C++链表的插入删除及查找
c语言中linklist类型
c语言中linklist类型LinkList类型是C语言中常用的数据结构之一,它是一种线性链表的实现方式。
在计算机科学中,链表是一种常见的数据结构,用于存储和操作一系列元素。
链表由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。
链表中的第一个节点称为头节点,最后一个节点称为尾节点。
链表可以根据需要动态地增加或删除节点,相比于数组,链表的大小可以根据实际需求进行调整。
链表的实现可以使用不同的方式,其中最常见的是单向链表。
在单向链表中,每个节点只有一个指针,指向下一个节点。
这种实现方式简单且高效,适用于大多数场景。
除了单向链表,还有双向链表和循环链表等其他实现方式。
链表的优点是可以快速在任意位置插入或删除节点,而无需移动其他节点。
这是由于链表中的节点通过指针相互连接,而不是像数组那样连续存储。
另外,链表的大小可以根据需要进行动态调整,而数组的大小是静态的。
这使得链表在处理动态数据集合时非常有用。
然而,链表也有一些缺点。
首先,访问链表中的任意节点都需要从头节点开始遍历,直到找到目标节点。
这导致了链表的访问时间复杂度为O(n),而数组的访问时间复杂度为O(1)。
其次,链表需要额外的内存空间来存储指针信息,这会占用更多的存储空间。
在C语言中,可以使用结构体来定义链表节点,例如:```typedef struct Node {int data;struct Node *next;} Node;typedef struct LinkedList {Node *head;Node *tail;} LinkedList;```上述代码定义了一个包含数据和指针的节点结构体Node,以及一个包含头节点和尾节点指针的链表结构体LinkedList。
通过这样的定义,可以方便地进行链表的操作,比如插入、删除和遍历等。
链表的插入操作可以分为三步:创建新节点、修改指针、更新链表的头尾指针。
例如,插入一个新节点到链表末尾的代码如下:```void insert(LinkedList *list, int data) {Node *newNode = (Node *)malloc(sizeof(Node));newNode->data = data;newNode->next = NULL;if (list->head == NULL) {list->head = newNode;list->tail = newNode;} else {list->tail->next = newNode;list->tail = newNode;}}```链表的删除操作也类似,可以分为三步:找到目标节点、修改指针、释放内存。
数据结构单链表插入、删除和修改实验报告
计算机学院实验报告课程名称:数据结构实验名称:单链表学生姓名:***学生学号:***********实验日期:2012一、实验目的1.理解数据结构中带头结点单链表的定义和逻辑图表示方法。
2.掌握单链表中结点结构的C++描述。
3.熟练掌握单链表的插入、删除和查询算法的设计与C++实现。
二、实验内容1.编制一个演示单链表插入、删除、查找等操作的程序。
三、实验步骤1.需求分析本演示程序用C++6.0编写,完成单链表的生成,任意位置的插入、删除,以及确定某一元素在单链表中的位置。
①输入的形式和输入值的范围:插入元素时需要输入插入的位置和元素的值;删除元素时输入删除元素的位置;查找操作时需要输入元素的值。
在所有输入中,元素的值都是整数。
②输出的形式:在所有三种操作中都显示操作是否正确以及操作后单链表的内容。
其中删除操作后显示删除的元素的值,查找操作后显示要查找元素的位置。
③程序所能达到的功能:完成单链表的生成(通过插入操作)、插入、删除、查找操作。
④测试数据:A.插入操作中依次输入11,12,13,14,15,16,生成一个单链表B.查找操作中依次输入12,15,22返回这3个元素在单链表中的位置C.删除操作中依次输入2,5,删除位于2和5的元素2.概要设计1)为了实现上述程序功能,需要定义单链表的抽象数据类型:(1)insert初始化状态:单链表可以不为空集;操作结果:插入一个空的单链表L。
(2)decelt操作结果:删除已有的单链表的某些结点。
(3)display操作结果:将上述输入的元素进行排列显示。
(4)modify操作结果:将上述输入的某些元素进行修改。
(5)save操作结果:对上述所有元素进行保存。
(6)load操作结果:对上述元素进行重新装载。
3.使用说明程序执行后显示======================1.单链表的创建2.单链表的显示3.单链表的长度4.取第i个位置的元素5.修改第i个位置的元素6.插入元素到单链表里7.删除单链表里的元素8.合并两个单链表9.退出系统=======================5.源代码:#include<iostream>using namespace std;#define true 1#define false 0#define ok 1#define error 0#define overflow -2typedef int Status;typedef int ElemType;typedef struct LNode{ ElemType data;struct LNode *next;}LNode,*LinkList;void CreateList(LinkList &L,int n){ LinkList p;L=new LNode;L->next=NULL;LinkList q=L;for(int i=1;i<=n;i++){ p=new LNode;cin>>p->data;p->next=NULL;q->next=p;q=p; }}Status GetElem(LinkList L,int i,ElemType &e){ LinkList p=L->next;int j=1;while(p&&j<i){ p=p->next;++j; }if(!p||j>i) return error;e=p->data;return ok;}Status LinkInsert(LinkList &L,int i,ElemType e) { LinkList p=L;int j=0;while(p&&j<i-1){ p=p->next;++j; }if(!p||j>i-1)return error;LinkList s=new LNode;s->data=e;s->next=p->next;p->next=s;return ok;}Status ListDelete(LinkList &L,int i,ElemType &e){ LinkList p=L;LinkList q;int j=0;while(p->next&&j<i-1){p=p->next;++j; }if(!(p->next)||j>i-1) return error;q=p->next;p->next=q->next;e=q->data;delete(q);return ok;}void MergeList(LinkList &La,LinkList &Lb,LinkList &Lc) {LinkList pa,pc,pb;pa=La->next;pb=Lb->next;Lc=pc=La;while(pa&&pb){ if(pa->data<=pb->data){ pc->next=pa;pc=pa;pa=pa->next; }else{ pc->next=pb;pc=pb;pb=pb->next; }}pc->next=pa?pa:pb;delete(Lb);}void show(LinkList L){ LinkList p;p=L->next;while(p){ cout<<p->data<<"-->";p=p->next; }cout<<endl;}int Length(LinkList L,int i){ i=0;LinkList p=L->next;while(p){ ++i;p=p->next; }return i;}void xiugai(LinkList L){ int i,j=1;ElemType k;ElemType e,m;LinkList p=L->next;cout<<"请输入要修改的元素位置(0<i<length):";cin>>i;GetElem(L,i,e);cout<<"该位置的元素:"<<e<<endl;cout<<"修改后的元素值:";cin>>k;while(p&&j<i){ p=p->next;++j; }m=p->data;p->data=k;cout<<"修改后的单链表显示如下:"<<endl;show(L);}void hebing(){ int a,b;LinkList La,Lb,Lc;cout<<"请输入第一个有序链表的长度:"<<endl;cin>>a;cout<<"请输入第一个有序链表的元素共("<<a<<"个):"<<endl;CreateList(La,a);show(La);cout<<"请输入第二个有序链表的长度:"<<endl;cin>>b;cout<<"请输入第二个有序链表的元素共("<<b<<"个):"<<endl;CreateList(Lb,b);show (Lb);MergeList(La,Lb,Lc);cout<<"合并后的有序链表如下:"<<endl;show(Lc);}void main(){ int select;int x;ElemType y;LinkList list;for(;;){ cout<<" 单链表的基本操作"<<endl;cout<<" 1.单链表的创建"<<endl;cout<<" 2.单链表的显示"<<endl;cout<<" 3.单链表的长度"<<endl;cout<<" 4.取第i个位置的元素"<<endl;cout<<" 5.修改第i个位置的元素"<<endl;cout<<" 6.插入元素到单链表里"<<endl;cout<<" 7.删除单链表里的元素"<<endl;cout<<" 8.合并两个单链表"<<endl;cout<<" 9.退出系统"<<endl;cout<<"请选择:";cin>>select;switch(select){ case 1:cout<<"请输入单链表的长度:"<<endl;cin>>x;cout<<"请输入"<<x<<"个元素"<<endl;CreateList(list,x);break;case 2: cout<<"单链表显示如下:"<<endl;show(list);break;case 3: int s;cout<<"单链表的长度为:"<<Length(list,s)<<endl;break;case 4: cout<<"请选择所要取出元素的位置:";cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误,请重新输入"<<endl;cout<<"请选择所要取出元素的位置:";cin>>x; }GetElem(list,x,y);cout<<"该位置的元素为:"<<y<<endl;break;case 5: xiugai(list); break;case 6: cout<<"请选择要插入的位置:"; cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误,请重新输入"<<endl;cout<<"请选择所要插入元素的位置:";cin>>x; }cout<<"要插入的元素值:";cin>>y;LinkInsert( list,x,y);cout<<"插入后单链表显示如下:"<<endl;show(list);break;case 7: cout<<"请选择要删除的位置:"; cin>>x;while(x<0||x>Length(list,s)){ cout<<"输入有误,请重新输入"<<endl;cout<<"请选择所要删除元素的位置:";cin>>x; }ListDelete(list,x,y);cout<<"要删除的元素值:"<<y<<endl;cout<<"删除后的单链表显示如下:"<<endl;show(list);break;case 8: hebing();break;case 9: exit(0);break;default : cout<<"输入有误,请重新输入"<<endl;break;}}}6.测试结果四、实验总结(结果分析和体会)单链表的最后一个元素的next为null ,所以,一旦遍历到末尾结点就不能再重新开始;而循环链表的最后一个元素的next为第一个元素地址,可返回头结点进行重新遍历和查找。
数据结构C语言版 实验报告
数据结构C语言版实验报告一、实验目的本次实验旨在通过使用 C 语言实现常见的数据结构,加深对数据结构基本概念、原理和操作的理解,提高编程能力和解决实际问题的能力。
二、实验环境操作系统:Windows 10编程环境:Visual Studio 2019编程语言:C 语言三、实验内容1、线性表顺序表的实现与操作链表的实现与操作2、栈和队列栈的实现与应用(表达式求值)队列的实现与应用(模拟排队)3、树和二叉树二叉树的遍历(前序、中序、后序)二叉搜索树的实现与操作4、图图的存储结构(邻接矩阵、邻接表)图的遍历(深度优先搜索、广度优先搜索)四、实验步骤及结果1、线性表顺序表的实现与操作定义顺序表的数据结构,包括数组和表的长度。
实现顺序表的初始化、插入、删除、查找等操作。
测试顺序表的各种操作,输出操作结果。
```cinclude <stdioh>include <stdlibh>define MAX_SIZE 100typedef struct {int dataMAX_SIZE;int length;} SeqList;//初始化顺序表void initList(SeqList L) {L>length = 0;}//插入元素到顺序表int insertList(SeqList L, int pos, int element) {if (L>length >= MAX_SIZE || pos < 0 || pos > L>length) {return 0;}for (int i = L>length 1; i >= pos; i) {L>datai + 1 = L>datai;}L>datapos = element;L>length++;return 1;}//删除顺序表中的元素int deleteList(SeqList L, int pos) {if (pos < 0 || pos >= L>length) {return 0;}for (int i = pos; i < L>length 1; i++){L>datai = L>datai + 1;}L>length;return 1;}//查找顺序表中的元素int searchList(SeqList L, int element) {for (int i = 0; i < Llength; i++){if (Ldatai == element) {return i;}}return -1;}int main(){SeqList L;initList(&L);insertList(&L, 0, 10);insertList(&L, 1, 20);insertList(&L, 2, 30);printf("顺序表元素: ");for (int i = 0; i < Llength; i++){printf("%d ", Ldatai);}printf("\n");int pos = searchList(L, 20);if (pos!=-1) {printf("元素 20 在顺序表中的位置: %d\n", pos);} else {printf("顺序表中未找到元素 20\n");}deleteList(&L, 1);printf("删除元素后的顺序表元素: ");for (int i = 0; i < Llength; i++){printf("%d ", Ldatai);}printf("\n");return 0;}```实验结果:成功实现顺序表的初始化、插入、删除、查找等操作,输出结果符合预期。
c链表库函数
c链表库函数全文共四篇示例,供读者参考第一篇示例:C语言是一种广泛应用于系统编程的高级语言,而链表(Linked List)是C语言中常用的数据结构之一。
在C语言中,链表并不像数组一样有现成的库函数可以直接调用,需要通过自定义函数来实现链表的操作。
为了方便使用链表,不少开发者封装了链表操作的库函数,提供了一些常用的链表操作接口,以供开发者使用。
本文将介绍一些常见的C链表库函数及其用法。
一、链表的概念及基本操作链表是一种线性表的存储结构,由若干节点(Node)组成,每个节点包含数据域和指针域。
数据域用于存放数据,指针域用于指向下一个节点。
链表的最后一个节点指针域为空(NULL),表示链表的末尾。
常见的链表操作包括创建链表、插入节点、删除节点、遍历链表、查找节点等。
下面我们来看看C语言中常用的链表库函数。
二、常见的C链表库函数1. 创建链表在C语言中,创建链表的函数通常包括初始化链表头节点和链表节点的操作。
```#include <stdio.h>#include <stdlib.h>//定义链表节点typedef struct node {int data;struct node* next;} Node;2. 插入节点插入节点是链表操作中的重要操作,可以在链表的任意位置插入新节点。
常见的插入方式包括头部插入和尾部插入。
```//头部插入节点void insertNodeAtHead(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = head->next;head->next = newNode;}以上是常见的C链表库函数,这些函数可以帮助我们更方便地操作链表。
在实际开发中,可以根据需要自定义更多的链表操作函数,以满足具体的需求。
C#常用数据结构与算法
C常用数据结构与算法1.数据结构1.1 数组- 定义- 常用操作:访问元素、添加元素、删除元素、查找元素 - 应用场景1.2 链表- 定义- 常用操作:插入节点、删除节点、查找节点- 单链表、双链表、循环链表的区别- 应用场景1.3 栈- 定义- 常用操作:入栈、出栈、查看栈顶元素、判断栈是否为空 - 可使用数组或链表实现- 应用场景1.4 队列- 定义- 常用操作:入队、出队、查看队首元素、查看队尾元素、判断队列是否为空- 可使用数组或链表实现- 应用场景1.5 哈希表- 定义- 常用操作:插入键值对、删除键值对、根据键查找值、计算哈希值- 冲突解决方法:开放寻址法、链地质法- 应用场景2.常用算法2.1 排序算法- 冒泡排序- 插入排序- 选择排序- 快速排序- 归并排序- 堆排序2.2 查找算法- 线性查找- 二分查找- 插值查找- 哈希查找- 树查找(二叉搜索树、平衡二叉树、红黑树)2.3 图算法- 广度优先搜索- 深度优先搜索- 最短路径算法(Dijkstra算法、Floyd-Warshall算法) - 最小树算法(Prim算法、Kruskal算法)2.4 动态规划- 背包问题- 最长公共子序列- 最大子数组和3.附件:无4.法律名词及注释:- C: C是一种通用的、面向对象的编程语言,由微软公司开发。
- 数据结构:数据结构是计算机中组织和存储数据的方式。
- 算法:算法是解决问题的一系列步骤或过程。
- 数组:数组是一种线性数据结构,由一系列元素组成,每个元素都有唯一的索引值。
- 链表:链表是一种线性数据结构,由一系列节点组成,每个节点都包含数据和指向下一个节点的指针。
- 栈:栈是一种后进先出(LIFO)的数据结构,只能在栈顶进行操作。
- 队列:队列是一种先进先出(FIFO)的数据结构,只能在队首和队尾进行操作。
- 哈希表:哈希表是一种使用哈希函数将键映射到值的数据结构。
- 排序算法:排序算法是将一组数据按照特定顺序排列的算法。
C语言程序设计实验实验报告7
C语言程序设计实验实验报告7实验名称:链表实现学生信息管理系统实验目的:通过设计链表实现学生信息管理系统,掌握链表的操作方法及其应用。
实验内容:设计一个学生信息结构体,包括学号、姓名、性别、年龄和成绩五个成员变量,并选择链式结构存储这些数据。
实现以下功能:1. 添加学生信息:从键盘输入学号、姓名、性别、年龄和成绩等信息,添加到链表中。
2. 删除学生信息:从链表中删除指定学号的学生信息。
5. 按成绩排序:按学生的成绩从高到低排序,并输出所有学生的信息。
7. 退出程序:退出学生信息管理系统。
实验方法:1. 设计学生信息结构体,定义链表节点结构体,并编写初始化链表和销毁链表的函数。
2. 编写添加学生信息函数,新建链表节点并插入链表末尾。
3. 编写删除学生信息函数,根据学号查找需要删除的节点,先将该节点从链表中删除,再释放节点空间。
4. 编写修改学生信息函数,根据学号查找需要修改的节点,并修改其成员变量。
6. 编写按成绩排序函数,使用冒泡排序法对链表进行排序,并输出所有学生的信息。
7. 编写输出所有学生信息函数,遍历链表并输出每个节点的信息。
8. 完成学生信息管理系统的主函数,实现菜单及相应功能的选择。
实验结果:依次选择菜单中的各个功能,添加、修改、删除、查找、排序和输出学生信息都能实现。
经测试,程序稳定运行,功能正常,符合需求。
本次实验主要让我们掌握了链式结构的概念、链表节点的定义、链表的初始化、插入、查找、删除和销毁链表的操作方法,以及在实际应用中如何使用链表来实现数据管理。
虽然链表操作相对于数组稍微有些繁琐,但其可以灵活处理数据结构的长度变化,具有更高的可扩展性和更好的操作效率,可以更好的适应各种实际需求。
在实验中,还需要注意节点指针的正确使用、各个函数之间的调用关系和输入输出数据格式的合理选择等问题,以保证程序能够正常运行。
同时,还需要保持认真细致的态度,严格按照实验需求和要求来完成每个步骤,以达到更好的实验效果和运行效率。
哈希链表的c语言实现
哈希链表的c语言实现哈希链表的C语言实现哈希链表是一种常用的数据结构,用于存储和操作大量的数据。
它结合了哈希表和链表的特点,具有快速查找和高效插入删除的优势。
本文将介绍如何使用C语言实现哈希链表,并详细讲解其原理和操作。
一、哈希链表的原理哈希链表是通过哈希函数将数据的键映射到一个唯一的索引位置,然后使用链表来解决哈希冲突。
哈希函数可以是简单的取模运算,也可以是复杂的算法,关键在于保证映射的唯一性和均匀性。
二、哈希链表的结构在C语言中,我们可以使用结构体来定义哈希链表的节点和链表本身。
节点包含一个键值对,即存储的数据和对应的键,以及一个指向下一个节点的指针。
链表则包含一个指向第一个节点的指针。
```c// 定义哈希链表节点typedef struct Node {int key;int value;struct Node* next;} Node;// 定义哈希链表typedef struct HashTable {int size;Node** table;} HashT able;```三、哈希链表的操作1. 初始化哈希链表在初始化哈希链表时,需要指定链表的大小,并分配相应大小的内存空间。
同时,需要将每个节点的指针初始化为空。
2. 插入节点插入节点时,首先通过哈希函数计算出节点的索引位置,然后将节点插入到对应索引位置的链表中。
如果该位置已经存在节点,则将新节点插入到链表的头部。
3. 查找节点查找节点时,也需要通过哈希函数计算出节点的索引位置,然后遍历链表,找到对应的节点。
如果找到了节点,则返回节点的值;否则,返回空。
删除节点时,首先通过哈希函数计算出节点的索引位置,然后遍历链表,找到对应的节点并删除。
需要注意的是,删除节点时需要维护链表的连续性。
四、示例代码下面是一个简单的示例代码,演示了如何使用C语言实现哈希链表的初始化、插入、查找和删除操作。
```c#include <stdio.h>#include <stdlib.h>// 初始化哈希链表HashTable* initHashTable(int size) {HashTable* ht = (HashTable*)malloc(sizeof(HashTable));ht->size = size;ht->table = (Node**)malloc(sizeof(Node*) * size);for (int i = 0; i < size; i++) {ht->table[i] = NULL;}return ht;}void insertNode(HashTable* ht, int key, int value) { int index = key % ht->size;Node* newNode = (Node*)malloc(sizeof(Node)); newNode->key = key;newNode->value = value;newNode->next = ht->table[index];ht->table[index] = newNode;}// 查找节点int findNode(HashTable* ht, int key) {int index = key % ht->size;Node* cur = ht->table[index];while (cur) {if (cur->key == key) {return cur->value;}cur = cur->next;}return -1;}void deleteNode(HashTable* ht, int key) { int index = key % ht->size;Node* cur = ht->table[index];Node* pre = NULL;while (cur) {if (cur->key == key) {if (pre) {pre->next = cur->next;} else {ht->table[index] = cur->next; }free(cur);return;}pre = cur;cur = cur->next;}}int main() {HashTable* ht = initHashTable(10);insertNode(ht, 1, 10);insertNode(ht, 2, 20);insertNode(ht, 11, 30);printf("%d\n", findNode(ht, 1));printf("%d\n", findNode(ht, 2));printf("%d\n", findNode(ht, 11));deleteNode(ht, 2);printf("%d\n", findNode(ht, 2));free(ht->table);free(ht);return 0;}```五、总结本文介绍了哈希链表的C语言实现,并详细讲解了其原理和操作。
链表c语言经典例题
链表c语言经典例题
链表是计算机科学中的经典数据结构之一,常用于存储和操作动态数据。
以下是一些常见的链表例题,可以帮助理解链表的基本操作和应用。
1. 链表的创建:
- 创建一个空链表。
- 创建一个包含指定节点值的链表。
2. 链表的插入操作:
- 在链表的头部插入一个节点。
- 在链表的尾部插入一个节点。
- 在指定位置插入一个节点。
3. 链表的删除操作:
- 删除链表的头节点。
- 删除链表的尾节点。
- 删除指定数值的节点。
4. 链表的查找操作:
- 查找链表中指定数值的节点。
- 查找链表的中间节点。
5. 链表的逆序操作:
- 反转整个链表。
- 反转链表的前 N 个节点。
- 反转链表的一部分区间内的节点。
6. 链表的合并操作:
- 合并两个有序链表,使其有序。
- 合并 K 个有序链表,使其有序。
7. 链表的环检测:
- 判断链表中是否存在环,若存在,则返回环的起始节点。
8. 链表的拆分操作:
- 将一个链表按照奇偶位置拆分成两个链表。
以上是一些链表的经典例题,通过解答这些例题,可以加深对链表结构和基本操作的理解。
在编写对应的 C 语言代码时,需要注意链表节点的定义、指针的使用以及内存的动态分配和释放等问题。
C语言数据结构线性表的基本操作实验报告
实验一线性表的基本操作一、实验目的与基本要求1.掌握数据结构中的一些基本概念。
数据、数据项、数据元素、数据类型和数据结构,以及它们之间的关系。
2.了解数据的逻辑结构和数据的存储结构之间的区别与联系;数据的运算与数据的逻辑结构的关系。
3.掌握顺序表和链表的基本操作:插入、删除、查找以及表的合并等运算。
4.掌握运用C语言上机调试线性表的基本方法。
二、实验条件1.硬件:一台微机2.软件:操作系统和C语言系统三、实验方法确定存储结构后,上机调试实现线性表的基本运算。
四、实验内容1.建立顺序表,基本操作包括:初始化,建立一个顺序存储的链表,输出顺序表,判断是否为空,取表中第i个元素,定位函数(返回第一个与x相等的元素位置),插入,删除。
2.建立单链表,基本操作包括:初始化,建立一个链式存储的链表,输出顺序表,判断是否为空,取表中第i个元素,定位函数(返回第一个与x相等的元素位置),插入,删除。
3.假设有两个按数据元素值非递减有序排列的线性表A和B,均以顺序表作为存储结构。
编写算法将A表和B表归并成一个按元素值非递增有序(允许值相同)排列的线性表C。
(可以利用将B中元素插入A中,或新建C表)4.假设有两个按数据元素值非递减有序排列的线性表A和B,均以单链表作为存储结构。
编写算法将A表和B表归并成一个按元素值递减有序(即非递增有序,允许值相同)排列的线性表C。
五、附源程序及算法程序流程图1.源程序(1)源程序(实验要求1和3)#include<stdio.h>#include<malloc.h>#include<stdlib.h>#define LIST_INIT_SIZE 100#define LISTINCREMENT 10typedef struct arr{int * elem;int length;int listsize;}Sqlist;void menu(); //菜单void InitList(Sqlist *p); // 创建线性表void ShowList(Sqlist *p); // 输出顺序线性表void ListDelete(Sqlist *p,int i,int &e); // 在顺序线性表中删除第i个元素,并用e返回其值void ListInsert(Sqlist *p); // 在顺序线性表中第i个元素前插入新元素evoid ListEmpty(Sqlist *p); // 判断L是否为空表void GetList(Sqlist *p,int i,int &e); // 用e返回L中第i个数据元素的值void ListInsert(Sqlist *p,int i,int e);bool compare(int a,int b);void LocateElem(Sqlist *L,int e); // 在顺序线性表L中查找第1个值与e满足compare()d元素的位序void MergeList_L(Sqlist *La,Sqlist *Lb); // 归并void main(){Sqlist La;Sqlist Lb;int n,m,x;menu();scanf("%d",&n);while(n){switch(n){case 0: ; break;case 1:InitList(&La);break;case 2:ListEmpty(&La);break;case 3:printf("请输入插入的位序:\n");scanf("%d",&m);printf("请出入要插入的数:\n");scanf("%d",&x);ListInsert(&La,m,x);break;case 4:printf("请输入删除元素的位序:\n");scanf("%d",&m);ListDelete(&La,m,x);printf("删除的元素为:%d\n",x);break;case 5:printf("请输入要找的与线性表中相等的数:\n");scanf("%d",&m);LocateElem(&La,m);break;case 6:printf("请输入查找的位序:\n");scanf("%d",&m);GetList(&La,m,x);printf("La中第%d个元素的值为%d\n",m,x);break;case 7:ShowList(&La);break;case 8:InitList(&Lb);break;case 9:MergeList_L(&La,&Lb);printf("归并成功!");break;}menu();scanf("%d",&n);}}/*菜单*/void menu(){printf("********************\n\n");printf(" 0.退出\n\n");printf(" 1.创建线性表La\n\n");printf(" 2.判断La是否为空表\n\n");printf(" 3.插入元素(La)\n\n");printf(" 4.删除元素(La)\n\n");printf(" 5.定位元素(La)\n\n");printf(" 6.取元素(La)\n\n");printf(" 7.输出线性表\n\n");printf(" 8.创建线性表Lb\n\n");printf(" 9.归并为一个线性表La\n\n");printf("********************\n\n");}/*创建顺序线性表L*/void InitList(Sqlist *L){int n;int i=0;L->elem=(int *)malloc(LIST_INIT_SIZE*sizeof(int));if(NULL==L->elem)printf("储存分配失败!\n");else{L->length=0;L->listsize=LIST_INIT_SIZE;printf("输入顺序表a:\n");scanf("%d",&n);while(n){L->elem[i]=n;i++;L->length++;L->listsize=L->listsize-4;scanf("%d",&n);}}}/*输出顺序线性表*/void ShowList(Sqlist *p){int i;if(0==p->length)printf("数组为空!\n");elsefor(i=0;i<p->length;i++)printf("%d ",p->elem[i]);printf("\n");}/*判断L是否为空表*/void ListEmpty(Sqlist *p)if(0==p->length)printf("L是空表!\n");elseprintf("L不是空表!\n");}/*在顺序线性表中第i个元素前插入新元素e */void ListInsert(Sqlist *p,int i,int e){int *newbase;int *q1;int *q2;while(i<1||i>p->length+1){printf("您输入的i超出范围!\n请重新输入要插入的位置\n:");scanf("%d",&i);}if(p->length>=p->listsize){newbase=(int *)realloc(p->elem,(p->listsize+LISTINCREMENT)*sizeof(int));if(!newbase)exit(0);else{p->elem=newbase;p->listsize+=LISTINCREMENT;}}q1=&(p->elem[i-1]);for(q2=&(p->elem[p->length-1]);q2>=q1;--q2)*(q2+1)=*q2;*q1=e;++p->length;}/*/在顺序线性表中删除第i个元素,并用e返回其值*/void ListDelete(Sqlist *p,int i,int &e){int *q1,*q2;while(i<1||i>p->length){printf("您输入的i超出范围!请重新输入:");scanf("%d",&i);}q1=&(p->elem[i-1]);e=*q1;q2=p->elem+p->length-1;for(++q1;q1<=q2;++q1)*(q1-1)=*q1;--p->length;}/*对比a与b相等*/bool compare(int a,int b){if(a==b)return 1;elsereturn 0;}/*在顺序线性表L中查找第1个值与e满足compare()d元素的位序*/ void LocateElem(Sqlist *L,int e){int i=1;int *p;p=L->elem;while(i<=L->length && !compare(*p++,e))++i;if(i<=L->length)printf("第1个与e相等的元素的位序为%d\n",i);elseprintf("没有该元素!\n");}/*用e返回L中第i个数据元素的值*/void GetList(Sqlist *p,int i,int &e){Sqlist *p1;p1=p;e=p1->elem[i-1];}/* 已知顺序线性表La和Lb是元素按值非递减排列*//* 把La和Lb归并到La上,La的元素也是按值非递减*/void MergeList_L(Sqlist *La,Sqlist *Lb){int i=0,j=0,k,t;int *newbase;Sqlist *pa,*pb;pa=La;pb=Lb;while(i<pa->length && j<pb->length){if(pa->elem[i] >= pb->elem[j]){if(pa->listsize==0){newbase=(int*)realloc(pa->elem,(pa->listsize+LISTINCREMENT)*sizeof(int));if(!newbase)exit(0);}for(k=pa->length-1; k>=i; k--)pa->elem[k+1]=pa->elem[k];pa->length++;pa->elem[i]=pb->elem[j];i++;j++;}elsei++;}while(j<pb->length){if( pa->listsize < pb->length-j ){newbase=(int*)realloc(pa->elem,(pa->listsize+LISTINCREMENT)*sizeof(int));if(!newbase)exit(0);}for(j;j<pb->length;j++,i++){pa->elem[i]=pb->elem[j];pa->length++;}}for(i=0;i<pa->length/2;i++){t=pa->elem[i];pa->elem[i]=pa->elem[pa->length-i-1];pa->elem[pa->length-i-1]=t;}}(2)源程序(实验要求2和4)#include<stdio.h>#include<malloc.h>#include<stdlib.h>typedef struct LNode{int data;struct LNode *next;}LNode, *LinkList;void menu();LinkList InitList();void ShowList(LinkList L);void ListDelete(LinkList L,int i,int &e);void ListEmpty(LinkList L);void GetList(LinkList L,int i,int &e);void ListInsert(LinkList L,int i,int e);bool compare(int a,int b);void LocateElem(LinkList L,int e);LinkList MergeList_L(LinkList La,LinkList Lb);int total=0;void main(){LinkList La;LinkList Lb;La=(LinkList)malloc(sizeof(struct LNode));La->next=NULL;Lb=(LinkList)malloc(sizeof(struct LNode));Lb->next=NULL;int n;int m;int x;menu();scanf("%d",&n);while(n){switch(n){case 0: ; break;case 1:La->next=InitList();break;case 2:ListEmpty(La);break;case 3:printf("请输入要插入到第几个节点前:\n");scanf("%d",&m);printf("请输入插入的数据:\n");scanf("%d",&x);ListInsert(La,m,x);break;case 4:printf("请输入删除元素的位序:\n");scanf("%d",&m);ListDelete(La,m,x);printf("删除的元素为:%d\n",x);break;case 5:printf("请输入要找的与线性表中相等的数:\n");scanf("%d",&m);LocateElem(La,m);break;case 6:printf("请输入查找的位序:\n");scanf("%d",&m);GetList(La,m,x);printf("La中第%d个元素的值为%d\n",m,x);break;case 7:ShowList(La);break;case 8:Lb->next=InitList();break;case 9:La=MergeList_L(La,Lb);printf("归并成功\n");break;}menu();scanf("%d",&n);}}void menu(){printf("********************\n\n");printf(" 0.退出\n\n");printf(" 1.创建线性表La\n\n");printf(" 2.判断是否为空表\n\n");printf(" 3.插入元素\n\n");printf(" 4.删除元素\n\n");printf(" 5.定位元素\n\n");printf(" 6.取元素\n\n");printf(" 7.输出线性表\n\n");printf(" 8.创建线性表Lb\n\n");printf(" 9.归并两线性表\n\n");printf("********************\n\n");}// 创建链式线性表LLinkList InitList(){int count=0;LinkList pHead=NULL;LinkList pEnd,pNew;pEnd=pNew=(LinkList)malloc(sizeof(struct LNode));printf("请输入数据:\n");scanf("%d",&pNew->data);while(pNew->data){count++;if(count==1){pNew->next=pHead;pEnd=pNew;pHead=pNew;}else{pNew->next=NULL;pEnd->next=pNew;pEnd=pNew;}pNew=(LinkList)malloc(sizeof(struct LNode));printf("请输入数据:\n");scanf("%d",&pNew->data);}free(pNew);total=total+count;return pHead;}// 判断L是否为空表void ListEmpty(LinkList L){if(NULL==L->next)printf("此表为空表!\n");elseprintf("此表不为空表!\n");}// 在链式线性表中第i个元素前插入新元素e void ListInsert(LinkList L,int i,int e){LinkList p;LinkList s;p=L;int j=0;while(p&&j<i-1){p=p->next;++j;}if(!p||j>i-1)printf("不存在您要找的节点!\n");else{s=(LinkList)malloc(sizeof(int));s->data=e;s->next=p->next;p->next=s;printf("插入节点成功!\n");}}// 输出链式线性表void ShowList(LinkList L){LinkList p;p=L->next;if(p==NULL)printf("此表为空表!\n");elsewhile(p){printf("%d ",p->data);p=p->next;}printf("\n");}// 在链式线性表中删除第i个元素,并用e返回其值void ListDelete(LinkList L,int i,int &e){LinkList p;LinkList q;p=L;int j=0;while(p->next && j<i-1){p=p->next;++j;}if(!(p->next)||j>i-1)printf("没有找到要删除的位置!");else{q=p->next;p->next=q->next;e=q->data;free(q);}}// 用e返回L中第i个数据元素的值void GetList(LinkList L,int i,int &e){LinkList p;p=L->next;int j=0;while(p->next && j<i-1){p=p->next;++j;}if(!(p)||j>i-1)printf("没有找到要查找的位置!");elsee=p->data;}// 对比a与b相等bool compare(int a,int b){if(a==b)return 1;elsereturn 0;}// 在链式线性表L中查找第1个值与e满足compare()d元素的位序void LocateElem(LinkList L,int e){int i=0;LinkList p;p=L;while(p->next && !compare(p->data,e)){p=p->next;i++;}if(NULL==p->next){if(0==compare(p->data,e))printf("没有该元素!\n");elseprintf("第1个与e相等的元素的位序为%d\n",i);}elseif(compare(p->data,e))printf("没有该元素!\n");}LinkList MergeList_L(LinkList La,LinkList Lb){int i,j,k;LinkList pa_1,pb_1,pa_2,pb_2,pc,pd;pa_1=La->next;pc=pa_2=La;pb_1=pb_2=Lb->next;if(pa_1->data > pb_1->data){pc=pa_2=Lb;pa_1=Lb->next;pb_1=pb_2=La->next;}while(pa_1 && pb_1){if(pa_1->data >= pb_1->data){pa_2->next=pb_1;pb_2=pb_1->next;pb_1->next=pa_1;pb_1=pb_2;pa_2=pa_2->next;}else{pa_1=pa_1->next;pa_2=pa_2->next;}}if(pb_1)pa_2->next=pb_1;pd=(LinkList)malloc(sizeof(struct LNode));pd->next=NULL;pa_2=pd;k=total;for(i=0;i<total;i++){pa_1=pc->next;for(j=1;j<k;j++)pa_1=pa_1->next;pb_1=(LinkList)malloc(sizeof(struct LNode));pa_2->next=pb_1;pa_2=pa_2->next;pa_2->data=pa_1->data;k--;}pa_2->next=NULL;return pd;}2.流程图(实验要求1和3)图1 主函数流程图图2创建线性表La流程图图3判断La是否为空表流程图图4 插入元素(La)流程图图5删除元素(La)流程图图6定位元素(La)流程图图7取元素(La)流程图图8输出线性表流程图图9输出线性表流程图流程图(实验要求2和4)图10主函数流程图图11创建线性表La流程图图12判断是否为空表流程图图13插入元素流程图图14删除元素流程图图15定位元素流程图图图16取元素流程图图17创建Lb流程图图18归并两表流程图六、运行结果1. (实验要求1和3)点击运行,首先出现的是菜单界面,选择菜单选项进行操作,如图所示。
数据结构单链表实验报告
数据结构单链表实验报告一、实验目的1、深入理解单链表的数据结构及其基本操作。
2、掌握单链表的创建、插入、删除、查找等操作的实现方法。
3、通过实际编程,提高对数据结构和算法的理解和应用能力。
二、实验环境1、操作系统:Windows 102、编程语言:C 语言3、开发工具:Visual Studio 2019三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。
指针域用于指向下一个节点,从而形成链表的链式结构。
单链表的基本操作包括:1、创建链表:通过动态分配内存创建链表的头节点,并初始化链表为空。
2、插入节点:可以在链表的头部、尾部或指定位置插入新的节点。
3、删除节点:根据给定的条件删除链表中的节点。
4、查找节点:在链表中查找满足特定条件的节点。
四、实验内容(一)单链表的创建```cinclude <stdioh>include <stdlibh>//定义链表节点结构体typedef struct Node {int data;struct Node next;} Node;//创建单链表Node createList(){Node head =(Node)malloc(sizeof(Node));if (head == NULL) {printf("内存分配失败!\n");return NULL;}head>data = 0;head>next = NULL;return head;}int main(){Node list = createList();//后续操作return 0;}```在创建单链表时,首先为头节点分配内存空间。
若内存分配失败,则提示错误信息并返回`NULL`。
成功分配内存后,初始化头节点的数据域和指针域。
(二)单链表的插入操作插入操作分为三种情况:头部插入、尾部插入和指定位置插入。
1、头部插入```cvoid insertAtHead(Node head, int data) {Node newNode =(Node)malloc(sizeof(Node));if (newNode == NULL) {printf("内存分配失败!\n");return;}newNode>data = data;newNode>next = head>next;head>next = newNode;}```头部插入时,创建新节点,将新节点的数据域赋值,并将其指针域指向原头节点的下一个节点,然后更新头节点的指针域指向新节点。
c实现的hash表-概述说明以及解释
c实现的hash表-概述说明以及解释1.引言1.1 概述在计算机科学中,哈希表(Hash Table),又被称为散列表,是一种常用的数据结构。
它能够以常数时间复杂度(O(1))来实现插入、删除和查找等操作,因此具有高效的特性。
哈希表通过哈希函数将键(key)映射到一个固定大小的数组(通常称为哈希表)。
通过这种映射关系,我们可以在数组中快速访问到对应的值(value)。
常见的应用场景包括缓存系统、数据库索引、编译器符号表等。
相对于其他数据结构,哈希表具有以下优点:1. 高效的插入、删除和查找操作:哈希表在插入、删除和查找数据时以常数时间复杂度进行操作,无论数据量大小,都能快速地完成操作。
2. 高效的存储和检索:通过哈希函数的映射关系,哈希表能够将键值对存储在数组中,可以通过键快速地找到对应的值。
3. 空间效率高:哈希表通过哈希函数将键映射到数组下标,能够充分利用存储空间,避免冗余的存储。
然而,哈希表也存在一些局限性:1. 冲突问题:由于哈希函数的映射关系是将多个键映射到同一个数组下标上,可能会导致冲突。
解决冲突问题的常见方法包括链地址法(Chaining)和开放定址法(Open Addressing)等。
2. 内存消耗:由于哈希表需要维护额外的空间来存储映射关系,所以相比于其他数据结构来说,可能会占用较多的内存。
本篇长文将重点介绍C语言实现哈希表的方法。
我们将首先讨论哈希表的定义和实现原理,然后详细介绍在C语言中如何实现一个高效的哈希表。
最后,我们将总结哈希表的优势,对比其他数据结构,并展望哈希表在未来的发展前景。
通过本文的学习,读者将能够深入理解哈希表的底层实现原理,并学会如何在C语言中利用哈希表解决实际问题。
1.2 文章结构本文将围绕C语言实现的hash表展开讨论,并按照以下结构进行组织。
引言部分将对hash表进行概述,介绍hash表的基本概念、作用以及其在实际应用中的重要性。
同时,引言部分还会阐述本文的目的,即通过C语言实现的hash表,来探讨其实现原理、方法以及与其他数据结构的对比。
C语言链表题目及答案
下面哪种选项描述了链表的特点?A) 可以随机访问元素B) 拥有固定大小的内存空间C) 元素之间通过指针连接D) 可以自动调整大小答案: C在链表中,头节点的作用是什么?A) 存储链表的长度B) 存储链表的最后一个节点C) 存储链表的第一个节点D) 存储链表的中间节点答案: C下面哪种选项描述了双向链表的特点?A) 每个节点只有一个指针指向下一个节点B) 每个节点只有一个指针指向上一个节点C) 每个节点同时拥有指向前一个节点和后一个节点的指针D) 只能从链表的一端进行操作答案: C在链表中,删除一个节点的操作涉及修改哪些指针?A) 只需要修改被删除节点的前一个节点的指针B) 只需要修改被删除节点的后一个节点的指针C) 需要修改被删除节点的前一个节点和后一个节点的指针D) 不需要修改任何指针答案: C在链表的尾部添加一个新节点的操作复杂度是多少?A) O(1)B) O(n)C) O(log n)D) O(n^2)答案: A如何遍历链表的所有节点?A) 使用for循环B) 使用while循环C) 使用递归函数D) 使用if语句答案: B在链表中,如何找到特定值的节点?A) 使用线性搜索B) 使用二分搜索C) 使用递归搜索D) 使用栈搜索答案: A链表和数组相比,哪个更适合频繁插入和删除操作?A) 链表B) 数组C) 二叉树D) 堆栈答案: A在链表中,如何在指定位置插入一个新节点?A) 修改前一个节点的指针B) 修改后一个节点的指针C) 修改当前节点的指针D) 不需要修改任何指针答案: A链表的头指针指向什么?A) 链表的第一个节点B) 链表的最后一个节点C) 链表的中间节点D) 链表的空节点答案: A链表中节点的个数称为什么?A) 链表的长度B) 链表的高度C) 链表的宽度D) 链表的容量答案: A在链表中,如何删除指定值的节点?A) 修改前一个节点的指针B) 修改后一个节点的指针C) 修改当前节点的指针D) 不需要修改任何指针答案: A单链表的最后一个节点指向什么?A) 链表的第一个节点B) 链表的最后一个节点C) NULLD) 链表的中间节点答案: C双向链表相比于单向链表的优势是什么?A) 占用更少的内存空间B) 遍历速度更快C) 可以从任意方向遍历D) 插入和删除操作更快答案: C在链表中,如何找到倒数第n个节点?A) 遍历整个链表B) 使用递归函数C) 使用栈数据结构D) 使用双指针技巧答案: D链表的删除操作和数组的删除操作的时间复杂度分别是什么?A) 链表的删除操作为O(1),数组的删除操作为O(n)B) 链表的删除操作为O(n),数组的删除操作为O(1)C) 链表的删除操作为O(n),数组的删除操作为O(n)D) 链表的删除操作为O(1),数组的删除操作为O(1)答案: A在链表中,如何判断链表是否为空?A) 检查头指针是否为NULLB) 检查尾指针是否为NULLC) 检查链表的长度是否为0D) 检查链表的第一个节点是否为NULL答案: A链表的逆序操作是指什么?A) 删除链表中的节点B) 反转链表中节点的顺序C) 插入节点到链表的尾部D) 在链表中查找指定值的节点答案: B在链表中,如何查找指定值的节点?A) 使用线性搜索B) 使用二分搜索C) 使用递归搜索D) 使用栈搜索答案: A在双向链表中,如何删除指定值的节点?A) 修改前一个节点的指针B) 修改后一个节点的指针C) 修改当前节点的指针D) 不需要修改任何指针答案: A链表的插入操作和数组的插入操作的时间复杂度分别是什么?A) 链表的插入操作为O(1),数组的插入操作为O(n)B) 链表的插入操作为O(n),数组的插入操作为O(1)C) 链表的插入操作为O(n),数组的插入操作为O(n)D) 链表的插入操作为O(1),数组的插入操作为O(1)答案: A如何删除单向链表中的重复节点?A) 使用递归算法B) 使用双指针技巧C) 使用栈数据结构D) 不需要额外操作,链表会自动去重答案: B链表的优势之一是什么?A) 随机访问速度快B) 占用内存空间少C) 插入和删除操作高效D) 支持高级操作如排序和搜索答案: C在链表中,如何找到中间节点?A) 遍历整个链表B) 使用递归函数C) 使用栈数据结构D) 使用快慢指针技巧答案: D在链表中,如何在尾部添加一个新节点?A) 修改前一个节点的指针B) 修改后一个节点的指针C) 修改当前节点的指针D) 创建一个新节点并更新尾指针答案: D链表的查找操作的时间复杂度是多少?A) O(1)B) O(log n)C) O(n)D) O(n^2)答案: C在双向链表中,如何找到倒数第n个节点?A) 从头节点开始遍历B) 从尾节点开始遍历C) 使用递归函数D) 使用双指针技巧答案: B链表的删除操作的时间复杂度是多少?A) O(1)B) O(log n)C) O(n)D) O(n^2)答案: A链表和数组相比,哪个更适合频繁插入和删除操作?A) 链表B) 数组C) 哈希表D) 栈答案: A如何判断链表是否有环?A) 使用线性搜索B) 使用递归算法C) 使用快慢指针技巧D) 使用栈数据结构答案: C在链表中,如何反转链表的顺序?A) 使用递归算法B) 使用栈数据结构C) 使用双指针技巧D) 使用循环迭代答案: D在链表中,如何删除所有节点?A) 依次删除每个节点B) 修改头指针为NULLC) 修改尾指针为NULLD) 不需要额外操作,链表会自动清空答案: A链表的头节点是什么?A) 链表的第一个节点B) 链表的最后一个节点C) 链表的中间节点D) 链表的空节点答案: A在链表中,如何插入一个新节点到指定位置之前?A) 修改前一个节点的指针B) 修改后一个节点的指针C) 修改当前节点的指针D) 不需要修改任何指针答案: A在链表中,如何删除指定位置的节点?A) 修改前一个节点的指针B) 修改后一个节点的指针C) 修改当前节点的指针D) 不需要修改任何指针答案: A单向链表和双向链表的区别是什么?A) 单向链表只有一个指针指向下一个节点,双向链表有两个指针分别指向前一个节点和后一个节点B) 单向链表只能从头到尾遍历,双向链表可以从头到尾或者从尾到头遍历C) 单向链表只能在尾部添加节点,双向链表可以在头部和尾部都添加节点D) 单向链表只能包含整型数据,双向链表可以包含任意类型的数据答案: A链表的删除操作和数组的删除操作的时间复杂度分别是什么?A) 链表的删除操作为O(1),数组的删除操作为O(n)B) 链表的删除操作为O(n),数组的删除操作为O(1)C) 链表的删除操作为O(n),数组的删除操作为O(n)D) 链表的删除操作为O(1),数组的删除操作为O(1)答案: A如何判断两个链表是否相交?A) 比较链表的长度是否相等B) 比较链表的头节点是否相等C) 比较链表的尾节点是否相等D) 比较链表中的所有节点是否相等答案: B链表和数组的主要区别是什么?A) 链表是一种线性数据结构,数组是一种非线性数据结构B) 链表的长度可变,数组的长度固定C) 链表支持随机访问,数组只能顺序访问D) 链表的插入和删除操作效率高,数组的访问效率高答案: B在链表中,如何找到倒数第k个节点?A) 从头节点开始遍历,直到倒数第k个节点B) 从尾节点开始遍历,直到倒数第k个节点C) 使用递归函数查找倒数第k个节点D) 使用双指针技巧,一个指针先移动k步,然后两个指针同时移动直到第一个指针到达链表末尾答案: D在链表中,如何判断是否存在环?A) 使用线性搜索,检查是否有重复的节点B) 使用递归算法,判断节点是否已经访问过C) 使用栈数据结构,检查节点是否已经入栈D) 使用快慢指针技巧,如果两个指针相遇,则存在环答案: D如何将两个有序链表合并成一个有序链表?A) 创建一个新链表,依次比较两个链表的节点并插入新链表中B) 将第一个链表的尾节点指向第二个链表的头节点C) 将第二个链表的尾节点指向第一个链表的头节点D) 使用递归算法,依次比较两个链表的节点并合并答案: A在链表中,如何删除重复的节点?A) 使用递归算法,遍历链表并删除重复的节点B) 使用双指针技巧,依次比较相邻节点并删除重复的节点C) 使用栈数据结构,检查节点是否已经入栈并删除重复的节点D) 不需要额外操作,链表会自动去重答案: B链表的优点是什么?A) 占用内存空间少B) 插入和删除操作高效C) 支持高级操作如排序和搜索D) 可以随机访问任意位置的元素答案: B。
c语言中linklist类型
c语言中linklist类型LinkList类型是C语言中常用的数据结构之一,用于表示链表。
链表是一种动态数据结构,它可以根据需要动态地分配和释放内存空间,比较灵活。
在本文中,我们将深入探讨LinkList类型及其相关操作。
一、什么是链表链表是一种由节点组成的数据结构,每个节点包含数据和指向下一个节点的指针。
链表中的节点可以按照任意顺序存储,通过指针将它们连接起来。
与数组相比,链表的插入和删除操作更加高效,但是访问元素的效率较低。
链表分为单向链表和双向链表两种形式,本文主要介绍单向链表。
二、LinkList类型的定义在C语言中,我们通过结构体来定义链表节点的数据结构,具体定义如下:```ctypedef struct Node{int data;struct Node *next;}Node;typedef Node *LinkList;```其中,Node表示链表的节点类型,LinkList表示链表的类型。
三、LinkList类型的常用操作1. 初始化链表初始化链表主要是将链表的头指针置空,表示链表为空。
具体实现如下:```cvoid InitList(LinkList *L){*L = NULL;}```2. 判断链表是否为空判断链表是否为空可以通过判断链表的头指针是否为空来实现。
具体实现如下:```cint ListEmpty(LinkList L){return L == NULL;}```3. 求链表的长度求链表的长度即统计链表中节点的个数。
具体实现如下:```cint ListLength(LinkList L){int count = 0;Node *p = L;while(p != NULL){count++;p = p->next;}return count;}```4. 插入节点插入节点可以在链表的任意位置插入新的节点。
具体实现如下:```cint ListInsert(LinkList *L, int pos, int data){if(pos < 1 || pos > ListLength(*L) + 1){return 0;}Node *p = *L;Node *newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = NULL;if(pos == 1){newNode->next = *L;*L = newNode;}else{for(int i = 1; i < pos - 1; i++){p = p->next;}newNode->next = p->next;p->next = newNode;}return 1;}```5. 删除节点删除节点可以删除链表中指定位置的节点。
实验二 链表操作实现
实验二链表操作实现实验日期:2017 年 3 月16 日实验目的及要求1. 熟练掌握线性表的基本操作在链式存储上的实现;2. 以线性表的各种操作(建立、插入、删除、遍历等)的实现为重点;3. 掌握线性表的链式存储结构的定义和基本操作的实现;4. 通过本实验加深对C语言的使用(特别是函数的参数调用、指针类型的应用)。
实验内容已知程序文件linklist.cpp已给出学生身高信息链表的类型定义和基本运算函数定义。
(1)链表类型定义typedef struct {int xh; /*学号*/float sg; /*身高*/int sex; /*性别,0为男生,1为女生*/} datatype;typedef struct node{datatype data; /*数据域*/struct node *next; /*指针域*/} LinkNode, *LinkList;(2)带头结点的单链表的基本运算函数原型LinkList initList();/*置一个空表(带头结点)*/void createList_1(LinkList head);/*创建单链表*/void createList_2(LinkList head);/* 创建单链表*/void sort_xh(LinkList head);/*单链表排序*/void reverse(LinkList head);/*对单链表进行结点倒置*/void Error(char *s);/*自定义错误处理函数*/void pntList(LinkList head);/*打印单链表*/void save(LinkList head,char strname[]);/*保存单链表到文件*/任务一创建程序文件linklist.cpp,其代码如下所示,理解LinkList类型和基本运算函数后回答下列问题。
#include <stdio.h>#include <stdlib.h>/*单链表结点类型*/typedef struct {int xh; /*学号*/float sg; /*身高*/int sex; /*性别,0为男生,1为女生*/} datatype;typedef struct node{datatype data; /*数据域*/struct node *next; /*指针域*/} LinkNode, *LinkList;/*带表头的单链表的基本运算函数*/LinkList initList();/*置一个空表(带头结点)*/void createList_1(LinkList head);/*创建单链表*/void createList_2(LinkList head);/*创建单链表*/void sort_xh(LinkList head);/*单链表排序*/void reverse(LinkList head);/*单链表倒置*/void Error(char *s);/*自定义错误处理函数*/void pntList(LinkList head);/*打印单链表*/void save(LinkList head,char strname[]);/*保存单链表到文件*//*置一个空表*/LinkList initList(){ LinkList p;p=(LinkList)malloc(sizeof(LinkNode));p->next=NULL;return p;}/*创建单链表*/void createList_1(LinkList head){ FILE *fp;int xh;float sg;int sex;LinkList p;if((fp=fopen("records.txt","r"))==NULL){ Error("can not open file !");return ;}while(!feof(fp)){ fscanf(fp,"%d%f%d",&xh,&sg,&sex);p=(LinkList)malloc(sizeof(LinkNode));p->data.xh=xh;p->data.sg=sg;p->data.sex=sex;p->next=head->next;head->next=p;}fclose(fp);}/*创建单链表*/void createList_2(LinkList head){ FILE *fp;int xh;float sg;int sex;LinkList p,rear;if((fp=fopen("records.txt","r"))==NULL){ Error("can not open file !");return ;}rear=head;while(!feof(fp)){ fscanf(fp,"%d%f%d",&xh,&sg,&sex);p=(LinkList)malloc(sizeof(LinkNode));p->data.xh=xh;p->data.sg=sg;p->data.sex=sex;p->next=NULL;rear->next=p;rear=p;}fclose(fp);}/*单链表排序*/void sort_xh(LinkList head){LinkList q,p,u;p=head->next;head->next=NULL;/*利用原表头结点建新的空表*/while(p){ q=p; /*q为被插入的结点*/p=p->next;/*用p记录后继结点*//*遍历新链表查找插入位置*/u=head;while(u->next!=NULL)/*查找插入位置*/{ if(u->next->data.xh>q->data.xh)break;u=u->next;}/*插入在u结点的后面*/q->next=u->next;u->next=q;}}/*单链表倒置*/void reverse(LinkList head){ LinkList p, r;p=head->next;head->next=NULL;while(p){ r=p;p=p->next;/*r指向结点头插到链表*/r->next=head->next;head->next=r;}}/*输出单链表*/void pntList(LinkList head){ LinkList p;p=head->next;while(p!=NULL){printf("%2d: %.2f %d\n",p->data.xh,p->data.sg,p->data .sex);p=p->next;}}/*自定义错误处理函数*/void Error(char *s){ printf("\n %s", s);exit(1); /*返回OS,该函数定义在stdlib.h中*/}/*保存单链表到文件*/void save(LinkList head,char strname[]){ FILE *fp;LinkList p;if((fp=fopen(strname,"w"))==NULL){ printf("can not open file !");return ;}p=head->next;while(p!=NULL){ fprintf(fp,"%2d %5.2f %2d\n",p->data.xh,p->data.sg,p->data.sex);p=p->next;}fclose(fp);}请回答下列问题:(1)由单链表结点类型定义可知,该链表结点类型名为 LinkNode ,结点的指针类型为 LinkList ,向系统申请一个学生结点空间并把起始地址存于上述结点指针变量new 中的语句是: p=(LinkList)malloc(sizeof(LinkNode)); 。
C语言经典面试题目及答案详解(三)
C语言经典面试题目及答案详解(三)接着更新C语言面试题,希望能帮助到大家!1、变量的声明和定义有什么区别为变量分配地址和存储空间的称为定义,不分配地址的称为声明。
一个变量可以在多个地方声明,但是只在一个地方定义。
加入 extern 修饰的是变量的声明,说明此变量将在文件以外或在文件后面部分定义。
说明:很多时候一个变量,只是声明不分配内存空间,直到具体使用时才初始化,分配内存空间,如外部变量。
2、写出 bool 、int、 float、指针变量与“零值”比较的if 语句bool 型数据: if( flag ) {A; } else {B; } int 型数据: if( 0 != flag ) {A; } else {B; }指针型数: if( NULL == flag ) {A; } else {B; } float 型数据: if ( ( flag >= NORM ) && ( flag <= NORM ) ) {A; }注意:应特别注意在 int、指针型变量和“零值”比较的时候,把“零值”放在左边,这样当把“==”误写成“=”时,编译器可以报错,否则这种逻辑错误不容易发现,并且可能导致很严重的后果。
3、sizeof 和 strlen 的区别sizeof 和 strlen 有以下区别:1. sizeof 是一个操作符,strlen 是库函数。
2. sizeof 的参数可以是数据的类型,也可以是变量,而strlen 只能以结尾为‘\0‘的字符串作参数。
3. 编译器在编译时就计算出了 sizeof 的结果。
而 strlen 函数必须在运行时才能计算出来。
并且 sizeof 计算的是数据类型占内存的大小,而 strlen 计算的是字符串实际的长度。
4. 数组做 sizeof 的参数不退化,传递给 strlen 就退化为指针了。
注意:有些是操作符看起来像是函数,而有些函数名看起来又像操作符,这类容易混淆的名称一定要加以区分,否则遇到数组名这类特殊数据类型作参数时就很容易出错。
数据结构c++顺序表、单链表的基本操作,查找、排序代码
} return 0; }
实验三 查找
实验名称: 实验3 查找 实验目的:掌握顺序表和有序表的查找方法及算法实现;掌握二叉排序 树和哈希表的构造和查找方法。通过上机操作,理解如何科学地组织信 息存储,并选择高效的查找算法。 实验内容:(2选1)内容1: 基本查找算法;内容2: 哈希表设计。 实验要求:1)在C++系统中编程实现;2)选择合适的数据结构实现查 找算法;3)写出算法设计的基本原理或画出流程图;4)算法实现代码 简洁明了;关键语句要有注释;5)给出调试和测试结果;6)完成实验 报告。 实验步骤: (1)算法设计 a.构造哈希函数的方法很多,常用的有(1)直接定址法(2)数字分析法;(3) 平方取中法;(4)折叠法;( 5)除留余数法;(6)随机数法;本实验采用的是除 留余数法:取关键字被某个不大于哈希表表长m的数p除后所得余数为哈 希地址 (2)算法实现 hash hashlist[n]; void listname(){ char *f; int s0,r,i; NameList[0].py="baojie"; NameList[1].py="chengቤተ መጻሕፍቲ ባይዱoyang"; ……………………………… NameList[29].py="wurenke"; for(i=0;i<q;i++){s0=0;f=NameList[i].py; for(r=0;*(f+r)!='\0';r++) s0+=*(f+r);NameList[i].k=s0; }} void creathash(){int i;
v[k-1]=v[k]; nn=nn-1; return ; } int main() {sq_LList<double>s1(100); cout<<"第一次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); s1.ins_sq_LList(0,1.5); s1.ins_sq_LList(1,2.5); s1.ins_sq_LList(4,3.5); cout<<"第二次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); s1.del_sq_LList(0); s1.del_sq_LList(2); cout<<"第三次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); return 0; } 运行及结果:
实验二 单链表的插入和删除
实验二 单链表的插入和删除1.实验目的:了解单链表的基本概念、结构的定义及在单链表上的基本操作(插入、删除、查找以及线性表合并),通过在VC 实现以上操作更好的了解书本上的内容并体会线性表的两种存储结构的区别。
2.实验预备知识:⑴ 复习C 语言中指针的用法,特别是结构体的指针的用法;⑵ 了解单链表的概念,单链表的定义方法;单链表是线性表的链式存储表示,是用一组任意的存储单元依次存储线性表的数据元素。
因此,为了表示每个数据元素a i 与其直接后继元素a i+1之间的逻辑关系,对数据元素ai 来说,,除了存储其本身的信息之外,还需存储一个指示其直接后继的信息(即直接后继的存储位置),而这部分就是用指针来完成的。
⑶ 掌握线性表在链式存储结构上实现基本操作:查找、插入、删除的算法; 在实现这些算法的时候,要注意判断输入数据的合法性,除此之外还要要注意以下内容:在实现查找的时候,首先要判断该顺序表是否为空,其次要判断查找后的结果(查到时输出查到的数据,未查到时给出错误提示)。
在实现插入的时候,由于是链式存储,它可以随机产生和回收存储空间,所以它不要判断线性表是否为满,但仍需判断要插入的位置是否合法,原因同实验一,其次要注意插入的时候语句的顺序不可颠倒,否则出错。
例如:s 所指向结点要插入在p 所指向的结点之后,则:正确形式:s->next=p->nextp->next=s错误形式:p->next=ss->next=p->next(因为此时p->next 已经指向s 了)在实现删除的时候,首先要判断线性表是否为空,为空则不能删除; 其次在删除后要回收空间。
例如:删除如上图所示s 所指向的结点p->next=p->next->nextfree s3.实验内容:⑴ 单链表的插入算法⑵ 单链表的删除算法⑶循环链表的插入和删除算法4.部分实验代码:⑴单链表的结构定义:#include <stdio.h>typedef int elemtype;typedef struct lnode{ elemtype data;struct lnode *next;}*linklist;⑵建立单链表的算法int n; /*n作为整个程序的全局变量*/linklist *creat(void){ linklist *head, *p1, *p2;n=0;p1=p2=(linklist *)malloc(sizeof(linklist));scanf(“%d”,&p1->data);head=null;while(p1->data!=0){ n=n+1;if(n==1) head=p1;else p2->next=p1;p2=p1;p1=(linklist *)malloc(sizeof(linklist));scanf(“%d”,&p1->data);}p2->next=null;return(head);}⑶单链表的插入算法int insert(linklist *head, int i,elemtype e) { linklist *p, *s;int j;p=head; j=0;while(p && j<i-1){ p=p->next;++j;}if(!p||j>i-1){ printf(“无法插入”);return 0;}s=(linklist *)malloc(sizeof(lnode));s->data=e;s->next=p->next;p->next=s;return 1;}⑷单链表的删除算法int deltree(linklist *head,int i,elemtype e){ linklist *p, *q;int j;lp=head; j=0;while(p->next && j<i-1){ p=p->next;++j;}if(!(p->next)||j>i-1){ printf(“无法删除”);return 0;}q=p->next;p->next=q->next;e=q->data;free(q);return 1;}。
单链表的操作实验报告
单链表的操作实验报告单链表的操作实验报告引言:单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
在本次实验中,我们将学习如何使用C语言实现单链表的基本操作,包括插入、删除和查找等。
一、单链表的定义和初始化单链表由节点组成,每个节点包含数据和指向下一个节点的指针。
首先,我们需要定义一个节点的结构体,如下所示:```struct Node {int data; // 节点数据struct Node* next; // 指向下一个节点的指针};```在初始化单链表之前,我们需要创建一个头节点,它不存储任何数据,只用于指向第一个节点。
初始化单链表的代码如下:```struct Node* head = NULL; // 头节点初始化为空```二、单链表的插入操作插入操作是向单链表中添加新节点的过程。
我们可以在链表的头部、尾部或者指定位置插入新节点。
下面以在链表头部插入新节点为例进行说明。
首先,我们需要创建一个新节点,并为其分配内存空间:```struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));```然后,为新节点赋值并将其插入到链表头部:```newNode->data = 10; // 赋值新节点的数据newNode->next = head; // 将新节点的指针指向原头节点head = newNode; // 将头节点指向新节点```三、单链表的删除操作删除操作是从单链表中删除指定节点的过程。
我们可以根据节点的位置或者数据进行删除。
下面以删除链表中指定数据的节点为例进行说明。
首先,我们需要遍历链表找到要删除的节点,并记录其前一个节点的地址:```struct Node* current = head;struct Node* previous = NULL;int targetData = 10; // 要删除的节点数据while (current != NULL && current->data != targetData) {previous = current;current = current->next;}```然后,将前一个节点的指针指向要删除节点的下一个节点,并释放要删除节点的内存空间:```previous->next = current->next;free(current);```四、单链表的查找操作查找操作是在单链表中查找指定数据的节点。
单链表-实验报告
单链表实验报告一、实验目的与要求1、实现单链表的建立;2、掌握单链表的插入、删除和查找运算;3、熟练进行C语言源程序的编辑调试。
二、实验内容(1)建立带表头结点的单链表;首先输入结束标志,然后建立循环逐个输入数据,直到输入结束标志。
数据输入的函数为:LNode *createtail(){LNode *s,*r;int x,tag;printf("input the sign of ending:"); /*输入结束标志*/scanf("%d",&tag);h=(LNode * )malloc(sizeof(LNode)); /*建立表头结点*/h->data=tag;r=h;printf("input the data:");scanf("%d",&x);while(x!=tag) /*建立循环逐个输入数据*/{s=(LNode * )malloc(sizeof(LNode));s->data=x;r->link=s;r=s;scanf("%d",&x);}r->link=NULL;return h;}(2)输出单链表中所有结点的数据域值;首先获得表头结点位置,然后建立循环逐个输出数据,直到位置为空。
数据输出的函数为:void output(LNode *h){LNode *r;int i;r=h;for(i=1;r->link!=NULL;i++){printf("%d.%d\n",i,r->link->data);r=r->link;}}(3)输入x,y在第一个数据域值为x的结点之后插入结点y,若无结点x,则在表尾插入结点y;建立两个结构体指针,一个指向当前结点,另一个指向当前结点的上一结点,建立循环扫描链表。
数据结构中链表及常见操作
链表1 定义链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是并不会按线性的顺序存储数据,而是在每一个节点里存到下一个节点的指针(Pointer)。
由于不必须按顺序存储,链表在插入的时候可以达到O(1)的复杂度,比另一种线性表顺序表快得多,但是查找一个节点或者访问特定编号的节点则需要O(n)的时间,而顺序表相应的时间复杂度分别是O(logn)和O(1)。
使用链表结构可以克服数组链表需要预先知道数据大小的缺点,链表结构可以充分利用计算机内存空间,实现灵活的内存动态管理。
但是链表失去了数组随机读取的优点,同时链表由于增加了结点的指针域,空间开销比较大。
在计算机科学中,链表作为一种基础的数据结构可以用来生成其它类型的数据结构。
链表通常由一连串节点组成,每个节点包含任意的实例数据(data fields)和一或两个用来指向明上一个或下一个节点的位置的链接("links")。
链表最明显的好处就是,常规数组排列关联项目的方式可能不同于这些数据项目在记忆体或磁盘上顺序,数据的访问往往要在不同的排列顺序中转换。
而链表是一种自我指示数据类型,因为它包含指向另一个相同类型的数据的指针(链接)。
链表允许插入和移除表上任意位置上的节点,但是不允许随机存取。
链表有很多种不同的类型:单向链表,双向链表以及循环链表。
2 结构2.1 单向链表链表中最简单的一种是单向链表,它包含两个域,一个信息域和一个指针域。
这个链接指向列表中的下一个节点,而最后一个节点则指向一个空值。
一个单向链表的节点被分成两个部分。
第一个部分保存或者显示关于节点的信息,第二个部分存储下一个节点的地址。
单向链表只可向一个方向遍历。
链表最基本的结构是在每个节点保存数据和到下一个节点的地址,在最后一个节点保存一个特殊的结束标记,另外在一个固定的位置保存指向第一个节点的指针,有的时候也会同时储存指向最后一个节点的指针。
一般查找一个节点的时候需要从第一个节点开始每次访问下一个节点,一直访问到需要的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cin>>ch>>n;
Insert(head,ch,n);
break;
}
case 5:
{
cout<<"请输入删除的字符:";
cin>>ch;
Delete(head,ch);
break;
}
case 6:
{
cout<<"请输入查找的字符:";
cin>>ch;
cout<<"该字符第一次出现位置为:"<<Find(head,ch)<<endl;
p=p->next;
if(p->next!=NULL)
{
s->next=p->next;
p->next->last=s;
p->next=s;
s->last=p;
return;
}
p->next=s;
s->last=p;
return;
}
int Find(Node *head,char ch)//查找节点,返回节点位置
{
Node *s,*p;
s=new Node;
s->ch=ch;
s->next=s->last=NULL;
if(head==NULL)
{
head=s;
return;
}
if(n==1)
{
s->next=head;
head->last=s;
head=s;
return;
}
p=head;
for(int i=1;i<n-1&&p->next!=NULL;i++)//p指向n的前一个位置
return;
}
while(q)
{
delete(p);
p=q;
q=q->next;
}
delete p;
head=NULL;
return;
}
void ShowList(Node *head)//输出函数,正向遍历链表
{Байду номын сангаас
Node *p;
if(head==NULL)
{
cout<<"表空!"<<endl;
return;
{
cout<<"表为空!\n";return;
}
if(head->ch==ch)
{
head->next->last=NULL;
head=head->next;
return;
}
p=head;
p=p->next;
while(p)
{
if(p->ch==ch)
{
if(p->next)
{
p->last->next=p->next;
{
Node *p;
int i=1;
p=head;
while(p)
{
if(p->ch==ch)
return i;
p=p->next;
i++;
}
return 0;
}
void Delete(Node *&head,char ch)//删除节点,删除第一个ch字符
{
Node *p;
if(head==NULL)
Node *next;
Node *last;
};
void CreatList(Node *&head)//创建双向链表,引用参数是表头指针
{
char str[100];
cout<<"请输入字符串!"<<endl;//将输入的字符串保存在str数组里
cin>>str;
Node *s,*p;
for(int i=0;str[i];i++)//把每个数组元素包含的字符赋给双向链表的一个节点
}
p=head;
while(p)
{
cout<<p->ch;
p=p->next;
}
cout<<endl;
}
void RShowList(Node *head)//输出函数,反向遍历链表
{
if(head==NULL)
{
cout<<"表空!"<<endl;
return;
}
while(head->next)//让指针指到最后一个节点
p->next->last=p->last;
return;
}
else
{
p->last->next=NULL;
return;
}
}
p=p->next;
}
}
void Del(Node *&head)//销毁链表
{
Node *p,*q;
p=head;
q=p->next;
if(head==NULL)
{
cout<<"表空!"<<endl;
{
head=head->next;
}
while(head)
{
cout<<head->ch;
head=head->last;
}
cout<<endl;
}
int main()
{
Node *head=NULL;
int choice,n;
char ch;
cout<<"1:建立链表2:正向遍历3:反向遍历4:插入字符\n"<<"5:删除字符6:查找字符7:销毁链表0:退出"<<endl;
break;
}
case 7:
Del(head);break;
}
cout<<endl;
cout<<"1:建立链表2:正向遍历3:反向遍历4:插入字符\n"<<"5:删除字符6:查找字符7:销毁链表0:退出"<<endl;
cout<<"请选择操作:";
cin>>choice;
}
}
cout<<"请选择操作:";
cin>>choice;
while(choice)
{
switch(choice)
{
case 1:CreatList(head);break;
case 2:ShowList(head);break;
case 3:RShowList(head);break;
case 4:
{
/*从键盘读入一个字符串,把它存入一个链表(每个结点存储1个字符),并按相反的次序将字符串输出到显示屏。
要求至少写出以下方法或函数,初始化链表、插入结点、删除结点、查找、显示、销毁链表*/
#include<iostream>
using namespace std;
struct Node
{
char ch;
{
s=new Node;
s->ch=str[i];
if(head==NULL)
{
head=s;
head->last=NULL;
}
else
{p->next=s;s->last=p;}
p=s;
}
p->next=NULL;
return;
}
void Insert(Node *&head,char ch,int n)//插入节点,n为插入的位置