湘教版数学八年级上册期末复习题(一二答案)

合集下载

[一键打印]2014年最新整理2014-2015年湘教版数学八年级上册期末复习题(共5套卷)

[一键打印]2014年最新整理2014-2015年湘教版数学八年级上册期末复习题(共5套卷)

湘教版数学八年级上册期末复习题(一)一.精心选一选(本题共10小题,每题3分,共30分.请把你认为正确结论的代号填入下面表格中)1.16的算术平方根是 (★)A . 2B . ±2C .4D . ±4 2.在实数23-,0,34,π(★) A .1个 B .2个 C .3个D .4个3.下列图形中,是轴对称图形并且对称轴条数最多的是(★)4. 如图,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B 的度数为 (★)A .30oB .50oC .90oD .100o5.如果实数y 、x 满足y=111+-+-x x ,那么3y x +的值是(★)A .0B .1C .2D .-26.与三角形三个顶点的距离相等的点是 (★) A .三条角平分线的交点 B .三边中线的交点 C .三边上高所在直线的交点 D .三边的垂直平分线的交点7.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE ;②BC=ED ;③∠C=∠D ;④∠B=∠E .其中能使 △AB C ≌△AED 的条件有 (★)A .1个B .2个C .3个D .4个8.以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是(★) A .211B .1.4C .3D .2B ACB ′(第4题)lC.9.如图点A 和B 关于X 轴对称,已知点A 坐标是(4,4), 则点B 的坐标是 (★)A .(4,-4)B .(4,-2)C .(-2,4)D .(-4,2)10.一个正方体的体积是99,估计它的棱长的大小在 (★)A .2与3之间B .3与4之间C .4与5之间D .5与6之间二.耐心填一填(每题3分,共18分,直接写出结果) 11.计算︱2-3︱+22的结果是 .12.若25x 2=36,则x = ;若23-=y ,则y = .13.点P 关于x 轴对称的点是(3,–4),则点P 关于y 轴对称的点的坐标是 . 14.如图,BAC ABD ∠=∠,请你添加一个条件:,使OC OD =(只添一个即可). 15.等腰三角形的一个外角等于110︒,则这个三角形的顶角应该为 .16.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…… 如此继续下去,结果如下表:n = (用含三.计算题(计算要认真仔细,善于思考!本大题有3个小题,共24分)17.(8分)计算 ()32281442⨯+--)(18.(8分)如图,实数a 、b 在数轴上的位置,化简222)(b a b a -+-第16题DO CBA第14题图19.(8分)如图, AD ∥BC ,BD 平分∠ABC ,∠A=120°,∠C=60°,AB=CD=4cm ,求四边形ABCD 的周长.四.解答题(本大题有3个小题,共26分)20.(8分)某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由等腰三角形和正方形组成(个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案。

湘教版八年级数学上册期末试卷及答案

湘教版八年级数学上册期末试卷及答案

湘教版八年级数学上册期末试卷一、选择题(每题3分,共24分)1.点A 的位置如图所示,则点A 所表示的数可能是( ) A .-2.6 B .- 2 C .-23D .1.4 2.若x <y 成立,则下列不等式成立的是( )A .x -2<y -2B .4x >4yC .-x +2<-y +2D .-3x <-3y3.下列计算正确的是( )A .(a 2)3=a 5B .a 2·a =a 3C .a 9÷a 3=a 3D .a 0=14.若一个三角形的两边长分别是3和6,则第三边长不可能是( )A .6B .7C .8D .95.使式子3-x x有意义的实数x 的取值范围是( ) A .x ≤3 B .x ≤3且x ≠0 C .x <3 D .x <3且x ≠06.下列尺规作图,能判断AD 是△ABC 边上的高的是( )7.下列说法:①“两直线平行,同位角相等”与“同位角相等,两直线平行”互为逆命题;②命题“如果两个角相等,那么它们都是直角”的逆命题为假命题;③命题“如果-a =5,那么a =-5”的逆命题为“如果-a ≠5,那么a ≠-5”,其中正确的有( )A .0个B .1个C .2个D .3个8.将一副三角板按如图所示的方式放置,则∠CAF 等于( )A .50°B .60°C .75°D .85°二、填空题(每题4分,共32分)9.实数-3,-1,0,3中,最小的数是________.10.若分式x x 2+2的值为正数,则实数x 的取值范围是________. 11.化简x 1-x +1x -1的值为________. 12.不等式3(x -1)≤x +2的正整数解是________.13.已知0<a <2,化简:a +a 2-4a +4=________.14.已知射线OM .以点O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB =________度. 15.已知关于x 的不等式3x +mx >-5的解集如图所示,则m 的值为________.16.如图,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,∠DAC =20°,∠C =38°,则∠BAD =________.三、解答题(17题8分,18题9分,19题5分,20题6分, 21,22题每题8分,23,24题每题10分,共64分)17.计算:(1)16+⎝ ⎛⎭⎪⎫-12-1×(π-1)0-|7-3|+3-27;(2)(-2)2-9+(2-1)0+⎝ ⎛⎭⎪⎫13-1;(3)(3+1)(3-1)+12;(4)⎝ ⎛⎭⎪⎫2a 2-b 2-1a 2-ab ÷a a +b.18.解不等式(组)或分式方程:(1)3x +24≥2x -13-1;(2)⎩⎪⎨⎪⎧4-2x <7(2-x ),12x -2(x -2)≤4+3x ;(3)3x -1-2x +1=6x 2-1.19.先化简,再求值:⎝ ⎛⎭⎪⎫1-4x +3÷,其中x =2+1.20.如图,已知点A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF=CE .求证:△ABE ≌△CDF .21.某商店用1 000元购进一种水果来销售,过了一段时间,又用2 800元购进这种水果,所购进的数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克;(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的50千克按照标价的半价出售,出售完全部水果后,利润不低于3 100元,则最初每千克水果的标价至少是多少元?22.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE分别交边AB,AC于点E,D,连接BD.(1)求∠DBC的度数;(2)若BC=4,求AD的长.23.在△ABC中,点Q是BC边上的中点,过点A作与线段BC相交的直线l,过点B作BN⊥l于N,过点C作CM⊥l于M.(1)如图①,若直线l经过点Q,求证:QM=QN.(2)如图②,若直线l不经过点Q,连接QM,QN,那么(1)中的结论是否成立?若成立,给出证明过程;若不成立,请说明理由.(提示:直角三角形斜边上的中线等于斜边的一半.)24.已知等边三角形ABC和等边三角形BDE,点D始终在射线AC上运动.(1)如图①,当点D在AC边上时,连接CE,求证:AD=CE.(2)如图②,当点D不在AC边上而在AC边的延长线上时,连接CE,(1)中的结论是否成立?并给予证明.(3)如图③,当点D不在AC边上而在AC边的延长线上时,条件中“等边三角形BDE”改为“以BD为斜边作Rt△BDE,且∠BDE=30°”,其余条件不变,连接CE并延长,与AB的延长线交于点F,求证:AD=BF.答案一、1.B 2.A 3.B 4.D 5.B 6.D 7.B 8.C二、9.-3 10.x >0 11.-112.1,2 点拨:去括号,得3x -3≤x +2,移项、合并同类项,得2x ≤5,系数化为1,得x ≤2.5,则不等式的正整数解为1,2.13.2 点拨:∵0<a <2,∴a -2<0,∴a +a 2-4a +4=a +|a -2|=a +(2-a )=2.14.6015.-12 点拨:合并同类项,得(3+m )x >-5,结合题图把系数化为1,得x >-53+m ,则有-53+m=-2,解得m =-12. 16.58° 点拨:设∠ABD =α,∠BAD =β,∵AD ⊥BD ,∴α+β=90°.① ∵BD 是∠ABC 的平分线,∴∠ABC =2∠ABD =2α.∵∠ABC +∠BAC +∠C =180°,∴2α+β+20°+38°=180°.②联立①②可得⎩⎨⎧α+β=90°,2α+β=122°,解得⎩⎨⎧α=32°,β=58°,∴∠BAD =58°. 三、17.解:(1)原式=4-2-3+7-3=7-4.(2)原式=4-3+1+3=5.(3)原式=3-1+2 3=2+2 3.(4)原式=⎣⎢⎡⎦⎥⎤2(a +b )(a -b )-1a (a -b )·a +b a =⎣⎢⎡⎦⎥⎤2a a (a +b )(a -b )-a +b a (a -b )(a +b )·a +b a=a -b a (a +b )(a -b )·a +b a =1a 2.18.解:(1)3x +24≥2x -13-1,去分母,得3(3x +2)≥4(2x -1)-12,去括号,得9x +6≥8x -4-12,移项,得9x -8x ≥-4-12-6,合并同类项,得x ≥-22.(2)⎩⎪⎨⎪⎧4-2x <7(2-x ),①12x -2(x -2)≤4+3x ,② 解①,得x <2,解②,得x ≥0.故不等式组的解集为0≤x <2.(3)3x -1-2x +1=6x 2-1, 去分母、去括号,得3x +3-2x +2=6,解得x =1,经检验x =1是增根,分式方程无解.19.解:⎝ ⎛⎭⎪⎫1-4x +3÷x 2-2x +12x +6=x +3-4x +3·2(x +3)(x -1)2 =2x -1,当x =2+1时,原式=22+1-1= 2. 20.证明:∵AB ∥CD ,∴∠BAC =∠DCA .∵AF =CE ,∴AF +EF =EF +CE ,即AE =CF .在△ABE 和△CDF 中,⎩⎨⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF (AAS).21.解:(1)设该商店第一次购进水果x 千克,则第二次购进这种水果2x 千克.由题意得1 000x +2=2 8002x ,解得x =200.经检验,x =200是所列分式方程的解.答:该商店第一次购进水果200千克.(2)设最初每千克水果的标价是 y 元,则(200+200×2-50)·y +50×12y -1 000-2800≥3 100,解得y ≥12.答:最初每千克水果的标价至少是12元.22.解:(1)∵AB =AC ,∠A =36°,∴∠ABC =∠C =12×(180°-36°)=72°.∵DE 垂直平分AB ,∴AD =BD ,∴∠DBA =∠A =36°,∴∠DBC =∠ABC -∠ABD =36°.(2)由(1)得∠DBC =36°,∠C =72°,∴∠BDC =180°-∠C -∠DBC =72°,∴∠C =∠BDC ,∴BC =BD .∵AD =BD ,∴AD =BC =4.23.(1)证明:∵点Q 是BC 边上的中点,∴BQ =CQ .∵BN ⊥l ,CM ⊥l ,∴∠BNQ =∠CM Q =90°.又∵∠BQN =∠CQM ,∴△BQN ≌△CQM (AAS).∴QM =QN .(2)解:仍然成立.证明:延长NQ 交CM 于E ,∵点Q 是BC 边上的中点,∴BQ =CQ ,∵BN ⊥l ,CM ⊥l ,∴BN ∥CM ,∴∠NBQ =∠ECQ ,又∵∠BQN =∠CQE ,∴△BQN ≌△CQE (ASA).∴QN =QE .∵CM ⊥l ,∴∠NME =90°,∴QM =QN .24.(1)证明:∵△ABC ,△BDE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE .在△ABD 和△CBE 中,⎩⎨⎧AB =CB ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(2)解:成立.证明:∵△ABC ,△BDE 都是等边三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABC +∠CBD =∠DBE +∠CBD ,即∠ABD =∠CBE .在△ABD 和△CBE 中,⎩⎨⎧AB =CB ,∠ABD =∠CBE ,BD =BE ,∴△ABD ≌△CBE (SAS),∴AD =CE .(3)证明:如图,延长BE 至H 使EH =BE ,连接CH ,DH .∵BE =EH ,DE ⊥BH ,∴DB =DH ,∠BDE =∠HDE =30°,∴∠BDH =60°,∴△DBH 是等边三角形,∴BD =BH ,∠DBH =60°.∵△ABC 是等边三角形,∴∠ABC =60°,AB =CB .∴∠ABC +∠CBD =∠DBH +∠CBD ,即∠ABD =∠CBH .在△ABD 和△CBH 中,⎩⎨⎧AB =CB ,∠ABD =∠CBH ,BD =BH ,∴△ABD ≌△CBH (SAS),∴AD =CH ,∠A =∠HCB =∠ABC =60°,∴BF ∥CH ,∴∠F =∠ECH ,在△EBF 和△EHC 中,⎩⎨⎧∠BEF =∠HEC ,∠F =∠ECH ,BE =HE ,∴△EBF ≌△EHC (AAS),∴BF =CH ,∴AD =BF .湘教版八年级数学上册期末试卷2一、选择题(每题3分,共30分)1.若分式x 2-9x -3的值为0,则x 的值是( ) A .3 B .-3 C .±3 D .92.下列长度的三条线段能围成三角形的是( )A .1,2,3.5B .4,5,9C .20,15,8D .5,15,83.要使式子1+2x x -2有意义,则x 的取值范围是( ) A .x ≥12 B .x ≥-12 C .x ≥12且x ≠2 D .x ≥-12且x ≠24.化简a +1a 2-a ÷a 2-1a 2-2a +1的结果是( ) A.1a B .a C.a +1a -1 D.a -1a +15.如图,已知∠1=∠2,AC =AD ,添加下列条件:①AB =AE ;②BC =DE ;③∠C =∠D ;④∠B =∠E .其中能使△ABC ≌△AED 的条件有( )A .4个B .3个C .2个D .1个6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( )A.600x +50=450xB.600x -50=450xC.600x =450x +50D.600x =450x -507.不等式x -72+1<3x -22的负整数解有( ) A .1个 B .2个 C .3个 D .4个8.已知m =⎝ ⎛⎭⎪⎫-33×(-221),则有( ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-59.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 延长线上一点,当AP =CQ 时,PQ 交AC 于点D ,则DE 的长为( ) A.13 B.12 C.23 D .不能确定10.如图,E ,D 分别是△ABC 的边AC ,BC 上的点,若AB =AC ,AD =AE ,则( )A .当∠B 为定值时,∠CDE 为定值B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值二、填空题(每题3分,共24分)11.计算:45-25×50=________. 12.⎝ ⎛⎭⎪⎫-120=________,⎝ ⎛⎭⎪⎫13-1=________,用科学记数法表示-0.000 005 03为__________.13.关于x 的不等式组⎩⎨⎧x >m -1,x >m +2的解集是x >-1,则m =________. 14.若317-a 与33a -1互为相反数,则3a 的值为________.15.若关于x 的分式方程3-2kx x -3=23-x-2有增根,则k =________. 16.等腰三角形的顶角大于90°,如果过它顶角的顶点作一直线能将它分成两个等腰三角形,则顶角的度数一定是________.17.如图,在△ABC 中,AB =AC ,DE 垂直平分AB 交AC 于点E ,垂足为点D .若△ABC 的周长为28,BC =8,则△BCE 的周长为________.18.如图,BD 是∠ABC 的平分线,AD ⊥BD ,垂足为D ,∠DAC =20°,∠C =38°,则∠BAD =________.三、解答题(20,21题每题6分,24,25题每题12分,其余每题10分,共66分)19.(1)计算:212+3113-513-2348;(2)已知x =2+3,y =2-3,求代数式⎝ ⎛⎭⎪⎫x +y x -y -x -y x +y ·⎝ ⎛⎭⎪⎫1x 2-1y 2的值.20.解分式方程:(1)2-x 3+x =12+1x +3; (2)2x +9x +3-1x -3=5-3x -2x .21.已知x =1是不等式组⎩⎪⎨⎪⎧3x -52≤x -2a ,3(x -a )<4(x +2)-5的解,求a 的取值范围.22.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一直线上,连接BD交AC于点F.(1)求证:△BAD≌△CAE;(2)猜想BD,CE有何特殊位置关系,并说明理由.23.如图,AD是△ABC的角平分线.(1)若AB=AC+CD,求证:∠ACB=2∠B;(2)当∠ACB=2∠B时,AC+CD与AB的数量关系如何?说说你的理由.24.某服装店用4 500元购进一批衬衫,很快售完.服装店老板又用2 100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1 950元,则第二批衬衫每件至少要售多少元?25.已知△ABC和△DEF均为等边三角形,点D在△ABC的边AB上,点F在直线AC上;(1)若点C和点F重合(如图①),求证:AE∥BC;(2)若点F在AC的延长线上(如图②),(1)中的结论还能成立吗?给出你的结论并证明.答案一、1.B2.C3.D点拨:根据二次根式和分式有意义的条件,即被开方数大于或等于0,分母不等于0,可以得到⎩⎨⎧1+2x ≥0,x -2≠0,解得x ≥-12且x ≠2.故选D. 4.A 点拨:原式=a +1a (a -1)·(a -1)2(a +1)(a -1)=1a . 5.B 6.A 7.A8.A 点拨:⎝ ⎛⎭⎪⎫-33×(-221)=233×21=27=28,因为25<28<36,所以5<28<6,故选A.9.B 点拨:过P 作PF ∥BC 交AC 于点F .由△ABC 为等边三角形,易得△APF也是等边三角形,∴AP =PF .∵AP =CQ ,∴PF =CQ .又∵PF ∥CQ ,∴易得△PFD ≌△QCD .∴DF =DC .∵PE ⊥AF ,且PF =P A ,∴AE =EF .∴DE =DF +EF =12CF +12AF =12AC =12×1=12.10.B 点拨:∵AB =AC ,∴∠B =∠C .∵AD =AE ,∴∠ADE =∠AED =∠γ=∠CDE +∠C .由∠ADC =∠ADE +∠CDE = ∠CDE +∠C +∠CDE =2∠CDE +∠C =∠B +∠BAD ,可得2∠CDE = ∠BAD =∠α,∴∠CDE =12∠α.故当∠α为定值时,∠CDE 也为定值.二、11. 512.1;3;-5.03×10-613.-3 点拨:因为m +2>m -1,所以m +2=-1,所以m =-3.14.-2 点拨:由题知317-a =-33a -1,可得17-a =-(3a -1),∴2a =-16,∴a =-8.∴3a =-2.15.56 点拨:因为原分式方程有增根,所以增根为x =3.原分式方程化为整式方程为3-2kx =-2-2(x -3),把x =3代入,解得k =56.16.108° 点拨:在△ABC 中,设∠B =∠C =α.如图①,若AC =CD ,DA =DB ,则∠DAB =α.∴∠CDA =2α=∠CAD ,∴∠BAC =3α.由α+α+3α=180°,得α=36°,∴∠BAC =3α=108°.如图②,若AD =CD ,AD =BD ,则∠BAD =∠CAD =α,∴4α=180°,∴α=45°,∴∠BAC =2α=90°,不合题意.17.18 点拨:因为△ABC 的周长为AB +AC +BC =AB +AC +8=28,AB =AC ,所以AB =AC =10.又因为DE 垂直平分AB ,所以AE =BE .所以△BCE 的周长为BE +EC +BC =AE +EC +BC =AC +BC =10+8=18. 18.58° 点拨:设∠ABD =α,∠BAD =β,∵AD ⊥BD ,∴α+β=90°.①∵BD 是∠ABC 的平分线,∴∠ABC =2∠ABD =2α.∵∠ABC +∠BAC +∠C =180°,∴2α+β+20°+38°=180°.②联立①②可得⎩⎨⎧α+β=90°,2α+β=122°, 解得⎩⎨⎧α=32°,β=58°,∴∠BAD =58°. 三、19.解:(1)原式=43+3×233-433-23×43=43+23-43=2 3.(2)原式=(x +y )2-(x -y )2(x +y )(x -y )·y 2-x 2x 2y 2=4xy -(x +y )(y -x )·(y +x )(y -x )x 2y 2=-4xy . 当x =2+3,y =2-3时,原式=-44-3=-4. 20.解:(1)方程两边同乘2(x +3),得2(2-x )=x +3+2.整理,得-3x =1,所以x =-13.经检验,x =-13是原分式方程的解.(2)方程两边同乘x (x +3)(x -3),得(2x +9)(x -3)x -x (x +3)=5x (x +3)(x -3)-(3x -2)(x +3)(x -3).整理,得-12x =-18,所以x =32.经检验,x =32是原分式方程的解.21.解:∵x =1是原不等式组的解,∴⎩⎪⎨⎪⎧3-52≤1-2a ,①3(1-a )<4×(1+2)-5,② 解不等式①,得a≤1,解不等式②,得a >-43.故a 的取值范围为-43<a ≤1.22.(1)证明:∵∠BAC =∠DAE =90°,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△BAD 和△CAE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△BAD ≌△CAE.(2)解:BD ⊥CE .理由如下:由(1)可知△BAD ≌△CAE ,∴∠ABD =∠ACE .∵∠BAC =90°,∴∠ABD +∠AFB =90°.又∵∠AFB =∠DFC ,∴∠ACE +∠DFC =90°,∴∠BDC =90°,即BD ⊥CE .23.(1)证明:延长A C 至E ,使CE =CD ,连接DE .∵AB =AC +CD ,∴AB =AE .∵AD 平分∠BAC ,∴∠BAD =∠EAD .在△BAD 与△EAD 中,⎩⎨⎧AB =AE ,∠BAD =∠EAD ,AD =AD ,∴△BAD ≌△EAD .∴∠B =∠E.∵CD =CE ,∴∠CDE =∠E .∵∠ACB =∠CDE +∠E ,∴∠ACB =2∠E =2∠B .(2)解:AB =AC +CD .理由:在AC 的延长线上取点F ,使CF =CD ,连接DF . ∴∠CDF =∠F ,又∵∠ACB =∠CDF +∠F ,∴∠ACB =2∠F .∵∠ACB =2∠B ,∴∠B =∠F .在△BAD 与△F AD 中,⎩⎨⎧∠B =∠F ,∠BAD =∠F AD (角平分线的定义),AD =AD ,∴△BAD ≌△F AD .∴AB =AF =AC +CF =AC +CD .24.解:(1)设第一批这种衬衫购进了x 件,则第二批购进了12x 件.根据题意,可得4 500x -10=2 10012x,解得x =30,经检验,x =30是原方程的根,且符合题意.∴12x =12×30=15(件).答:两次分别购进这种衬衫30件,15件.(2)设第二批衬衫每件的售价为m 元.第一批衬衫每件的进价为4 500÷30=150(元),第二批衬衫每件的进价为150-10=140(元),∴(200-150)×30+15(m -140)≥1 950,解得m ≥170.答:第二批衬衫每件至少要售170元.25.(1)证明:∵△ABC 与△CDE 均为等边三角形,∴BC =AC ,DC =EC ,∠B =∠BCA =∠DCE =60°,∴∠BCD =∠ACE .易得△BCD ≌△ACE ,∴∠B =∠EAC .又∵∠B =∠ACB ,∴∠EAC =∠ACB .∴AE ∥BC .(2)解:若点F 在AC 的延长线上,(1)中的结论仍然成立,即AE ∥BC . 证明:过点F 作FM ∥BC 交AB 的延长线于点M .∵△ABC 为等边三角形,∴△AFM 也是等边三角形.∴∠M =∠AFM =60°.同(1)可证△FDM ≌△FEA ,∴∠EAF=∠M=60°. ∴∠AFM=∠EAF.∴AE∥FM.又∵FM∥BC,∴AE∥BC.。

湘教版八年级上册数学第2章 三角形 复习检测(含答案)

湘教版八年级上册数学第2章 三角形 复习检测(含答案)

湘教版八年级数学上第二章三角形期末复习及答案一、选择题1.能把一个三角形分成两个直角三角形的是三角形的()A. 高B. 角平分线C. 中线D. 外角平分线2.如果等腰三角形有一条边长是6,另一条边长是8,那么它的周长是()A. 20B. 20或22C. 22D. 243.下列命题正确的是()A. 两条直角边对应相等的两个直角三角形全等B. 一条边和一个锐角对应相等的两个三角形全等C. 有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D. 有两条边对应相等的两个直角三角形全等4.如图:△ABC中,D点在BC上,现有下列四个命题:①若AB=AC,则∠B=∠C.②若AB=AC,∠BAD=∠CAD,则AD⊥BC,BD=DC.③若AB=AC,BD=DC,则AD⊥BC,∠BAD=∠CAD.④若AB=AC,AD⊥BC,则BD=DC,∠BAD=∠CAD.其中正确的有()A. 1个B. 2个C. 3个D. 4个5.如图所示,△ABC≌△BDA,如果AB=6cm,BD=7cm,AD=4cm,那么BC的长为()A. 6cmB. 4cmC. 7cmD. 不能确定6.Rt△ABC中,∠C=90°,∠B=46°,则∠A=()A. 44°B. 34°C. 54°D. 64°7.以下各命题中,正确的命题是()(1)等腰三角形的一边长4 cm,一边长9 cm,则它的周长为17 cm或22 cm;(2)三角形的一个外角,等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形.A. (1)(2)(3)B. (1)(3)(5)C. (2)(4)(5)D. (4)(5)8.如图OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于()A. 60°B. 50°.C. 45°D. 30°9.下列语句中,属于命题的是()A. 直线AB和CD垂直吗B. 过线段AB的中点C画AB的垂线C. 同旁内角不互补,两直线不平行D. 连结A,B两点10.下列属于尺规作图的是()A. 用刻度尺和圆规作△ABCB. 用量角器画一个300的角C. 用圆规画半径2cm的圆D. 作一条线段等于已知线段二、填空题11.已知等腰三角形的两边长是3cm和6cm,则这个等腰三角形的周长是________ cm.12.锐角三角形ABC中,高AD和BE交于点H,且BH=AC,则∠ABC=________度.13.等腰三角形的腰长是6,则底边长3,周长为________.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件________.15.等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,则这个等腰三角形的底边长是________.16.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是________.17.如图.在△ABC中,点D在BC边上,BD=DC,点E在AD上,CF∥AB,∠BAD=∠DEF,若AB=5,CF=2.则线段EF的长为________.18.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AC+CD=BD,若CD=1,则BD=________.三、解答题19.如图图形中哪些具有稳定性?20.如图△ABC中,BE是∠ABC的外角平分线,BE交AC的延长线于E,∠A=∠E,求证:∠ACB=3∠A.21.如图,已知A,F,E,B四点共线,AC⊥CE,BD⊥DF,AE=BF,AC=BD.求证:△ACF≌△BDE.22.如图,△ABC中,AB=AC,点M.N分别在BC所在直线上,且AM=AN,BM=CN吗?说明理由.23.如图,已知:AO=BO,OC=OD.求证:∠ADC=∠BCD.四、综合题24.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6求BC的长.小聪思考:因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).请回答:(1)△BDE是________三角形.(2)BC的长为________.参考小聪思考问题的方法,解决问题:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.参考答案一、选择题1. A2.B3.A4.D5.B6.A7.D8.A9.C10.D二、填空题11.15 12.45 13.15 14.AB=AC15.5cm16.()n﹣1×75°17.3 18.3三、解答题19.解:根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.显然(1)、(4)、(6)3个.20.证明:∵BE是∠ABC的外角平分线,∴∠EBD=∠EBC,∵∠A=∠E,∴∠EBD=∠EBC=∠A+∠E=2∠A,∵∠ACB=∠E+∠EBC,∴∠ACB=3∠A21.证明:∵AC⊥CE,BD⊥DF(已知),∴∠ACE=∠BDF=90°(垂直的定义),在Rt△ACE和Rt△BDF中,,∴Rt△ACE≌Rt△BDF(HL),∴∠A=∠B(全等三角形的对应角相等),∵AE=BF(已知),∴AE﹣EF=BF﹣EF(等式性质),即AF=BE,在△ACF和△BDE中,,∴△ACF≌△BDE(SAS)22.解:BM=CN,理由:过点A作AD⊥MN于点D,∵AB=AC∴BD=CD,∵AM=AN,∴MD=ND,则BM=CN.23.证明:在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∵OC=OD,∴∠ODC=∠OCD,∴∠ADO﹣∠ODC=∠BCO﹣∠OCD,即∠ADC=∠BCD四、综合题24.(1)等腰(2)5.8。

湘教版数学八年级上册期末测试卷及答案(共4套)

湘教版数学八年级上册期末测试卷及答案(共4套)

湘教版数学八年级上册期末测试卷(一)(时间:120分分值:150分)一、选择题:(每小题4分,共40分)1.(4分)若,则2a+b﹣c等于()A.0 B.1 C.2 D.32.(4分)已知甲、乙、丙三数,甲=6+,乙=2+,丙=,则甲、乙、丙的大小关系为()A.甲=乙=丙 B.丙<甲<乙C.甲<丙<乙D.丙<乙<甲3.(4分)解不等式中,出现错误的一步是()A.6x﹣3<4x﹣4 B.6x﹣4x<﹣4+3 C.2x<﹣1 D.4.(4分)不等式的正整数解有()A.2个B.3个C.4个D.5个5.(4分)如果有意义,那么x的取值范围是()A.x>1 B.x≥1 C.x≤1 D.x<16.(4分)的相反数是()A.﹣B.C.﹣D.7.(4分)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和58.(4分)已知a<b,则化简二次根式的正确结果是()A.B.C.D.9.(4分)已知实数a,b,c在数轴上的位置是:a在b的左边,b在0的左边,c在0的右边,则计算a+|b﹣a|+|b﹣c|的结果是()A.c B.2b+c C.2a﹣c D.﹣2b+c10.(4分)如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B.C.D.二、填空题:(每小题4分,共32分)11.(4分)用不等式表示“6与x的3倍的和大于15”.12.(4分)不等式的最大正整数解是,最小正整数解是.13.已知:2a﹣4、3a﹣1是同一个正数的平方根,则这个正数是.14.一个负数a的倒数等于它本身,则=;若一个数a的相反数等于它本身,则﹣5+2=.15.(4分)比较大小:﹣3﹣2.16.(4分)如果最简二次根式与是同类二次根式,那么a=.17.(4分)与的关系是.18.(4分)观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:.三、解答题:(共6小题,共78分)19.(32分)计算:(1);(2);(3);(4).20.(8分)x取什么值时,代数式5(x﹣1)﹣2(x﹣2)的值大于x+2的相反数.21.(10分)先化简,再求值:(﹣)÷,其中x=2.22.(10分)解方程组,并求的值.23.(10分)已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c的算术平方根.24.(8分)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.(3)计算:.参考答案:一、选择题。

完整版)新湘教版八年级数学上册期末经典复习题

完整版)新湘教版八年级数学上册期末经典复习题

完整版)新湘教版八年级数学上册期末经典复习题八年级数学上册练题一、细心填一填1.下列有理式中,有①,②,③,④四个选项。

2.如果把分式$\frac{52-a}{\pi-1}-\frac{10x}{x+y}$中的$x$、$y$都扩大10倍,则分式的值为$\frac{520-10a}{10\pi-10}-\frac{100x}{10x+10y}$。

3.将分式$\frac{x^2-1}{2-1+2x-x}$化简的结果是$\frac{1}{x+1}$。

4.计算$\frac{2a}{b}-\frac{2b}{a} \div \frac{2b}{a}$的结果是$2a^2$。

5.若$(x-3)^{-2}(3x-6)$有意义,则$x$的取值范围是$x\in(-\infty,0)\cup(3,+\infty)$。

6.方程$\frac{11-x}{2x}=-1$去分母后的结果是$x=-\frac{11}{3}$。

7.学生有$m$个,若每$n$个人分配1间宿舍,则还有一人没有地方住,则宿舍的间数为$m-n+1$间。

8.若关于$x$的方程$\frac{m-1}{x-1}-\frac{m}{x}=0$有增根,则$m=2$。

9.某市为处理污水需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设10米,结果提前20天完成任务。

设原计划每天铺设管道$x$米,则可得方程$4000=(x+10)(\frac{4000}{x+10}-20)$。

10.当$x\neq1$时,分式$\frac{2}{x-1}-\frac{3}{x+1}$有意义,当$x=1$时,分式的值等于$-\frac{1}{2}$。

11.计算$\frac{2mn}{-mn}\div mn$等于$-2$。

12.用四舍五入法,对0.xxxxxxx取近似值,若要求保留三个有效数字,并用科学记数法表示,则该数的近似值为$7.10\times10^{-3}$。

2023年湘教版数学八年级上册期末检测题附答案(二)

2023年湘教版数学八年级上册期末检测题附答案(二)

湘教版数学八年级上册期末测试题(时间:90分钟 分值:100分)一、选择题(每小题只有一个正确答案,本大题共8个小题,每小题3分,共24分)1.(3分)下列计算正确的是( )A .30=0B .3﹣2=﹣6C .3﹣2=﹣D .3﹣2=2.(3分)若代数式有意义,则x 必须满足条件( )A .x ≥﹣1B .x ≠﹣1C .x ≥1D .x ≤﹣13.(3分)已知一个等腰三角形的两边长分别是5cm 与6cm ,则这个等腰三角形的周长为( )A .16cmB .17cmC .16cm 或17cmD .无法确定4、下列四个实数,是无理数的为( )A.0C.-2D.135、已知一粒米的质量是0.000021千克,这个数据用科学记数法表示为()A.千克B.千克C.千克D.千克6、如果,那么m 的取值范围是()A. B. C. D.7.(3分)不等式组的解集在数轴上表示如图所示,则该不等式组可能为( )A .B . C. D . 8.(3分)(﹣4)2的平方根是( )A .4B .±4C .2D .±2二、填空题(每小题3分,共24分)9、4的算术平方根是.10=.11、不等式组⎩⎨⎧≤->5121x x 的正整数解是.12.(3分)在实数范围内分解因式:x 2﹣3=.13.(3分)实数﹣4的绝对值等于.14.(3分)如图,在△BCD 中,∠C=30°,∠D=40°,点A 为CB 的延长线上一点,BE 为∠ABD 的角平分线,则∠ABE=°.42110-⨯62.110-⨯52.110-⨯42.110-⨯1m =01m <<12m <<23m <<34m <<15.(3分)如图,已知AD=BC ,则再添加一个条件(只填一种),可证出△ABC ≌△BAD .16、计算:211⨯+321⨯+431⨯+541⨯+…+201920181⨯=. 三、解答题(共7大题,共52分) 17、(1)(4分)计算:()-1201-2-+2π⎛⎫ ⎪⎝⎭;(2)(4.18、(6分)解不等式组并把解集在数轴上表示出来.19、(6分)解分式方程:253x x =+.20、(7分)先化简代数式,再从-2,2,0三个数中选一个恰当的数作为的值代入求值.21、(8分)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片樟树叶一年的平均滞尘量比一片槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的樟树叶的片数与一年滞尘550毫克所需的槐树叶的片数相同,求一片槐树叶一年的平均滞尘量.22、(8分)已知:如图所示,在△ABC 中,∠ABC=∠ACB ,BD ⊥AC ,垂足为点D ,CE ⊥AB ,垂足为点E .求证:BD=CE .22321(1)24a a a a -+-÷+-a23、(9分)在长方形ABCD 中,AD=2AB ,E 是AD 的中点,一块三角板的直角顶点与点E 重合,将三角板绕点E 按顺时针方向旋转,当三角板的两直角边分别与AB 、BC 分别相交于点M ,N 时,观察或测量BM 与CN 的长度,你能得到什么结论?并证明你的结论.参考答案一、1.D 2.A 3.C 4、B 5、C 6、B 7.A 8.B二、9、2 10、2311、2,3 12.x 2﹣()2=(x+)(x ﹣)13.4﹣14.3515.AC=BD16、 三、17、(1)5 (218、-1<2x ≤,图略(其中解法4分,画图2分)19、解:2(x +3)=5 x ,解得x =2.经检验x =2是原方程的解.∴.20、解:.. 21、解:设一片槐树叶一年的平均滞尘量为x 毫克,则一片樟树叶一年的平均滞尘量为(2x –4)2=x 21(2)(2)=2(1)a a aa a -+-⨯+-原式21a a -=-22211a a --===--当a=0时,原式毫克.根据题意,得. 解得x =22.经检验x =22是方程的解.答:一片槐树叶一年的平均滞尘量为22毫克.22、解:∵BD ⊥AC ,CE ⊥AB ,∴∠BEC=∠BDC=90°,在△BCD 和△CDE 中,,∴△BDC ≌△CDE (AAS ),∴BD=CE .23、解:BM 与与CN 的长度相等.证明:在矩形ABCD 中,AD=2AB ,E 是AD 的中点, 如图,作EF ⊥BC 于点F ,则有AB=AE=EF=FC , ∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°, ∴∠AEM=∠FEN ,在Rt △AME 和Rt △FNE 中,,∴Rt △AME ≌Rt △FNE ,∴AM=FN ,∴MB=CN . 100055024x x=-。

(必刷题)湘教版八年级上册数学期末测试卷及含答案

(必刷题)湘教版八年级上册数学期末测试卷及含答案

湘教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )A.50°B.51°C.51.5°D.52.5°2、若,,则b-a的值是()A.31B.-31C.29D.-303、分式的值为0,则a等于()A.2或-2B.2C.-2D.4或-44、下列各组数中,互为相反数的是()A.-2与B.∣-2∣与C.-2与D.-2与5、如图,是函数上两点,为一动点,作轴,轴,下列说法正确的是( )①;②;③若,则平分;④若,则A.①③B.②③C.②④D.③④6、如图,AD是∠CAE的平分线,∠B=35°,∠DAE=60°,那么∠ACB等于()A.25°B.85°C.95°D.105°7、给出下列命题:①三角形的一个外角一定大于它的一个内角②若一个三角形的三个内角之比为1:3:4,它肯定是直角三角形③三角形的最小内角不能大于60°④三角形的一个外角等于和它不相邻的两个内角的和其中真命题的个数是()A.1个B.2个C.3个D.4个8、已知,,判断之间的关系满足()A. B. C.D.9、25的算数平方根是( )A. B.±5 C. D.510、将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为()A.1B.C.D.411、若b<0<a,则下列各式不成立的是()A.a-b>0B.-a+b<0C.ab<0D.|a|>|b|12、下列运算正确的是( )A. B. C. D.13、如图,三角形ABC中,∠A 的平分线交 BC 于点 D,过点D作DE⊥AC,DF ⊥AB,垂足分别为E,F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③;④EF一定平行 BC.其中正确的是()A.①②③B.②③④C.①③④D.①②③④14、能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A,B,C都可以15、估算的结果在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间二、填空题(共10题,共计30分)16、不等式2x+6>3x+4的正整数解是________.17、如图△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC 的面积是24,则△ABE的面积是________.18、如果是二次根式,那么a、b应满足的条件是________.19、CD是线段AB的垂直平分线,则∠CAD=∠CBD.请说明理由.解:∵CD是线段AB的垂直平分线(已知),∴AC=________,________=BD(________)在△ADC和________中,________=BC,AD=________,CD=________,∴________≌________(________).∴∠CAD=∠CBD (全等三角形的对应角相等).20、如图所示,把三张边长均为cm的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,若底面未被卡片覆盖(阴影部分)的面积为5cm²,则盒底的边长是________.21、计算:=________,=________22、比较大小:- ________ -1.523、已知为三角形的三边,化简的结果是 ________.24、若分式的值为0,则的值为________.25、如图,已知△AOC≌△BOC,∠AOB=70°,则∠1=________.三、解答题(共5题,共计25分)26、先化简,再请你用喜爱的数代入求值27、如图,已知矩形纸板面积为8a,两邻边之比为3:4,现欲在每个角处裁下一个面积为a的正方形后,制成一个无盖的纸箱.求制成的纸箱的侧面积.28、已知:中,、的角平分线相交于点,过作交于点,交于点,求证:.29、如图,已知:AB⊥BC于B,EF⊥AC于G,DF⊥BC于D,BC=DF.求证:AC=EF.30、计算(1)2﹣3+(π﹣3)0(2)(﹣2a2b)2•3ab2÷(﹣6a3b)参考答案一、单选题(共15题,共计45分)1、D2、A3、C4、A6、B7、C8、C9、D10、C11、D12、D13、A14、B15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、30、。

湘教版八年级数学上册期末测试题(附参考答案)

湘教版八年级数学上册期末测试题(附参考答案)

湘教版八年级数学上册期末测试题(附参考答案)一、选择题:本题共12个小题,每题3分,共36分。

每小题只有一个选项符合题目要求。

1. 计算:a 2−5aa−5=( )A.a-5 B.a+5C.5 D.a2.如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是( )A.-√2B.√2C.√5D.π3.下列各组线段中,不能构成三角形的是( )A.1,2,3 B.2,3,4C.3,4,5 D.4,5,64.如图,∠A=40°,∠CBD是△ABC的外角,∠CBD=120°,则∠C的度数是( )A.90°B.80°C.60°D.40°5.如图,在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线OC是∠AOB的平分线,请说明此做法的依据是( )A.SAS B.ASAC.AAS D.SSS6.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB =6,DE=3,则AC的长是( )A.8 B.6C.5 D.47.如图,在△ABC中,AC>BC,分别以点A,B为圆心,以大于12AB的长为半径画弧,两弧交于点D,E,经过点D,E作直线分别交AB,AC于点M,N,连接BN,下列结论正确的是( )A.AN=NC B.AN=BNC.MN=12BC D.BN平分∠ABC8.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A.2+xx−y B.2xx−yC.2+xxy D.x2x+y9.已知a-1>0,则下列结论正确的是( )A.-1<-a<a<1 B.-a<-1<1<a C.-a<-1<a<1 D.-1<-a<1<a10.若关于x的不等式组{4(x−1)>3x−1,5x>3x+2a的解集为x>3,则a的取值范围是( )A.a>3 B.a<3C.a≥3 D.a≤311.如图,在等边三角形ABC中,D,E分别是BC,AC的中点,P是线段AD上的一个动点,当△PCE的周长最小时,点P的位置在( )A .A 点处B .D 点处C .AD 的中点处D .△ABC 三条高的交点处12.在正数范围内定义一种运算 “※”,其规则为a ※b =1a +1b ,如2※4=12+14,根据这个规则,方程3※(x -1)=1的解为( ) A .x =52 B .x =-1 C .x =12D .x =-3二、填空题:本题共6个小题,每小题3分,共18分。

湘教版八年级上册数学期末考试试卷附答案

湘教版八年级上册数学期末考试试卷附答案

湘教版八年级上册数学期末考试试题一、选择题。

(每小题只有一个答案正确)1.已知a b <,下列式子成立的是()A .22a b +>+B .44a b<C .33a b-<-D .如果0c <,那么a bc c<2.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是()A .B.C .D.3.下列计算24(2)a -的结果中,正确的是()A .616a B .68a C .816a D .88a 4.三角形的两边长分别为5cm 和7cm ,则第三边长可能为()A .1cmB .2cmC .5cmD .12cm 5.若关于x 的分式方程3xx -=2﹣3-m x 有增根,则m 的值为()A .﹣3B .2C .3D .不存在6.分式方程23121x x x--=+的解为()A .16x =-B .16x =C .13x =D .12x =7.不等式组2351x x ⎧-≥⎪⎨⎪+<-⎩的解集为()A .6x ≥-B .6x >-C .6x ≤-D .6x <-8.如图,在锐角△ABC 中,8AB =,16ABC S ∆=,BAC ∠的平分线交BC 于点D ,且AD BC ⊥,点,M N 分别是AD 和AB 上的动点,则BM MN +的最小值是()A .4B .5C .6D .8二、填空题9.已知:△ABC ≌△A′B′C′,∠A=∠A′=80°,∠B=∠B′=60°,则∠C ′=_______度.10.如图,在△ABC 中,∠C =90°,点D 在AC 上,DE ∥AB ,若∠CDE =165°,则∠B 的度数为_______.11.化简2242()44224x xx x x x -+÷++++的结果是_______.12.如图,△ABC 是等边三角形,延长BC 到点D ,使CD =AC ,连接AD .则CAD ∠=_______.13.已知:11x x -=,则221x x+=_______.14.某市为绿化环境计划植树3000棵,实际劳动中每天植树的数量比原计划多30%,结果提前5天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为_______.15.如图,在Rt ABC 中,90C ∠=︒,22B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边AC ,AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=_______°.16.已知方程232a a a -+=,且关于x 的不等式组x a x b≥⎧⎨≤⎩只有3个整数解,那么b 的取值范围是_______.三、解答题17.解方程4233x x x x-=--.1823(2)3-+-+.19.解不等式组2121533324()2x x x x --⎧+≥⎪⎪⎨⎪-≤-⎪⎩.20.先化简,再求值:2231693x x x xx x x x -++÷+-+-,其中x =.21.如图,已知:AB =AC ,BD =CD ,点P 是AD 延长线上的一点.求证:PB =PC.22.如图,C 为线段AB 上一点,AD ∥EB ,AC =BE ,AD =BC .CF 平分∠DCE .(1)求证:△ACD ≌△BEC ;(2)问:CF 与DE的位置关系?23.某商店准备购进A ,B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A ,B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?24.在△ABC 中,AB =AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE .(1)如图1,当点D 在线段BC 上,如果∠BAC =90°,则∠BCE 为多少?说明理由;(2)设∠BAC =α,∠BCE =β.①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论,不需证明.参考答案1.B 【分析】根据不等式的基本性质,注意判断选项,即可得到答案.【详解】∵a b <,∴22a b +<+,故A 不成立,∵a b <,∴44a b <,故B 成立,∵a b <,∴33a b ->-,故C 不成立,∵a b <,0c <,∴a bc c>,故D 不成立.故选B .【点睛】本题主要考查不等式的基本性质,熟练掌握不等式的基本性质,是解题的关键.2.A 【分析】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A 是作BC 边上的高,C 是作AB 边上的高,D 是作AC 边上的高.故选A.考点:三角形高线的作法3.C 【分析】根据积的乘方法则,即可得到答案.【详解】24(2)a -=(-2)4∙(a 2)4=816a ,故选C .【点睛】本题主要考查积的乘方法则,熟练掌握“积的乘方,等于各个因式的乘方的积”是解题的关键.4.C 【分析】根据三角形的三边长关系,求出第三边长范围,进而即可得到答案.【详解】∵三角形的两边长分别为5cm 和7cm ,∴7-5<第三边<5+7,即:2<第三边<12,故选C .【点睛】本题主要考查三角形的三边长关系,熟练掌握三角形的任意两边之差小于第三边,任意两边之差大于第三边,是解题的关键.5.C 【详解】解:方程两边都乘x -3,得x -2(x -3)=m ∵原方程有增根,∴最简公分母x -3=0,解得x =3,当x =3时,m =3故m 的值是3故选C .6.B 【分析】通过去分母,去括号,移项合并同类项,未知数系数化为1,即可求解.【详解】23121x x x--=+,去分母得:(23)12(1)x x x x x --+=+,化简得:-6x=-1,解得:x=16,经检验:x=16是方程的解,∴分式方程的解为:x=16.故选B .【点睛】本题主要考查解分式方程,熟练掌握解分式方程的步骤,是解题的关键,注意分式方程的解要检验.7.D 【分析】分别求出每个不等式的解,再取公共部分,即可求解.【详解】2351xx ⎧-≥⎪⎨⎪+<-⎩①②,由①得:x≤-6,由②得:x <-6,∴不等式组的解为:6x <-.故选D .【点睛】本题主要考查解一元一次不等式组,熟练掌握“大大取大,小小取小,大小小大中间找”,是解题的关键.8.A 【分析】作BH ⊥AC ,垂足为H ,交AD 于M′点,过M′点作M′N′⊥AB ,垂足为N′,根据AD 是∠BAC 的平分线可知M′H =M′N′,则BM′+M′N′为所求的最小值,最小值为BH 的长,进而即可求解.【详解】解:如图,作BH ⊥AC ,垂足为H ,交AD 于M′点,过M′点作M′N′⊥AB ,垂足为N′,∵AD 是∠BAC 的平分线,∴M′H =M′N′,则BM′+M′N′=BM′+M′H=BH ,∴BH 是点B 到直线AC 上各个点的最短距离,∴BM MN +的最小值=BH ,∵BAC ∠的平分线交BC 于点D ,且AD BC ⊥,∴∠BAD=∠CAD ,∠ADC=∠ADB=90°,AD=AD ,∴∆BAD ≅∆CAD ,∴AC=AB=8,∴12AC∙BH=16ABC S ∆=,∴BH=4,即BM MN +的最小值是4.【点睛】本题考查的是最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,化两条线段的和的最小值为一条垂线段的长.9.40°【分析】根据全等三角形的性质以及三角形内角和定理,即可求解.【详解】∵△ABC≌△A′B′C′,∠A=∠A′=80°,∠B=∠B′=60°,∴∠C′=∠C=180°-80°-60°=40°,故答案是:40°.【点睛】本题主要考查全等三角形的性质以及三角形内角和定理,熟练掌握上述性质和定理是解题的关键.10.75°【分析】利用平角的定义可得∠ADE=15°,再根据平行线的性质知∠A=∠ADE=15°,再由内角和定理可得答案.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°−∠C−∠A=180°−90°−15°=75°.故答案是:75°.本题考查的是平行线的性质以及三角形内角和定理的运用,解题时注意:两直线平行,内错角相等.11.2【分析】先约分,再算加法,然后把除法化为乘法,进而即可求解.【详解】原式=2(2)(2)2(2)224x x xx x x ⎡⎤+-+÷⎢⎥+++⎣⎦=()222222x x x x x -⎡⎤+÷⎢⎥+++⎣⎦=()222222x x x x x +-⎡⎤+⋅⎢⎥++⎣⎦=()222x x x x+⋅+=2,故答案是:2.【点睛】本题主要考查分式的化简,掌握分式的四则混合运算法则,是解题的关键.12.30°【分析】AB =AC =BC =CD ,即可求出∠CAD =∠D ,,进而即可求解.【详解】解:∵△ABC 是等边三角形,∴∠B =∠BAC =∠ACB =60°,∵CD =AC ,∴∠CAD =∠D ,∵∠ACB =∠CAD +∠D =60°,∴∠CAD =∠D =30°,故答案是:30°.【点睛】本题考查了等边三角形的性质,等腰三角形的性质,熟练掌握等腰三角形和等边三角形的性质,是解题的关键.13.3【分析】根据完全平方公式的变形公式,即可求解.【详解】∵11x x-=,∴221x x +=2212123x x ⎛⎫-+=+= ⎪⎝⎭,故答案是:3.【点睛】本题主要考查完全平方公式的变形公式,熟练掌握222()2a b a b ab +=-+,是解题的关键.14.3000300051.2x x-=【分析】设原计划每天植树x 棵,则实际每天植树(1+20%)x =1.2x ,根据“原计划所用时间−实际所用时间=5”列方程即可.【详解】解:设原计划每天植树x 棵,则实际每天植树(1+20%)x =1.2x ,根据题意可得:3000300051.2x x-=,故答案为:3000300051.2x x-=.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是找到题目蕴含的相等关系.15.56°【分析】根据直角三角形两锐角互余得∠BAC =68°,由角平分线的定义得∠BAM =34°,由线段垂直平分线可得△AQM 是直角三角形,故可得∠AMQ +∠BAM =90°,即可求出α.【详解】解:∵△ABC 是直角三角形,∠C =90°,∴∠B +∠BAC =90°,∵∠B=22°,∴∠BAC=90°−∠B=90°−22°=68°,由作图知:AM是∠BAC的平分线,∴∠BAM=12∠BAC=34°,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠BAM=90°,∴∠AMQ=90°−∠BAM=90°−34°=56°,∴α=∠AMQ=56°.故答案为:56°.【点睛】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的定义,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.16.3≤b<4【分析】首先解分式方程求得a的值,然后根据不等式组的解集确定x的范围,再根据只有3个整数解,确定b的范围.【详解】解:解方程232aa a -+=,两边同时乘以a得:2-a+2a=3,解得:a=1,∴关于x的不等式组x a x b≥⎧⎨≤⎩,则解集是1≤x≤b ,∵不等式组只有3个整数解,则整数解是1,2,3,∴3≤b <4.故答案是:3≤b <4.【点睛】此题考查的是一元一次不等式组的解法和解分式方程,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.2x =-【分析】通过去分母,去括号、移项、合并同类项,即可求解.【详解】解:方程两边同乘()3x -,得()423x x x --=-,去括号、移项、合并同类项,得36x =-,解得2x =-.检验:2x =-时,30x -≠,∴2x =-是原分式方程的解.【点睛】本题主要考查解分式方程,熟练掌握去分母,去括号、移项、合并同类项,未知数系数化为1是解题的关键.18.1【分析】先算立方根,乘方以及绝对值,再算加减法,即可求解.【详解】原式=243-+-=1【点睛】本题主要考查实数的混合运算,熟练掌握立方根,乘方以及绝对值,是解题的关键.19.28117x -≤≤【分析】分别求出各个不等式的解,再取各个解的公共部分,即可得到答案.【详解】解:2121533324()2x x x x --⎧+≥⎪⎪⎨⎪-≤-⎪⎩①②,由①得:3(2x-1)+15≥5(2-x),即:11x≥-2,解得:211x ≥-,由②得:3x-2≤6-4x ,即:7x≤8,解得:87x ≤,∴不等式组的解为:28117x -≤≤.【点睛】本题主要考查解一元一次不等式组,熟练掌握“大大取大,小小取小,大小小大中间找”是解题的关键.20.11x -,1-2【分析】通过约分和通分对分式进行化简,再代入求值,即可求解.【详解】原式=()23(1)133x xx x x x x -++÷+--=()2331(1)3x x x x x x x ---⋅++-=11(1)x x x x -++=21(1)(1)x x x x x -++=(1)(1)(1)x x x x +-+=1x x-=11x-,当x =时,原式=12.【点睛】本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.21.见详解【分析】先证明△ABD ≌△ACD ,得∠BAP =∠CAP ,再证明△ABP ≌△ACP ,即可得到结论.【详解】证明:在△ABD 和△ACD 中,AB AC AD AD BD CD ⎧⎪⎨⎪⎩===,∴△ABD ≌△ACD ,∴∠BAP =∠CAP ,在△ABP 和△ACP 中,AB AC BAP CAP AP AP ⎧⎪∠∠⎨⎪=⎩==,∴△ABP ≌△ACP ,∴PB =PC .【点睛】本题考查全等三角形的判定和性质,,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(1)证明见解析;(2)CF ⊥DE .【分析】(1)根据平行线性质求出∠A =∠B ,根据SAS 推出即可;(2)根据全等三角形的性质推出CD =CE ,根据等腰三角形性质可得CF ⊥DE.【详解】证明:(1)∵AD ∥BE ,∴∠A =∠B ,在△ACD 和△BEC 中,AD BC A B AC BE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BEC (SAS );(2)∵△ACD ≌△BEC ,∴CD =CE ,又∵CF 平分∠DCE ,∴CF ⊥DE .【点睛】本题考查了平行线性质,全等三角形的性质和判定,等腰三角形性质的应用,注意:全等三角形的判定定理有SAS 、ASA 、AAS 、SSS ,全等三角形的对应边相等,对应角相等.23.(1)A 种商品每件的进价为50元,B 种商品每件的进价是30元;(2)该商店有5种进货方案.【分析】(1)设A 种商品每件的进价为x 元,则B 种商品每件的进价是(x−20)元,由题意得关于x 的分式方程,求解并检验,然后作答即可;(2)设购进A 种商品a 件,则购进B 种商品(40−a )件,由题意得关于a 的不等式组,解得a 的取值范围,再取整数解,则方案数可得.【详解】解:(1)设A 种商品每件的进价为x 元,则B 种商品每件的进价是(x−20)元,由题意得:3000180020x x =-,解得:x =50,经检验,x =50是原方程的解且符合实际意义.50−20=30(元),答:A 种商品每件的进价为50元,B 种商品每件的进价是30元;(2)设购进A 种商品a 件,则购进B 种商品(40−a )件,由题意得:()5030401560402a a a a ⎧+-≤⎪⎨-≥⎪⎩,解得:403≤a≤18,∵a 取整数,∴a 可为14,15,16,17,18,答:该商店有5种进货方案.【点睛】本题考查了分式方程和一元一次不等式组在实际问题中的应用,理清题中的数量关系是解题的关键.24.(1)90°;(2)①α+β=180°,理由见详解;②点D 在直线BC 上移动,α+β=180°或α=β.【分析】(1)由等腰直角三角形的性质可得∠ABC =∠ACB =45°,由“SAS”可证△BAD ≌△CAE ,可得∠ABC =∠ACE =45°,可求∠BCE 的度数;(2)①由“SAS”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论;②分两种情况画出图形,由“SAS”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论.【详解】解:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△BAD ≌△CAE (SAS )∴∠ABC =∠ACE =45°,∴∠BCE =∠ACB +∠ACE =90°;(2)①α+β=180°,理由:∵∠BAC =∠DAE ,∴∠BAC−∠DAC =∠DAE−∠DAC .即∠BAD =∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .∵∠ACE +∠ACB =β,∴∠B +∠ACB =β,∵α+∠B +∠ACB =180°,∴α+β=180°;②如图1:当点D 在射线BC 上时,α+β=180°,连接CE,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,在△ABC 中,∠BAC +∠B +∠ACB =180°,∴∠BAC +∠ACE +∠ACB =∠BAC +∠BCE =180°,即:∠BCE +∠BAC =180°,∴α+β=180°,如图2:当点D 在射线BC 的反向延长线上时,α=β.连接BE ,∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∴∠ABD=∠ACE=∠ACB+∠BCE,∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,∵∠BAC=180°−∠ABC−∠ACB,∴∠BAC=∠BCE.∴α=β;综上所述:点D在直线BC上移动,α+β=180°或α=β.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,三角形的内角和定理,证明△ABD≌△ACE是解本题的关键.。

湘教版八年级上册数学期末测试卷及答案

湘教版八年级上册数学期末测试卷及答案

湘教版八年级上册数学期末测试卷及答案成绩好坏,不足为怪,只要努力,无愧天地!祝你八年级数学期末考试取得好成绩,期待你的成功!下面是店铺为大家整编的湘教版八年级上册数学期末测试卷,大家快来看看吧。

湘教版八年级上册数学期末测试题一、选择题(每小题3分,共12小题,满分36分.请把表示正确答案的字母填入下表中对应的题号下.)1.下列分式中,是最简分式的是( )A. B.C. D.2.当分式的值为0时,字母x的取值应为( )A.﹣1B.1C.﹣2D.23.下列计算正确的是( )A.2﹣3=﹣8B.20=1C.a2•a3=a6D.a2+a3=a54.(﹣8)2的立方根是( )A.4B.﹣4C.8D.﹣85.若代数式有意义,则x必须满足条件( )A.x≠﹣B.x>C.x>﹣D.x≥﹣6.已知一个等腰三角形的一个内角是50°,则这个等腰三角形的另外两个内角度数分别是( )A.50°,80°B.65°,65°C.50°,80°或65°,65°D.无法确定7.下列命题是假命题的是( )A.实数与数轴上的点一一对应B.如果两个数的绝对值相等,那么这两个数必定也相等C.对顶角相等D.三角形的重心是三角形三条中线的交点8.下列长度的三根线段,能构成三角形的是( )A.3cm,10cm,5cmB.4cm,8cm,4cmC.5cm,13cm,12cmD.2cm,7cm,4cm9.不等式组的解集为( )A.x>﹣1B.x≤3C.110.计算÷ × 的结果估计在( )A.5至6之间B.6至7之间C.7至8之间D.8至9之间11.已知关于x的方程﹣ =0的增根是1,则字母a的取值为( )A.2B.﹣2C.1D.﹣112.用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中( )A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°二、填空题(每小题3分,共6小题,满分18分)13.最小刻度为0.2nm(1nm=10﹣9m)的钻石标尺,可以测量的距离小到不足头发丝直径的十万分之一,这也是目前世界上刻度最小的标尺,用科学记数法表示这一最小刻度为m.14.分式方程 =﹣4的解是x= .15.计算:• =.16.如图,将三角尺的直角顶点放在直尺的一边上,使∠1=60°,∠2=100°,则∠3=°.17.如图,已知∠BAC=∠DAC,则再添加一个条件,可使△ABC≌△ADC.18.如图,已知在△ABC中,AB=7,BC=6,AC的垂直平分线DE 交AC于点E,交AB于点D,连接CD,则△BCD的周长为.三、解答题:(19题每小题8分,20题6分,满分14分)19.(1)计算:﹣(2)计算:(2 ﹣5 )﹣( ﹣ )20.解下列不等式≤ ﹣1,并将解集在数轴上表示出来.四、分析与说理:(每小题8分,共2小题,满分16分)21.已知:如图所示,AB=AC,CE与BF相交于点D,且BD=CD.求证:DE=DF.22.已知:如图所示,在边长为4的等边△ABC中,AD为BC边上的中线,且AD=2 ,以AD为一边向左作等边△ADE.(1)求:△ABC的面积;(2)判断AB与DE的位置关系是什么?请予以证明.五、实践与应用(每小题8分,共2小题,满分16分)23.已知北海到南宁的铁路长210千米.动车投入使用后,其平均速度达到了普通火车的平均速度的3倍,这样由北海到南宁的行驶时间缩短了1.75小时.求普通火车的平均速度是多少?(列方程解答)24.张华老师揣着200元现金到星光文具店购买学生期末考试的奖品.他看好了一种笔记本和一种钢笔,笔记本的单价为每本5元,钢笔的单价为每支2元.张老师计划购买两种奖品共50份,求他最多能买笔记本多少本?(列不等式解答)六、阅读与探究(每小题10分,共2小题,满分20分)25.先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:= = = =|1+ |=1+解决问题:①在括号内填上适当的数:= = = =| |=②根据上述思路,试将予以化简.26.已知:在△ABC中,∠BAC=90°,∠ABC=45°,点D为线段BC 上一动点(点D不与B、C重合),以AD为边向右作正方形ADEF,连接FC,探究:无论点D运动到何处,线段FC、DC、BC三者的长度之间都有怎样的数量关系?请予以证明.湘教版八年级上册数学期末测试卷参考答案一、选择题(每小题3分,共12小题,满分36分.请把表示正确答案的字母填入下表中对应的题号下.)1.下列分式中,是最简分式的是( )A. B.C. D.【考点】最简分式.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、,不是最简分式;C、,不是最简分式;D、,不是最简分式;故选A2.当分式的值为0时,字母x的取值应为( )A.﹣1B.1C.﹣2D.2【考点】分式的值为零的条件.【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.【解答】解:由题意,得x+2=0且x﹣1≠0,解得x=﹣2,故选:C.3.下列计算正确的是( )A.2﹣3=﹣8B.20=1C.a2•a3=a6D.a2+a3=a5【考点】同底数幂的乘法;合并同类项;零指数幂;负整数指数幂.【分析】根据同底数幂的乘法,零次幂,负整数指数幂,可得答案.【解答】解:A、2﹣3= = ,故A错误;B、20=1,故B正确;C、a2•a3=a2+3=a5,故C错误;D、不是同底数幂的乘法指数不能相加,故D错误;故选:B.4.(﹣8)2的立方根是( )A.4B.﹣4C.8D.﹣8【考点】立方根.【分析】先求出(﹣8)2,再利用立方根定义即可求解.【解答】解:∵(﹣8)2=64,64的立方根是4,∴(﹣8)2的立方根是4.故选:A.5.若代数式有意义,则x必须满足条件( )A.x≠﹣B.x>C.x>﹣D.x≥﹣【考点】二次根式有意义的条件.【分析】二次根式的被开方数是非负数.【解答】解:依题意得:2x+1≥0,解得x≥﹣ .故选:D.6.已知一个等腰三角形的一个内角是50°,则这个等腰三角形的另外两个内角度数分别是( )A.50°,80°B.65°,65°C.50°,80°或65°,65°D.无法确定【考点】等腰三角形的性质.【分析】本题可根据三角形的内角和定理求解.由于50°角可能是顶角,也可能是底角,因此要分类讨论.【解答】解:当50°是底角时,顶角为180°﹣50°×2=80°,当50°是顶角时,底角为÷2=65°.故这个等腰三角形的另外两个内角度数分别是50°,80°或65°,65°.故选:C.7.下列命题是假命题的是( )A.实数与数轴上的点一一对应B.如果两个数的绝对值相等,那么这两个数必定也相等C.对顶角相等D.三角形的重心是三角形三条中线的交点【考点】命题与定理.【分析】根据实数与数轴的关系,绝对值的性质,对顶角相等以及三角形重心的定义对各选项分析判断即可得解.【解答】解:A、实数与数轴上的点一一对应,是真命题,故本选项错误;B、如果两个数的绝对值相等,那么这两个数必定也相等,是假命题,应为如果两个数的绝对值相等,那么这两个数必定也相等或互为相反数,故本选项正确;C、对顶角相等,是真命题,故本选项错误;D、三角形的重心是三角形三条中线的交点,是真命题,故本选项错误.故选B.8.下列长度的三根线段,能构成三角形的是( )A.3cm,10cm,5cmB.4cm,8cm,4cmC.5cm,13cm,12cmD.2cm,7cm,4cm【考点】三角形三边关系.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、5+3<10,不能组成三角形,不符合题意;B、4+4=8,不能够组成三角形,不符合题意;C、12+5>13,能够组成三角形,符合题意;D、2+4<8,不能够组成三角形,不符合题意.故选:C.9.不等式组的解集为( )A.x>﹣1B.x≤3C.1【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:,∵解不等式①得:x>﹣1,解不等式②得:x≤3,∴不等式组的解集为﹣1故选D.10.计算÷ × 的结果估计在( )A.5至6之间B.6至7之间C.7至8之间D.8至9之间【考点】估算无理数的大小.【分析】利用二次根式的乘除法得到原式= ,然后根据算术平方根的定义得到 < < .【解答】解:原式= = ,因为 < < ,所以6< <7.故选B.11.已知关于x的方程﹣ =0的增根是1,则字母a的取值为( )A.2B.﹣2C.1D.﹣1【考点】分式方程的增根.【分析】去分母得出整式方程,把x=1代入整式方程,即可求出答案.【解答】解:﹣ =0,去分母得:3x﹣(x+a)=0①,∵关于x的方程﹣ =0的增根是1,∴把x=1代入①得:3﹣(1+a)=0,解得:a=2,故选A.12.用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中( )A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°【考点】反证法.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中每一个内角都小于60°,故选:D.。

2022-2023学年湘教版八年级数学上册《第5章二次根式》期末综合复习题(附答案)

2022-2023学年湘教版八年级数学上册《第5章二次根式》期末综合复习题(附答案)

2022-2023学年湘教版八年级数学上册《第5章二次根式》期末综合复习题(附答案)一.选择题1.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 2.下列各组二次根式,可以合并的二次根式是()A.与B.与C.与D.与3.小明在作业本上做了4道题:①=﹣5;②±=4;③=9:④=﹣6,他做对的题有()A.1道B.2道C.3道D.4道4.下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1D.2x+45.下列各式计算与变形正确的是()A.B.若x﹣2y=3,则x=﹣2y+3C.若a<b则a﹣2<b D.若﹣3a>b,则6.把根号外的因式移入根号内得()A.B.C.D.7.已知x+y=﹣5,xy=4,则的值是()A.B.C.D.8.若a=2﹣,则代数式2a2﹣8a﹣1的值等()A.1B.﹣1C.4+4D.﹣29.若x2+y2=1,则++的值为()A.0B.1C.2D.310.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式;也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积为S=,已知△ABC的三边长分别为1,2,,则△ABC的面积为()A.1B.C.D.二.填空题 11.二次根式(x 、y 均为正数)化成最简二次根式,结果为 .12.若a 、b 为实数,且b =+4,则a +b = .13.已知a 、b 、c 为△ABC 的三边长,则= .14.计算:3﹣(﹣1)﹣1+1= .15.已知三角形底边的边长是cm ,面积是cm 2,则此边的高线长 cm .16.若,b =,则a 2﹣a +b 2﹣b = .三.解答题 17.计算: (1)2(2)﹣(15)(x >0)18.最简二次根式与是可以合并的二次根式,求3a ﹣b 的值.19.解答下列各题. (1)已知:y =﹣﹣2019,求x +y 的平方根.(2)已知一个正数x 的两个平方根分别是a +2和a +5,求这个数x . 20.已知x 满足|2021﹣x |+2022 x =x ,求x ﹣20212的值. 21.若x ,y 为实数,且y =++.求﹣的值.22.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2,善于思考的小明进行了以下探索: 设a +b=(m +n)2(其中a 、b 、m 、n 均为正整数),则有a +b=m 2+2n 2+2mn,∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把部分a +b 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题: (1)当a 、b 、m 、n 均为正整数时,若a +b =(m +n)2,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空:+=(+)2;(3)化简:=.23.观察下列等式:a1==;a2==;a3==;a4==…按照上述规律,回答以下问题:(1)请写出第6个等式:;(2)请写出第n个等式:;(3)求a1+a2+a3+…+a20的值.24.阅读材料:像(+)(﹣)=3、•=a(a≥0)、(+1)(﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,+1与﹣1,2+3与2﹣3等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;=.解答下列问题:(1)3﹣与互为有理化因式,将分母有理化得;(2)计算:;(3)已知有理数a、b满足,求a、b的值.25.观察下面的式子:S1=1++,S2=1++,S3=1++…S n=1++(1)计算:=,=;猜想=(用n的代数式表示);(2)计算:S=+++…+(用n的代数式表示).参考答案一.选择题1.解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.2.解:A、∵=3,∴与不能合并;B、∵=3,=2,∴与能合并;C、∵==,=,∴与不能合并;D、∵=2,=6,∴与不能合并;故选:B.3.解:①=﹣5,正确;②±=±4,故②错误;③≠9,故③错误:④=6,故④错误.∴他做对的题有1道.故选:A.4.解:A、3﹣π<0,则3﹣π不能作为二次根式被开方数,故本选项不符合题意;B、a的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;C、a2+1一定大于0,能作为二次根式被开方数,故本选项符合题意;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;故选:C.5.解:A.与不是同类二次根式,不能够进行加减运算,故此选项不符合题意;B.若x﹣2y=3,则x=2y+3,故此选项不符合题意;C.若a<b,则a﹣2<a<b,故此选项符合题意;D.若﹣3a>b,则a<﹣,故此选项不符合题意,故选:C.6.解:∵成立,∴﹣>0,即m<0,∴原式=﹣=﹣.故选:D.7.解:∵x+y=﹣5,xy=4,∴x、y同号,并且x、y都是负数,解得:x=﹣1,y=﹣4或x=﹣4,y=﹣1,当x=﹣1,y=﹣4时,=+=2+=;当x=﹣4,y=﹣1时,+=+=+2=,则的值是,故选:B.8.解:∵a=2﹣,∴2a2﹣8a﹣1=2(a﹣2)2﹣9=2(2﹣﹣2)2﹣9=2×5﹣9=1.故选:A.9.解:∵x2+y2=1,∴﹣1≤x≤1,﹣1≤y≤1,∵==,x+1≥0,y﹣2<0,(x+1)(y﹣2)≥0,∴x+1=0,∴x=﹣1,∴y=0,∴++=2+1+0=3.故选:D.10.解:∵如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:=1.故选:A.二.填空题11.解:∵x>0,y>0,∴=xy,故答案为:xy.12.解:由被开方数是非负数,得,解得a=1,或a=﹣1,b=4,当a=1时,a+b=1+4=5,当a=﹣1时,a+b=﹣1+4=3,故答案为:5或3.13.解:原式=|a﹣b+c|+|a﹣b﹣c|,∵a、b、c为△ABC的三边长,∴a+c>b,即a﹣b+c>0;a<b+c,即a﹣b﹣c<0,∴原式=a﹣b+c﹣(a﹣b﹣c)=a﹣b+c﹣a+b+c=2c.故答案为:2c.14.解:原式==,故答案为:215.解:设三角形此边上的高为x厘米,由题意,得×x=,解得x=2.故答案为:2.16.解:由题意可知:a==b==∴a+b=﹣,ab=∴原式=a2+2ab+b2﹣(a+b)﹣2ab=(a+b)2﹣(a+b)﹣2ab=++=故答案为:三.解答题17.解:(1)原式=2+6﹣4=4;(2)原式=﹣(15×﹣2x)=3﹣3+2x=2x.18.解:由最简二次根式与是可以合并的二次根式,得,解得,所以3a﹣b=2.19.解:(1)由题意得,x﹣2020≥0,2020﹣x≥0,解得,x=2020,则y =﹣2019,∴x +y =2020﹣2019=1, ∵1的平方根是±1, ∴x +y 的平方根±1;(2)由题意得,a +2+a +5=0, 解得,a =﹣, 则a +2=﹣+2=﹣, ∴x =(﹣)2=. 20.解:由题意得,x ﹣2022≥0, 解得,x ≥2022, 则x ﹣2021+2022-x =x ,∴2022-x =2021, 解得x =20212+2022, 则x ﹣20212=2022.21.解:依题意得:x =,则y =,所以==,==2,所以﹣=﹣=﹣=.22.解:(1)∵a +b =(m +n )2,∵a +b=m 2+2mn+3n 2,∴a =m 2+3n 2,b =2mn . 故答案为m 2+3n 2,2mn .(2)取m =n =1,可得a =4,b =2; ∴4+2=(1+)2故答案为:4,2,1,1;(3)∵14+6=(3+)2,∴=3+,故答案为3+.23.解:(1)观察,如a2的下标2,与中被开方数:5和3,得出5=2×2+1,3=2×2﹣1,即5等于下标的2倍加1,3等于下标的2倍减1;因此第6个等式6×2+1=13,6×2﹣1=11,得故答案为:(2)由(1)知,第n个等式的下标是n,被开方数分别为2n+1,2n﹣1,所以第n个等式故答案为:(3)a1+a2+a3+…+a20=+++...+=.故答案为:.24.解:(1)3﹣与3+互为有理化因式,=,故答案为:3,;(2)=﹣2=2﹣;(3)∵,∴(﹣1)a+b=﹣1+2,∴﹣a+(a+)=﹣1+2,∴﹣a=﹣1,a+=2,解得,a=1,b=2.25.(1)解:∵S1=1++=,∴==;∵S2=1++=,∴=;∵S3=1++=,∴=;∵S n=1++=,∴==,故答案为:,,;(2)解:S=+++…+=1++1++1++ (1)=n+(1﹣+﹣+﹣+…+﹣)=n+1﹣,=.。

湘教版数学八年级上册期末考试试卷及答案

湘教版数学八年级上册期末考试试卷及答案

湘教版数学八年级上册期末考试试题一、选择题(每小题3分,共30分.每小题只有一项是正确的)1.的算术平方根为()A.B.C.D.2.若a<b,下列各式中,正确的是()A.﹣5a<﹣5b B.C.D.a+4<b+43.在,,,,中,分式的个数是()A.2B.3C.4D.54.下列各式中,能与合并的二次根式是()A.B.C.D.5.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC 6.将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为()A.145°B.155°C.165°D.175°7.下列命题中,属于真命题的是()A.如果ab=0,那么a=0B.是最简分式C.直角三角形的两个锐角互余D.不是对顶角的两个角不相等8.观察下列作图痕迹,△ABC中,CD为AB边上的中线是()A.B.C.D.9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.AB⊥AC,DE⊥DF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠DEF D.BE=CF,∠B=∠DEF10.若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4二、填空题(本大题共5小题,每小题3分,满分15分)11.在0,5,π,这些数中,无理数是.12.式子有意义时a的取值范围是.13.比较大小:﹣﹣2.(填“>”或“<”号)14.已有两根长度分别为4cm、7cm的木棒,请你再选取一根木棒,使得三根木棒首尾相接可以拼成一个三角形,你选取的木棒长度是cm.15.如图,DE垂直平分AC,交BC于点D,交AC于点E,AC=4cm,△ABD的周长为12cm,则△ABC的周长是cm.三、解答题(本大题共8小题,满分55分,解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)计算:﹣()﹣1++(π﹣3)0.17.(5分)解不等式,并将解集在数轴上表示出来.18.(7分)解分式方程:=.19.(7分)计算:÷﹣×+.20.(7分)先化简:(﹣1)÷,然后从0,2,3中选择一个合适的数代入求值.21.(8分)某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC =BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.22.(8分)今年学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?23.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.答案与解析一、选择题(每小题3分,满分30分.每小题只有一项是正确的)1.的算术平方根为()A.B.C.D.【分析】根据算术平方根的定义解答.【解答】解:∵()2=,∴的算术平方根为.故选:A.【点评】本题考查了算术平方根的定义,注意分数的平方要加括号.2.若a<b,下列各式中,正确的是()A.﹣5a<﹣5b B.C.D.a+4<b+4【分析】根据不等式的性质逐一进行判断即可.【解答】解:A.因为a<b,所以﹣5a>﹣5b,故本选项不合题意;B.因为a<b,所以,故本选项不合题意;C.因为a<b,所以,故本选项不合题意;D.因为a<b,所以a+4<b+4,故本选项符合题意;故选:D.【点评】本题考查了不等式的性质,解决本题的关键是掌握不等式的性质.3.在,,,,中,分式的个数是()A.2B.3C.4D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,这三个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.4.下列各式中,能与合并的二次根式是()A.B.C.D.【分析】先将各选项二次根式化简,再利用同类二次根式的概念判断即可.【解答】解:A.=2与不是同类二次根式,此选项不符合题意;B.=2与不是同类二次根式,此选项不符合题意;C.=2与不是同类二次根式,此选项不符合题意;D.=3与是同类二次根式,此选项符合题意;故选:D.【点评】本题主要考查同类二次根式,解题的关键是掌握同类二次根式的定义:把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.5.如图,在△ABC中,AB=AC,D是BC的中点,下列结论不一定正确的是()A.∠B=∠C B.AB=2BD C.∠1=∠2D.AD⊥BC【分析】根据等腰三角形“三线合一”的性质解答.【解答】解:∵△ABC中,AB=AC,D是BC中点,∴∠B=∠C(故A正确)∠1=∠2(故C正确)AD⊥BC(故D正确)无法得到AB=2BD,(故B不正确).故选:B.【点评】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.6.将一副直角三角板如图放置,使两直角重合,则∠DFB的度数为()A.145°B.155°C.165°D.175°【分析】利用三角形的外角性质可求出∠AFD的度数,再利用邻补角互补可求出∠DFB 的度数.【解答】解:∵∠CDF=∠A+∠AFD,∴∠AFD=∠CDF﹣∠A=45°﹣30°=15°.又∵∠DFB+∠AFD=180°,∴∠DFB=180°﹣∠AFD=180°﹣15°=165°.故选:C.【点评】本题考查了三角形的外角性质以及邻补角,利用三角形外角的性质,求出∠AFD 的度数是解题的关键.7.下列命题中,属于真命题的是()A.如果ab=0,那么a=0B.是最简分式C.直角三角形的两个锐角互余D.不是对顶角的两个角不相等【分析】对各个命题逐一判断后找到正确的即可确定真命题.【解答】解:A、如果ab=0,那么a=0或b=0,原命题是假命题;B、,不是最简分式,原命题是假命题;C、直角三角形的两个锐角互余,是真命题;D、不是对顶角的两个角也可能相等,原命题是假命题;故选:C.【点评】此题主要考查了命题与定理,熟练利用相关定理以及性质进而判定举出反例即可判定出命题正确性.8.观察下列作图痕迹,△ABC中,CD为AB边上的中线是()A.B.C.D.【分析】根据三角形中线的定义判断即可.【解答】解:根据作图可知,选项B中,点D是AB的中点,故线段CD是△ABC的中线,故选:B.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,三角形的中线等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.AB⊥AC,DE⊥DF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠DEF D.BE=CF,∠B=∠DEF【分析】根据全等三角形的判定方法进行判断即可.【解答】解:A、无法判定两个三角形全等;B、根据SSS能判定两个三角形全等;C、可用ASA判定两个三角形全等;D、可用SAS判定两个三角形全等.故选:A.【点评】本题考查全等三角形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.若不等式组无解,则a的取值范围为()A.a>4B.a≤4C.0<a<4D.a≥4【分析】不等式组整理后,根据不等式组无解确定出a的范围即可.【解答】解:不等式组整理得:,由不等式组无解,得到a≥4.故选:D.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(本大题共5小题,每小题3分,满分15分)11.在0,5,π,这些数中,无理数是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0,5是整数,属于有理数;是分数,属于有理数;无理数π.故答案为:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.式子有意义时a的取值范围是a≥4.【分析】利用二次根式有意义的条件可得a﹣4≥0,再解不等式即可.【解答】解:由题意得:a﹣4≥0,解得:a≥4,故答案为:a≥4.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.13.比较大小:﹣>﹣2.(填“>”或“<”号)【分析】先求出2=,再根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵2==>,∴﹣>﹣2,故答案为:>.【点评】本题考查了算术平方根和实数的大小比较,能熟记实数的大小比较法则是解此题的关键.14.已有两根长度分别为4cm、7cm的木棒,请你再选取一根木棒,使得三根木棒首尾相接可以拼成一个三角形,你选取的木棒长度是4(答案不唯一)cm.【分析】根据三角形三边关系,在三角形中任意两边之和大于第三边,任意两边之差小于第三边解答即可.【解答】解:根据三角形三边关系,∴三角形的第三边x满足:7﹣4<x<4+7,即3<x<11,∴x可以取4,5,6,7,8,9,10等无数个,故答案为:4(答案不唯一).【点评】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.15.如图,DE垂直平分AC,交BC于点D,交AC于点E,AC=4cm,△ABD的周长为12cm,则△ABC的周长是16cm.【分析】根据线段垂直平分线的性质得到DA=DC,根据三角形的周长公式计算,得到答案.【解答】解:∵DE垂直平分AC,∴DA=DC,∵△ABD的周长为12cm,∴AB+BD+DA=AB+BD+DC=AB+BC=12(cm),∵AC=4cm,∴△ABC的周长=AB+BC+AC=16(cm),故答案为:16.【点评】本题考查的是线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.三、解答题(本大题共8小题,满分55分,解答应写出必要的文字说明、演算步骤或推理过程)16.(5分)计算:﹣()﹣1++(π﹣3)0.【分析】直接利用二次根式的性质、立方根的定义、负整数指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2﹣+1=﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(5分)解不等式,并将解集在数轴上表示出来.【分析】两边同乘以6,去分母,去括号,移项,合并,系数化为1即可求解.【解答】解:2(x+4)﹣3(3x﹣1)>62x+8﹣9x+3>6﹣7x+11>6﹣7x>﹣5.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.18.(7分)解分式方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(x+2)=7x,去括号得:3x+6=7x,解得:x=,检验:当x=时,x(x+2)≠0,∴分式方程的解为x=.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(7分)计算:÷﹣×+.【分析】先计算乘法和除法,再合并即可得.【解答】解:原式=﹣+2=4+【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和运算法则.20.(7分)先化简:(﹣1)÷,然后从0,2,3中选择一个合适的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式===,∵a=0,a=2时,原式没有意义,∴当a=3时,原式==1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(8分)某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC =BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.【分析】根据全等三角形的判定和性质定理即可得到结论.【解答】解:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS);∴AB=CD.【点评】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.22.(8分)今年学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?【分析】(1)设B型口罩的单价是x元,则A型口罩的单价是(x+1.5)元,根据数量=总价÷单价,结合用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设增加购买A型口罩的数量是y个,则增加购买B型口罩数量是2y个,根据总价=单价×数量,结合总价不超过7200元,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设B型口罩的单价是x元,则A型口罩的单价是(x+1.5)元,依题意得:=,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴x+1.5=4.答:A型口罩的单价是4元,B型口罩的单价是2.5元.(2)设增加购买A型口罩的数量是y个,则增加购买B型口罩数量是2y个,依题意得:4y+2.5×2y≤7200,解得:y≤800.答:增加购买A型口罩的数量最多是800个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)∠A=60°时,△DEF是等边三角形,首先根据△DBE≌△ECF,再证明∠DEF=60°,可以证出结论.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF 中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)当∠A=60°时,△DEF是等边三角形,理由:∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠EFC=180°﹣∠DEB﹣∠EDB=∠B要△DEF是等边三角形,只要∠DEF=60°.所以,当∠A=60°时,∠B=∠DEF=60°,则△DEF是等边三角形.【点评】此题主要考查了等腰三角形的判定,等边三角形的判定,关键是证明△DBE≌△ECF.11。

湘教版八年级上册数学教材习题课件-复习题1

湘教版八年级上册数学教材习题课件-复习题1

解得
x=-36.
检验:把x=-36代入原方程,得左边= 1 =右边,因此 8
x=-36是原方程的解.
11.某学校后勤人员到文具店给八年级学生购买考试用文 具包,该文具店规定一次购买400个以上,可享受八折 优惠.若给每人购买一个,不能享受八折优惠,需付款 1936元;若再多买88个就可享受八折优惠,并且同样只 需付款1936元.求该校八年级学生的总人数.
的等式成立?
1 a
1 b
2
4 ab
.
你能讲出道理吗?
解:当正数a=b时,等式成立.
证明:等式左边=
1 a
1 b
2
a b2 ab 2
;等式右边
4 ab
.
当等式左边
=
等式右边时,则有 a b2 ab 2
4 ab
.
即a b2 =4ab, 整理得,a b2 =0.故,当a=b时,
a
x 1
x 12
1 x 1
x2 2x 1
x 12 x 1
x2 2x 1
x 12 x 1
x
4x
12
x
1
.
4
y
3 2
1
2 y1
1. y1
解: 4
3 y2 1
2 y1
1 y1
y
3
1
y
1
y
2y2
1 y
1
y
y
1
1 y
1
32y2 y
y 1 y 1
1
y
43y
1 y
1
.
7.解下列方程:1 2x 1 1;
解:设该校八年级学生的总人数为 x .

2019年秋季湘教版八年级上册数学期末复习:数形结合专项题含解析

2019年秋季湘教版八年级上册数学期末复习:数形结合专项题含解析

湘教版2019年秋季八年级上册数学期末复习:数形结合专项题一、选择题。

1.如图所示的不等式的解集是()A. a>2B. a<2C. a≥2D. a≤22.如图,已知∠1=∠2,AC=AD,从下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E中添加一个条件,能使△ABC≌△AED的有()A. 1个B. 2 个C. 3个D. 4个3.如图,数轴上A,B两点表示的数分别为-1,-,点B关于点A的对称点为点C,则点C所表示的数是()A. 1-B. -1C. 2-D. -24.若图示的两架天平都保持平衡,则对a、b、c三种物体的重量判断正确的是( )A. B. C. D.5.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A. |a|>4B. c-b>0C. ac>0D. a+c>06.如图,△ABC≌△BDE,若AB=12,ED=5,则CD的长为()A. 5B. 6C. 7D. 87.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A. 1B. 2C. 3D. 48.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D,E重合,这时过角尺顶点F的射线OF就是∠AOB 的平分线, 你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是( )A. SASB. ASAC. AASD. SSS9.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为( )A. 4B. 3C. 2D. 1二、填空题。

湘教版八年级数学上册期末考试题及答案【完整版】

湘教版八年级数学上册期末考试题及答案【完整版】

湘教版八年级数学上册期末考试题及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是( ) A .4B .±4C .8D .±82.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ). A .b =3,c =-1 B .b =-6,c =2 C .b =-6,c =-4 D .b =-4,c =-63.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=--- B .()1122x x -=-- C .()1122x x -+=+- D .()1122x x -=---4.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( )A .14B .7C .﹣2D .25.代数式131x x -+-中x 的取值范围在数轴上表示为( ) A . B . C .D .6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.如图,在数轴上表示实数15的点可能是( )A.点P B.点Q C.点M D.点N8.下列图形中,不是轴对称图形的是()A.B.C.D.9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米10.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣1二、填空题(本大题共6小题,每小题3分,共18分)1.关于x的分式方程12122ax x-+=--的解为正数,则a的取值范围是_____.2.因式分解:22ab ab a-+=__________.3.使x2-有意义的x的取值范围是________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b,c,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN的周长为___________.6.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是________.三、解答题(本大题共6小题,共72分)1.解下列不等式,并把解集在数轴上表示出来(1)2562x x -≥- (2)532122x x ++-<2.先化简,后求值:(5a 5a (a ﹣2),其中12+2.3.已知5a+2的立方根是3,3a +b -1的算术平方根是4,c 13分,求3a-b+c 的平方根.4.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?6.“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A 15 9 57000B 10 16 68000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、D5、A6、D7、C8、A9、C 10、D二、填空题(本大题共6小题,每小题3分,共18分)1、5a <且3a ≠2、()21a b -3、x 2≥4、a+c5、46、(-10,3)三、解答题(本大题共6小题,共72分)1、(1)43x ≤-,数轴表示见解析;(2)12x >,数轴表示见解析.2、43、3a-b+c 的平方根是±4.4、略.5、略6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。

湘教版数学八年级上册期末复习题(一、二、答案)

湘教版数学八年级上册期末复习题(一、二、答案)

湘教版数学八年级上册期末复习题(一)一.精心选一选(本题共10小题,每题3分,共30分.请把你认为正确结论的代号填入下面表格中)1.16的算术平方根是 ( )A . 2B . ±2C .4D . ±4 2.在实数23-,0,34,π,9中,无理数有 ( ) A .1个 B .2个 C .3个D .4个3.下列图形中,是轴对称图形并且对称轴条数最多的是( )4.如图,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B 的度数为 ( )A .30oB .50oC .90oD .100o5.如果实数y 、x 满足y=111+-+-x x ,那么3y x +的值是( )A .0B .1C .2D .-2 6.与三角形三个顶点的距离相等的点是 ( ) A .三条角平分线的交点 B .三边中线的交点C .三边上高所在直线的交点D .三边的垂直平分线的交点 7.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE ; ②BC=ED ;③∠C=∠D ;④∠B=∠E .其中能使 △AB C ≌△AED 的条件有 ( ) A .1个 B .2个 C .3个 D .4个 8.以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( ) A .211B .1.4C .3D .2题号 12345678910答案A . B. C. D.ACA ′B ′′ (第4题) 50o30ol 第7题图12C B AED9.如图,在直角坐标系xoy 中,△ABC 关于直线y =1成 轴对称,已知点A 坐标是(4,4), 则点B 的坐标是 ( ) A .(4,-4) B .(4,-2) C .(-2,4) D .(-4,2) 10.一个正方体的体积是99,估计它的棱长的大小在 ( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间二.耐心填一填(每题3分,共18分,直接写出结果) 11.计算︱2-3︱+22的结果是 .12.若25x 2=36,则x = ;若23-=y ,则y = .13.点P 关于x 轴对称的点是(3,–4),则点P 关于y 轴对称的点的坐标是 . 14.如图,BAC ABD ∠=∠,请你添加一个条件:,使OC OD =(只添一个即可). 15.等腰三角形的一个外角等于110︒,则这个三角形的顶角应该为 .16.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…… 如此继续下去,结果如下表: 所剪次数12 3 4 … n 正三角形个数 471013…a nn = (用含三.计算题(计算要认真仔细,善于思考!本大题有3个小题,共24分)17.(8分)计算()32281442⨯+--)(18.(8分)如图,实数a 、b 在数轴上的位置, 化简222)(b a b a -+-OXABCy第9题图第16题DO CBA第14题图19.(8分)如图, AD ∥BC ,BD 平分∠ABC ,∠A=120°,∠C=60°,AB=CD=4cm ,求四边形ABCD 的周长.四.解答题(本大题有3个小题,共26分)20.(8分)某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由等腰三角形和正方形组成(个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案。

湘教版2019-2020学年八年级数学上学期期末原创卷(一)含解析版答案

湘教版2019-2020学年八年级数学上学期期末原创卷(一)含解析版答案

湘教版2019-2020学年上学期期末原创卷(一)八年级数学(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:湘教版八上全册。

第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.数π、227、、3.1416、0.3∙中,无理数的个数是A.1个B.2个C.3个D.4个2.若x y<,则下列不等式成立的是A.22x y-+<-+B.44x y>C.22x y-<-D.33x y-<-3.在-1,0,2四个数中,最大的数是A.-1 B.0C.2 D4.下列二次根式中属于最简二次根式的是A BC D5是同类二次根式的是A BC D6.下列运算中,正确的A=B2=C a=D.2=a+b7.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=A.40°B.50°C.60°D.75°8.把不等式组25322xx-≤⎧⎪⎨+<⎪⎩的解集在数轴上表示出来,正确的是A.B.C.D.9.计算224338()()42x x yx yy⋅-÷-的结果是A.3x-B.3xC.12x-D.12x10.若关于x的方程212x mx+=-+的解是负数,则m的取值范围是A.2m<-B.2m>-C.2m<-且4m≠D.2m>-且4m≠11.某次知识竞赛试卷有20道题,评分办法是答对一道记5分,不答记0分,答错一道扣2分,小明有3道题没答,但成绩超过60分,则小明至少答对了几道题A.13 B.14C .15D .1612.如图,ABC △、CDE △都是等腰三角形,且CA CB =,CD CE =,ACBDCE α∠=∠=,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.以下4个结论:①AD BE =;②180DOB α∠=︒-;③CMN △是等边三角形;④连OC ,则OC 平分AOE ∠.正确的是A .①②③B .①②④C .①③④D .①②③④第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分) 13.|2|-=__________.14.101()(π2019)2---=___________. 15=__________.16.已知三角形其中两边a =3,b =5,则第三边c 的取值范围__________.17x =__________.18.不等式组4131x x+>⎧⎨-≥-⎩的最小整数解是__________.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)先化简2221(1)369x xx x -+÷--+,再从不等式组24324x x x -<⎧⎨<+⎩的整数解中选一个合适的x 的值代入求值.20.(本小题满分6分)计算:(1+2 (3)2-.21.(本小题满分8分)(1)计算:31(1)242a a a -÷---; (2)解方程:212112x x x=---.22.(本小题满分8分)已知2a -1是9的平方根,3a +b -1的算术平方根是4.(1)求a 与b ;(2)当ab >0时,求2a -b 2的立方根.23.(本小题满分9分)观察下列各式及其化简过程:=+1;.(1=__________;(2(3(a b >)中m 、n 与a b 、之间的关系. 24.(本小题满分9分)如图,在ABC △中,DM 、EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若CMN △的周长为15cm ,求AB 的长; (2)若80MFN ∠=︒,求MCN ∠的度数.25.(本小题满分10分)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?26.(本小题满分10分)某商店用1000元人民币购进水果销售,过了一段时间又用2800元购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元. (1)求该商店第一次购进水果多少千克?(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的50千克按照标价半价出售.售完全部水果后,利润不低于3100元,则最初每千克水果的标价是多少?2019-2020学年上学期期末原创卷八年级数学·全解全析1.【答案】B=2,是有理数,故这一组数中,无理数有π,2个.故选B . 2.【答案】C【解析】A 、x y <,则x y ->-,所以22x y -+>-+,故A 错误;B 、x y <,则44x y <,故B 错误; C 、x y <,22x y -<-,故C 正确;D 、x y <,则33x y ->-,故D 错误,故选C .3.【答案】C【解析】根据实数比较大小的方法,可得,∴在-1,0,2四个数中,最大的数是2.故选C . 4.【答案】A【解析】A被开方数中不含能开得尽方的因数,故A 正确; B=48的一个因数是16,开的尽,故B 不正确;C C 不正确;D 4,故D 不正确.故选A . 5.【答案】C【解析】A 的被开方数不同,故不是同类二次根式;B 的被开方数不同,故不是同类二次根式;C =的被开方数相同,故是同类二次根式;D 的被开方数不同,故不是同类二次根式.故选C .6.【答案】D【解析】A =A 错误;B 2|2==B 错误;C ||a ,故C 错误;D 项,2=a+b ,故D 项正确.故选D . 7.【答案】B【解析】∵∠B =∠D =90°,在Rt△ABC 和R t△ADC 中,BC CDAC AC =⎧⎨=⎩,∴Rt△ABC ≌Rt△ADC (HL ),∴∠2=∠ACB =90°–∠1=50°.故选B . 8.【答案】C【解析】25322x x -≤⎧⎪⎨+<⎪⎩①②,解不等式①得:x ≥-3,解不等式②得:x <1,故不等式组的解集为:-3≤x <1,在数轴上表示为:,故选C .9.【答案】D【解析】224338()()42x x y x y y ⋅-÷-=3432242()4x y y x y-⋅-=12x ,故选D . 10.【答案】D【解析】212x mx +=-+,去分母得22x m x +=--,移项得22x x m +=--, 合并同类项得32x m =--,系数化为1得23mx --=, ∵方程的解为负数,∴203m--<,解得2m >-,又∵当2x =-时,分式方程无解,将2x =-代入22x x m +=--,解得4m =,∴4m ≠, 故2m >-且4m ≠,故选D . 11.【答案】B【解析】设小明答对x 道题,则答错20-3-x =17-x 道题.根据题意得:5x -2(17-x )>60,即7x >94,∵x 为整数,∴x >13,∴13<x ≤17.成绩超过60分,则小明至少答对了14道题.故选B . 12.【答案】B【解析】①正确,理由如下:∵ACB DCE α∠=∠=,∴∠ACB +∠BCD =∠DCE +∠BCD ,即∠ACD =∠BCE ,又∵CA =CB ,CD =CE ,∴ACD BCE △≌△,∴AD =BE ,故①正确;②正确,理由如下:由①知,ACD BCE △≌△,∴∠CAD =∠CBE ,∵∠DOB 为ABO △的外角, ∴∠DOB =∠OBA +∠BAO =∠EBC +∠CBA +∠BAO =∠DAC +∠BAO +∠CBA =∠CBA +∠BAC ,∵∠CBA +∠BAC +∠ACB =180°,∠ACB =α,∴∠CBA +∠BAC =180°–α,即∠DOB =180°–α,故②正确; ③错误,理由如下:∵点M 、N 分别是线段AD 、BE 的中点,∴AM =12AD ,BN =12BE , 又∵由①知,AD =BE,∴AM =BN ,又∵∠CAD =∠CBE ,CA =CB ,∴CAM CBN △≌△, ∴CM =CN ,∠ACM =∠BCN ,∴∠MCN =∠MCB +∠BCN =∠MCB +∠ACM =∠ACB =α, ∴MCN △为等腰三角形且∠MCN =α,∴MCN △不是等边三角形,故③错误; ④正确,理由如下:如图所示,在AD 上取一点P 使得DP =EO ,连接CP ,OC ,由①知,ACD BCE △≌△,∴∠CEO =∠CDP ,又∵CE =CD ,EO =DP ,∴CEO CDP △≌△, ∴∠COE =∠CPD ,CP =CO ,∴∠CPO =∠COP ,∴∠COP =∠COE ,即OC 平分∠AOE ,故④正确, 故选B . 13.【答案】–1【解析】|2|-=23-=–1,故答案为:–1. 14.【答案】1【解析】原式=2–1=1.故答案为:1. 15.【答案】40【解析】原式40. 16.【答案】2<c <8【解析】根据三角形的三边关系有:5–3<c <5+3,∴2<c <8.故答案为:2<c <8. 17.【答案】4【解析】由题意得6x –5=7+3x ,∴x =4.故答案为:4. 18.【答案】-2【解析】4131x x +>⎧⎨-≥-⎩①②,由①得x >-3,由②得x ≤4,故不等式组的解集为-3<x ≤4,故原不等式组的最小整数解为-2.故答案为:-2.19.【解析】原式232(3)3(1)(1)x x x x x -+-=⨯-+-31x x -=+,(2分)解不等式组24324x x x-<⎧⎨<+⎩,得24x -<<,(4分)∴其整数解为-1,0,1,2,3,∵要使原分式有意义,∴x 可取0,2.∴当0x =时,原式3=-,(或当2x =时,原式13=-).(6分)20.【解析】(1=+32.(2分) (2-==4分)(3)2--2222]2]--⨯- (243)(272)=---8=.(6分)21.【解析】(1)原式332(2)2a a a a --=÷--322(2)3a a a a --=⋅--(2分)12=-.(4分)(2)去分母,得:212x x =-+, 解这个方程,得:1x =-.(6分)检验:当1x =-时210x -≠,1x =-是原方程的解.(8分) 22.【解析】(1)∵2a -1是9的平方根,3a +b -1的算术平方根是4,∴2a -1=3或2a -1=-3;3a +b-1=16,(2分)解得:a =2,b =11;a =-1,b =20.(4分) (2)由ab >0,a =2,b =11, 则2a -b 2=4-121=-117,(6分) -117的立方根是8分) 23.【解析】(1–1.(3分)–1–1.(2=.(6分) (3)通过以上规律不难发现:m =a +b ,n =ab .(9分) 24.【解析】(1)∵DM 、EN 分别垂直平分AC 和BC ,∴AM =CM ,BN =CN ,∴△CMN 的周长=CM +MN +CN =AM +MN +BN =AB ,(2分) ∵△CMN 的周长为15 cm , ∴AB =15 cm .(4分)(2)∵∠MFN =80°,∴∠MNF +∠NMF =180°−80°=100°, ∵∠AMD =∠NMF ,∠BNE =∠MNF , ∴∠AMD +∠BNE =∠MNF +∠NMF =100°,∴∠A +∠B =90°−∠AMD +90°−∠BNE =180°−100°=80°,(6分) ∵AM =CM ,BN =CN , ∴∠A =∠ACM ,∠B =∠BCN ,∴∠MCN =180°−2(∠A +∠B )=180°−2×80°=20°.(9分) 25.【解析】(1)设安排x 辆大型车,则安排(30)x -辆中型车,依题意,得:83(30)19056(30)162x x x x +-≤⎧⎨+-≤⎩,(2分)解得:1820x ≤≤.∵x 为整数,∴181920x =,,. ∴符合题意的运输方案有3种,方案1:安排18辆大型车,12辆中型车;方案2:安排19辆大型车,11辆中型车;方案3:安排20辆大型车,10辆中型车.(5分) (2)方案1所需费用为:900186001223400⨯+⨯=(元), 方案2所需费用为:900196001123700⨯+⨯=(元), 方案3所需费用为:900206001024000⨯+⨯=(元).(8分) ∵234002370024000<<,∴方案1安排18辆大型车,12辆中型车所需费用最低,最低费用是23400元.答:(1)符合题意的运输方案有3种,方案1:安排18辆大型车,12辆中型车;方案2:安排19辆大型车,11辆中型车;方案3:安排20辆大型车,10辆中型车;(2)方案1安排18辆大型车,12辆中型车所需费用最低,最低费用是23400元.(10分) 26.【解析】(1)设第一次购进水果x 千克,依题意可列方程,1000280022x x+=,(2分) 解得200x =,经检验:200x =是原方程的解. 答:第一次购进水果200千克.(5分)(2)设最初水果标价为y 元,依题意可列不等式,155050380031002y y +⋅-≥,(7分) 解得12y ≥, 答:最初每千克水果标价12元.(10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湘教版数学八年级上册期末复习题(一)一.精心选一选(本题共10小题,每题3分,共30分.请把你认为正确结论的代号填入下面表格中)1.16的算术平方根是 ( )A . 2B . ±2C .4D . ±4 2.在实数23-,0,34,π,9中,无理数有 ( ) A .1个 B .2个 C .3个D .4个3.下列图形中,是轴对称图形并且对称轴条数最多的是( )4.如图,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B 的度数为 ( )A .30oB .50oC .90oD .100o5.如果实数y 、x 满足y=111+-+-x x ,那么3y x +的值是( )A .0B .1C .2D .-2 6.与三角形三个顶点的距离相等的点是 ( ) A .三条角平分线的交点 B .三边中线的交点C .三边上高所在直线的交点D .三边的垂直平分线的交点 7.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE ; ②BC=ED ;③∠C=∠D ;④∠B=∠E .其中能使 △AB C ≌△AED 的条件有 ( ) A .1个 B .2个 C .3个 D .4个 8.以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( ) A .211B .1.4C .3 题号 12345678910答案A . B. C. D.ACA ′B ′′ (第4题) 50o30ol 第7题图12C B AEDD .29.如图,在直角坐标系xoy 中,△ABC 关于直线y =1成 轴对称,已知点A 坐标是(4,4), 则点B 的坐标是 ( ) A .(4,-4) B .(4,-2) C .(-2,4) D .(-4,2) 10.一个正方体的体积是99,估计它的棱长的大小在 ( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间二.耐心填一填(每题3分,共18分,直接写出结果) 11.计算︱2-3︱+22的结果是 .12.若25x 2=36,则x = ;若23-=y ,则y = .13.点P 关于x 轴对称的点是(3,–4),则点P 关于y 轴对称的点的坐标是 . 14.如图,BAC ABD ∠=∠,请你添加一个条件:,使OC OD =(只添一个即可). 15.等腰三角形的一个外角等于110︒,则这个三角形的顶角应该为 .16.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…… 如此继续下去,结果如下表: 所剪次数12 3 4 … n 正三角形个数 471013…a nn = (用含三.计算题(计算要认真仔细,善于思考!本大题有3个小题,共24分)17.(8分)计算()32281442⨯+--)(18.(8分)如图,实数a 、b 在数轴上的位置,OXABCy第9题图第16题DO CBA第14题图化简222)(baba-+-19.(8分)如图,AD∥BC,BD平分∠ABC,∠A=120°,∠C=60°,AB=CD=4cm,求四边形ABCD的周长.四.解答题(本大题有3个小题,共26分)20.(8分)某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由等腰三角形和正方形组成(个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案。

21.(8分)如图,在平面直角坐标系xoy中,(15)A-,,(10)B-,,(43)C-,.(1)求出ABC△的面积.(2)在图中作出ABC△关于y轴的对称图形111A B C△.(3)写出点A1,B1,C1的坐标.第21题图1)xyABCO 5246-5-2a22.(10分)已知:△ABC 为等边三角形,D为AB 上任意一点,连结BD . (1)在BD 左下方...,以BD 为一边作等边三角形BDE (尺规作图,保留作图痕迹,不写作法) (2)连结AE ,求证:CD =AE五.解答题(学数学要善于观察思考,勇于探索!本大题有2个小题,共22分) 23.(10分)如图,△ABC 中,AD ⊥BC ,点E 在AC 的垂直平分线上,且BD=DE. (1)如果∠BAE= 40°,那么∠B=_______° ,∠C=_______° ;(2)如果△ABC 的周长为13cm ,AC=6cm ,那么△ABE 的周长=_________cm ; (3)你发现线段AB 与BD 的和等于图中哪条线段的长,并证明你的结论.24.(12分)含30o角的直角三角板ABC (30B ∠=o)绕直角顶点C 沿逆时针方向旋转角α(90α∠<o ),再沿A ∠的对边翻折得到A B C ''△,AB 与B C '交于点M ,A B ''与BC 交于点N ,A B ''与AB 相交于点E . (1)求证:ACM A CN '△≌△.(2)当30α∠=o时,找出ME 与MB '的数量关系,并加以说明.EBMAA 'NB '八年级上册期末复习题(一)答案一. 精心选一选(本题共10小题,每题3分,共30分.)二.耐心填一填(每题3分,共18分,直接写出结果)11. 3+2 12.±56;-8. 13.(-3,4) 14. ①BC=AD ;② ∠ABC=∠DAB ;③ ∠C=∠D ; ④AC=BD ;……(只添一个即可)15. 700或40016. 3n+1三.计算题(计算要认真仔细,善于思考!本大题有3个小题,共24分)17.(8分)计算:()32281442⨯+--)( =2-4+4×21= 2-4+2 = 0 18.(8分)如图,实数a 、b 在数轴上的位置, 化简222)(b a b a -+-解:222)(b a b a -+- =-a-b-(a-b)=-a-b-a+b =-2a19.(8分)∵AD ∥BC∴∠ADB=∠DBC ∠ADC+∠C=1800 ∠ADC=1500 ∵∠ABD=∠DBC ∠A=120°∴∠ADB=∠ABD =300 ∠BDC=∠ADC - ∠ADB=900 ∴AD =AB=4cm在R t △BCD 中, ∵∠DBC=300∴BC=2CD=8cm ,∴AB+BC+CD+DA=20 cm .题号 1 2 3 4 5 6 7 8 9 10 答案 ABCDCDCDBC四.解答题(本大题有3个小题,共26分) 20.(8分)(略) 21.(8分)(1)(2分)S△ABC =215(2)(3分)(略) (3)(3分)A1(1,5),B1(2,0),C1(4,3)22.(10分)(1)△BDE 即为所求.(4分) (2)(6分)(略)五.解答题(学数学要善于观察思考,勇于探索!本大题有2个小题,共22分) 23.(10分)(1)(2分)∠B=_70__° ,∠C=__35__° (2)(2分)△ABE 的周长=__7___cm (3)(6分)解:AB+BD=DC .证明:(略) 24.(12分)(1)(6分)(略)(2)(6分)当30α∠=o时,ME =21MB '. 证明:(略)湘教版数学八年级上册期末复习题(二)一、细心填一填:(每空1分,共30分)1.角是轴对称图形,它的对称轴是 ; 等腰梯形也是轴对称图形,它的对称轴是 . 2.81的平方根为 ;-216的立方根为 ;9的算术平方根为 ;289开平方得 .3.如图,△ABC 中,AB =AC =5,AB 的垂直平分线DE 交AB 、AC 于E 、D . (1)若△BCD 的周长为8,则BC 的长为 ;(2)若∠A =40°,则∠DBC = °.4.近似数0.1040精确到 位,有效数字是 .5.在实数5,3.14,3216-,23-,0.2020020002…,722,..65.1,π--中,正无理数是 . 6.(1)已知某直角三角形的两边为3,4,则第三边长等于 ;(2)若直角三角形斜边上的高和中线分别是5cm ,6cm ,则它的面积是 . 7.如图,Rt △ABC 中,∠A BC =90°,BD ⊥AC 于D ,点E 为AC 的中点,若BC =7,AB =24,则BE = ,BD = .8.(1)若a 的平方根是±3,则a = ;(2)已知642=x ,那么3x = . 9.已知一个正数a 的平方根为2m -3和3m -22,则m = ;a = .10.如图1是20XX 年8月在北京召开的国际数学家大会的会标,它取材于我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形的拼成的大正方形. (1)如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短边为a ,较长边为b ,那么(a +b )2的值是 ;(2)若AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是 . 11.等腰△ABC 中,(1)若有一个内角为40°,则顶角等于 °; (2)若有一个外角为100°,则顶角等于 °;(3)若∠A =30°,则∠B = °. 12.计算:(1)()42120++--= ;(2)312523832-+--= . 13.在△A BC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,则∠B 等于_____________°.A BE D C (第7题) A B C 图1 图2 (第10题) D B A E (第3题)14.在等腰△ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为15或12两个部分,则该等腰三角形的底边长等于 . 15.如图,△ABC 中,AB =AC ,∠BAC =110°,AD 是BC 边上的中线,且BD =BE ,则∠AED 度数是 .16.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块, 它的棱长和场地宽AD 平行且大于AD , 木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A 处,到达C 处需要走的 得最短路程是 米.二、精心选一选(每题3分,共24分)17.在下图所示的四个汽车标志图案中,属于轴对称图案的有 ( )A 、1个B 、2个C 、3个D 、4个 18.据统计,20XX 年十·一期间,江阴市某风景区接待中外游客的人数为8674人次,将这个数字保留三个有效数字,用科学记数法可表示为 ( ) A 、8.67×102 B 、8.67×103 C 、8.67×104 D 、8.67×10519.下列说法中正确的是 ( ) A 、带根号的数都是无理数 B 、不带根号的数一定是有理数C 、无理数是无限小数D 、无限小数都是无理数20.如图,桌面上有A 、B 两球,若要将B 球射向桌面任意一边,使一次反弹后 击中A 球,则如图所示8个点中,可以瞄准的点的个数是 ( ) A 、2 B 、4 C 、6 D 、821.如图, BE 、CF 分别是△ABC 的高,M 为BC 的中点, EF =5,BC =8,则△EFM 的周长是( ) A 、21 B 、18 C 、13 D 、1522.如图,分别以直角三角形的三边为斜边,在其形外作等腰直角三角形,其面积分别记为S 1、S 2、S 3,则S 1、S 2、S 3的关系为 ( )D CB A (第16题) (第15题) B DA E (第20题) AB D E PC B A (第24题) A C B M E F (第21题) (第22题) A C BS 1 S 2S 3A 、S 1+S 2>S 3B 、S 1+S 2=S 3C 、S 1+S 2<S 3D 、不能确定 23.下列说法:①()10102-=-;② 数轴上的点与实数成一一对应关系;③ -2是16 的平方根;④ 任何实数不是有理数就是无理数;⑤ 两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有( )A 、2个B 、3个C 、4个D 、5个24.如图,正方形ABCD 的边长为3,E 在BC 上,且BE =2,P 在BD 上,则PE +PC 的最小值为( ) A 、32 B 、13 C 、14 D 、15三、认真答一答(本大题共7小题,共46分) 25、(本题6分)求下列各式中的x 的值.(1)()310+x =-343; (2)()2336-x = 49 26.(本题5分)“西气东输”是造福子孙后代的创世工程,现 有两条高速公路l 1、l 2和两个城镇A 、B (如图),准备建一 个燃气控制中心站P ,使中心站到两条公路距离相等,并且 到两个城镇的距离也相等,请你利用直尺和圆规作出中心站 P 的位置.(作出满足题意的一处位置即可)27.(本题6分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.⑴在图1中,画一个三角形,使它的三边长都是有理数;⑵在图2、图3中,分别画一个直角三角形,使它们的三边长都是无理数,并且要求所画的两个直角三角形不全等.28、(本题7分)如图1是单位为1的方格图.(1)请把方格图中的带阴影的图形适当剪开,重新拼成正方形;(画出分割线与拼成正方形的草图)(2)所拼成正方形的边长为多少?周长为多少?(3)利用这个事实,在图2的数轴上画出表示5的点.(要求保留画图痕迹)图1 图2 图3 (第27题)2(第26题)29.(本题8分)(20XX 年浙江省杭州市)如图,在等腰梯形ABCD 中,∠C =60°,AD ∥BC ,且AD =DC ,E 、F 分别在AD 、DC 的延长线上,且DE =CF ,AF 、BE 交于点P . (1)求证:AF =BE ;(2)请你猜测∠BPF 的度数,并证明你的结论.30.(本题6分)(20XX 年江苏省)(1)观察与发现: 小明将三角形纸片ABC (AB >AC )沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到△AEF (如图②).小明认为△AEF 是等腰三角形,你同意吗?请说明理由.(2)实践与运用:将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D ′处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.31.(本题8分)为美化环境,计划在某小区内用30平方米的草皮铺设一块有一边长为10米的等腰三角形绿地,请你求出这个等腰三角形绿地的另两边长.(结果精确到0.1米)D B CA P FE(第29题)图1图2---(第28题) A B 图① A C B 图② F E E D C F BA 图③ E D C AB F GC 'D ' A DE C B G α 图④ 图⑤ (第30题)参考答案与评分标准一、细心填一填:(每空1分,共30分)1.角平分线所在的直线;过两底中点的直线.2.±9;-6;3;±17. 3.(1)3;(2)30°.4.万分;1,0,4,0.5.5, 0.2020020002….6.(1)5或7;(2)30.7.BE =12.5;BD =6.72.8.(1)81;(2)±29.m =5;a =49.10.(1)25;(2)76.11.(1)40°或100°;(2)80°或20°;(3)30°或120°或75°.12.(1)3;(2)11.13.70°或20°.14.7或11.15.107.5°.16.2.6米二、精心选一选(每题3分,共24分)17~20.BBCA ; 21~24.CBCB三、认真答一答(本大题共7小题,共46分)25.(1)x =-17;……………3分 (2)x =625或611……………3分26.图略,作出角平分线、线段AB 的垂直平分线各2分,标出点P 得1分27.如图,画对每张图形各2分,答案不唯一28.(1)如图1,…………………………………………………………………………………………3分图1 图2(第28题答案) (图1) (图2) (图3)(第27题答案)(2)边长为5,周长为45……………………………………………………………………………2分(3)如图2,………………………………………………………………………………………………2分29.(1)证△BAE ≌△ADF ,可得AF =BE ;……………………………………………………………4分(2)∠BPF =120°,可证∠BPF =∠PBA +∠BAP =∠BAP +∠P AD =∠BAD =120°…………………4分30.(1)同意。

相关文档
最新文档