 所成角为定值θ,π0,4θ⎛⎫∈ ⎪⎝⎭,则,221cos 21PA PQ x PA PQ x y θ⋅+==⋅++则()()22222cos11x y x θ++=+ ,化简得222cos22cos 2cos20x y x θθθ⋅+⋅-+= ,ππ0,,20,,cos 20,42θθθ⎛⎫⎛⎫∈∴∈> ⎪ ⎪⎝⎭⎝⎭故动点Q 的轨迹是椭圆.选B8.(2020·上海格致中学高三月考)在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与AC '所成的角为45︒的点P 的个数为( )A .0B .3C .4D .6【答案】B 【解析】【分析】建立空间直角坐标系,通过分类讨论利用异面直线的方向向量所成的夹角即可找出所有满足条件的点P 的个数.【详解】建立如图所示的空间直角坐标系,不妨设棱长1AB =,(1B ,0,1),(1C ,1,1). ①在Rt △AA C ''中,||tan 2||A C A AC AA '''∠'=='45A AC '∠'≠︒.同理AB ,AD 与AC '所成的角都为arctan 245≠︒.故当点P 位于(分别与上述棱平行或重合)棱BB ',BA ,BC 上时,与AC '所成的角都为arctan 245≠︒,不满足条件;②当点P 位于棱AD 上时,设(0P ,y ,1),(01)y ,则(1BP =-,y ,0),(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '-+=<'>=='+, 化为2410y y ++=,无正数解,舍去; 同理,当点P 位于棱A D ''上时,也不符合条件; ③当点P 位于棱B C ''上时,设(1P ,y ,0),(01)y , 则(0BP =,y ,1)-,(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '+=<'>=='+, 化为2410y y -+=,01y ,解得23y =-,满足条件,此时点(1,23,0)P -.④同理可求得棱C D ''上一点(532,1,0)P -,棱C C '上一点(1,1,324)P -. 而其它棱上没有满足条件的点P .综上可知:满足条件的点P 有且只有3个.故选:B 9.(2020上海交通大学附属中学高三)如图,已知三棱锥,平面,是棱上的动点,记与平面所成的角为,与直线所成的角为,则与的大小关系为( )A .B .C .D .不能确定【答案】C【解析】如图所示:∵PA ⊥平面ABC ,∴PD 与平面ABC 所成的角=∠PDA, 过点A 作AE ⊥BC ,垂足为E ,连接PE ,∵PA ⊥平面ABC ,∴PA ⊥BC ,∴BC⊥平面PAE ,∴BC⊥PE,在Rt△AED ,Rt△PAD ,Rt△PED 中:cos ,cos ,cos,∴coscoscos < cos ,又均为锐角, ∴,故选C.10.(2020·湖南长郡中学高三(理))在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=,3AP =,23AB =,Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P ABC -的外接球的表面积为( ) A .45π B .57πC .63πD .84π【答案】B【解析】分析:根据题意画出图形,结合图形找出ABC △的外接圆圆心与三棱锥P ABC - 外接球的球心,求出外接球的半径,再计算它的表面积.详解:三棱锥P ABC PA ABC 中,平面,-⊥ 设直线PQ 与平面ABC 所成角为θ ,如图所示;则3PAsinPQ PQ ,θ== 由题意且θ的最大值是3π3PQ=,,解得PQ =即PQ 的最小值为∴AQ ,即点A 到BC ,AQ BC ∴⊥,AB BC ∴== 6BC ;∴= 取ABC △的外接圆圆心为O ',作OO PA ' ,62120r sin ∴=︒,解得r =;O A ∴'=M 为PA 的中点,32OM O A PM ∴='==,由勾股定理得CP R === ∴三棱锥P ABC -的外接球的表面积是224457S R πππ==⨯⨯=.故选B.11.在直三棱柱111ABC A B C -中,底面ABC 是以B 为直角的等腰三角形,且3AB =,1AA =若点D 为棱1AA 的中点,点M 为面BCD 的一动点,则11 B M C M +的最小值为( )A .B .6C . D【来源】江西省赣州市2021届高三二模数学(理)试题 【答案】C【解析】由题意知,BC AB ⊥,111ABC A B C -为直三棱柱,即面ABC ⊥面11ABB A ,面ABC面11ABB A AB =,BC ⊂面ABC ,∴BC ⊥面11ABB A ,又BC ⊂面BCD , ∴面BCD ⊥面11ABB A .∴易得1B 关于平面BCD 对称点E 落在1A A 的延长线上,且AE =1A E =11 B M C M +的最小时,1C 、M 、E 三点共线.∴221111111||992735B M C M EM C M EC AC A E +=+≥=+=++=. 故选:C12.在棱长为2的正四面体ABCD 中,点P 为ABC 所在平面内一动点,且满足433PA PB +=,则PD 的最大值为( ) A .3B .2103C .393D .2【来源】河南省鹤壁市2021届高三一模数学(文)试题 【答案】B【解析】如图所示,在平面ABC 内,4323PA PB +=>, 所以点P 在平面ABC 内的轨迹为椭圆,取AB 的中点为点O ,连接CO ,以直线AB 为x 轴,直线OC 为y 建立如下图所示的空间直角坐标系O xyz -,则椭圆的半焦距1c =,长半轴a =b ==所以,椭圆方程为()2233104x y z +==.点D 在底面的投影设为点E ,则点E 为ABC 的中心,11333OE OC ===, 故点E 正好为椭圆短轴的一个端点,23CE OC ==,则DE ==, 因为222PD DE EP =+,故只需计算EP 的最大值.设(),,0P x y ,则E ⎛⎫⎪ ⎪⎝⎭,则22222241543333EP x y y y y y y ⎛=+=-++=--+ ⎝⎭,当y ⎡=⎢⎣⎦时,2EP 取最大值,即22max516393939EP ⎛⎛=-⨯---+= ⎝⎭⎝⎭,因此可得2241640999PD ≤+=,故PD . 故选:B.13.在棱长为1的正方体1111ABCD A B C D -中,P 是线段1BC 上的点,过1A 的平面α与直线PD 垂直,当P 在线段1BC 上运动时,平面α截正方体1111ABCD A B C D -所得的截面面积的最小值是( )A .1B .54C D【来源】北京市朝阳区2021届高三一模数学试题 【答案】C【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,1A 、()1,0,0B 、()11,0,1B 、()1,1,0C 、()11,1,1C 、()0,1,0D 、()10,1,1D , 设点()1,,P t t ,其中01t ≤≤.①当0t =时,点P 与点B 重合,()1,1,0BD =-,()1,1,0AC =,()10,0,1AA =, 所以,0BD AC ⋅=,10BD AA ⋅=,则BD AC ⊥,1BD AA ⊥, 1AC AA A ⋂=,BD ∴⊥平面11AAC C ,此时平面α即为平面11AAC C ,截面面积为12S AA AC =⋅= ②当1t =时,同①可知截面面积为2S =③当01t <<时,()1,1,DP t t =-,()11,1,1AC =-, 1110DP AC t t ⋅=+--=,1A C PD ∴⊥,则1A C α⊂, 设平面α交棱1DD 于点()0,1,E z ,()1,0,CE z =-,10DP CE tz ⋅=-+=,可得11z t=>,不合乎题意. 设平面α交棱AB 于点(),0,0M x ,()1,1,0CM x =--,()110DP CM x t ⋅=---=,可得x t =,合乎题意,即(),0,0M t ,同理可知,平面α交棱11C D 于点()1,1,1N t -,()11,1,0A N t MC =-=,且1A N 与MC 不重合,故四边形1A MCN 为平行四边形,()11,1,1AC =-,()11,1,0A N t =-,1112112cos 322AC A N t CA N AC A N t t ⋅-∠==⋅⋅-+,则()()2211221sin 1cos 322t t CA N CA N t t -+∠=-∠=-+,所以,截面面积为()1221111362sin 2122242CA NS S AC A N CA N t t t ⎡⎤⎛⎫==⋅∠=-+=-+=<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦△. 综上所述,截面面积的最小值为62. 故选:C.14.如图,斜线段AB 与平面α所成的角为π4,B 为斜足.平面α上的动点P 满足π6PAB ∠=,则点P 的轨迹为( )A .圆B .椭圆C .双曲线的一部分D .抛物线的一部分【答案】B【解析】建立如图所示的空间直角坐标系,设(0,1,0),(0,0,1),(,,0)(0,1,1),(,,1)B A P x y AB AP x y ⇒=-=-22223cos ,62(2)1121AB AP x y x y ⇒<>=⇒+-=⋅++ 所以点P 的轨迹是椭圆. 故选:B.15.已知正方体ABCD A B C D ''''-的棱长为1,点M ,N 分别为线段AB ',AC 上的动点,点T 在平面BCC B ''内,则MT NT +的最小值是( )A .2B .233C .62D .1【答案】B【解析】A 点关于BC 的对称点为E ,M 关于BB '的对称点为M ', 记d 为直线EB '与AC 之间的距离,则MT NT M T NT M N d ''+=+≥≥, 由//B E D C '',d 为E 到平面ACD '的距离, 因为111111333D ACE ACEV S '-=⨯⨯==⨯⨯=,而()21332346D ACE E ACD V V d d ''--==⨯⨯⨯=,故233d =, 故选:B.16.如图,ABC 是等腰直角三角形,AB AC =,点D 是AB 上靠近A 的三等分点,点E 是AC 上靠近C 的三等分点,沿直线DE 将ADE 翻折成A DE ',所成二面角A DE B '--的平面角为α,则( )A .A DB A EC α∠≥∠'≥' B .A EC A DB α∠≥∠'≥' C .A DB A EC α≥∠'∠≥'D .A EC A DB α≥∠'∠≥'【答案】B【详解】如图,在等腰直角三角形中,过B 作直线//l DE ,作BM ED ⊥交直线DE 于点M ,过C 作直线DE 的垂线,垂足为R ,交直线l 与T ,过A 作DE 的垂线,垂足为O ,且交l 于N ,不妨设3AB =,则1,2AD CE BD AE ====, 在直角三角形ADE 中,255AO ==, 因为BMD AOD ,故12AO AD BM BD ==,故455BM =,同理52522155DM DO ==⨯⨯= 所以45ON =,35BN OM ==,同理5RC OS ==65NT =.在几何体中连接,,A B A S A C ''',如图,因为,,A O DE NO DE '⊥⊥故NOA '∠为二面角A DE B '--的平面角,故NOA α'∠=,而A O NO O '⋂=,故DE ⊥平面AON ',所以TB ⊥平面AON ',而A N '⊂平面AON ',故BN A N '⊥.24162545162cos 4cos 55555A N αα'=+-⨯=-, 故216929164cos cos 5555A B αα'=-+=-,故29165cos 4155cos cos 21255A DB αα-+'∠==-⨯⨯, 同理14cos cos 55A EC α'∠=-,11cos cos cos 055A DB αα'∠-=--<,故cos cos A DB α'∠<,同理cos cos A EC α'∠<,33cos cos cos 055A DB A EC α''∠-∠=+>,故cos cos A DB A EC ''∠>∠,因为(),,0,A DB A EC απ''∠∠∈,故A EC A DB α''∠>∠>, 故选B.17.如图,棱长为2的长方体1111ABCD A B C D -中,P 为线段11B D 上动点(包括端点).则以下结论正确的为( )A .三棱锥1P A BD -中,点P 到面1A BD 2B .过点P 平行于面1A BD 的平面被正方体1111ABCD A BCD -3C .直线1PA 与面1A BD 所成角的正弦值的范围为36⎣⎦D .当点P 和1B 重合时,三棱锥1P A BD -3【来源】广东省普宁市2020-2021学年高三上学期期末数学试题 【答案】C【解析】对于A 中,由111142222323P A BD A PBD V V --==⨯=,1A BD 为等边三角形,面积为11226232A BD =⨯=△S ,设点P 到面1A BD 的距离为h ,由142333h ⨯=,求得23h =所以A不正确;对于B 中,过点P 平行于平面1A BD 的平面被正方体截得的多边形平面11B D C , 此时三角形11B D C 为边长为221226=232⨯B 不正确; 对于C 中,由正方体的结构特征和性质,可得点P 到平面1A BD 23当点P 在线段11B D 上运动时,1max 2PA =(P 为端点时),in 1m 2PA =设直线1PA 与平面1A BD 所成角为θ,则36sin ,33θ∈⎣⎦,所以C 正确;对于D 中,当点P 与1B 重合时,此时三棱锥为11B A BD -,设1B D 的中点为O ,因为11190B BD B A D ∠=∠=︒,可得11OA OB OD OB === 所以三棱锥1P A BD -的外接球的球心为1B D 的中点,其半径为3,所以三棱锥1P A BD -的外接球的体积为34(3)433ππ⨯=,所以D 不正确.故选:C.18.如图,在棱长为33的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足15213DP PB +=+,则直线1B P 与直线1AD 所成角的取值范围为( )(参考数据:43sin 53,sin 3755==)A .37,143⎡⎤⎣⎦B .37,90⎡⎤⎣⎦C .53,143⎡⎤⎣⎦D .37,127⎡⎤⎣⎦【来源】江西省景德镇一中2020-2021学年高三上学期期末考试数学(理)试题 【答案】B【解析】如图,建立空间直接坐标系,连结1B D ,交平面11A BC 于点O ,()0,0,0D ,()133,33,33B ,()133,0,33A ,()33,33,0B ,()10,33,33C ,()133,33,33DB =,()10,33,33A B =-,()133,0,33BC =-,110DB A B ⋅=,110DB BC ⋅=,111111,DB A B DB BC A B BC B ∴⊥⊥⋂=,,1DB ∴⊥平面11A BC ,根据等体积转化可知111111B A BC B A B C V V --=, 即()()23111311363332232B O ⨯⨯⨯⨯=⨯⨯,解得:13B O =, 13339B D =⨯=,16D O ∴=,11//AD BC ,∴异面直线1AD 与1B P 所成的角,转化为1BC 与1B P 所成的角,如图,将部分几何体分类出来,再建立一个空间直角坐标系,取1BC 的中点E ,过点O 作1//OF BC ,则以点O 为原点,1,,OF OE OB 为,,x y z 轴的正方向,建立空间直角坐标系(),,0P x y ,()10,0,3B ,()0,0,6D -,3326,22B ⎫⎪⎪⎭,13326,22C ⎛⎫ ⎪ ⎪⎝⎭,()1,,3B P x y =-,()136,0,0BC =-, 15213PB PD +=+,22229365213x y x y ++++=+2222936x y x y ++<++,即15PB =22925x y ∴++=,即2216x y +=,[]4,4x ∈-1111113644cos ,,555365B P BC x x B P BC B P BC ⋅-⎡⎤<>===-∈-⎢⎥⨯⎣⎦,因为异面直线所成的角是锐角,并设为θ,则4cos 0,5θ⎛⎤∈ ⎥⎝⎦,4sin 535=,4cos375∴=,37,90θ⎡⎤∴∈⎣⎦ 故选:B19.如图,在三棱锥D ABC -中,,1,1AD BC BC AD ⊥==.且2AB BD AC CD +=+=,则四面体ABCD 的体积的最大值为( )A .14B .212C .36D .524【来源】浙江省衢州市五校联盟2020-2021学年高三上学期期末联考数学试题 【答案】B【解析】作BE ⊥AD 于E ,连接CE ,如图,因为,AD BC ⊥,BE BC 再平面BEC 内相交,所以AD ⊥平面BEC , 因为CE ⊂平面BEC ,所以CE ⊥AD , 因为2AB BD AC CD +=+=,所以B 与C 都是在以A 、D 为焦点的椭球上,且BE 、CE 都垂直于焦距AD , AB +BD = AC +CD =2,显然ABD ACD ≅,所以BE =CE . 取BC 中点F ,,,BC E AD E F F ⊥∴⊥ 要求四面体ABCD 的体积的最大值,因为AD 是定值,只需三角形EBC 的面积最大, 因为BC 是定值,所以只需EF 最大即可,当△ABD 是等腰直角三角形时几何体的体积最大, 因为AB +BD = AC +CD =2,1AB ∴=,22222131121,(1)22222EB EF ⎛⎫⎛⎫⎛⎫∴=-==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以几何体的体积为11221132212⨯⨯⨯⨯=故选:B20.如图,三棱锥A BCD -的底面BCD 在平面α内,所有棱均相等,E 是棱AC 的中点,若三棱锥A BCD -绕棱CD 旋转,设直线BE 与平面α所成的角为θ,则cos θ的取值范围为( )A .36⎤⎥⎣⎦B .5,16⎡⎤⎢⎥⎣⎦C .110,6⎡⎢⎣⎦D .330,6⎡⎢⎣⎦【来源】浙江省宁波市慈溪市2020-2021学年高三上学期期末数学试题 【答案】A【解析】取AD 的中点F ,连接EF 、BF ,如下图所示:。

高考数学复习点拨 灵活运用余弦定理解题新人教A版

高考数学复习点拨 灵活运用余弦定理解题新人教A版

用心 爱心 专心 高考数学复习点拨 灵活运用余弦定理解题新人教A 版 余弦定理不仅是解斜三角形的一个重要定理,而且在许多其他类型的问题中,也有广泛的应用.
一、 重视反面入手,巧用余弦定理
例1 三角形中,三边之长为10,14,16,求最大角与最小角的和.
分析:本题若分别求出最大角与最小角,再求其和,不易求得准确值,因为这两个角均 不是特殊角,因此,可以从反面入手,避繁就简.
解:设边长为14的边所对的角为α,则由余弦定理, 得2221016141cos 210162α+-==⨯⨯,
60α∴=.
故最大角与最小角的和为120απ-=.
二、 探求向何背景,逆用余弦定理
例2 已知x y z ,,为正实数,且满足222225100x y y yz z +=++=,,
223125z zx x ++=,求23xy yz zx ++的值.
解:已知条件可变形为
22
222222252cos120102cos150(55)x y y z yz z x zx ⎧+=⎪+-=⎨⎪+-=⎩, ①
, ②, ③
①是勾股定理的形式,②,③是余弦定理的形式,据此,可
构造如图所示的三角形ABC ,OAB ,OBC OAC ,,且ABC △与
AOB △均为直角三角形,
由面积公式,得AOB BOC AOC ABC S S S S ++=△△△△,
即1
1
1
1
sin120sin1505102222xy yz zx ++=⨯⨯,
可得23100xy yz zx ++=.。

(压轴题)高中数学必修二第一章《立体几何初步》检测题(含答案解析)(2)

(压轴题)高中数学必修二第一章《立体几何初步》检测题(含答案解析)(2)
8.已知四面体 中,二面角 的大小为 ,且 , , ,则四面体 体积的最大值是()
A. B. C. D.
9.如下图所示是一个正方体的平面展开图,在这个正方体中① 平面 ;② ;③平面 平面 ;④ 平面 .以上四个命题中,真命题的序号是()
A.①②③④B.①②③C.①②④D.②③④
10.某三棱锥的三视图如图所示,则该三棱锥的体积为( )
【详解】
因为侧棱 底面 ,
则 是 与底面 所成的角,则 .
故由 ,得 .
设 ,则 ,
解得 .
所以球 的半径 ,
所以球 的表面积 .
故选:A.
【点睛】
解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.
,且 是 的中点, , , ,作 于 ,连接 , ,所以 ,
由余弦定理得 ,
所以 , ,
, ,
故选:A.
【点睛】
本题考查了正四棱锥的性质及线段的取值范围问题,关键点是画出正四棱锥分析出问题的实质,考查了学生的空间想象力.
6.D
解析:D
【分析】
在A中, 与 相交、平行或异面;
在B中, 与 不一定平行,有可能相交;
【详解】
如图正四棱锥 , 平面 , 是底面中心,
分别是 的中点,由题意知, 点在 上运动, 点在 上运动,
所以 ,且 ,
所以四边形 是梯形,在 与 中, ,所以 ,所以 ,
所以四边形 是等腰梯形,则 的取值范围的最小值就是等腰梯形的高,
最大值就是梯形的对角线长,且 , ,
作 于 ,所以 , 平面 ,

三面角余弦定理及应用

三面角余弦定理及应用

三面角余弦定理及应用三面角余弦定理,又称作勾股定理或余弦定理,是三角学中重要的定理之一。

它描述了一个三角形的一个内角和它所对的边长之间的关系,可以用于解决各种实际问题。

在任意三角形ABC中,设a、b、c分别为边BC、AC、AB的长度,A、B、C 为对应的内角度数。

根据三面角余弦定理,我们有以下关系式:1. cos A = (b²+ c²- a²) / (2bc)2. cos B = (a²+ c²- b²) / (2ac)3. cos C = (a²+ b²- c²) / (2ab)接下来,我们将讨论一些三面角余弦定理的应用:1. 求解三角形的边长:如果我们已知一个三角形的两个边长和它们夹角的余弦值,我们就可以使用余弦定理来求解第三个边长。

根据定理,我们可以通过以下公式计算第三个边c的长度:c = √(a²+ b²- 2abcos C)。

2. 判断三角形的形状:根据三面角余弦定理,我们可以判断一个三角形是锐角三角形、直角三角形还是钝角三角形。

如果一个三角形的所有内角的余弦值都大于0,则它为锐角三角形;如果一个三角形的一个内角的余弦值等于0,则它为直角三角形;如果一个三角形的一个内角的余弦值小于0,则它为钝角三角形。

3. 求解三角形的内角度数:如果我们已知一个三角形的三个边长,我们可以使用三面角余弦定理来求解它的内角度数。

根据定理,我们可以通过以下公式计算角A的度数:A = arccos[(b²+ c²- a²) / (2bc)]。

4. 应用于领域:三面角余弦定理在物理学、工程学等领域有广泛应用。

例如,航空领域中可以利用该定理计算飞机的最短飞行时间和距离;建筑领域中可以利用该定理计算某个斜坡的高度;测绘学中可以利用该定理计算两点之间的距离等。

综上所述,三面角余弦定理是三角学中的一项重要定理,它描述了一个三角形的内角和它所对的边长之间的关系。

三余弦公式的应用

三余弦公式的应用

三余弦公式的应用高密三中 管目军一、 三余弦公式简介如图1,PO ⊥α,∠POA 是线PA 和平面α则有COS ∠POA ×COS ∠PAB=COS ∠BOA注意:①∠POA 是线和面所成的角,∠BOA 是线PA 在面α上的射影OA 与面内的线BA 所夹的角; ②无论∠BOA 是锐角还是钝角,公式都成立; ③由已知条件可知:面POA 与面AOB 垂直;显然,由面POA 与面AOB 垂直也可得∠POA 是线和面所成的角。

二、三余弦公式的应用(一) 求两条直线所成的角例1.(96年高考题)正方形ABCD所在平面与正方形ABEF所在平面成 600的二面角,则异面直线AD与BF所成的角的余弦为( )。

A。

1/2B。

√2/4C。

√2/2D。

0分析:∵BC∥AD又∵AB⊥BE,CB⊥AB ∴AB⊥面BCE,∠EBC为二面角E—AB—D的平面角 ∴∠EBC=600显然,面ABCD⊥面BCE,∠EBC也是线BE与面ABCD所成的角; 在正方形ABEF中,∠FBE=450由三余弦公式可得:COS ∠CBF=COS ∠EBC×COS ∠EBF =COS 600×COS 450=(1/2)×(√2/2)=√2/4 故应选B.练习:1。

把直角坐标平面沿第一、三象限的角平分线折成直二面角,那么翻折后两坐标轴的正半轴的夹角是——————————。

2.E、F分别为正方形ABCD边AB、CD的中点,EF交BD于O,以EF为棱,将正方形折成直二面角,则∠BOD=——————————。

3. 直角三角形ABC中,∠A=300,∠C=900,若沿中线CD折成直二面角A—CD—B,则cos∠ACB的大小为——————————。

(二) 求线面角例2PA、PB、PC是从点P出发的三条射线,每两条的夹角为600,求直D线PC与面PAB所成的角。

分析:如图2,过点C作CE⊥面PAB于E,由题意可证得,PC在面PAB上的射影PE为∠APB的角平分线,所以∠EPA=∠EPB=300。

(压轴题)高中数学必修二第一章《立体几何初步》检测卷(答案解析)(4)

(压轴题)高中数学必修二第一章《立体几何初步》检测卷(答案解析)(4)

一、选择题1.某几何体的三视图如图所示(单位:cm ),则该几何体的外接球的表面积(单位:2cm )是( )A .36πB .54πC .72πD .90π2.已知三棱锥P ABC -的三条侧棱两两垂直,且,,PA PB PC 的长分别为,,a b c ,又2()2a b c +=,侧面PAB 与底面ABC 成45︒角,当三棱锥体积最大时,其外接球的表面积为( ) A .10π B .40πC .20πD .18π3.正方体1111ABCD A B C D -的棱长为2,E 是1CC 的中点,则点1C 到平面EBD 的距离为( ) A .34B .63C 5D .234.在正方体1111ABCD A B C D -,中,M ,N ,P ,Q 分别为1A B ,1B D ,1A D ,1CD 的中点,则异面直线MN 与PQ 所成角的大小是( )A .6π B .4π C .3π D .2π5.如图,在四棱锥E ABCD -中,底面ABCD 是正方形,且平面ABCD ⊥平面AEB ,则( )A .DEC ∠可能为90︒B .若AEB △是等边三角形,则DEC 也是等边三角形C .若AEB △是等边三角形,则异面直线DE 和AB 所成角的余弦值为24D .若AEB △是直角三角形,则BE ⊥平面ADE6.已知α、β是平面,m 、n 是直线,下列命题中不正确的是( ) A .若//m α,n αβ=,则//m n B .若//m n ,m α⊥,则n α⊥ C .若m α⊥,m β⊥,则//αβ D .若m α⊥,m β⊂,则αβ⊥7.三棱锥P ABC -中,6AB =,8AC =,90BAC ∠=︒,若52PA PB PC ===,则点B 到平面PAC 的距离为( ) A .32B .304141C .153417D .68.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A 263B 463C .4263D .22639.已知四面体ABCD 中,二面角A BC D --的大小为60,且2AB =,4CD =,120CBD ∠=,则四面体ABCD 体积的最大值是( )A 43B 23C .83D .4310.某几何体的三视图如图所示,该几何体的体积为V ,该几何体所有棱的棱长之和为L ,则( )A .8,14253V L ==+ B .8,1425V L ==+ C .8,16253V L ==+ D .8,1625VL ==+11.已知长方体1111ABCD A B C D -的顶点A ,B ,C ,D ,在球O 的表面上,顶点1A ,1B ,1C ,1D ,在过球心O 的一个平面上,若6AB =,8AD =,14AA =,则球O 的表面积为( ) A .169πB .161πC .164πD .265π12.在正方体1111ABCD A B C D -中,M 和N 分别为11A B ,和1BB 的中点.,那么直线AM 与CN 所成角的余弦值是( )A .25B .1010C .35D .32二、填空题13.在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,①四边形1BFD E 一定是平行四边形;②四边形1BFD E 有可能是正方形;③四边形1BFD E 在底面ABCD 内的投影一定是正方形;④四边形1BFD E 有可能垂直于平面1BB D .以上结论正确的为___________.(写出所有正确结论编号)14.已知直三棱柱111ABC A B C -,14AB BC AA ===,42AC =P 是上底面111 A B C 所在平面内一动点,若三棱锥P ABC -的外接球表面积恰为41π,则此时点P 构成的图形面积为________.15.3ABCD 中,对角线3AC =ABC 沿AC 折起,使得二面角B AC D --的大小为2π,则三棱锥B ACD -外接球的体积是_________________.16.已知某空心圆锥的母线长为5cm ,高为4cm ,记该圆锥内半径最大的球为球O ,则球O 与圆锥侧面的交线的长为________cm .17.在三棱锥P ABC -中,4PA PB ==,42BC =8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为_________. 18.在正三棱锥A BCD -中,5AB AC AD ===,6BC BD CD ===.点M 是线段BC 上的点,且2BM MC =.点P 是棱AC 上的动点,直线PM 与平面BCD 所成角为θ,则sin θ的最大值为______.19.在棱长为2的正方体1111ABCD A B C D -中,P 是11A B 的中点,过点1A 作与平面1PBC 平行的截面,则此截面的面积是_______________.20.有一个半径为4的球是用橡皮泥制作的,现要将该球所用的橡皮泥重新制作成一个圆柱和一个圆锥,使得圆柱和圆锥有相等的底面半径和相等的高,若它们的高为8,则它们的底面圆的半径是___________.三、解答题21.在如图所示几何体中,平面PAC ⊥平面ABC ,//PM BC ,PA PC =,1AC =,22BC PM ==,5AB =3(1)画出该几何体的主视图(正视图)并求其面积S ; (2)求出多面体PMABC 的体积V .22.在三棱锥A BCD -中,BCD △为等腰直角三角形,点E ,G 分别是线段BD ,CD 的中点,点F 在线段AB 上,且2BF FA =.若1AD =,3AB =,2CB CD ==.(Ⅰ)求证://AG 平面CEF ; (Ⅱ)求直线AD 与平面CEF 所成的角.23.在三棱锥A BCD -中,E 、F 分别为AD 、DC 的中点,且BA BD =,平面ABD ⊥平面ADC .(1)证明://EF 平面ABC ; (2)证明:BE CD ⊥.24.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C D ,的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?若不存在,说明理由,若存在请证明你的结论并说明P 的位置.25.在三棱锥P ABC -中,AE BC ⊥于点,E CF AB ⊥于点F ,且AE CF O ⋂=,若点P 在平面ABC 上的射影为点O .(1)证明:AC PB ⊥;(2)若ABC 是正三角形,点,G H 分别为,PA PC 的中点.证明:四边形EFGH 是矩形.26.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,∠ADP =90°,PD =AD ,∠PDC =60°,E 为PD 中点.(1)求证:PB //平面ACE : (2)求四棱锥E ABCD -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由三视图知该几何体是底面为等腰直角三角形,且侧面垂直于底面的三棱锥,由题意画出图形,结合图形求出外接球的半径,再计算外接球的表面积. 【详解】解:由几何体的三视图知,该几何体是三棱锥P ABC -,底面为等腰ABC ∆, 且侧面PAB ⊥底面ABC ,如图所示;设D 为AB 的中点,又3DA DB DC DP ====,且PD ⊥平面ABC ,∴三棱锥P ABC -的外接球的球心O 在PD 上,设OP R =,则OA R =,3OD R =-,222(3)3R R ∴=-+, 解得3R =,∴该几何体外接球的表面积是32436R cm ππ=.故选:A . 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.2.A解析:A 【分析】将三棱锥体积用公式表示出来,结合均值不等式和2()2a b c +=a b =,进而得到22c a =,带入体积公式求得2,2a b c ===24S R π=求出外接球的表面积. 【详解】解:21116211622266()643V abc ab ab a b ab ==⋅⋅=+,当且仅当a b =时取等号, 因为侧面PAB 与底面ABC 成45︒角, 则22PC a c ==, 21222623V a a ∴=⨯=, 2,2a b c ∴===,所以2222410R a b c =++=, 故外接球的表面积为10π. 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.B解析:B 【分析】利用等体积法11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,利用三棱锥的体积公式代入面积即求得d . 【详解】如图,利用等体积法,11C EBD D C EB V V --=,设点1C 到平面EBD 的距离为d ,正方体1111ABCD A B C D -的棱长为2,故2,5BD BE ED ===2215232h ED BD ⎛⎫=-=-= ⎪⎝⎭11223622EBDSBD h =⨯⨯=⨯= 又点D 到平面1C EB 的距离,即D 到平面11C CBB 的距离,为CD =2,111212EBC S=⨯⨯=, 由11C EBD D C EB V V --=得,1161233d =⨯⨯,故636d ==. 故选:B. 【点睛】 方法点睛:空间中求点到平面的距离的常见方法: (1)定义法:直接作垂线,求垂线段长;(2)等体积法:利用三棱锥换底求体积,结合两个面积和另一个高求未知高,即得距离; (3)向量法:过点的一个斜线段对应的向量a ,平面法向量n ,则a n d n⋅=.4.B解析:B 【分析】由M 也是1A B 的中点,P 也是1AD 中点,得平行线,从而找到异面直线MN 与PQ 所成角,在三角形中可得其大小. 【详解】如图,连接1AD ,1AB ,显然M 也是1A B 的中点,P 也是1AD 中点, 又N 是1B D 中点,Q 是1CD 中点,所以//MN AD ,//PQ AC , 所以CAD ∠是异面直线MN 与PQ 所成角(或补角),大小为4π. 故选:B .【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.5.C解析:C 【分析】对A ,直角三角形的斜边大于直角边可判断;对B ,由>=EC EB DC 可判断;对C ,可得CDE ∠即异面直线DE 和AB 所成角,即可求出;对D ,EAB ∠(或EBA ∠)为直角时,BE 与平面ADE 不垂直. 【详解】对A ,由题意,若90DEC ∠=︒,则DC EC >,但EC BC CD >=,故A 不正确; 对B ,若AEB △是等边三角形,显然有>=EC EB DC ,所以DEC 不会是等边三角形,故B 不正确;对C ,若AEB △是等边三角形,设边长为2,则22DE EC ==//AB CD ,则CDE ∠即异面直线DE 和AB 所成角,易求2cos 422CDE ∠==,故C 正确; 对D ,当AEB △是以AEB ∠为直角的直角三角形时,BE ⊥平面ADE ,当AEB △是以EAB ∠(或EBA ∠)为直角的直角三角形时,BE 与平面ADE 不垂直,故D 不正确. 故选:C. 【点睛】本题考查四棱锥的有关位置关系的判断,解题的关键是正确理解长度关系,正确理解位置关系的变化.6.A解析:A【分析】根据已知条件判断直线m 、n 的位置关系,可判断A 选项的正误;利用线面垂直的性质可判断BC 选项的正误;利用面面垂直的判定定理可判断D 选项的正误.【详解】对于A 选项,若//m α,则直线m 与平面α内的直线平行或异面,由于n αβ=,则直线m 、n 平行或异面,A 选项错误;对于B 选项,若//m n ,m α⊥,则n α⊥,B 选项正确;对于C 选项,若m α⊥,m β⊥,则//αβ,C 选项正确;对于D 选项,若m α⊥,m β⊂,由面面垂直的判定定理可知αβ⊥,D 选项正确. 故选:A.【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳.7.C解析:C【分析】取BC 中点为O ,连接OP ,OA ,根据题中条件,由线面垂直的判断定理,证明PO ⊥平面ABC ;求出三棱锥P ABC -的体积;以及PAC △的面积,设点B 到平面PAC 的距离为d ,根据等体积法,由P ABC B PAC V V --=,即可求出结果.【详解】取BC 中点为O ,连接OP ,OA ,因为6AB =,8AC =,90BAC ∠=︒,所以226810BC =+=,则152AO BC ==; 又52PA PB PC ===222100PB PC BC +==,则PB BC ⊥,152PO BC ==, 所以22250PO OA PA +==,所以PO AO ⊥;因为PB PC =,O 为BC 中点,所以PO BC ⊥,又BC AO O ⋂=,BC ⊂平面ABC ,AO ⊂平面ABC ,所以PO ⊥平面ABC ; 此时三棱锥P ABC -的体积为11168540332P ABC ABC V S PO -=⋅=⨯⨯⨯⨯=, 因为在PAC △中,PA PC ==,8AC =,所以PAC △的面积为182PAC S =⨯=, 设点B 到平面PAC 的距离为d ,由P ABC B PAC V V --=可得1403PAC S d =⋅,所以17d ==. 故选:C.【点睛】方法点睛:求解空间中点P 到面α的距离的常用方法:(1)等体积法:先设所求点到面的距离,根据几何体中的垂直关系,由同一几何体的不同的侧面(或底面)当作底,利用体积公式列出方程,即可求解;(2)空间向量法:先建立适当的空间直角坐标系,求出平面α的一个法向量m ,以及平面α的一条斜线PA 所对应的向量PA ,则点P 到面α的距离即为PA md m ⋅=.8.A解析:A【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值.【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为'2'2'22441626R AF AD AE =++=++6R =2241625DE DF AD AE ==++=2222EF BE BF =+=在DFE △中,22210cos 21022522DE EF DF DEF DE EF +-∠===⨯⨯⨯, 所以DEF ∠为锐角,所以2310sin 1cos DEF DEF ∠=-∠=, DEF 的外接圆的半径为5522sin 3310DF r DEF ===∠,则球心到DEF 2223R r -=,以FDE 为底面的三棱锥G -DEF 的高h 的最大值为1R OO +263. 故选:A.【点睛】 本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.9.D解析:D【分析】在BCD △中,利用余弦定理和基本不等式可得163BC BD ⋅≤,由三角形的面积公式可得43BCD S ≤,由二面角A BC D --的大小为60,可得A 到平面BCD 的最大距离为2sin 603h ==ABCD 体积的最大值.【详解】在BCD △中,由余弦定理可得 2222cos120CD BC BD BC BD =+-⋅22BC BD BC BD =++⋅ 因为222BC BD BC BD +≥,所以23CD BC BD ≥⋅,所以163BC BD ⋅≤,当且仅当BC BD =时等号成立, 111634sin120322323BCD S BC BD =⋅≤⨯⨯=, 因为二面角A BC D --的大小为60,所以点A 到平面BCD 的最大距离为2sin 603h ==,所以1144333333A BCD BCD V S h -=⋅≤⨯⨯=, 所以四面体ABCD 体积的最大值是43, 故选:D【点睛】 关键点点睛:本题解题的关键点是利用余弦定理和基本不等式、三角形面积公式求出BCD S △最大值,再由二面角求出高的最大值.10.A解析:A【分析】由三视图还原几何体,由棱锥的体积公式可得选项.【详解】在如图所示的正方体1111ABCD A B C D -中,P ,E 分别为11,B C BC 的中点,该几何体为四棱锥P ABCD -,且PE ⊥平面ABCD .由三视图可知2AB =,则5,3PC PB PD PA ====,则21825681425,2233L V =++=+=⨯⨯=. 故选:A.【点睛】方法点睛:三视图问题的常见类型及解题策略:(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.11.C解析:C【分析】把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体外接球的直径等于体对角线的长,求出直径,即可得出球的表面积.【详解】如下图所示:把两个这样的长方体叠放在一起,构成一个长宽高分别为6,8,8的长方体,则球O 就是该长方体的外接球,根据长方体的结构特征可得,其外接球直径等于体对角线的长,所以球O 的半径R 满足2222688164R =++=,所以球O 的表面积24164S R ππ==.故选:C.【点睛】关键点点睛:本题主要考查几何体外接球的表面积,熟记长方体结构特征,其外接球的球心和半径与长方体的关系,以及球的表面积公式,是解决此类问题的关键.12.A解析:A【分析】作出异面直线AM 和CN 所成的角,然后解三角形求出两条异面直线所成角的余弦值.【详解】设,E F 分别是1,AB CC 的中点,由于,M N 分别是111,A B BB 的中点,结合正方体的性质可知11//,//B E AM B F CN ,所以1EB F ∠是异面直线AM 和CN 所成的角或其补角,设异面直线AM 和CN 所成的角为θ,设正方体的边长为2, 2211125B E B F ==+=,2221216EF =++=,则1cos cos EB F θ=∠=55625255+-=⨯⨯. 故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角. 二、填空题13.①③④【分析】由题意在正方体中结合几何关系逐一考查所给命题的真假即可求得最终结果【详解】对于①由平面平面并且四点共面同理可证故四边形一定是平行四边形故①正确;对于②若是正方形有又且平面又平面与经过平解析:①③④【分析】由题意,在正方体中,结合几何关系逐一考查所给命题的真假即可求得最终结果【详解】对于①,由平面11//BCC B 平面11ADD A ,并且 B 、E 、F 、1D 四点共面,1//F ED B ∴,同理可证,1//FD EB ,故四边形1BFD E 一定是平行四边形,故①正确;对于②,若1BFD E 是正方形,有1ED BE ⊥,又 11A D BE ⊥,且1111A D ED D =, BE ∴⊥平面11ADD A ,又 AB ⊥平面11ADD A ,与经过平面外一点作已知平面的垂线有且只有一条相矛盾,故②错误;对于③,由图得,1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,故③正确; 对于④,当点E 和F 分别是对应边的中点时,:平面1BFD E ⊥平面11BB D D ,故④正确.故答案为:①③④【点睛】方法点睛:本题主要考查了正方体的几何特征,利用面面平行和线线垂直,以及特殊情况进行判断,考查了学生的空间想象能力和逻辑思维能力,属于中档题.14.【分析】确定是等腰直角三角形的中点分别是和的外心由直棱柱性质得的外接球的球心在上外接球面与平面的交线是圆是以为圆心为半径的圆求出可得面积【详解】则设分别是的中点则分别是和的外心由直三棱柱的性质得平面解析:4π【分析】确定ABC 是等腰直角三角形,11,AC A C 的中点1,D D 分别是ABC 和111A B C △的外心,由直棱柱性质得P ABC -的外接球的球心O 在1DD 上,外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆,求出1PD 可得面积.【详解】4,42AB BC AC ===,则90ABC ∠=︒,设1,D D 分别是11,AC A C 的中点,则1,D D 分别是ABC 和111A B C △的外心,由直三棱柱的性质得1DD ⊥平面ABC , 所以P ABC -的外接球的球心O 在1DD 上,如图,24()41OA ππ=,则412OP OA ==,2222413(22)22OD OA AD ⎛⎫=-=-= ⎪ ⎪⎝⎭, 所以11135422OD DD OD AA OD =-=-=-=, 222211415222PD OP OD ⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭, P ABC -的外接球面与平面111A B C 的交线是圆,是以1D 为圆心,1D P 为半径的圆, 其面积为224S ππ=⨯=.故答案为:4π.【点睛】关键点点睛:本题考查立体几何中动点轨迹问题的求解,重点考查了几何体的外接球的有关问题的求解,关键是根据外接球的性质确定球心位置,结合勾股定理得出动点所满足的具体条件,结论:三棱锥的外接球的球心在过各面外心且与此面垂直的直线上. 15.;【分析】分析菱形的特点结合其翻折的程度判断其外接球球心的位置放到相应三角形中利用勾股定理求得半径利用球的体积公式求得外接球的体积【详解】根据题意画出图形根据长为的菱形中对角线所以和都是正三角形又因 解析:55π; 【分析】分析菱形的特点,结合其翻折的程度,判断其外接球球心的位置,放到相应三角形中,利用勾股定理求得半径,利用球的体积公式求得外接球的体积.【详解】根据题意,画出图形,3的菱形ABCD 中,对角线3AC =所以ABC 和DBC △都是正三角形,又因为二面角B AC D --的大小为2π, 所以分别从两个正三角形的中心做面的垂线,交于O , 则O 是棱锥B ACD -外接球的球心,且11,2GD OG GE ===, 所以球的半径225R GD OG =+=, 所以其体积为3344555(3326V R ππ==⋅=, 故答案为:556π. 【点睛】思路点睛:该题考查的是有关几何体外接球的问题,解题思路如下:(1)根据题中所给的条件,判断菱形的特征,得到两个三角形的形状;(2)根据直二面角,得到两面垂直,近一倍可以确定其外接球的球心所在的位置; (3)利用勾股定理求得半径;(4)利用球的体积公式求得结果;(5)要熟知常见几何体的外接球的半径的求解方法.16.【分析】由题可求出底面半径根据三角形相似关系可求出球半径再利用三角形面积关系可求出球O 与圆锥的侧面的交线的半径即可求出交线长【详解】圆锥的轴截图如图所示由题可知圆锥的高母线设的内切圆与圆锥的母线相切 解析:125π 【分析】由题可求出底面半径,根据三角形相似关系可求出球半径,再利用三角形面积关系可求出球O 与圆锥的侧面的交线的半径,即可求出交线长.【详解】圆锥的轴截图如图所示,由题可知,圆锥的高4cm AF =,母线5cm AB AC ==,设ABC 的内切圆O 与圆锥的母线相切与点E ,则OE AB ⊥,则该圆锥内半径最大的球即以O 为圆心,OE 为半径的球,在直角三角形ABF 中,2222543cm BF AB AF =--=,由圆的切线性质可得3cm BE BF ==,所以532cm AE AB BE =-=-=,在直角三角形AFB 和直角三角形AEO 中,因为∠∠EAO BAF =,所以△△AFB AEO ~,所以AE OE AF BF =,则可得3cm 2OE =, 过点E 作ED AF ⊥,D 为垂足, 则球O 与圆锥的侧面的交线是以DE 为半径的圆, 354cm 22AO AF OF =-=-=, 因为1122△AEO S AE OE ED AO =⋅=⋅,所以6cm 5ED =, 所以球O 与圆锥的侧面的交线长为6122cm 55ππ⨯=. 故答案为:125π. 【点睛】 本题考查圆锥与球的相切问题,解题的关键是利用轴截面,用平面几何的知识解决.17.4【分析】取中点连接再根据题意依次计算进而得球的球心即为(与重合)【详解】解:因为所以又因为所以所以因为平面平面平面平面平面所以平面取中点连接所以所以平面所以此时所以即球的球心球心即为(与重合)半径 解析:4【分析】取,AB AC 中点,D E ,连接DE ,DP ,再根据题意依次计算4EA EB EC EP ====,进而得球O 的球心O 即为E (O 与E 重合)【详解】 解:因为42BC =,8AC =,AB BC ⊥,所以42AB =,又因为4PA PB ==,所以222PA PB AB +=,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP所以//DE BC ,22DE =,22DP =所以DE ⊥平面PAB ,所以DE PD ⊥,此时,142EB AC EA EC ====, 224EP DP DE =+=, 所以4EA EB EC EP ====,即球O 的球心球心O 即为E (O 与E 重合),半径为4EA =.故答案为:4.【点睛】本题解题的关键在于寻找球心,在本题中,,PAB ABC △△均为直角三角形,故易得AC中点即为球心.考查空间思维能力,运算求解能力,是中档题.18.【分析】证明直线与平面所成角中当此为二面角的平面角时最大即可得【详解】先证一个命题:平面内所有直线与平面所成的角中当此角为二面角的平面角时最大如图平面于点于是上任一点则而则平面又平面∴是二面角的平面【分析】证明直线PM 与平面BCD 所成角中当此为二面角的平面角时最大即可得.【详解】先证一个命题:平面ABC 内所有直线与平面BCD 所成的角中,当此角为二面角的平面角时最大.如图AO ⊥平面BCD 于点O ,OE BC ⊥于E ,Q 是BC 上任一点,则AO BC ⊥,而AO OE O =,则BC ⊥平面OAE ,又AE ⊂平面OAE ,∴AEO ∠是二面角A BC D --的平面角,而AQO 是直线AQ 与平面ABCD 所成的角, 显然sin AO AEO AE∠=,sin AO AQO AQ ∠=,又AQ AE ≥,∴sin sin sin AQO AEO ∠≤∠,,AEO AQO ∠∠都是锐角,∴AQO AEO ∠≤∠,,Q E 重合时等号成立.由此可知平面ABC 内所有直线与平面BCD 所成的角中,当此角为二面角的平面角时最大.由已知66EO ==4AE =,AOsin 4AEO ∠=, ∴直线PM 与平面BCD 所成角最大值等于AEO ∠,∴sin θ.故答案为:4.【点睛】结论点睛:在二面角A BC D --(为锐二面角)中,AEO ∠是A BC D --二面角的平面角,Q 是棱BC 上任一点,则AQ 与平面BCD 所成角中最大值为二面角的平面角,AQ 与平面BCD 内过Q 点的直线(实际上是所有直线)所成角中最大值为直线AQ 与平面BCD 所成的角.19.【分析】取的中点分别为连接先证明四边形是平行四边形再利用面面平行的判断定理证明平面平面可得平行四边形即为所求的截面再计算其面积即可【详解】取的中点分别为连接因为所以四边形是平行四边形所以因为所以四边 解析:26【分析】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,先证明四边形1A MCN 是平行四边形,再利用面面平行的判断定理证明平面1//PBC 平面1A MCN ,可得平行四边形1A MCN 即为所求的截面,再计算其面积即可.【详解】取AB ,11D C 的中点分别为,M N ,连接11,,,,A M MC CN A N PM ,因为11A P NC ,所以四边形11A PC N 是平行四边形,所以11A N PC , 因为1PM CC 所以四边形1PMCC 是平行四边形,所以1MC PC ,所以1A N MC ,所以四边形1A MCN 是平行四边形,因为11//PC A N ,1PC ⊄平面1A MCN ,1A N ⊂平面1A MCN ,所以1//PC 平面1A MCN ,同理可证//PB 平面1A MCN ,因为1PC PB P ⋂=,所以平面1//PBC 平面1A MCN ,因此过点1A 作与平面1PBC 平行的截面,即是平行四边形1A MCN ,连接MN ,作1A H MN ⊥于点H ,由11AM A N ==,MN =可得1A H ==所以111122A MN S MN A H =⨯⨯=⨯=,所以平行四边形1A MCN 的面积为12A MN S=故答案为:【点睛】 关键点点睛:本题的关键点是找出过点1A 与平面1PBC 平行的截面,所以想到作平行线,利用面面平行的判断定理证明所求的截面即是平行四边形1A MCN ,先求四边形一半的面积,乘以2即可得所求平行四边形的面积,也可以直接求菱形的面积.20.【详解】设它们的底面圆的半径为()依题意得化简得所以故答案为:解析:【详解】设它们的底面圆的半径为r (0r >).依题意得3443V π=⨯球V V =+圆柱圆锥221(+)83r r ππ=⨯,化简得28r =,所以r =故答案为: 三、解答题21.(1)主视图(正视图)见解析,S =;(2)V =. 【分析】(1)根据侧视图计算出PAC △的边AC 上的高,进而可作出几何体PMABC 的主视图,利用梯形的面积公式可求得几何体的主视图的面积;(2)分别取AC 、PC 的中点O 、N ,连接PO 、AN ,推导出AN ⊥平面BCPM ,计算出AN 和梯形BCPM 的面积,利用锥体的体积公式可求得多面体PMABC 的体积V .【详解】(1)在几何体PMABC 中,平面PAC ⊥平面ABC ,设PAC △的边AC 上的高为h ,则该几何体的侧视图的面积为1324AC h ⋅=,得32h =, 又因为22BC PM ==,所以,该几何体的主视图(正视图)如下图所示:由图可知,该几何体的主视图为直角梯形,其面积为()1233322S +⨯==⨯; (2)分别取AC 、PC 的中点O 、N ,连接PO 、AN ,如下图所示:PA PC =,O 为AC 的中点,所以,PO AC ⊥, 由(1)可知,3PO h ==1122AO CO AC ===, 由勾股定理可得221PC PA AO PO ==+=,所以,PAC △为等边三角形,N 为PC 的中点,AN PC ∴⊥,且3sin 602AN AC ==. 1AC =,2BC =,5AB =222AC BC AB ∴+=,BC AC ∴⊥,平面PAC ⊥平面ABC ,平面PAC 平面ABC AC =,BC ⊂平面ABC ,BC ∴⊥平面PAC ,AN 、PC ⊂平面PAC ,BC AN ∴⊥,BC PC ⊥,PC BC C =,AN ∴⊥平面BCPM ,//PM BC ,PM PC ∴⊥,所以,梯形BCPM 的面积为()322BCPM BC PM PC S +⋅==梯形,因此,1133333224BCPM V S AN =⋅=⨯⨯=梯形. 【点睛】 方法点睛:求空间几何体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.22.(Ⅰ)证明见解析;(Ⅱ)6π. 【分析】(Ⅰ)连接BG 交EC 于H ,连接FH ,即可得到2BH HG=,又2BF FA =,所以//FH AG ,从而得证;(Ⅱ)依题意利用余弦定理求出EF ,从而得到EF BD ⊥,即可证明BD ⊥平面CEF . 过F 作AD 的平行线FP ,交BD 于P .则PE ⊥平面CEF .所以直线FP 与平面CEF 所成角为PFE ∠,再利用锐角三角函数计算可得;【详解】解:(Ⅰ)连接BG 交EC 于H ,连接FH .则点H 为BCD △的重心,有2BH HG =. 因为2BF BH FA HG==, 所以//FH AG ,且FH ⊂平面CEF ,AG ⊄平面CEF ,所以//AG 平面CEF .(Ⅱ)因为33BF =1BE =,30ABD ∠=︒, 所以22212cos 3EF BF BE BE BF ABD =+-⋅∠=,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三余弦定理在全国卷立体几何压轴题的妙用
1.(2019全国1卷文科第16题)已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到
∠ACB 两边AC ,BC P 到平面ABC 的距离为___________.
【解析】如上图,由对称性知45o OCD ∠=,由三余弦定理得
cos cos cos PCD PCO OCD ∠=∠∠,即
1cos 22PCO =∠,所以cos 2PCO ∠=。

则PO OC ==。

2.(2017全国3卷理科第16题)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC
的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;
②当直线AB 与a 成60°角时,AB 与b 成60°角;
③直线AB 与a 所称角的最小值为45°;
④直线AB 与a 所称角的最大值为60°;
其中正确的是________。

(填写所有正确结论的编号)
【解析】过M 作b 的垂线,则AM 与MN 所成的角为AM 与a 所成的角,由三余弦公式得CMN CMN AMC AMN ∠⨯=∠⋅∠=∠cos 2
2cos cos cos ,若所成角为60°,则有CMN ∠⨯=cos 2
221,则CMN ∠045=,CM 平分角BCE ∠,所以此时AM 与两直线所成的角都为60°。

相关文档
最新文档