2019广东高考理科综合试题及答案

合集下载

2019年高考广东卷理科综合(物理部分)试题及答案(word版)

2019年高考广东卷理科综合(物理部分)试题及答案(word版)

2019年高考广东卷理科综合(物理部分)试题及答案(word版)一、u的关系式R X= ;根据图17(c)用作图法算出R X= Ω35.(18分)如图18,两块相同平板P1、P2至于光滑水平面上,质量均为m。

P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L。

物体P置于P1的最右端,质量为2m且可以看作质点。

P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起,P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内)。

P与P2之间的动摩擦因数为μ,求(1)P1、P2刚碰完时的共同速度v1和P的最终速度v2;(2)此过程中弹簧最大压缩量x和相应的弹性势能E p36.(18分)如图19(a)所示,在垂直于匀强磁场B的平面内,半径为r的金属圆盘绕过圆心O的轴转动,圆心O和边缘K通过电刷与一个电路连接,电路中的P是加上一定正向电压才能导通的电子元件。

流过电流表的电流I与圆盘角速度ω的关系如图19(b)所示,期中ab段和bc段均为直线,且ab段过坐标原点。

ω>0代表圆盘逆时针转动。

已知:R=3.0Ω,B=1.0T,r=0.2m。

忽略圆盘、电流表和导线的电阻(1)根据图19(b)写出ab、bc段对应I与ω的关系式(2)求出图19(b)中b、c两点对应的P两端的电压U b、U c(3)分别求出ab、bc段流过P的电流I p与其两端电压U p的关系式2018年普通高等学校招生全国统一考试(广东卷)参考答案34、(18分)(1)①DCBA,②0.1,③s4+s52T,④(s 4+s 5+s 6)- (s 1+s 2+s 3)9T 2 (2)①如答图1,②0.10,③Lu I,6.0 35、(18分)解:(1)P 1、P 2构成的系统碰撞前后,动量守恒 mv 0=2mv 1 ①v 1= v 02② 对P 停在A 点后,他们的共同速度为v 2,则 由动量守恒3mv 0=4mv 2 ③v 2= 3v 04④ (2) 由功能关系μ(2m)g ×2(L+x)=12(2m)v 20+ 12(2m)v 21-12(4m)v 22 ⑤ 解得x=v 2032μg-L ⑥ 当弹簧压缩最大时,P 、P 1和P 2共同速度为v 3, 由动量守恒3mv 0=4mv 3 ⑦v 3= 3v 04⑧ 弹簧压缩最大时,系统的动能与最后P 停在P 2上后的系统动能相同 由功能关系2μmg (L+x) =E p ⑨E p =116mv 20 ⑩ 36、(18分)解:(1)设I= k ω+I 0 ①ab 段:I=1150ω ② bc 段:I=1100ω-120③ (2)P 两端的电压等于感应电动势U p =ε ④由电磁感应定律ε=ΔΦΔt⑤ ε=12Br 2ω ⑥ 由图知,b 和c 对应的角速度分别为 ωb =15rad/s ωc =45rad/s ⑦ 对应的P 两端的电压分别为U b =0.3V ⑧U c =0.9V ⑨(3)流过电阻R 的电流I R =εR⑩ ab 段:流过P 的电流: I p =I ab -I R (11) 联立③,④,⑥,⑩和(11),得到I p 与U p 的关系式为: I p =0 (12)bc 段:流过P 的电流: I p =I ab -I R (13) 联立③,④,⑥,⑩和(13),得到I p 与U p 的关系式为I p =16U p -120(14)。

广东省茂名市2019届高三第一次综合测试理科综合试卷(高清扫描版,含答案)

广东省茂名市2019届高三第一次综合测试理科综合试卷(高清扫描版,含答案)

2019年茂名市第一次综合测试物理试题参考答案14.C 15.D 16.D 17.C. 18.D 19.BC 20.ACD 21.AC22.(5分) (1)1. 22(1分) (2)3.0(2分),(3)(2分)23. (1)D,E ;(2)连线如图所示(2分);(3)NTC ;(4)80. 0Ω评分标准:第(2)问连线2分,其余每空2分,共10分24.(12分)解析 (1)设板间的电场强度为E ,离子做匀速直线运动,受到的电场力和洛伦兹力平衡,有qE =qv 0B 0 2分解得E =v 0B 0 1分(2)设A 点离下极板的高度为h ,离子射出电场时的速度为v ,根据动能定理得2分离子在电场中做类平抛运动,水平分方向做匀速运动,有1分解得 1分(3)设离子进入磁场后做匀速圆周运动的半径为r ,根据牛顿第二定律,得2分由几何关系得2d =rcos 30° 2分解得 1分25. (20分) (1)设A 、B 达到的共同速度为v 共,根据动量守恒有mV 0=(m +M)V 共 (1分)解得v 共=2m/s (1分)设这一过程中B 向右运动的位移为x 1,根据动能定理有(1分)解得x1=3m (l分)因x1<L,A、B达到共同速度后才与墙碰撞,对系统有能量守恒可得1分代入数据解得Q=24J 1分(2)设从A滑上B到两者达到共同速度所用的时间为t1,则有(1分)(1分)解得t1=3s (l分)两者达到共同速度后一起匀速运动,直到B第一次与墙壁碰撞,设匀速运动所用时间为t2, (1分) 所以,从A滑上B到B与墙壁碰撞所用的时间为t=t1+t2=3.5s (1分)(3)要能碰撞两次,表明第一次碰撞前瞬间A、B的速度大小不等。

取水平向右为正方向,设B与墙壁第一次碰撞前瞬间A、B的速度大小分别为v1、v2,根据动量守恒有mv0=mv1+Mv2 (1分)设B与墙壁第二次碰撞前瞬间A、B的速度大小分别为v3、v4,根据动量守恒有mv1-Mv2=mv3+Mv4 (1分)若要B与墙只发生两次碰撞,则第一次碰撞后系统总动量方向要向右,第二次碰撞后总动量方向要向左,所以有mv1-Mv2>0,mv3-Mv4≤0 (2分)根据B往返运动的对称性知v2=v4 (1分)联立解得 (2分)根据动能定理有 (1分)解得 (1分)33.(1)ACE(5分)(2)【10分】(i)缸内气体的温度为T0时,缸内气体的压强(1分)当缸底物块对缸底的压力刚好为零时,缸内气体压强(1分)气体发生等容变化,则根据查理定律有(2分)解得(1分)(ii)当缸内气体体积为原来的1.2倍时,设气体的温度为T2,从温度T1变到温度T2,此过程气体发生的是等压变化,根据盖-吕萨克定律有(2分)解得(1分)此时细线断了,当细线断开的一瞬间,根据牛顿第二定律有(p2-p0)S-mg=ma(l分) 解得a=2g(l分)34、(1) ACE(5分)(2) (i)设光线P折射后经过B点,光路如图所示,根据折射定律得(2分)由几何关系知在△OBC中(1分)解得 (2分)所以 (1分)(ii)由几何关系知△DBC中(1分)因为 (2分)故光线从B点射出,光线P在圆柱体中运动时间为(1分)2019年第一次综合测试理综生物试题参考答案一.选择题(本题共6小题,每小题6分,共36分)二.非选择题(共54分,第29-32为必考题,每个试题考试都必须作答。

广东2019年高考理科综合生物试题(含参考解析和解释)

广东2019年高考理科综合生物试题(含参考解析和解释)

广东2019年高考理科综合生物试题(含参考解析和解释)生物解析一、单项选择题:本大题共16小题,每题4分,总分值64分、在每题给出的四个选项中,只有一项为哪一项符合题目要求的、选对的得4分,选错或不答的得0分。

1、有关糖的表达,正确的选项是〔〕A、葡萄糖在线粒体中合成B、葡萄糖遇碘变为蓝色C、纤维素由葡萄糖组成D、胰岛素促进糖原分解【答案】C【解析】葡萄糖是在叶绿体和细胞质基质内合成,故A错误,淀粉遇碘变蓝,故B错误;纤维素是多糖,起单体是葡萄糖,故C正确;胰岛素通过抑制糖原的分解,促进组织细胞对葡萄糖的吸收利用从而降低血糖的,故D错误。

2、1953年Watson和Crick构建了DNA双螺旋结构模型,其重要意义在于①证明DNA是要紧的遗传物质②确定DNA是染色体的组成成分③发明DNA如何存储遗传信息④为DNA复制机构的阐明奠定基础A、①③B、②③C、②④D、③④【答案】D【解析】噬菌体侵染细菌的试验证明了DNA是要紧的遗传物质,故①错误,Watson和Crick构建了DNA双螺旋结构模型之前,就差不多明确了染色体的组成成分吗,故②错误,结构决定功能,清晰DNA双螺旋结构,就能够发明DNA 如何存储遗传信息,故③正确;清晰了DNA双螺旋结构,就为DNA复制机构的阐明奠定基础,而且Waston和Crick也对DNA复制进行了描述,故④正确。

3、从某海洋动物中获得一基因,其表达产物为一种抗菌体和溶血性均较强的多肽P1。

目前在P1的基础上研发抗菌性强但溶血性弱的多肽药物,首先要做的是【答案】C【解析】该题目属于蛋白质工程,差不多获得该目的基因片段,不需要合成编码目的肽的DNA片段,故A错误,是需要构建含目的肽DNA片段的表达载体,但这不是第一步,故B错误;蛋白质工程的第一步是依照蛋白质的功能,设计P1氨基酸序列,从而推出其基因序列,故C正确;该基因表达产物为一种抗菌体和溶血性均较强的多肽P1,目前在P1的基础上研发抗菌性强但溶血性弱的多肽药物,而目的多肽是抗菌性强但溶血性弱,因此必需对其改造,保持其抗菌性强,抑制其溶血性,故D错误.【考点定位】此题综合考查了蛋白质工程和基因工程的相关内容,属于中等偏上难度题.A、合成编码目的肽的DNA片段B、构建含目的肽DNA片段的表达载体C、依据P1氨基酸序列设计多条模拟肽D、筛选出具有优良火性的模拟肽作为目的肽4、图1为去顶芽对拟南芥主根生长妨碍的实验结果,分析正确的选项是〔〕A、去顶芽能促进主根生长B、去顶芽植株不能合成生长素C、生长素由顶芽向下非极性运输D、外源生长素能替代顶芽促进主根生长【答案】D【解析】依照实验的原理以及题目中的信息,去顶芽是抑制主根的生长,故A错误;实验没有信息能够证明去顶芽植株不能合成生长素,故B错误;实验没有信息能够证明生长素由顶芽向下非极性运输,故C错误;依照正常植株与去顶芽但施以外源生长素后,二者主根长度相当,能够说明外源生长素能代替顶芽促进主根生长,故D正确。

2019年广东省高考数学试卷(理科)

2019年广东省高考数学试卷(理科)

2021年广东省高考数学试卷〔理科〕一、选择题:本大题共8小题,每题5分,总分值40分,在每题给出的四个 选项中,只有一项为哪一项符合题目要求的.1. 〔5分〕设集合 M={x| x 2+2x=0,x€ R} , N={x| x 2—2x=0, x€ 号,贝U MUN=〔 A. {0} B. {0, 2} C. {-2, 0} D. {-2, 0, 2}2. 〔5分〕定义域为R 的四个函数y=x 3, y=2x, y=x 2+1, y=2sinx 中,奇函数的个 数是〔 〕 A. 4B. 3 C 2 D. 13. 〔5分〕假设复数z 满足iz=2+4i,那么在复平面内,z 对应的点的坐标是〔 〕A. 〔2, 4〕B. 〔2, -4〕C. 〔4, -2〕D. 〔4, 2〕 4. 〔5那么X 的数学期望E 〔X 〕=〔 〕 A — B. 2 C. D. 3 2 25. 〔5分〕某四棱台的三视图如下图,那么该四棱台的体积是〔〕A. 4 B — C.D. 633 6. 〔5分〕设m, n 是两条不同的直线,% B 是两个不同的平面,以下命题中正 确的是〔 〕A.假设 a± & m? a, n? B,那么 m±nB.假设 all 0, m? a, n? & 那么 m // nC.假设 m±n, m? a, n? 3 那么 a± pD.假设 m ,a, m // n, n // & 那么 a± 0 7. 〔5分〕中央在原点的双曲线 C 的右焦点为F 〔3, 0〕,离心率等于,,那么 C 的方程是〔〕F ¥ J B Jc /n -7 二——1 — — C — — D —--〔5 分〕设整数 n>4,集合 X={1, 2, 3,…,n}.令集合 S={ 〔x, y, z 〕 | x, zC X,且三条件 x< y<z, y<z<x, z<x< y 恰有一个成立}.假设〔x, y, z 〕 〔z, w, x 〕都在S 中,那么以下选项正确的选项是〔〕A. 8. y, 和A. 〔y, z, w〕C S, 〔x, y, w〕 ?SB. 〔y, z, w〕€ S, 〔x, y, w〕€ SC. 〔y, z, w〕?S, 〔x, y, w〕S SD. 〔y, z, w〕 ?S, 〔x, y, w〕 ?S二、填空题:本大题共7小题,考生作答6小题,每题5分,总分值30分.9. 〔5分〕不等式x2+x —2<0的解集为.10. 〔5分〕假设曲线y=kx+lnx在点〔1, k〕处的切线平行于x轴,那么k=.11. .〔5分〕执行如下图的程序框图,假设输入n的值为4,那么输出s的值为.12. 〔5分〕在等差数列{a n}中,33+88=10,那么3a5+a7=.K+4V>413. 〔5 分〕给定区域D: r+y<4 .令点集T={〔x°, Vo〕 CD|xo, yo^Z, 〔x0,Ly°〕是z=x+y在D上取得最大值或最小值的点},那么T中的点共确定条不同的直线.14. 〔5分〕〔坐标系与参数方程选做题〕曲线C的参数方程为〔t为参数〕,C在点〔1,1〕处的切线为I,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,那么I的极坐标方程为. 15. 如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD过C作圆O 的切线交AD于E.假设AB=6, ED=2,那么BC=.三、解做题:本大题共6小题,总分值80分.解答须写出文字说明、证实过程和演算步骤.16. 〔12分〕函数f 〔x〕 =V2cos 〔x-—〕, xCR.12〔I〕求f 〔—工〕的值;6〔H〕假设cosB2,筱〔",2兀〕,求f 〔2什工〕. 5 2 317. 〔12分〕某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如下图,其中茎为十位数,叶为个位数.〔1〕根据茎叶图计算样本均值;〔2〕日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.18. (14分)如图1,在等腰直角三角形ABC中,/A=90°, BC=6 D, E分别是AC, AB上的点,CD二BE二加,O为BC的中点.将△ ADE沿DE折起,得到如图2 所示的四棱椎A'-BCDE其中A O<.(1)证实:A工平面BCDE(2)求二面角A'-CD- B的平面角的余弦值.2 S19. (14分)设数列{a n}的前n项和为3b a〔二1,二1二日三门2力4,n_ * € N .(1)求a2的求;(2)求数列{an}的通项公式;(3)证实:对一切正整数n,有!小+..・」-<工. a l a2 a n 420. (14分)抛物线C的顶点为原点,其焦点F (0, c) (c>0)到直线l: x-y-2=0的距离为色巨,设P为直线l上的点,过点P作抛物线C的两条切线PA, PB,其中A, B为切点.(1)求抛物线C的方程;(2)当点P (xo, yo)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|?|BF|的最小值.21. (14 分)设函数f (x) = (x- 1) e x- kx2 (kC R).(1)当k=1时,求函数f (x)的单调区问;(2)当1]时,求函数f (x)在[0, k]上的最大值M.叁2021年广东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每题5分,总分值40分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1. (5分)设集合M={x| x2+2x=0,x€ R} , N={x| x2—2x=0, xC R},贝U MUN=(A. {0}B. {0, 2}C. {-2, 0}D. {-2, 0, 2}【分析】根据题意,分析可得,M={0, -2}, N={0, 2},进而求其并集可得答案.【解答】解:分析可得,M 为方程x2+2x=0 的解集,贝U M={x| x2+2x=C}={0, — 2},N 为方程x2— 2x=0 的解集,贝U N={x|x2-2x=0}={0, 2},故集合M UN=[0, - 2, 2},应选:D.【点评】此题考查集合的并集运算,首先分析集合的元素,可得集合的意义,再求集合的并集.2. 〔5分〕定义域为R的四个函数y=x3, y=2x, y=x2+1, y=2sinx中,奇函数的个数是〔〕A. 4B. 3C. 2D. 1【分析】根据函数奇偶性的定义及图象特征逐一盘点即可.【解答】解:y=x3的定义域为R,关于原点对称,且〔-x〕3=- x3,所以函数y=x3 为奇函数;y=2x的图象过点〔0, 1〕,既不关于原点对称,也不关于y轴对称,为非奇非偶函数;y=x2+1的图象过点〔0, 1〕关于y轴对称,为偶函数;y=2sinx的定义域为R,关于原点对称,且2sin 〔 - x〕 =-2sinx,所以y=2sinx为奇函数;所以奇函数的个数为2,应选:C.【点评】此题考查函数奇偶性的判断,属根底题,定义是解决该类题目的根本方法,要熟练掌握.3. 〔5分〕假设复数z满足iz=2+4i,那么在复平面内,z对应的点的坐标是〔〕A. 〔2, 4〕B. 〔2, -4〕C. 〔4, -2〕D. 〔4, 2〕【分析】由题意可得z2彗,再利用两个复数代数形式的乘除法法那么化为412i,从而求得z对应的点的坐标.【解答】解:复数z满足iz=2+4i,贝U有z=2+产」2+4i〕i=4 — 2i,1 -1故在复平面内,z对应的点的坐标是〔4, -2〕, 应选:C.【点评】此题主要考查两个复数代数形式的乘除法,虚数单位i的幕运算性质, 复数与复平面内对应点之间的关系,属于根底题.4. 〔5分〕离散型随机变量X的分布列为那么X的数学期望E 〔X〕=〔〕A —B. 2 C. D. 3 2 2【分析】利用数学期望的计算公式即可得出.【解答】解:由数学期望的计算公式即可得出:E〔X〕 =〞+2X三+3」巨.5 10 10 2应选:A.【点评】熟练掌握数学期望的计算公式是解题的关键.5. 〔5分〕某四棱台的三视图如下图,那么该四棱台的体积是〔〕A. 4 B = C D. 6 33【分析】由题意直接利用三视图的数据求解棱台的体积即可.【解答】解:几何体是四棱台,下底面是边长为2的正方形,上底面是边长为1 的正方形,棱台的高为2, 并且棱台的两个侧面与底面垂直,四楼台的体积为V=L X〔22+ 1 3+722X I2〕X2=^-- ■J'J应选:B.【点评】此题考查三视图与几何体的关系, 棱台体积公式的应用,考查计算水平与空间想象水平.6. 〔5分〕设m, n是两条不同的直线,% B是两个不同的平面,以下命题中正确的是〔〕A.假设a± & m? a, n? B,那么m±nB.假设all 0, m? a, n? & 那么m // nC.假设m±n, m? a, n? 3 那么a± pD.假设m,a, m // n, n // & 那么a± 0 【分析】由a± p, m? a, n? B,可才t得m,n, m // n,或m, n异面;由all 0, m? & n?就可得m // n,或m, n异面;由m,n, m? a, n? 0,可得a与0 可能相交或平行;由m± a, m // n,那么n,a,再由n // B可得a± 0.【解答】解:选项A,假设n & m? % n? 3那么可能m±n, m // n,或m, n 异面,故A错误;选项B,假设all & m? a, n? B,那么m // n,或m, n异面,故B错误;选项C,假设m,n, m? a, n? 0,那么a与B可能相交,也可能平行,故C错误;选项D,假设m, a, m // n,那么n, a,再由n II 0可得「0,故D正确.应选:D.【点评】此题考查命题真假的判断与应用,涉及空间中直线与平面的位置关系, 属根底题.7. (5分)中央在原点的双曲线C的右焦点为F (3, 0),离心率等于,,那么C的方程是( )A / IB /C ,「D ’A「- - B ——C—— D —— -【分析】设出双曲线方程,利用双曲线的右焦点为 F (3, 0),离心率为1,建2立方程组,可求双曲线的几何量,从而可得双曲线的方程.22【解答】解:设双曲线方程为三二7二1 (a>0, b>0),那么 a b.•.双曲线C的右焦点为F (3, 0),离心率等于,,上1 r c-3* c c , c=3, a=2, • . b2=c2 - a2=5一心2 2「•双曲线方程为,誉:1. 4 5应选:B.【点评】此题考查双曲线的方程与几何性质,考查学生的计算水平,属于根底题.8. (5 分)设整数n>4,集合X=[1, 2, 3,…,n}.令集合S={ (x, y, z) | x, y, z€ X,且三条件x< y<z, y<z<x, z<x< y 恰有一个成立}.假设(x, y, z) 和(z, w, x)都在S中,那么以下选项正确的选项是( )A. (y, z, w) S S, (x, y, w) ?SB. (y, z, w) S S, (x, y, w) S SC. (y, z, w) ?S, (x, y, w) € SD. (y, z, w) ?S, (x, y, w) ?S【分析】特殊值排除法,取x=2, y=3, z=4, w=1,可排除错误选项,即得答案.【解答】解:方法一:特殊值排除法, 取x=2, y=3, z=4, w=1,显然满足(x, y, z)和(z, w, x)都在S中,此时(y, z, w) = (3, 4, 1) C S, (x, y, w) = (2, 3, 1) C S,故A、G D 均错误;只有B成立,应选B.直接法:根据题意知,只要y<z<w, z<w<y, w<y<z 中或x<y<w, y<w<x, w<x <y中恰有一个成立那么可判断〔y, z, w〕€ S, 〔x, y, w〕€ S.v(x, y, z) € S, (z, w, x) C S,x<y<z•・①,y<z<x••②,z<x<y••③三个式子中恰有一个成立;z<w<x…④,w<x<z••⑤,x<z<w••⑥三个式子中恰有一个成立.配对后有四种情况成立,第一种:①⑤成立,止匕时w <x<y<z,于是〔y, z, w〕€ S, 〔x, y, w〕C S; 第二种:①⑥成立,此时x<y<z<w,于是(y, z, w) e S, (x, y, w) e S;第三种:②④成立,此时y<z< w<x,于是(y, z, w) e S, (x, y, w) e S;第四种:③④成立,此时z<w<x<y, 于是(y, z, w) S S, (x, y, w) S S.综合上述四种情况,可得〔y, z, w〕 C S, 〔x, y, w〕€ S.应选:B.【点评】此题考查简单的合情推理,特殊值验证法是解决问题的关键,属根底题.二、填空题:本大题共7小题,考生作答6小题,每题5分,总分值30分.9. 〔5分〕不等式x2+x —2<0的解I集为〔一2, 1〕.【分析】先求相应二次方程x2+x-2=0的两根,根据二次函数y=x2+x- 2的图象即可写出不等式的解集.【解答】解:方程x2+x- 2=0的两根为-2, 1, 且函数y=/+x-2的图象开口向上,所以不等式x2+x- 2<0的解集为〔-2, 1〕.故答案为:〔-2, 1〕.【点评】此题考查一元二次不等式的解法,属根底题,深刻理解三个二次〞间的关系是解决该类题目的关键,解二次不等式的根本步骤是:求二次方程的根;作出草图;据图象写出解集.10. 〔5分〕假设曲线y=kx+lnx在点〔1, k〕处的切线平行于x轴,那么k= - 1 .【分析】先求出函数的导数,再由题意知在1处的导数值为0,列出方程求出k 的化【解答】解:由题意得,y'踮, X•••在点〔1, k〕处的切线平行于x轴,. ・k+1=0,彳4 k= - 1,故答案为:-1.【点评】此题考查了函数导数的几何意义应用,难度不大.11. 〔5分〕执行如下图的程序框图,假设输入n的值为4,那么输出s的值为7 .【分析】由中的程序框图及中输入4,可得:进入循环的条件为i04,即i=1, 2, 3, 4.模拟程序的运行结果,即可得到输出的S值.【解答】解:当i=1时,S=1+1 - 1=1;当i=2 时,S=#2-1=2;当i=3 时,S=?3—1=4;当i=4 时,S=4M—1=7;当i=5时,退出循环,输出S=7;故答案为:7.【点评】此题考查的知识点是程序框图, 在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比拟多时,要用表格法对数据进行治理.12. 〔5分〕在等差数列{a n}中,33+88=10,那么3a5+a7= 20 .【分析】根据等差数列性质可得:3a5+a7=2 〔a5+a6〕=2 〔央+出〕.【解答】解:由等差数列的性质得:3a5+a7=2a5+ 〔a s+a/〕=2a5+ 〔2%〕 =2 〔a5+%〕 =2 〔a3+%〕 =20,故答案为:20.【点评】此题考查等差数列的性质及其应用, 属根底题,准确理解有关性质是解决问题的根本.工+4V>413. 〔5 分〕给定区域 D: r+y<4 .令点集 T={ 〔xo, yo 〕 CD|xo, yoCZ, 〔xo, yo 〕是z=x+y 在D 上取得最大值或最小值的点},那么T 中的点共确定 6 条 不同的直线.【分析】先根据所给的可行域,利用几何意义求最值, z=x+y 表示直线在y 轴上 的截距,只需求出可行域直线在y 轴上的截距最值即可,从而得出点集T 中元素 的个数,即可得出正确答案.【解答】解:画出不等式表示的平面区域,如图.作出目标函数对应的直线,由于直线 z=x+y 与直线x+y=4平行,故直线z=x+y 过 直线 x+y=4 上的整数点:〔4,.〕,〔3, 1〕, 〔2, 2〕, 〔1, 3〕或〔.,4〕时,直线的纵截距最大,z 最大;当直线过〔o, 1〕时,直线的纵截距最小,z 最小,从而点集T={ 〔4, o 〕, 〔3, 1〕, 〔2, 2〕,〔1, 3〕,〔o,4〕,〔o,1〕},经过这六个点的直线一共有6条.即T 中的点共确定6条不同的直线. 故答案为:6.【点评】此题主要考查了简单的线性规划, 以及利用几何意义求最值,属于根底 题.14. 〔5分〕〔坐标系与参数方程选做题〕以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,那么 I 的极坐标方程为 P cos+% sin _02=o 〔埴 p sin 〔或 P cos 〔 9〕一回也得总分值〕 .【分析】先求出曲线C 的普通方程,再利用直线与圆相切求出切线的方程, 最后 利用x= p cos,8 y= p sin 他换求得其极坐标方程即可.「•曲线C 是以〔o, o 〕为圆心,半径等于 血的圆. C 在点〔1,1〕处的切线I 的方程为x+y=2, 令 x= p cos,8y= p sin,0曲线C 的参数方程为{x=V2costy=V2sint〔t 为参数〕,C 在点〔1,1〕处的切线为I,【解答】解:由「一 [y=V2sint〔t 为参数〕,两式平■方后相加得x 2+y 2=2,…〔4分〕代入x+y=2 ,并整理得p cos+〕p sin & 2=0 ,即p 4^;〕一日或P cos〔B那么l的极坐标方程为p cos+Op sin & 2=0 〔填p sin〔 84或P CCIB〔日二$〕=^巧也得总分值〕•…〔10分〕故答案为:p cos+Op sin 4〕2=0 〔填P n 〔.H或p 8 式 9 —.也得总分值〕.【点评】此题主要考查极坐标方程、参数方程及直角坐标方程的转化.普通方程化为极坐标方程关键是利用公式x= p cos,8y= p sin.015. 如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD过C作圆O 的切线交AD 于E.假设AB=6, ED=2, WJ BC=__^_.【分析】利用AB是圆O的直径,可得/ ACB=90. IP AC±BD,又BC=CD 可得△ ABD是等腰三角形,可得/ D=/B.再利用弦切角定理可得/ ACE=/ B, 得至ij/AECWACB=90,进而得到^ CED^AACB,利用相似三角形的性质即可得出.【解答】解:.「AB是圆O的直径,「./ ACB=90.即AC BD.又 = BC=CD AB=AD,「. / D=/ ABC, / EAC=Z BAC•.CE与..相切于点C, 「./ACE之ABC / AECW ACB=90.・ .△CED^ AACB.. •里里,又CD=BCAB BCBC=V AB*ED =76X2-2^3.【点评】此题综合考查了圆的性质、弦切角定理、等腰三角形的性质、相似三角形的判定与性质等根底知识,需要较强的推理水平.三、解做题:本大题共6小题,总分值80分.解答须写出文字说明、证实过程和演算步骤.16. 〔12 分〕函数f 〔x〕 ='/^cos 〔x-y1-〕, xCR. JT〔I〕求f 〔-三〕的值;6〔n〕假设cosel,长〔JLL, 2兀〕,求f〔2肝2L〕.5 2 3【分析】〔1〕把x=-二直接代入函数解析式求解.6〔2〕先由同角三角函数的根本关系求出sin 8的值以及sin2.然后将x=20二代3入函数解析式,并利用两角和与差公式求得结果.【解答】解:〔1〕f ^〕=A/2COS〔^^^T〕=V2COS〔--^〕=V2o Q iz q 一上〔2〕由于8号©=|, e e 等,2n〕所以, 「[一一・:所以$in2 e =2sin8 cos 9 =2 乂〔"〕"二,cos2 9 =cos2 9 -si n20 二〔汨〕一〔4〕2 = 5 5 25所以f〔2 = +_Z-〕=V2C0S^2=+-z_^r;r〕=V2C0S〔2 =+—j-〕:=cos2日-sin2 ==U 0 JL T7 z24 s1725 ।25’ 25【点评】此题主要考查了特殊角的三角函数值的求解, 考查了和差角公式的运用, 属于知识的简单综合,要注意角的范围.17. 〔12分〕某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如下图,其中茎为十位数,叶为个位数.〔1〕根据茎叶图计算样本均值;〔2〕日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?〔3〕从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.【分析】〔1〕茎叶图中共同的数字是数字的十位,这是解决此题的突破口,根据所给的茎叶图数据,代入平均数公式求出结果;〔2〕先由〔1〕求得的平均数,再利用比例关系即可推断该车间12名工人中有几名优秀工人的人数;〔3〕设从该车间12名工人中,任取2人,恰有1名优秀工人〞为事件A,结合组合数利用概率的计算公式即可求解事件A的概率.【解答】解:(1)样本均值为升20+21+25+30=22;6(2)抽取的6名工人中有2名为优秀工人,所以12名工人中有4名优秀工人;(3)设从该车间12名工人中,任取2人,恰有1名优秀工人〞为事件A,clcJ 1 c所以P(A〞一V二会, v12即恰有1名优秀工人的概率为—.33【点评】此题主要考查茎叶图的应用,古典概型及其概率计算公式,属于容易题.对于一组数据,通常要求的是这组数据的众数,中位数,平均数,题目分别表示一组数据的特征,考查最根本的知识点.18. (14分)如图1,在等腰直角三角形ABC中,/A=90°, BC=6 D, E分别是AC, AB上的点,CD=BE=V2, O为BC的中点.将△ ADE沿DE折起,得到如图2 所示的四棱椎A'-BCDE其中A O=?(1)证实:A工平面BCDE(2)求二面角A'-CD- B的平面角的余弦值.【分析】(1)连接OD, OE.在等腰直角三角形ABC中,/B=/ C=45, CD二BE二班, AD=AE乏/!,CO=BO=3分另1」在4 COD与△ OBE中,利用余弦定理可得OD, OE.禾用勾股定理的逆定理可证实/ A OD=A' OE=90再利用线面垂直的判定定理即可证实;(2)方法一:过点O作OF, CD的延长线于F,连接A' F利用(1)可知:A' 0 ,平面BCDE根据三垂线定理得A LCD,所以/ A' FO;二面角A'-CD- B的平面角.在直角△ OCF中,求出OF即可;方法二:取DE中点H,那么OH, OB.以O为坐标原点,OH、OB、OA分别为x、V、z轴建立空间直角坐标系.利用两个平面的法向量的夹角即可得到二面角.【解答】(1)证实:连接OD, OE.由于在等腰直角三角形ABC中,/ B=/ C=45, CD二BE二加,CO=BO=3在ACOD中,加二{C02+C D々CO・CDs s45;二立,同理得比=^・由于AD=A' D=A‘ E=AE=2/2, A’ 0二®所以 A 2+OD2=A 2), A 2+Og=A,孑所以/A' OD=A' OE=90所以A' UOD, A吐OE, ODA OE=O.所以A吐平面BCDE(2)方法一:过点O作OF,CD的延长线于F,连接A' F由于A吐平面BCDE根据三垂线定理,有A 1CD.所以/A' F的二面角A'-CD- B的平面角.在Rt^COF中,0F=C0S E5'=^.在A' 0中,卜’ F 二W .,口/二^^ 所以一「」卜,•A r b所以二面角A' - CD- B 的平面角的余弦值为 堡.5方法二:取DE 中点H,那么OH±OB.以O 为坐标原点,OH 、OB OA 分别为x 、v 、z 轴建立空间直角坐标系. 那么 O (0, 0, 0), A' (0, 0,加),C (0, - 3, 0), D (1, - 2, 0) 0A 7* = (0, 0,无)是平面BCDE 勺一个法向量.设平面A ClDj 法向量为n= (x, y, z)前六二(0, 3,五),而二(L 1, 0). 二一、/n ・CA' =3y+V^w=0 人 皿_ rz所以? 一,令 x=1,那么 y=—1,[n*CD=x+y=O所以4(1,-1,行)是平面A' C 的一个法向量 设二面角A'-CD- B 的平面角为8,且8 6(0, g)|3F>|n|一中立-5所以二面角A'-CD- B 的平面角的余弦值为 亟5【点评】此题综合考查了等腰直角三角形的性质、 余弦定理、线面垂直的判定与 性质定理、三垂线定哩、二面角、通过建立空间直角坐标系利用法向量的夹角求 面角等根底知识与方法,需要较强的空间想象水平、推理水平和计算水平. 19. (14分)设数列{a n }的前n 项和为3b a i =1,(2)利用 a n =&-S n-1 (n >2)即可得到 na n +1= (n+1) a n +n (n+1),可化为 缪T 〞,缪T,再利用等差数列的通项公式即可得出;(3)利用(2),通过放缩法——< % n【解答】解:(1)当 n=1 时,—p-=2a 1=a £^--l^y,解得 比=4 (1 2)2 %54n 3-n 2 4口① 当 n >2 时,2 SnT 二 ST) a n -7r(n-l ) 3-(n-l ) 24(nT)② J o ①-②得「. :., 口 : । n , ,整理得 na n +1= (n+1) a n +n (n+1),即 %? &L+], n+1 n . -r a9 a ।当 n=1 时,年一^2-1二1 w JL所以数列{曰}是以1为首项,1为公差的等差数列 所以上"二口,即a =n 2 n仇所以数列{a n }的通项公式为a n =n 2, n € N *、一 「L (n>2)即可证实.(n-1) n n-1 n(1) 求a 2的值;(2) (3)求数列{a n }的通项公式; 证实:对一切正整【分析】(1)利用a 1=1,有 _p_l_+... a l a2 a n 42Sn_ 1 2 ____________ 2--a ^l —^行,nCN *.令n=1即可求出;an+l a n n+1 n当n=1, 2时,也成立.【点评】熟练掌握等差数列的定义及通项公式、通项与前 n 项和的关系a n =S- Sn-i (n>2)>裂项求和及其放缩法等是解题的关键.20. (14分)抛物线C 的顶点为原点,其焦点F (0, c) (c>0)到直线l: x -y-2=0的距离为型2,设P 为直线l 上的点,过点P 作抛物线C 的两条切线 2 PA, PB,其中A, B 为切点. (1)求抛物线C 的方程;(2)当点P (x0, y0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF|?|BF|的最小值.【分析】(1)利用焦点到直线l: x- y-2=0的距离建立关于变量c 的方程,即可 解得c,从而得出抛物线C 的方程; (2)先设A (町,[J),//),由(1)得到抛物线C 的方程求导数,得到切线PA PB 的斜率,最后利用直线 AB 的斜率的不同表示形式,即可得出 直线AB 的方程;(3)根据抛物线的定义,有|AF|二1J + 1, |即|二|谥+1,从而表示出|AF|?|BF , 再由(2)得X 1+X 2=2x 0, X 1X 2=4y 0, X 0=y 0+2,将它表示成关于y 0的二次函数的形 式,从而即可求出|AF|?| BF 的最小值.【解答】解:(1)焦点F (0, c) (c>0)到直线所以抛物线C 的方程为x 2=4y.(2)设[. . . ■ ■ ■ :「:, 由(1)得抛物线C 的方程为悬所以切线PA, PB 的斜率分别为 工 工2勺’2叼 所以PA :或]〔犬—犬]〕①PB :工:斗父2〔¥一;12〕②联立①②可得点P 的坐标为〔31%, 七2〕,即三1,二二!, : 2 4270 41 J(3)由于--J % n 2 (nT)门 n-1 n(n>2)l : x - y - 2=0的距离I -c-21 c+2 3^2解得c=1, 所二丁 n 4 n 4又由于切线PA的斜率为其孙=.』",整理得为三孙乂04岩,L1 X Q-X I U 2 1 U 4 11 2_1 2直线AB的斜率kJ町国际二止2二现町r 2 4 2所以直线AB的方程为y—■工工o 〔上一£ 1〕,整理得产/乂/白盯式口w J,即尸1,町X-V口,由于点P 〔XQ, yo〕为直线l: x- y- 2=0上的点,所以xo - yo- 2=0,即yo=x0—2, 所以直线AB的方程为XQX - 2y - 2yo=O.〔3〕根据抛物线的定义,有|阿|1君+1,|BF|[g+1,所以k:卜…•」:’-「:। , 了〜, - J :'[「- = 当U+/〔町+ 〞〕2-2'区21+1,由〔2〕得X I+X2=2XQ, x1X2=4yo, Xo=yo+2,所以I..'' I' ' ' .''' । ,' :। ,:" । :,■:■.■|l・,> :। : ,:=2yg+2y0+5=2〔y D+y〕2+1-.所以当V.二q时,|AF|?|BF的最小值为u 4【点评】此题以抛物线为载体,考查抛物线的标准方程,考查利用导数研究曲线的切线方程,考查计算水平,有一定的综合性.21. 〔14 分〕设函数f 〔X〕 = 〔X- 1〕 e x - kx2〔kC R〕.〔1〕当k=1时,求函数f 〔X〕的单调区问;〔2〕当k€ e,1]时,求函数f〔X〕在[0, k]上的最大值M.【分析】(1)利用导数的运算法那么即可得出f'(x),令f'(x) =0,即可得出实数根,通过列表即可得出其单调区问;(2)利用导数的运算法那么求出f'(x),令f'(x) =0得出极值点,列出表格得出单调区问,比拟区间端点与极值即可得到最大值.【解答】解:(1)当k=1 时,f (x) = (x—1) e x-x2,f (x) =e x + (x- 1) e x - 2x=x (e x -2) 令 f (x) =0,解得 x 1二0, x 2=ln2>0 所以f (x), f (x)随x 的变化情况如下表:所以函数f (x)的单调增区间为(-8, 0)和(ln2, +8),单调减区间为(0,ln2)(2) f (x) = (x-1) e x - kx 2, x€[0, k] ,(y, U.f (x) =x3- 2kx=x (e x — 2k), f (x) =0,解得 x1二0, x?=ln (2k) 令小(k) =k- ln (2k),我 心,口,0’2k k所以小(k)在 6,1]上是减函数,..・小(1) &小(k) <1 -ln2<小 (k)(工<k.2 即 0<ln (2k) < k所以f (x), f (x)随x 的变化情况如下表:f (0) =- 1, f (k) -f (0) =(k- 1) e k -k 3-f (0) =(k- 1) e k -k 3+1 =(k-1) e k - (k 3-1)=(k —1) e k — (k — 1) (k 2+k+1) =(k- 1) [e k - (k 2+k+1)] k£ 弓,1], k-10O.对任意的(L 1], y=e k 的图象包在y=k 2+k+1下方,所以e k - (k 2+k+1) < 0 2 所以 f (k) -f (0) >0,即 f (k) >f (0)所以函数f (x)在[0, k]上的最大值M=f (k) = (k-1) e k -k 3.【点评】熟练掌握导数的运算法那么、利用导数求函数的单调性、极值与最值得方法是解题的关键.。

2019年广东省高考数学试卷(理科)(附详细答案)

2019年广东省高考数学试卷(理科)(附详细答案)

2019年广东省高考数学试卷(理科)一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2} C.{﹣1,0,2}D.{﹣1,0,1}3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5 B.6 C.7 D.84.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20 B.100,20 C.200,10 D.100,107.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定8.(5分)设集合A={(x1,x2,x3,x4,x5)|x i∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60 B.90 C.120 D.130二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则= .13.(5分)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20= .(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,ρsin2θ=cosθ和ρsinθ=1建立平面直角坐标系,则曲线C1和C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则= .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30]30.12(30,35]50.20(35,40]80.32(40,45]n1f1(45,50]n2f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.19.(14分)设数列{a n}的前n项和为S n,满足S n=2na n+1﹣3n2﹣4n,n∈N*,且S3=15.(1)求a1,a2,a3的值;(2)求数列{a n}的通项公式.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).2019年广东省高考数学试卷(理科)参考答案与试题解析一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i【分析】根据题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得z的值.【解答】解:∵复数z满足(3+4i)z=25,则z====3﹣4i,故选:A.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2} C.{﹣1,0,2}D.{﹣1,0,1}【分析】根据集合的基本运算即可得到结论.【解答】解:∵集合M{﹣1,0,1},N={0,1,2},∴M∪N={﹣1,0,1,2},故选:B.【点评】本题主要考查集合的基本运算,比较基础.3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5 B.6 C.7 D.8【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A,直线y=﹣2x+z的截距最小,此时z最小,由,解得,即A(﹣1,﹣1),此时z=﹣2﹣1=﹣3,此时n=﹣3,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B,直线y=﹣2x+z的截距最大,此时z最大,由,解得,即B(2,﹣1),此时z=2×2﹣1=3,即m=3,则m﹣n=3﹣(﹣3)=6,故选:B.【点评】本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.4.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等【分析】根据k的取值范围,判断曲线为对应的双曲线,以及a,b,c的大小关系即可得到结论.【解答】解:当0<k<9,则0<9﹣k<9,16<25﹣k<25,即曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25,b2=9﹣k,c2=34﹣k,曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25﹣k,b2=9,c2=34﹣k,即两个双曲线的焦距相等,故选:A.【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a,b,c是解决本题的关键.5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)【分析】根据空间向量数量积的坐标公式,即可得到结论.【解答】解:不妨设向量为=(x,y,z),A.若=(﹣1,1,0),则cosθ==,不满足条件.B.若=(1,﹣1,0),则cosθ===,满足条件.C.若=(0,﹣1,1),则cosθ==,不满足条件.D.若=(﹣1,0,1),则cosθ==,不满足条件.故选:B.【点评】本题主要考查空间向量的数量积的计算,根据向量的坐标公式是解决本题的关键.6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20 B.100,20 C.200,10 D.100,10【分析】根据图1可得总体个数,根据抽取比例可得样本容量,计算分层抽样的抽取比例,求得样本中的高中学生数,再利用图2求得样本中抽取的高中学生近视人数.【解答】解:由图1知:总体个数为3500+2000+4500=10000,∴样本容量=10000×2%=200,分层抽样抽取的比例为,∴高中生抽取的学生数为40,∴抽取的高中生近视人数为40×50%=20.故选:A.【点评】本题借助图表考查了分层抽样方法,熟练掌握分层抽样的特征是关键.7.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【分析】根据在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面可得,∴l1与l4的位置关系不确定.【解答】解:∵l1⊥l2,l2⊥l3,∴l1与l3的位置关系不确定,又l4⊥l3,∴l1与l4的位置关系不确定.故A、B、C错误.故选:D.【点评】本题考查了空间直线的垂直关系的判定,考查了学生的空间想象能力,在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面.8.(5分)设集合A={(x1,x2,x3,x4,x5)|x i∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60 B.90 C.120 D.130【分析】从条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”入手,讨论x i所有取值的可能性,分为5个数值中有2个是0,3个是0和4个是0三种情况进行讨论.【解答】解:由于|x i|只能取0或1,且“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”,因此5个数值中有2个是0,3个是0和4个是0三种情况:①x i中有2个取值为0,另外3个从﹣1,1中取,共有方法数:;②x i中有3个取值为0,另外2个从﹣1,1中取,共有方法数:;③x i中有4个取值为0,另外1个从﹣1,1中取,共有方法数:.∴总共方法数是++=130.即元素个数为130.故选:D.【点评】本题看似集合题,其实考察的是用排列组合思想去解决问题.其中,分类讨论的方法是在概率统计中经常用到的方法,也是高考中一定会考查到的思想方法.二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为(﹣∞,﹣3]∪[2,+∞).【分析】把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.【解答】解:由不等式|x﹣1|+|x+2|≥5,可得①,或②,或③.解①求得x≤﹣3,解②求得x∈?,解③求得x≥2.综上,不等式的解集为(﹣∞,﹣3]∪[2,+∞),故答案为:(﹣∞,﹣3]∪[2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为y=﹣5x+3..【分析】利用导数的几何意义求得切线的斜率,点斜式写出切线方程.﹣5e﹣5x,∴k=﹣5,【解答】解;y′=∴曲线y=e﹣5x+2在点(0,3)处的切线方程为y﹣3=﹣5x,即y=﹣5x+3.故答案为:y=﹣5x+3【点评】本题主要考查利用导数的几何意义求曲线的切线方程,属基础题.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.【分析】根据条件确定当中位数为6时,对应的条件即可得到结论【解答】解:从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,有C107种方法,若七个数的中位数是6,则只需从0,1,2,3,4,5,选3个,从7,8,9中选3个不同的数即可,有C63种方法,则这七个数的中位数是6的概率P==,故答案为:.【点评】本题主要考查古典概率的计算,注意中位数必须是按照从小到大的顺序进行排列的.比较基础.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则= 2 .【分析】已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式化简,再利用正弦定理变形即可得到结果.【解答】解:将bcosC+ccosB=2b,利用正弦定理化简得:sinBcosC+sinCcosB=2sinB,即sin(B+C)=2sinB,∵sin(B+C)=sinA,∴sinA=2sinB,利用正弦定理化简得:a=2b,则=2.故答案为:2【点评】此题考查了正弦定理,以及两角和与差的正弦函数公式,熟练掌握正弦定理是解本题的关键.13.(5分)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20= 50 .【分析】直接由等比数列的性质结合已知得到a10a11=e5,然后利用对数的运算性质化简后得答案.【解答】解:∵数列{a n}为等比数列,且a10a11+a9a12=2e5,∴a10a11+a9a12=2a10a11=2e5,∴a10a11=e5,∴lna1+lna2+…lna20=ln(a1a2…a20)=ln(a10a11)10=ln(e5)10=lne50=50.故答案为:50.【点评】本题考查了等比数列的运算性质,考查对数的运算性质,考查了计算能力,是基础题.(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为(1,1).【分析】首先运用x=ρcosθ,将极坐标方程化为普通方程,然后组成方,y=ρsinθ程组,解之求交点坐标.【解答】解:曲线C1:ρsin2θ=cosθ,,即为ρ2sin2θ=ρcosθ化为普通方程为:y2=x,,化为普通方程为:y=1,曲线ρsinθ=1联立,即交点的直角坐标为(1,1).故答案为:(1,1).【点评】本题考查极坐标方程和普通方程的互化,考查解方程的运算能力,属于基础题【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则= 9 .【分析】利用ABCD是平行四边形,点E在AB上且EB=2AE,可得=,利用△CDF∽△AEF,可求.【解答】解:∵ABCD是平行四边形,点E在AB上且EB=2AE,∴=,∵ABCD是平行四边形,∴AB∥CD,∴△CDF∽△AEF,∴=()2=9.故答案为:9.【点评】本题考查相似三角形的判定,考查三角形的面积比,属于基础题.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).【分析】(1)由函数f(x)的解析式以及f()=,求得A的值.(2)由(1)可得f(x)=sin(x+),根据f(θ)+f(﹣θ)=,求得cosθ 的值,从而求得f(﹣θ)的值.的值,再由θ∈(0,),求得sinθ 【解答】解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=.∴Asin(+)=Asin=A?=,∴A=.(2)由(1)可得f(x)=sin(x+),∴f(θ)+f(﹣θ)=sin(θ+)+sin(﹣θ+)=2sin cosθ=cosθ=,∴cosθ=,再由θ∈(0,),可得sinθ=.∴f(﹣θ)=sin(﹣θ+)=sin(π﹣θ)=sinθ=.【点评】本题主要考查三角函数的恒等变换,同角三角函数的基本关系,属于中档题.17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30]30.12(30,35]50.20(35,40]80.32(40,45]n1f1(45,50]n2f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.【分析】(1)利用所给数据,可得样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,可得样本频率分布直方图;(3)利用对立事件可求概率.【解答】解:(1)(40,45]的频数n1=7,频率f1=0.28;(45,50]的频数n2=2,频率f2=0.08;(2)频率分布直方图:(3)设在该厂任取4人,没有一人的日加工零件数落在区间(30,35]为事件A,则至少有一人的日加工零件数落在区间(30,35]为事件,已知该厂每人日加工零件数落在区间(30,35]的概率为,∴P(A)==,∴P()=1﹣P(A)=,∴在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率为.【点评】本题考查了频数分布表,频数分布直方图和概率的计算,属于中档题.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.【分析】(1)结合已知又直线和平面垂直的判定定理可判PC⊥平面ADF,即得所求;(2)由已知数据求出必要的线段的长度,建立空间直角坐标系,由向量法计算即可.【解答】解:(1)∵PD⊥平面ABCD,∴PD⊥AD,又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD,∴AD⊥PC,又AF⊥PC,∴PC⊥平面ADF,即CF⊥平面ADF;(2)设AB=1,在RT△PDC中,CD=1,∠DPC=30°,∴PC=2,PD=,由(1)知CF⊥DF,∴DF=,AF==,∴CF==,又FE∥CD,∴,∴DE=,同理可得EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E(,0,0),F(,,0),P(,0,0),C(0,1,0)设向量=(x,y,z)为平面AEF的法向量,则有,,∴,令x=4可得z=,∴=(4,0,),由(1)知平面ADF的一个法向量为=(,1,0),设二面角D﹣AF﹣E的平面角为θ,可知θ为锐角,cosθ=|cos<,>|===∴二面角D﹣AF﹣E的余弦值为:【点评】本题考查用空间向量法求二面角的余弦值,建立空间直角坐标系并准确求出相关点的坐标是解决问题的关键,属中档题.19.(14分)设数列{a n}的前n项和为S n,满足S n=2na n+1﹣3n2﹣4n,n∈N*,且S3=15.(1)求a1,a2,a3的值;(2)求数列{a n}的通项公式.【分析】(1)在数列递推式中取n=2得一关系式,再把S3变为S2+a3得另一关系式,联立可求a3,然后把递推式中n取1,再结合S3=15联立方程组求得a1,a2;(2)由(1)中求得的a1,a2,a3的值猜测出数列的一个通项公式,然后利用数学归纳法证明.【解答】解:(1)由S n=2na n+1﹣3n2﹣4n,n∈N*,得:S2=4a3﹣20 ①又S3=S2+a3=15 ②联立①②解得:a3=7.再在S n=2na n+1﹣3n2﹣4n中取n=1,得:a1=2a2﹣7 ③又S3=a1+a2+7=15 ④联立③④得:a2=5,a1=3.∴a1,a2,a3的值分别为3,5,7;(2)∵a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1.由此猜测a n=2n+1.下面由数学归纳法证明:1、当n=1时,a1=3=2×1+1成立.2、假设n=k时结论成立,即a k=2k+1.那么,当n=k+1时,由S n=2na n+1﹣3n2﹣4n,得,,两式作差得:.∴==2(k+1)+1.综上,当n=k+1时结论成立.∴a n=2n+1.【点评】本题考查数列递推式,训练了利用数学归纳法证明与自然数有关的命题,考查了学生的灵活应变能力和计算能力,是中档题.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.【分析】(1)根据焦点坐标和离心率求得a和b,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k的一元二次方程,利用韦达定理表示出k1?k2,进而取得x0和y0的关系式,即P点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A、B两点分别位于椭圆长轴与短轴的端点,P的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P(x0,y0)的切线为y=k(x﹣x0)+y0,+=+=1,整理得(9k2+4)x2+18k(y0﹣kx0)x+9[(y0﹣kx0)2﹣4]=0,∴△=[18k(y0﹣kx0)]2﹣4(9k2+4)×9[(y0﹣kx0)2﹣4]=0,整理得(x02﹣9)k2﹣2x0×y0×k+(y02﹣4)=0,∴﹣1=k1?k2==﹣1,∴x02+y02=13.把点(±3,±2)代入亦成立,∴点P的轨迹方程为:x2+y2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y关系.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).【分析】(1)利用换元法,结合函数成立的条件,即可求出函数的定义域.(2)根据复合函数的定义域之间的关系即可得到结论.(3)根据函数的单调性,即可得到不等式的解集.【解答】解:(1)设t=x2+2x+k,则f(x)等价为y=g(t)=,要使函数有意义,则t2+2t﹣3>0,解得t>1或t<﹣3,即x2+2x+k>1或x2+2x+k<﹣3,则(x+1)2>2﹣k,①或(x+1)2<﹣2﹣k,②,∵k<﹣2,∴2﹣k>﹣2﹣k,由①解得x+1>或x+1,即x>﹣1或x,由②解得﹣<x+1<,即﹣1﹣<x<﹣1+,综上函数的定义域为(﹣1,+∞)∪(﹣∞,﹣1﹣)∪(﹣1﹣,﹣1+).(2)f′(x)===﹣,由f'(x)>0,即2(x2+2x+k+1)(x+1)<0,则(x+1+)(x+1﹣)(x+1)<0解得x<﹣1﹣或﹣1<x<﹣1+,结合定义域知,x<﹣1﹣或﹣1<x <﹣1+,即函数的单调递增区间为:(﹣∞,﹣1﹣),(﹣1,﹣1+),同理解得单调递减区间为:(﹣1﹣,﹣1),(﹣1+,+∞).(3)由f(x)=f(1)得(x2+2x+k)2+2(x2+2x+k)﹣3=(3+k)2+2(3+k)﹣3,则[(x2+2x+k)2﹣(3+k)2]+2[(x2+2x+k)﹣(3+k)]=0,∴(x2+2x+2k+5)(x2+2x﹣3)=0即(x+1+)(x+1﹣)(x+3)(x﹣1)=0,∴x=﹣1﹣或x=﹣1+或x=﹣3或x=1,∵k<﹣6,∴1∈(﹣1,﹣1+),﹣3∈(﹣1﹣,﹣1),∵f(﹣3)=f(1)=f(﹣1﹣)=f(﹣1+),且满足﹣1﹣∈(﹣∞,﹣1﹣),﹣1+∈(﹣1+,+∞),由(2)可知函数f(x)在上述四个区间内均单调递增或递减,结合图象,要使f(x)>f(1)的集合为:()∪(﹣1﹣,﹣3)∪(1,﹣1+)∪(﹣1+,﹣1+).【点评】本题主要考查函数定义域的求法,以及复合函数单调性之间的关系,利用换元法是解决本题的关键,综合性较强,难度较大.。

【解析版】2019年高考全国Ⅰ卷广东省理综试题

【解析版】2019年高考全国Ⅰ卷广东省理综试题

2019年普通高等学校招生全国统一考试(广东卷)理科综合能力测试物理部分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

二、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

1.氢原子能级示意图如图所示。

光子能量在1.63 eV~3.10 eV的光为可见光。

要使处于基态(n=1)的氢原子被激发后可辐射出可见光光子,最少应给氢原子提供的能量为A. 12.09 eVB. 10.20 eVC. 1.89 eVD. 1.5l eV【答案】A【解析】【详解】由题意可知,基态(n=1)氢原子被激发后,至少被激发到n=3能级后,跃迁才可能产生能量在 1.63eV~3.10eV的可见光。

故∆=---=。

故本题选A。

E1.51(13.62.如图,空间存在一方向水平向右的匀强电场,两个带电小球P和Q用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则A. P和Q都带正电荷B. P和Q都带负电荷C. P带正电荷,Q带负电荷D. P带负电荷,Q带正电荷【答案】D【解析】【详解】AB、受力分析可知,P和Q两小球,不能带同种电荷,AB错误;CD、若P球带负电,Q球带正电,如下图所示,恰能满足题意,则C错误D正确,故本题选D。

3.最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。

若某次实验中该发动机向后喷射的气体速度约为3 km/s,产生的推力约为4.8×106 N,则它在1 s时间内喷射的气体质量约为A. 1.6×102 kg B. 1.6×103 kg C. 1.6×105 kg D. 1.6×106 kg【答案】B【解析】【详解】设该发动机在t s时间内,喷射出的气体质量为m,根据动量定理,Ft mv=,可知,在1s内喷射出的气体质量634.8101.6103000m Fm kg kgt v⨯====⨯,故本题选B。

广东省2019年高考数学试卷(理科)以及答案解析

广东省2019年高考数学试卷(理科)以及答案解析

广东省2019年高考数学试卷(理科)以及答案解析绝密★启用前广东省2019年高考理科数学试卷注意事项:1.考生答卷前,必须在答题卡上填写姓名和准考证号。

2.回答选择题时,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M={x|-4<x<2},N={x|x^2-x-6<0},则M∩N=()A。

{x|-4<x<3}B。

{x|-4<x<-2}C。

{x|-2<x<2}D。

{x|2<x<3}2.设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则()A。

(x+1)^2+y^2=1B。

(x-1)^2+y^2=1C。

x^2+(y-1)^2=1D。

x^2+(y+1)^2=13.已知a=log20.2,b=20.2,c=0.20.3,则()A。

a<b<cB。

a<c<bC。

c<a<bD。

b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比约为0.618,称为黄金分割比例。

某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A。

165cmB。

175cmC。

185cmD。

190cm5.函数f(x)=在[-π,π]的图像大致为()A。

B。

C。

D。

6.我国古代典籍《周易》用“卦”描述万物的变化。

每一重卦由从下到上排列的6个爻组成,爻分为阳爻“ ”和阴爻“ ”,如图为一重卦。

在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A。

B。

C。

D。

7.已知非零向量,满足||=2||,且(-)⊥,则与的夹角为()A。

2019届广东省广州市高三综合测试(一)理综化学试卷【含答案及解析】

2019届广东省广州市高三综合测试(一)理综化学试卷【含答案及解析】

2019届广东省广州市高三综合测试(一)理综化学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列叙述正确的是A.顺-2-丁烯和反-2-丁烯的加氢产物不同B.甲醛、氯乙烯和乙二醇均可作为合成聚合物的单体C.ABS树脂、光导纤维及碳纤维都是有机高分子材料D.酸性条件下,C 2 H 5 CO 18 OC 2 H &#xad; 5 的水解产物是C 2 H 5 CO 18 OH和C 2 H &#xad; 5 OH2. 设N A 为阿伏加德罗常数,下列叙述中正确的是A.78 g Na 2 O 2 中存在的共价键总数为N AB.0.1 mol Sr原子中含中子数为3.8N AC.氢氧燃料电池负极消耗2.24 L气体时,电路中转移的电子数为0.1N AD.0.1 mol氯化铁溶于1L水中,所得溶液中Fe 3+ 的数目为0.1N A3. 三聚磷酸可视为三个磷酸分子(磷酸结构式见右图)之间脱去两个水分子的产物,三聚磷酸钠(俗称“五钠”)是常用的水处理剂。

下列说法错误的是A.三聚磷酸中P的化合价为+5B.三聚磷酸钠的化学式为 Na 5 P 3 O 10C.以磷酸钠为原料通过化合反应也能生成三聚磷酸钠D.多聚磷酸的结构可表示为4. W、X、Y、Z均为短周期主族元素,原子序数依次增加,且互不同族,其中只有两种为金属元素,W原子的最外层电子数与次外层电子数相等,W与Z、X与Y这两对原子的最外层电子数之和均为9,单质X与Z都可与NaOH溶液反应。

下列说法正确的是A.原子半径:Z>Y>XB.最高价氧化物的水化物的酸性:Y > ZC.化合物WZ 2 中各原子均满足8电子的稳定结构D.Y、Z均能与碳元素形成共价化合物5. 用电解法可提纯含有某些含氧酸根杂质的粗KOH溶液,其工作原理如图所示。

下列有关说法错误的是A.阳极反应式为4OH - -4e -=2H 2 O+O 2 ↑B.通电后阴极区附近溶液pH会增大C.K + 通过交换膜从阴极区移向阳极区D.纯净的KOH溶液从b出口导出6. 下列实验中,对应的现象以及结论都正确且两者具有因果关系的是p7. 选项实验现象结论 A 将稀H 2 SO 4 滴加到Fe(NO 3 ) 2 溶液中溶液变棕黄色,有红棕色气体生成 HNO 3 分解生成NO 2 B 将CO 2 气体依次通过NaHSO 3 溶液、品红溶液品红溶液不褪色 H 2 SO 3 的酸性比H 2 CO 3 强 C 常温下将大小相同的铝片分别加入到浓硝酸和稀硝酸中浓硝酸比稀硝酸反应更剧烈反应物浓度越大,反应速率越快 D将H 2 O 2 溶液滴加到酸性KMnO 4 溶液中紫色溶液褪色 H 2 O 2 具有氧化性8. 室温下,将0.10 mol·L -1 盐酸滴入20.00 mL 0.1 0mol·L -1 氨水中,溶液中pH和pOH随加入盐酸体积变化曲线如图所示。

(精校版)2019年全国卷Ⅲ理综高考真题文档版(含答案)

(精校版)2019年全国卷Ⅲ理综高考真题文档版(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 Li 7 C 12 N 14 O 16 Na 23 S 32 Cl 35.5 Ar 40 Fe 56 I 127 一、选择题:本题共13个小题,每小题6分。

共78分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列有关高尔基体、线粒体和叶绿体的叙述,正确的是A.三者都存在于蓝藻中B.三者都含有DNAC.三者都是ATP合成的场所D.三者的膜结构中都含有蛋白质2.下列与真核生物细胞核有关的叙述,错误的是A.细胞中的染色质存在于细胞核中B.细胞核是遗传信息转录和翻译的场所C.细胞核是细胞代谢和遗传的控制中心D.细胞核内遗传物质的合成需要能量3.下列不利于人体散热的是A.骨骼肌不自主战栗B.皮肤血管舒张C.汗腺分泌汗液增加D.用酒精擦拭皮肤4.若将n粒玉米种子置于黑暗中使其萌发,得到n株黄化苗。

那么,与萌发前的这n粒干种子相比,这些黄化苗的有机物总量和呼吸强度表现为A.有机物总量减少,呼吸强度增强B.有机物总量增加,呼吸强度增强C.有机物总量减少,呼吸强度减弱D.有机物总量增加,呼吸强度减弱5.下列关于人体组织液的叙述,错误的是A.血浆中的葡萄糖可以通过组织液进入骨骼肌细胞B.肝细胞呼吸代谢产生的CO2可以进入组织液中C.组织液中的O2可以通过自由扩散进入组织细胞中D.运动时,丙酮酸转化成乳酸的过程发生在组织液中6.假设在特定环境中,某种动物基因型为BB和Bb的受精卵均可发育成个体,基因型为bb的受精卵全部死亡。

现有基因型均为Bb的该动物1 000对(每对含有1个父本和1个母本),在这种环境中,若每对亲本只形成一个受精卵,则理论上该群体的子一代中BB、Bb、bb个体的数目依次为A.250、500、0B.250、500、250C.500、250、0D.750、250、07.化学与生活密切相关。

2019年广东省高考理科综合试题与答案

2019年广东省高考理科综合试题与答案

广东省高考理科综合试题与答案(考试时间:120分钟试卷满分:150分)可能用到的相对原子质量:H 1 C 12 N 14 O 16 S 32 Cl35.5 K39 Ti 48 Fe 56 I 127一、选择题:本题共13个小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 细胞间信息交流的方式有多种。

在哺乳动物卵巢细胞分泌的雌激素作用于乳腺细胞的过程中,以及精子进入卵细胞的过程中,细胞间信息交流的实现分别依赖于A. 血液运输,突触传递B. 淋巴运输,突触传递C. 淋巴运输,胞间连丝传递D. 血液运输,细胞间直接接触2. 下列关于细胞结构与成分的叙述,错误的是A. 细胞膜的完整性可用台盼蓝染色色法进行检测B. 检测氨基酸的含量可用双缩脲试剂进行显色C. 若要观察处于细胞分裂中期的染色体可用醋酸洋红液染色D. 斐林试剂是含有Cu2+的碱性溶液,可被葡萄糖还原成砖红色3. 通常,叶片中叶绿素含量下降可作为其衰老的检测指标。

为研究激素对叶片衰老的影响,将某植物离体叶片分组,并分别置于蒸馏水、细胞分裂素(CTK)、脱落酸(ABA)、CTK+ABA 溶液中,再将各组置于光下。

一段时间内叶片中叶绿素含量变化趋势如图所示,据图判断,下列叙述错误的是A. 细胞分裂素能延缓该植物离体叶片的衰老B. 本实验中CTK对该植物离体叶片的作用可被ABA削弱C. 可推测ABA组叶绿体中NADPH合成速率大于CTK组D. 可推测施用ABA能加速秋天银杏树的叶由绿变黄的过程4.某同学将一定量的某种动物的提取液(A)注射到实验小鼠体内,注射后若干天,未见小鼠出现明显的异常表现。

将小鼠分成两组,一组注射少量的A,小鼠很快发生了呼吸困难等症状;另一组注射生理盐水,未见小鼠有异常表现。

对实验小鼠在第一次注射A后的表现,下列解释合理的是A.提取液中含有胰岛素,导致小鼠血糖浓度降低B.提取液中含有乙酰胆碱,使小鼠骨骼肌活动减弱C.提取液中含有过敏原,引起小鼠发生了过敏反应D.提取液中含有呼吸抑制剂,可快速作用于小鼠呼吸系统5.假设某草原上散养的某种家畜种群呈S型增长,该种群的增长率随种群数量的变化趋势如图所示。

2019年高考试题-理综化学(广东卷a)解析版

2019年高考试题-理综化学(广东卷a)解析版

2019年高考试题-理综化学(广东卷a)解析版注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。

在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。

考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。

只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。

化学试解析可能用到的相对原子质量:H1C12N14O16Na23Al27S32Cl35.5Cu63.5【一】单项选择题:本大题共16小题,每题4分,总分值64分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.选对的得4分,选错或不答的得0分。

7、以下说法正确的选项是A、糖类化合物都具有相同的官能团B、酯类物质是形成水果香味的主要成分C、油脂的皂化反应生成脂肪酸和丙醇D、蛋白质的水解产物都含有羧基和羟基A有醛基和酮基。

C高级脂肪酸钠盐和甘油。

D羧基和氨基8、水溶解中能大量共存的一组离子是A、Na+、Al3+、Cl-、CO32-B、H+、Na+、Fe2+、MnO4-C、K+、Ca2+、Cl-、NO3-D、K+、NH4+、OH-、SO42-A红色的发生双水解B红色的发生氧化还原反应D红色生成弱电解质9、设n A为阿伏加德罗常数的数值,以下说法正确的选项是A、常温常压下,8gO2含有4n A个电子B、1L0.1mol·L-1的氨水中有n A个NH4+C、标准状况下,22.4L盐酸含有n A个HCl分子D、1molNa被完全氧化生成Na2O2,失去个2n A电子B氨水部分电离C盐酸为液体D.Na化合价从0到+1失去1e—,1mol应该是1n A10、以下表达Ⅰ和Ⅱ均正确并且有因果关系的是选项表达I 表达IIA NH4Cl为强酸弱碱盐用加热法除去NaCl中的NH4ClB Fe3+具有氧化性用KSCN溶液可以鉴别Fe3+C 溶解度:CaCO3<Ca(HCO3)2溶解度:Na2CO3<NaHCO3D SiO2可与HF反应氢氟酸不能保存在玻璃瓶中A两者没有因果关系,前是盐类的水解,后是铵盐的不稳定性。

2019年广东省高考数学真题(理科)及答案

2019年广东省高考数学真题(理科)及答案

2019年广东省高考数学真题(理科)及答案一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x∣x2+2x=0,x∈R},N={x∣x2-2x=0,x∈R},则M∪N=A. {0}B. {0,2}C. {-2,0} D {-2,0,2}2.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是A. 4B.3C. 2D.13.若复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是A. (2,4)B.(2,-4)C. (4,-2) D(4,2)4.已知离散型随机变量X的分布列为1 2 3P则X的数学期望E(X)=A. B. 2 C. D 35.某四棱台的三视图如图1所示,则该四棱台的体积是A.4 B. C. D.66.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是A.若α⊥β,m α,nβ,则m ⊥ n B.若α∥β,mα,nβ,则m∥nC.若m⊥ n,m α,n β,则α⊥β D.若m α,m∥n,n∥β,则α⊥β7.已知中心在原点的双曲线C的右焦点为F(3,0),离心率等于,则C的方程是A. = 1 B. = 1 C. = 1 D. = 18.设整数n≥4,集合X={1,2,3……,n}。

令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y 恰有一个成立},若(x,y,z)和(z,w,x)都在s中,则下列选项正确的是A.(y,z,w)∈s,(x,y,w)SB.(y,z,w)∈s,(x,y,w)∈SC. (y,z,w)s,(x,y,w)∈SD. (y,z,w)s,(x,y,w)S二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。

必做题(9~13题)9.不等式x2+x-2<0的解集为。

广东省2019年高考数学试卷(理科)以及答案解析

广东省2019年高考数学试卷(理科)以及答案解析

绝密★启用前广东省2019年高考理科数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3}B.{x|﹣4<x<﹣2}C.{x|﹣2<x<2}D.{x|2<x<3} 2.(5分)设复数z满足|z﹣i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1B.(x﹣1)2+y2=1C.x2+(y﹣1)2=1D.x2+(y+1)2=13.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.7.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.8.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+9.(5分)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5B.a n=3n﹣10C.S n=2n2﹣8n D.S n=n2﹣2n 10.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=111.(5分)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.(5分)已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 C12N14O16 Mg 24 S 32 Fe 56 Cu 64一、选择题:本题共13个小题,每小题6分。

共78分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.细胞凋亡是细胞死亡的一种类型。

下列关于人体中细胞凋亡的叙述,正确的是A.胎儿手的发育过程中不会发生细胞凋亡B.小肠上皮细胞的自然更新过程中存在细胞凋亡现象C.清除被病原体感染细胞的过程中不存在细胞凋亡现象D.细胞凋亡是基因决定的细胞死亡过程,属于细胞坏死2.用体外实验的方法可合成多肽链。

已知苯丙氨酸的密码子是UUU,若要在体外合成同位素标记的多肽链,所需的材料组合是①同位素标记的tRNA②蛋白质合成所需的酶③同位素标记的苯丙氨酸④人工合成的多聚尿嘧啶核苷酸⑤除去了DNA和mRNA的细胞裂解液A.①②④B.②③④C.③④⑤D.①③⑤3.将一株质量为20 g的黄瓜幼苗栽种在光照等适宜的环境中,一段时间后植株达到40 g,其增加的质量来自于A.水、矿质元素和空气C.水、矿质元素和土壤B.光、矿质元素和水D.光、矿质元素和空气4.动物受到惊吓刺激时,兴奋经过反射弧中的传出神经作用于肾上腺髓质,使其分泌肾上腺素;兴奋还通过传出神经作用于心脏。

下列相关叙述错误的是A.兴奋是以电信号的形式在神经纤维上传导的B.惊吓刺激可以作用于视觉、听觉或触觉感受器C.神经系统可直接调节、也可通过内分泌活动间接调节心脏活动D.肾上腺素分泌增加会使动物警觉性提高、呼吸频率减慢、心率减慢5.某种二倍体高等植物的性别决定类型为XY型。

该植物有宽叶和窄叶两种叶形,宽叶对窄叶为显性。

控制这对相对性状的基因(B/b)位于X染色体上,含有基因b的花粉不育。

下列叙述错误的是A.窄叶性状只能出现在雄株中,不可能出现在雌株中B.宽叶雌株与宽叶雄株杂交,子代中可能出现窄叶雄株C.宽叶雌株与窄叶雄株杂交,子代中既有雌株又有雄株D.若亲本杂交后子代雄株均为宽叶,则亲本雌株是纯合子6.某实验小组用细菌甲(异养生物)作为材料来探究不同条件下种群增长的特点,设计了三个实验组,每组接种相同数量的细菌甲后进行培养,培养过程中定时更新培养基,三组的更新时间间隔分别为3 h、10 h、23 h,得到a、b、c三条种群增长曲线,如图所示。

下列叙述错误的是A.细菌甲能够将培养基中的有机物分解成无机物B.培养基更换频率的不同,可用来表示环境资源量的不同C.在培养到23 h之前,a组培养基中的营养和空间条件都是充裕的D.培养基更新时间间隔为23 h时,种群增长不会出现J型增长阶段7.陶瓷是火与土的结晶,是中华文明的象征之一,其形成、性质与化学有着密切的关系。

下列说法错误的是A.“雨过天晴云破处”所描述的瓷器青色,来自氧化铁B.闻名世界的秦兵马俑是陶制品,由黏土经高温烧结而成C.陶瓷是应用较早的人造材料,主要化学成分是硅酸盐D.陶瓷化学性质稳定,具有耐酸碱侵蚀、抗氧化等优点8.关于化合物2−苯基丙烯(),下列说法正确的是A.不能使稀高锰酸钾溶液褪色C.分子中所有原子共平面B.可以发生加成聚合反应D.易溶于水及甲苯9.实验室制备溴苯的反应装置如下图所示,关于实验操作或叙述错误的是A.向圆底烧瓶中滴加苯和溴的混合液前需先打开KB.实验中装置b中的液体逐渐变为浅红色C.装置c中的碳酸钠溶液的作用是吸收溴化氢D.反应后的混合液经稀碱溶液洗涤、结晶,得到溴苯10.固体界面上强酸的吸附和离解是多相化学在环境、催化、材料科学等领域研究的重要课题。

下图为少量HCl气体分子在253 K冰表面吸附和溶解过程的示意图。

下列叙述错误的是A.冰表面第一层中,HCl以分子形式存在B.冰表面第二层中,H+浓度为5×10−3 mol·L−1(设冰的密度为0.9 g·cm−3)C.冰表面第三层中,冰的氢键网络结构保持不变D.冰表面各层之间,均存在可逆反应HCl垐?噲?H++Cl−11.NaOH溶液滴定邻苯二甲酸氢钾(邻苯二甲酸H 2A的K a1=1.1×10−3 ,K a2=3.9×10−6)溶液,混合溶液的相对导电能力变化曲线如图所示,其中b点为反应终点。

下列叙述错误的是A.混合溶液的导电能力与离子浓度和种类有关B.Na+与A2−的导电能力之和大于HA−的C.b点的混合溶液pH=7D.c点的混合溶液中,c(Na+)>c(K+)>c(OH−)12.利用生物燃料电池原理研究室温下氨的合成,电池工作时MV2+/MV+在电极与酶之间传递电子,示意图如下所示。

下列说法错误的是A.相比现有工业合成氨,该方法条件温和,同时还可提供电能B.阴极区,在氢化酶作用下发生反应H2+2MV2+2H++2MV+C.正极区,固氮酶为催化剂,N2发生还原反应生成NH3D.电池工作时质子通过交换膜由负极区向正极区移动13.科学家合成出了一种新化合物(如图所示),其中W、X、Y、Z为同一短周期元素,Z核外最外层电子数是X核外电子数的一半。

下列叙述正确的是A.WZ的水溶液呈碱性B.元素非金属性的顺序为X>Y>ZC.Y的最高价氧化物的水化物是中强酸D.该新化合物中Y不满足8电子稳定结构二、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

14.氢原子能级示意图如图所示。

光子能量在1.63 eV~3.10 eV的光为可见光。

要使处于基态(n=1)的氢原子被激发后可辐射出可见光光子,最少应给氢原子提供的能量为A.12.09 eV B.10.20 eV C.1.89 eV D.1.5l eV 15.如图,空间存在一方向水平向右的匀强电场,两个带电小球P和Q用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则A.P和Q都带正电荷B.P和Q都带负电荷C.P带正电荷,Q带负电荷D.P带负电荷,Q带正电荷16.最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。

若某次实验中该发动机向后喷射的气体速度约为3 km/s,产生的推力约为4.8×106 N,则它在1 s时间内喷射的气体质量约为A.1.6×102 kg B.1.6×103 kg C.1.6×105 kg D.1.6×106 kg 17.如图,等边三角形线框LMN由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M、N与直流电源两端相接,已如导体棒MN受到的安培力大小为F,则线框LMN受到的安培力的大小为A.2FB.1.5FC.0.5FD.018.如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H 。

上升第一个4H 所用的时间为t 1,第四个4H 所用的时间为t 2。

不计空气阻力,则21t t 满足A .1<21t t <2 B .2<21t t <3 C .3<21t t <4 D .4<21t t <5 19.如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮。

一细绳跨过滑轮,其一端悬挂物块N 。

另一端与斜面上的物块M 相连,系统处于静止状态。

现用水平向左的拉力缓慢拉动N ,直至悬挂N 的细绳与竖直方向成45°。

已知M 始终保持静止,则在此过程中A .水平拉力的大小可能保持不变B .M 所受细绳的拉力大小一定一直增加C .M 所受斜面的摩擦力大小一定一直增加D .M 所受斜面的摩擦力大小可能先减小后增加20.空间存在一方向与直面垂直、大小随时间变化的匀强磁场,其边界如图(a )中虚线MN所示,一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上。

t =0时磁感应强度的方向如图(a )所示,磁感应强度B 随时间t 的变化关系如图(b )所示,则在t =0到t =t 1的时间间隔内A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为004B rS tD .圆环中的感应电动势大小为200π4B r t 21.在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。

在另一星球N 上用完全相同的弹簧,改用物体Q 完成同样的过程,其a –x 关系如图中虚线所示,假设两星球均为质量均匀分布的球体。

已知星球M 的半径是星球N 的3倍,则A .M 与N 的密度相等B .Q 的质量是P 的3倍C .Q 下落过程中的最大动能是P 的4倍D .Q 下落过程中弹簧的最大压缩量是P 的4倍三、非选择题:共174分,第22~32题为必考题,每个试题考生都必须作答。

第33~38题为选考题,考生根据要求作答。

(一)必考题:共129分。

22.(5分)某小组利用打点计时器对物块沿倾斜的长木板加速下滑时的运动进行研究。

物块拖动纸带下滑,打出的纸带一部分如图所示。

已知打点计时器所用交流电的频率为50 Hz,纸带上标出的每两个相邻点之间还有4个打出的点未画出。

在ABCDE五个点中,打点计时器最先打出的是点,在打出C点时物块的速度大小为m/s(保留3位有效数字);物块下滑的加速度大小为m/s2(保留2位有效数字)。

23.(10分)某同学要将一量程为250 μA的微安表改装为量程为20 mA的电流表。

该同学测得微安表内阻为1 200 Ω,经计算后将一阻值为R的电阻与该微安表连接,进行改装。

然后利用一标准毫安表,根据图(a)所示电路对改装后的电表进行检测(虚线框内是改装后的电表)。

(1)根据图(a)和题给条件,将(b)中的实物连接。

(2)当标准毫安表的示数为16.0mA时,微安表的指针位置如图(c)所示,由此可以推测出改装的电表量程不是预期值,而是。

(填正确答案标号)A.18 Ma B.21 mAC.25mA D.28 mA(3)产生上述问题的原因可能是。

(填正确答案标号)A.微安表内阻测量错误,实际内阻大于1 200 ΩB.微安表内阻测量错误,实际内阻小于1 200 ΩC.R值计算错误,接入的电阻偏小D.R值计算错误,接入的电阻偏大(4)要达到预期目的,无论测得的内阻值是都正确,都不必重新测量,只需要将阻值为R 的电阻换为一个阻值为kR的电阻即可,其中k= 。

相关文档
最新文档