山东省中考数学试题目
2024年山东省东营市中考数学试题 (解析版)
二〇二四年东营市初中学业水平考试数学试题(总分120分 考试时间120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;本试题共6页.2.数学答题卡共8页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.3−的绝对值是( )A.3B.3−C.3±D. 【答案】A【解析】【分析】本题考查了绝对值求法.绝对值是指一个数在数轴上对应的点与原点的距离,正数和零的绝对值是它本身,负数的绝对值是它的相反数.【详解】33−=, 故选:A .2.下列计算正确的是( )A.236x x x ⋅= B.()2211x x −=−C.()2224xy x y = D. 2142− −=−【答案】C【解析】【分析】本题考查了同底数幂的乘法,完全平方公式,积的乘方,负整数幂,根据相关运算法则逐个判断即可.【详解】解:A 、235x x x ⋅=,故A 不正确,不符合题意;B 、()22121x x x −=−+,故B 不正确,不符合题意;C 、()2224xy x y =,故C 正确,符合题意;D 、2142− −=,故D 不正确,不符合题意; 故选:C .3. 已知,直线a b ∥,把一块含有30°角的直角三角板如图放置,130∠=°,三角板的斜边所在直线交b 于点A ,则2∠=( )A. 50°B. 60°C. 70°D. 80°【答案】B【解析】 【分析】本题考查了平行线的性质,根据两直线平行,内错角相等,得出90CAD ACB ∠=∠=°,即可解答.【详解】解:∵a b ∥,∴90CAD ACB ∠=∠=°,∴2180160CAD ∠=°−∠−∠=°,故选:B .4. 某几何体的俯视图如图所示,下列几何体(箭头所示为正面)的俯视图与其相同的是( )A. B. C. D.【答案】C【解析】【分析】本题考查了三视图的判断,根据图形特点,正确的确定出俯视图是关键.首先由俯视图可知该几何体共两列,左边一列最底层共三个正方体,右边一列最底层共一个正方体,找出正确的答案即可.【详解】解:由俯视图可知该几何体共两列,左边一列最底层共三个正方体,右边一列最底层共一个正方体,由此可得只有C 符合题意,故选:C .5. 用配方法解一元二次方程2220230x x −−=时,将它转化为2()x a b +=的形式,则b a 的值为( ) A. 2024−B. 2024C. 1−D. 1【答案】D【解析】 【分析】本题主要考查了配方法解一元二次方程.熟练掌握配方法步骤,是解出本题的关键.用配方法把2220230x x −−=移项,配方,化为()212024x −=,即可. 详解】解:∵2220230x x −−=,移项得,222023x x −=,配方得,22120231x x −+=+,即()212024x −=,∴1a =−,2024b =,∴()202411b a =−=.故选:D .6. 如图,四边形ABCD 是矩形,直线EF 分别交AD ,BC ,BD 于点E ,F ,O,下列条件中,不能证【明BOF DOE △△≌的是( )A. O 为矩形ABCD 两条对角线的交点B. EO FO =C. AE CF =D. EEEE ⊥BBBB【答案】D【解析】 【分析】本题考查了矩形的性质、平行线的性质、全等三角形的判定,熟练掌握矩形的性质和全等三角形的判定是解题的关键.由矩形的性质得出AD BC = AD BC ∥,再由平行线的性质得出OBF ODE ∠=∠,OFB OED ∠=∠,然后由全等三角形的判定逐一判定即可.【详解】解:∵四边形ABCD 是矩形,∴AD BC = AD BC ∥,∴OBF ODE ∠=∠,OFB OED ∠=∠,A 、∵O 为矩形ABCD 两条对角线的交点,∴OB OD =,在BOF 和DOE 中,OFB OED OBF ODE OB OD ∠=∠ ∠=∠ =, ∴()AAS BOF DOE ≌,故此选项不符合题意;B 、在BOF 和DOE 中,OFB OED OBF ODE FO EO ∠=∠ ∠=∠ =, ∴()AAS BOF DOE ≌,故此选项不符合题意;C 、∵AE CF =,∴BC CF AD AE −=−,即BF DE =,在BOF 和DOE 中,OFB OED BF DEOBF ODE ∠=∠ = ∠=∠, ∴()ASA BOF DOE ≌,故此选项不符合题意;D 、∵EEEE ⊥BBBB ,∴90BOF DOE ∠=∠=°,两三角形中缺少对应边相等,所以不能判定BOF DOE △△≌,故此选项符合题意;故选:D .7. 如图,四边形ABCD 是平行四边形,从①AC BD =,②AC BD ⊥,③AB BC =,这三个条件中任意选取两个,能使ABCD 是正方形的概率为( )A. 23B. 12C. 13D. 56【答案】A【解析】【分析】本题考查了正方形的判定,用概率公式求概率,掌握正方形的判定方法和概率公式是解题的关键. 根据从①AC BD =,②AC BD ⊥,③AB BC =,这三个条件中任意选取两个,共有①②、①③、②③,3种方法,由正方形的判定方法,可得①②、①③共有2种可判定平行四边形是正方形.再根据概率公式求解即可.【详解】解:从①AC BD =,②AC BD ⊥,③AB BC =,这三个条件中任意选取两个,共有①②、①③、②③,3种方法,由正方形的判定方法,可得①②、①③共有2种可判定平行四边形是正方形. ∴ABCD ,从①AC BD =,②AC BD ⊥,③AB BC =,这三个条件中任意选取两个,能使ABCD 是正方形的概率为23. 故选:A .8. 习近平总书记强调,中华优秀传统文化是中华民族的根和魂.东营市某学校组织开展中华优秀传统文化成果展示活动,小慧同学制作了一把扇形纸扇.如图,20cm OA =,5cm OB =,纸扇完全打开后,外侧两竹条(竹条宽度忽略不计)的夹角120AOC ∠=°.现需在扇面一侧绘制山水画,则山水画所在纸面的面积为( )2cm .A. 25π3B. 75πC. 125πD. 150π【答案】C【解析】【分析】将山水画所在纸面的面积转化为大小两个扇形的面积之差即可解决问题.本题主要考查了扇形面积的计算,熟知扇形面积的计算公式是解题的关键.【详解】解:由题知,()2212020400cm 3603OAC S ππ⋅⋅==扇形, ()22120525cm 3603OBD S ππ⋅⋅==扇形, 所以山水画所在纸面的面积为:240025125(cm )33πππ−=. 故选:C . 9. 已知抛物线2(0)y ax bx c a ++≠的图像如图所示,则下列结论正确的是( )A. 0abc <B. 0a b −=C. 30a c −=D. 2am bm a b +≤−(m 为任意实数)【答案】D【解析】 【分析】本题考查了二次函数的图象和性质,熟知二次函数的图象和性质及巧用数形结合的思想是解题的关键;由图象可知:0a <,0c >,根据抛物线的与x 轴的交点可求对称轴,根据对称轴及a 与b 的符号关系可得20b a =<,则可判断选项A 、B 、C ,由当=1x −时,函数有最大值,可判断选项D .【详解】解:A 、 抛物线开口往下,∴0a <,抛物线与y 轴交于正半轴,∴0c >抛物线的与x 轴的交点是:()3,0−和(1,0)∴对称轴为=1x −, ∴12b a−=−, 20b a ∴=<,0abc ∴>,故选项A 错误.∵2b a =,∴20a b −=,故选项B 错误(否则可得0a =,不合题意). 0a <,0c >,∴30a c −<,故选项C 错误.抛物线的对称轴为直线=1x −,且开口向下,∴当=1x −时,函数值最大为y a b c =−+,∴当x m =时,2y am bm c ++,∴2am bm c a b c ++≤−+,∴2am bm a b +≤−,故选项D 正确.故选:D .10. 如图,在正方形ABCD 中,AC 与BD 交于点O ,H 为AB 延长线上的一点,且BH BD =,连接DH ,分别交AC ,BC 于点E ,F ,连接BE ,则下列结论:①CF BF =;②tan 1H ∠−;③BE平分CBD ∠;④22AB DE DH =⋅.其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】【分析】根据正方形的性质结合勾股定理可知,AB BD CD AD a ====,BD =,AB CD ∥,AC 与BD 互相垂直且平分,进而可求得)1AH a =,根据正切值定义即可判断②;由AB CD ∥,可知DCF HBF △∽△,由相似三角形的性质即可判断①;由BH BD =,可求得22.5H BDH ∠=∠=°,再结合AC 与BD 互相垂直且平分,得DE BE =,可知22.5DBE BDE ∠=∠=°,进而可判断③;再证BDE HDB △∽△,即可判断④.【详解】解:在正方形ABCD AB CD ∥,AB BD CD AD a ====,90BAD ∠=°,45ABD CBD DAC BAC ∠=∠=∠=∠=°,AC 与BD 互相垂直且平分,则BD ===,∵BH BD ==,则)1AH a =+,∴tan 1AD H AH ==,故②不正确; ∵AB CD ∥,则H CDF ∠=∠,DCF HBF ∠=∠, ∴DCF HBF △∽△,∴CFCD BF BH == ∵BH BD =,∴H BDH ∠=∠,∵45H BDH ABD ∠+∠=∠=°,∴22.5H BDH ∠=∠=°, 又∵AC 与BD 互相垂直且平分,∴DE BE =,∴22.5DBE BDE ∠=∠=°,则22.5CBE CBD DBE ∠=∠−∠=°, ∴DBE CBE ∠=∠,∴BE 平分CBD ∠,故③正确;由上可知,22.5DBE H ∠=∠=°,∴BDE HDB △∽△, ∴BD DE DH BD=,则2BD DE DH =⋅,又∵BD =,∴22AB DE DH =⋅,故④正确;综上,正确的有③④,共2个,故选:B .【点睛】本题考查正方形的性质,相似三角形的判定及性质,勾股定理,解直角三角形等知识,熟练掌握相关图形的性质是解决问题的关键.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共811-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11. 从2024年一季度GDP 增速看,东营市增速位居山东16市“第一方阵”,一季度全市生产总值达到957.2亿元,同比增长7.1%,957.2亿用科学记数法表示为_______.【答案】109.57210×【解析】【分析】本题考查了把绝对值大于1的数用科学记数法表示,关键是确定 n 与a 的值.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,它等于原数的整数数位与1的差.据此即可完成作答.【详解】解:957.2亿10957200000009.57210=×,故答案为:109.57210×.12. 因式分解:2aa 3−8aa =______. 【答案】2aa (aa +2)(aa −2)【解析】【分析】本题考查了因式分解,掌握提公因式法和公式法是解题关键.先提公因式2a ,再利用平方差公式分解因式即可.【详解】解:2aa 3−8aa=2aa (aa 2−4)=2aa (aa +2)(aa −2), 故答案为:2aa (aa +2)(aa −2).13. 4月23日是世界读书日,东营市组织开展“书香东营,全民阅读”活动,某学校为了解学生的阅读时间,随机调查了七年级50名学生每天的平均阅读时间,统计结果如下表所示.在本次调查中,学生每天的平均阅读时间的众数是_______小时. 时间(小时)0.5 1 1.5 2 2.5人数(人)1018 12 6 4【答案】1【解析】【分析】本题考查了众数:一组数据中出现次数最多的数据叫做众数.直接根据众数的定义求解.【详解】解:由统计表可知,每天阅读1小时的人数最多,为18人,所以学生每天的平均阅读时间的众数是1小时.故答案为:1.14. 在弹性限度内,弹簧的长度(cm)y 是所挂物体质量(kg)x 的一次函数.一根弹簧不挂物体时长12.5cm ,当所挂物体的质量为2kg 时,弹簧长13.5cm .当所挂物体的质量为5kg 时,弹簧的长度为_______cm ,【答案】15【解析】【分析】本题考查了用待定系数法求一次函数的解析式、由自变量求函数值的知识点,解答时求出函数的解析式是关键.设y 与x 的函数关系式为()0y kx b k =+≠,由待定系数法求出解析式,并把5x =代入解析式求出对应的y 值即可.【详解】解:设y 与x 的函数关系式为()0y kx b k =+≠, 由题意,得12.513.52b k b = =+, 解得:0.512.5k b = =, 故y 与x 之间的关系式为:0.512.5y x =+, 当5x =时,0.5512.515y =×= . 故答案为:15.15. 如图,将DEF 沿FE 方向平移3cm 得到ABC ,若DEF 的周长为24cm ,则四边形ABFD 的周长为_______cm .【答案】30【解析】【分析】本题主要考查了平移的性质、三角形周长等知识点,掌握平移的性质及等量代换成为解题的关键. 由平移的性质可得3cm AD BE ==,DE AB =,再根据DEF 的周长为24cm 可得24AB EF DF ++=,然后根据四边形的周长公式及等量代换即可解答.【详解】解:∵将DEF 沿FE 方向平移3cm 得到ABC ,∴3cm AD BE ==,DE AB =,∵DEF 的周长为24cm ,∴24DE EF DF ++=,即24AB EF DF ++=,∴四边形ABFD 的周长为()243330cm AB BF DF AD AB BE EF DF AD AB EF DF BE AD +++=++++=++++=++=. 故答案为:30.16. 水是人类赖以生存的宝贵资源,为节约用水,创建文明城市,某市经论证从今年1月1日起调整居民用水价格,每立方米水费上涨原价的14.小丽家去年5月份的水费是28元,而今年5月份的水费则是24.5元.已知小丽家今年5月份的用水量比去年5月份的用水量少33m .设该市去年居民用水价格为3/m x 元,则可列分式方程为_______. 【答案】2824.5354x x −= 【解析】【分析】本题主要考查了分式方程的应用,设该市去年居民用水价格为3/m x 元,则今年居民用水价格为35/m 4x 元,根据小丽家今年5月份的用水量比去年5月份的用水量少33m ,列出方程即可. 【详解】解:设该市去年居民用水价格为3/m x 元,则今年居民用水价格为311/m 4x +元,根据题意得: 2824.5354x x −=. 故答案为:2824.5354x x −=. 17. 我国魏晋时期数学家刘徽在《九章算术注》中提到著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416,如图,O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计O 的面积,可得π内接正八边形近似估计O 的面积,可得π的估计值为_________.【答案】【解析】【分析】本题考查了圆内接正多边形的性质,三角形的面积公式,勾股定理等,正确求出正八边形的面积是解题的关键.过点A 作AM OB ⊥,求得360845AOB ∠=°÷=°,根据勾股定理可得222AM OM OA +=,即可求解.【详解】如图,AB 是正八边形的一条边,点O 是正八边形的中心,过点A 作AM OB ⊥,在正八边形中,360845AOB ∠=°÷=°∴AM OM =∵1OA =,222AM OM OA +=,解得:AM =∴12OAB S OB AM =××∴正八边形为8∴21π×∴π=∴π的估计值为故答案为:.18. 如图,在平面直角坐标系中,已知直线l 的表达式为y x =,点1A 的坐标为,以O 为圆心,1OA 为半径画弧,交直线l 于点1B ,过点1B 作直线l 的垂线交x 轴于点2A ;以O 为圆心,2OA 为半径画弧,交直线l 于点2B ,过点2B 作直线l 的垂线交x 轴于点3A ;以O 为圆心,3OA 为半径画弧,交直线l 于点3B ,过点3B 作直线l 的垂线交x 轴于点4A ;……按照这样的规律进行下去,点2024A 的横坐标是_______.【答案】10122【解析】【分析】本题考查的是一次函数性质应用,等腰直角三角形的判定与性质及点的坐标规律问题,作1B H x ⊥轴于点H ,依次求出234OA OA OA ,,,找出规律即可解决.【详解】解:作1B H x ⊥轴于点H ,12345,,,,B B B B B 均直线y x =上,1OH B H ∴=,145B OH ∴∠=︒,)1A ,11OA OB =,11OB OA ∴==,121,45B A l B OH ⊥∠=︒ ,112OB B A ∴==2112OA ∴===,()22,0A ∴,同理,22232OA OB B A ===,在332OA ∴===,同理,44OA = 55OA = 2024101220242OA ∴==,即点2024A 的横坐标是10122,故答案为:10122.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (10(π 3.14)|22sin 60−−°+−;(2)计算:2443111a a a a a −+ ÷+− −−. 【答案】(1)1;(2)22a a −+. 【解析】【分析】(1)先化简,然后计算乘法,最后算加减法即可;(2)先通分括号内的式子,同时将括号外的除法转化为乘法,然后约分即可.【详解】解:(10(π 3.14)|2|2sin 60−−°+−122=−+−−12=−+−1=;(2)2443111a a a a a −+ ÷+− −−()2221311a a a a −−−÷−− ()()()221122a a a a a −−×−+− 22a a −=+.【点睛】本题考查分式的混合运算、特殊三角形函数值、零次幂、实数的运算,熟练掌握运算法则是解答本题的关键.20. 为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,东营市某学校举办“我参与,我劳动,我快乐,我光荣”活动.为了解学生周末在家劳动情况,学校随机调查了八年级部分学生在家劳动时间(单位:小时),并进行整理和分析(劳动时间x 分成五档:A 档:01x ≤<;B 档:12x ≤<;C 档:23x ≤<;D 档:34x ≤<;E 档:4x ≤).调查的八年级男生、女生劳动时间的不完整统计图如下: 根据以上信息,回答下列问题:(1)本次调查中,共调查了_______名学生,补全条形统计图;(2)调查的男生劳动时间在C 档的数据是:2,2.2,2.4,2.5,2.7,2.8,2.9.则调查的全部男生劳动时间的中位数为_______小时.(3)学校为了提高学生的劳动意识,现从E 档中选两名学生作劳动经验交流,请用列表法或画树状图的方法求所选两名学生恰好都是女生的概率.【答案】(1)50,见详解(2)2.5 (3)16【解析】【分析】本题主要考查了条形统计图与扇形统计图信息相关联,树状图法或列表法求解概率,中位数的定义,熟练掌握各知识点是解题的关键.(1)运用D 档人数除以D 百分比,得出调查的学生总数,再运用总数乘上E 档的百分比,即可作答. (2)根据中位数的定义,排序后位于中间位置的数为中位数,据此即可作答.(3)依题意,得出E 档有2名男学生,有2名女学生,运用列表法得共有12种等可能的结果,再运用概率公式列式计算,即可作答.【小问1详解】 解:依题意,()6726%50+÷=(名) ∴本次调查中,共调查了50名学生;的则508%4×=(名)∴422−=(名)则E 档有2名男学生,有2名女学生,补全条形统计图如图所示:【小问2详解】解:依题意,5376223++++=(名)本次调查的男学生的总人数是23名∴则调查的全部男生劳动时间的中位数位于第12名,∵53853715+=++=,∴第12名位于C 档∵调查的男生劳动时间在C 2,2.2,2.4,2.5,2.7,2.8,2.9.则调查的全部男生劳动时间的中位数为2.5小时,故答案为2.5;【小问3详解】解:用A ,B 表示2名男生,用C ,D 表示两名女生,列表如下:共有12种等可能的结果,其中所选两名学生恰好都是女生的结果有2种, ∴21126P ==.21. 如图,ABC 内接于O ,AB 是O 的直径,点E 在O 上,点C 是 BE的中点,AE CD ⊥,垂足为点D ,DC 的延长线交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若CD =60ABC ∠=°,求线段AF 的长. 【答案】(1)见解析 (2)6【解析】【分析】本题主要考查了圆与三角形综合.熟练掌握圆周角定理及推论,圆切线的判定.含30°的直角三角形性质,是解决问题的关键.(1)连接OC ,由OA OC =,BC CE =,推出OCA DAC ∠=∠,得到OC AD ∥,由AE CD ⊥,得到CD OC ⊥,即得;(2)由直径性质可得90ACB ∠=°,推出30DAC BAC ∠=∠=°,根据含30°的直角三角形性质得到3AD =,根据30F ∠=°,得到6AF =.【小问1详解】证明:∵连接OC ,则OA OC =,∴OAC OCA ∠=∠,∵点C 是 BE的中点, ∴BC CE =,∴OAC DAC ∠=∠,∴OCA DAC ∠=∠,∴OC AD ∥,∵AE CD ⊥,∴CD OC ⊥,∴CD 是O 的切线;【小问2详解】解:∵AB 是O 的直径,∴90ACB ∠=°,∵60ABC ∠=°,∴9030BAC ABC ∠=°−∠=°,∴30DAC ∠=°,∵CD =∴3AD =,∵()9030FBAC DAC ∠=°−∠+∠=°, ∴26AF AD ==.22. 如图,一次函数y mx n =+(0m ≠)的图象与反比例函数k y x=(0k ≠)的图象交于点(3,)A a −,()1,3B ,且一次函数与轴,y 轴分别交于点C ,D .(1)求反比例函数和一次函数的表达式;(2)根据图象直接写出不等式k mx n x+>的解集; (3)在第三象限的反比例函数图象上有一点P ,使得4=△△OCP OBD S S ,求点P 的坐标.【答案】(1)3y x=,yy =xx +2 (2)30x −<<或1x >(3)点P 坐标为3,44 −−【解析】【分析】本题主要考查了反比例函数与一次函数的交点问题,熟知反比例函数及一次函数的图象与性质是解题的关键.(1)将点B 坐标代入反比例函数解析式,求出k ,再将点A 坐标代入反比例函数解析式,求出点A 坐标,最后将A ,B 两点坐标代入一次函数解析式即可解决问题;(2)利用反比例函数以及一次函数图象,即可解决问题;(3)根据OCP △与OBD 的面积关系,可求出点P 的纵坐标,据此可解决问题.【小问1详解】解:将()1,3B 代入k y x =得,31k = ∴3k =, ∴反比例函数的解析式为3y x =,将(3,)A a −代入3y x=得,313a ==−−, ∴点A 的坐标为(3,1)−−.将点A 和点B 的坐标代入y mx n =+得, 313m n m n −+=− +=, 解得12m n = =, ∴一次函数的解析式为yy =xx +2;【小问2详解】解:根据所给函数图象可知,当30x −<<或1x >时,一次函数的图象在反比例函数图象的上方,即k mx n x+>, ∴不等式k mx n x+>的解集为:30x −<<或1x >. 【小问3详解】 解:将0x =代入yy =xx +2得,2y =,∴点D 的坐标为(0,2), ∴12112=××=△OBD S , ∴44OCP OBD S S ==△△.将0y =代入yy =xx +2得,2x =−,∴点C 的坐标为(2,0)−, ∴1242OCP P S y =××= , 解得4P y =.∵点P 在第三象限,∴4P y =−,将4P y =−代入3y x =得,34P x =−, ∴点P 坐标为3,44 −−. 23. 随着新能源汽车的发展,东营市某公交公司计划用新能源公交车淘汰“冒黑烟”较严重的燃油公交车.新能源公交车有A 型和B 型两种车型,若购买A 型公交车3辆,B 型公交车1辆,共需260万元;若购买A 型公交车2辆,B 型公交车3辆,共需360万元.(1)求购买A 型和B 型新能源公交车每辆各需多少万元?(2)经调研,某条线路上的A 型和B 型新能源公交车每辆年均载客量分别为70万人次和100万人次.公司准备购买10辆A 型、B 型两种新能源公交车,总费用不超过650万元.为保障该线路的年均载客总量最大,请设计购买方案,并求出年均载客总量的最大值.【答案】(1)购买A 60万元,购买B 型新能源公交车每辆需80万元;(2)方案为购买A 型公交车8辆, B 型公交车2辆时.线路的年均载客总量最大,最大在客量为760万人. 【解析】【分析】本题考查二元一次方程组和一元一次不等式及一次函数的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组及一次函数是解题的关键.(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,根据“购买A 型公交车3辆,B 型公交车1辆,共需260万元;若购买A 型公交车2辆,B 型公交车3辆,共需360万元”列出方程组解决问题即可;(2)设购买A 型公交车a 辆,则B 型公交车()10a −辆,由“公司准备购买10辆A 型、B 型两种新能源公交车,总费用不超过650万元”列出不等式求得a 的取值,再求出线路的年均载客总量为w 与a 的关系式,根据一次函数的性质求解即可.【小问1详解】解:设购买A 型新能源公交车每辆需x 万元,购买B 型新能源公交车每辆需y 万元,由题意得:326023360x y x y += +=, 解得6080x y = =, 答:购买A 型新能源公交车每辆需60万元,购买B 型新能源公交车每辆需80万元;【小问2详解】解:设购买A 型公交车a 辆,则B 型公交车()10a −辆,该线路年均载客总量为w 万人,由题意得()608010650a a +−≤,解得:7.5a ≥,∵10a ≤,∴7.510a ≤≤,∵a 是整数,∴8a =,9,10;∴线路的年均载客总量为w 与a 的关系式为()7010010301000w a a a =+−=−+, ∵300−<,∴w 随a 的增大而减小,∴当8a =时,线路的年均载客总量最大,最大载客量为3081000760w =−×+=(万人次) ∴1082−=(辆)∴购买方案为购买A 型公交车8辆,则B 型公交车2辆,此时线路的年均载客总量最大时,且为760万人次,24. 在Rt ABC △中,90ACB ∠=°,1AC =,3BC =.(1)问题发现如图1,将CAB △绕点C 按逆时针方向旋转90°得到CDE ,连接AD ,BE ,线段AD 与BE 的数量关系是______,AD 与BE 的位置关系是______;的(2)类比探究将CAB △绕点C 按逆时针方向旋转任意角度得到CDE ,连接AD ,BE ,线段AD 与BE 的数量关系、位置关系与(1)中结论是否一致?若AD 交CE 于点N ,请结合图2说明理由;(3)迁移应用如图3,将CAB △绕点C 旋转一定角度得到CDE ,当点D 落到AB 边上时,连接BE ,求线段BE 的长.【答案】(1)3BE AD =;AD BE ⊥(2)一致;理由见解析(3)BE =【解析】【分析】(1)延长DA 交BE 于点H ,根据旋转得出1CD AC ==,3CE BC ==,90ACD ACB ∠=∠=°,根据勾股定理得出AD,BE ,根据等腰三角形的性质得出190452ADC DAC ∠=∠=×°=°,190452CBE CEB ∠=∠=×°=°,根据三角形内角和定理求出180454590BHD ∠=°−°−°=°,即可得出结论;(2)延长DA 交BE 于点H ACD BCE ∽△△,得出13AD AC BE BC ==,ADC BEC ∠∠=,根据三角形内角和定理得出90EHN DCN ∠=∠=°,即可证明结论; (3)过点C 作CN AB ⊥于点N ,根据等腰三角形性质得出12AN ND AD ==,根据勾股定理得出AB ==,证明ACN ABC ∽,得出AN AC AC AB =,求出AN =,根据解析(2)得出3BE AD == 【小问1详解】解:延长DA 交BE 于点H ,如图所示:的∵将CAB △绕点C 按逆时针方向旋转90°得到CDE ,∴1CD AC ==,3CE BC ==,90ACD ACB ∠=∠=°,∴根据勾股定理得:AD,BE∴3BE AD =,∵CD AC =,CE BC =,90ACD ACB ∠=∠=°, ∴190452ADC DAC ∠=∠=×°=°,190452CBE CEB ∠=∠=×°=°, ∴180180454590BHD ADC CBE ∠=°−∠−∠=°−°−°=°,∴AD BE ⊥.【小问2详解】解:线段AD 与BE 的数量关系、位置关系与(1)中结论一致;理由如下:延长DA 交BE 于点H ,如图所示:∵将CAB △绕点C 旋转得到CDE ,∴1CD AC ==,3CE BC ==ACD BCE =∠,90DCE ACB ∠=∠=°, ∴13ACCD BC CE ==, ∴ACD BCE ∽△△, ∴13ADAC BE BC ==,ADC BEC ∠∠=, ∴3BE AD =;又∵ENH CND ∠=∠,180HEN ENH EHN ∠+∠+∠=°,180CND CDN DCN∠+∠+∠=°, ∴90EHN DCN ∠=∠=°,∴AD BE ⊥;【小问3详解】解:过点C 作CN AB ⊥于点N ,如图所示:根据旋转可知:AC CD =, ∴12AN ND AD ==, ∵在Rt ABC △中,90ACB ∠=°,1AC =,3BC =,∴根据勾股定理得:AB ==∵90ANC ACB ∠=∠=°,∠AA =∠AA ,∴ACN ABC ∽, ∴AN AC AC AB=,即1AN =,解得:AN =,∴2AD AN ==根据解析(2)可知:3BE AD==. 【点睛】本题主要考查了旋转的性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.25. 如图,在平面直角坐标系中,已知抛物线2y x bx c =++与x 轴交于(1,0)A −,(2,0)B 两点,与y 轴交于点C ,点D 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点D 在直线BC 下方的抛物线上时,过点D 作y 轴的平行线交BC 于点E ,设点D 的横坐标为t ,DE 的长为l ,请写出l 关于t 的函数表达式,并写出自变量t 的取值范围;(3)连接AD ,交BC 于点F ,求DEF AEFS S △△的最大值. 【答案】(1)2y x x 2−− (2)()2202l t t t =−+<< (3)1()3DEF AEF S S = 最大 【解析】【分析】(1)用待定系数法求出函数解析式即可;(2)先求出(0,2)C −,再用待定系数法求出直线BC 的解析式为:2y x =−,可得出()2,2D t t t −−,(),2E t t −,从而可得()22222l DE t t t t t ==−−−−=−+,再求出自变量取值范围即可; (3)分四种情形:当02t <<时,作AG DE ∥,交BC 于G ,可得出DEF AGF ∽,从而DF DE AF AG=,进而得出22211(1)333DF t t t AF −+==−−+,进一步得出结果;当1t <−,10t −<<和2t >时,可得出DEF AEF S S △△没有最大值.【小问1详解】解: 抛物线2y x bx c =++与x 轴交于(1,0)A −,(2,0)B 两点,∴10420b c b c −+= ++=, 解得12b c =− =−, ∴该抛物线的解析式为:2y x x 2−−;【小问2详解】解:二次函数2y x x 2−−中,令0x =,则2y =−,(0,2)C ∴−,设直线BC 的解析式为:y kx m =+.将(2,0)B ,(0,2)C −代入得到:202k m m += =− ,解得12k m = =−, ∴直线BC 的解析式为:2y x =−,过点D 作y 轴的平行线交BC 于点E ,设点D 的横坐标为t ,()2,2D t t t ∴−−,(),2E t t −,()22222l DE t t t t t ∴==−−−−=−+,点D 在直线BC 下方的抛物线上,02t ∴<<;【小问3详解】解:如图1,当02t <<时,作AG DE ∥,交BC 于G ,DEF AGF ∴ ∽, ∴DFDEAF AG =,把1x =−代入2y x =−得,=3y −,3AG ∴=, ∴22211(1)333DFt tt AF −+==−−+,当1x =时,1()3DF AF =最大, DEFAEFS DF AF S =, ∴1()3DEFAEF S S = 最大,当2t >时,此时222(2)2DE t t t t t =−−−−=−, ∴222(1)133DF t t t AF −−−==, 1t > 时,22t t −随着t 的增大而增大, ∴DF AF没有最大值, ∴()DEF AEF S S 没有最大值, 如图3,当10t −<<时,222(1)133DF t t t AF −−−==, 当10t −<<时,22t t −随着t 的增大而减小, ∴DF AF没有最大值, ∴()DEF AEF S S 没有最大值u ,当1t <−时,由上可知,()DEF AEFS S 没有最大值, 综上所述:当02t <<时,1()3DEF AEF S S = 最大. 【点睛】本题考查了二次函数及其图象的性质,求一次函数的解析式,相似三角形的判定和性质等知识,解决问题的关键是分类讨论.。
山东省德州市2024年中考数学真题试题含解析
2024年山东省德州市中考数学试卷一、选择题(本大题共12小题,共48.0分) 1. -12的倒数是( )A. −2B. 12C. 2D. 12. 下列图形中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.3. 据国家统计局统计,我国2024年国民生产总值(GDP )为900300亿元.用科学记数法表示900300亿是( ) A. 9.003×1012 B. 90.03×1012 C. 0.9003×1014 D. 9.003×1013 4. 下列运算正确的是( )A. (−2a )2=−4a 2B. (a +a )2=a 2+a 2C. (a 5)2=a 7D. (−a +2)(−a −2)=a 2−45. 若函数y =aa 与y =ax 2+bx +c 的图象如图所示,则函数y =kx +b 的大致图象为( )A. B.C. D.6. 不等式组{5a +2>3(a −1)12a −1≤7−32a 的全部非负整数解的和是( )A. 10B. 7C. 6D. 0 7. 下列命题是真命题的是( )A. 两边及其中一边的对角分别相等的两个三角形全等B. 平分弦的直径垂直于C. 对边平行且一组对角相等的四边形是平行四边形D. 两条直线被第三条直线所截,内错角相等8. 《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A. {a −a =4.5a −12a =1B. {a −a =4.5a −12a =1C. {a −a =4.512a −a =1D. {a −a =4.512a −a =19. 如图,点O 为线段BC 的中点,点A ,C ,D 到点O 的距离相等,若∠ABC =40°,则∠ADC 的度数是( )A. 130∘B. 140∘C. 150∘D. 160∘10. 甲、乙是两个不透亮的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个嬉戏规则:从甲中任取一张卡片,将其数字记为a ,从乙中任取一张卡片,将其数字记为b .若a ,b 能使关于x 的一元二次方程ax 2+bx +1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为( ) A. 23B. 59C. 49D. 1311. 在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),肯定能使a 2−a 1a 2−a 1<0成立的是( )A. a =3a −1(a <0)B. a =−a 2+2a −1(a >0)C. a =−√3a(a >0)D. a =a 2−4a −1(a <0)12. 如图,正方形ABCD ,点F 在边AB 上,且AF :FB =1:2,CE ⊥DF ,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使BG =12BC ,连接CM .有如下结论:①DE =AF ;②AN =√24AB ;③∠ADF =∠GMF ;④S △ANF :S 四边形CNFB =1:8.上述结论中,全部正确结论的序号是( ) A. ①② B. ①③ C. ①②③ D. ②③④二、填空题(本大题共6小题,共24.0分) 13. |x -3|=3-x ,则x 的取值范围是______. 14. 方程6(a +1)(a −1)-3a −1=1的解为______.15. 如图,一架长为6米的梯子AB 斜靠在一竖直的墙AO 上,这时测得∠ABO =70°,假如梯子的底端B 外移到D ,则梯子顶端A 下移到C ,这时又测得∠CDO =50°,那么AC 的长度约为______米.(sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)16. 已知:[x ]表示不超过x 的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=______.17. 如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,aa ⏜=aa ⏜,CE =1,AB =6,则弦AF 的长度为______. 18. 如图,点A 1、A 3、A 5…在反比例函数y =aa (x >0)的图象上,点A 2、A 4、A 6……在反比例函数y =−aa (x >0)的图象上,∠OA 1A 2=∠A 1A 2A 3=∠A 2A 3A 4=…=∠α=60°,且OA 1=2,则A n (n 为正整数)的纵坐标为______.(用含n 的式子表示)三、计算题(本大题共1小题,共10.0分)19. 习近平总书记说:“读书可以让人保持思想活力,让人得到才智启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面对社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同. (1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳实力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.四、解答题(本大题共6小题,共68.0分) 20. 先化简,再求值:(2a -1a )÷(a 2+a 2aa-5aa )•(a 2a +2a a +2),其中√a +1+(n -3)2=0.21.《中学生体质健康标准》规定的等级标准为:90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.某校为了解七、八年级学生的体质健康状况,现从两年级中各随机抽取10名同学进行体质健康检测,并对成果进行分析.成果如下:七年级80 74 83 63 90 91 74 61 82 62 八年级74 61 83 91 60 85 46 84 74 82 (1)依据上述数据,补充完成下列表格.整理数据:优秀良好及格不及格七年级 2 3 5 0八年级 1 4 ______ 1分析数据:年级平均数众数中位数七年级76 74 77八年级______ 74 ______(2)该校目前七年级有200人,八年级有300人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康状况更好,并说明理由.22.如图,∠BPD=120°,点A、C分别在射线PB、PD上,∠PAC=30°,AC=2√3.(1)用尺规在图中作一段劣弧,使得它在A、C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;(2)依据(1)的作法,结合已有条件,请写出已知和求证,并证明;(3)求所得的劣弧与线段PA、PC围成的封闭图形的面积.23.下表中给出A,B,C三种手机通话的收费方式.收费方式月通话费/元包时通话时间/h超时费/(元/min)A30 25 0.1B50 50 0.1C100 不限时(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为______;若选择方式B最省钱,则月通话时间x的取值范围为______;若选择方式C最省钱,则月通话时间x的取值范围为______;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.24.(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请干脆写出HD:GC:EB的结果(不必写计算过程)(2)将图1中的菱形AEGH绕点A旋转肯定角度,如图2,求HD:GC:EB;(3)把图2中的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB的结果与(2)小题的结果相比有改变吗?假如有改变,干脆写出改变后的结果(不必写计算过程);若无改变,请说明理由.mx-4与x轴交于A(x1,0),B(x2,25.如图,抛物线y=mx2-52.0)两点,与y轴交于点C,且x2-x1=112(1)求抛物线的解析式;(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥9时,均有y1≤y2,求a的取值范围;2(3)抛物线上一点D(1,-5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.答案和解析1.【答案】A【解析】解:-的到数是-2,故选:A.依据倒数的定义求解即可.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故本选项错误,B、是中心对称图形但不是轴对称图形,故本选项正确,C、不是轴对称图形,也不是中心对称图形,故本选项错误,D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.依据轴对称图形的概念先求出图形中轴对称图形,再依据中心对称图形的概念得出其中不是中心对称的图形.题考查了中心对称图形与轴对称图形的概念,轴对称图形:假如一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,中心对称图形:在同一平面内,假如把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,难度适中.3.【答案】D【解析】解:将900300亿元用科学记数法表示为:9.003×1013.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:(-2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(-a+2)(-a-2)=a2-4,故选项D符合题意.故选:D.依据积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.此题考查整式的运算,驾驭各运算法则是关键,还要留意符号的处理.5.【答案】C【解析】解:依据反比例函数的图象位于二、四象限知k<0,依据二次函数的图象确知a>0,b<0,∴函数y=kx+b的大致图象经过二、三、四象限,故选:C.首先依据二次函数及反比例函数的图象确定k、b的符号,然后依据一次函数的性质确定答案即可.本题考查了函数的图象的学问,解题的关键是了解三种函数的图象的性质,难度不大.6.【答案】A【解析】解:,解不等式①得:x>-2.5,解不等式②得:x≤4,∴不等式组的解集为:-2.5<x≤4,∴不等式组的全部非负整数解是:0,1,2,3,4,∴不等式组的全部非负整数解的和是0+1+2+3+4=10,故选:A.分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.本题主要考查解一元一次不等式组的基本技能,精确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键.7.【答案】C【解析】解:A、由两边及其中一边的对角分别相等无法证明两个三角形全等,故A错误,是假命题;B、平分弦(非直径)的直径垂直于弦,故B错误,是假命题;C、一组对边平行且一组对角相等的四边形是平行四边形,故C正确,是真命题;D、两条平行线被第三条直线所截,内错角相等,故D错误,是假命题;故选:C.A、依据全等三角形的判定方法,推断即可.B、依据垂径定理的推理对B进行推断;C、依据平行四边形的判定进行推断;D、依据平行线的判定进行推断.本题考查了命题与定理:推断一件事情的语句,叫做命题.很多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,有些命题的正确性是用推理证明的,这样的真命题叫做定理.8.【答案】B【解析】解:设绳长x尺,长木为y尺,依题意得,故选:B.本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此可列方程组求解.此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.9.【答案】B【解析】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.依据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.此题考查了圆内接四边形的性质,娴熟驾驭圆内接四边形的性质是解本题的关键.10.【答案】C【解析】解:(1)画树状图如下:由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,∴乙获胜的概率为,故选:C.首先依据题意画出树状图,然后由树状图求得全部等可能的结果,利用一元二次方程根的判别式,即可判定各种状况下根的状况,然后利用概率公式求解即可求得乙获胜的概率本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事务;解题时要留意此题是放回试验还是不放回试验.11.【答案】D【解析】解:A、∵k=3>0∴y随x的增大而增大,即当x1>x2时,必有y1>y2∴当x<0时,>0,故A选项不符合;B、∵对称轴为直线x=1,∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时:当x1>x2时,必有y1>y2此时>0,故B选项不符合;C、当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2此时>0,故C选项不符合;D、∵对称轴为直线x=2,∴当x<0时y随x的增大而减小,即当x1>x2时,必有y1<y2此时<0,故D选项符合;故选:D.依据各函数的增减性依次进行推断即可.本题主要考查了一次函数、反比例函数和二次函数的图象和性质,须要结合图象去一一分析,有点难度.12.【答案】C【解析】解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF;故①正确;∵AB∥CD,∴=,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴=,∴=,∵AC=AB,∴=,∴AN=AB;故②正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FEG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF;故③正确,设△ANF的面积为m,∵AF∥CD,∴==,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,∴S△ANF:S四边形CNFB=1:11,故④错误,故选:C.①正确.证明△ADF≌△DCE(ASA),即可推断.②正确.利用平行线分线段成比例定理,等腰直角三角形的性质解决问题即可.③正确.作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,通过计算证明MH=CH即可解决问题.④错误.设△ANF的面积为m,由AF∥CD,推出==,△AFN∽△CDN,推出△ADN的面积为3m,△DCN的面积为9m,推出△ADC的面积=△ABC的面积=12m,由此即可推断.本题考查正方形的性质,全等三角形的判定和性质,相像三角形的判定和性质等学问,解题的关键是娴熟驾驭基本学问,学会利用参数解决问题,属于中考选择题中的压轴题.13.【答案】x≤3【解析】解:3-x≥0,∴x≤3;故答案为x≤3;依据肯定值的意义,肯定值表示距离,所以3-x≥0,即可求解;本题考查肯定值的意义;理解肯定值的意义是解题的关键.14.【答案】x=-4【解析】解:-=1,=1,=1,=1,x+1=-3,x=-4,经检验x=-4是原方程的根;故答案为x=-4;依据分式方程的解法,先将式子通分化简为=1,最终验证根的状况,进而求解;本题考查分式方程的解法;娴熟驾驭分式方程的解法,勿遗漏验根环节是解题的关键.15.【答案】1.02【解析】解:由题意可得:∵∠ABO=70°,AB=6m,∴sin70°==≈0.94,解得:AO=5.64(m),∵∠CDO=50°,DC=6m,∴sin50°=≈0.77,解得:CO=4.62(m),则AC=5.64-4.62=1.02(m),答:AC的长度约为1.02米.故答案为:1.02.干脆利用锐角三角函数关系得出AO,CO的长,进而得出答案.此题主要考查了解直角三角形的应用,正确得出AO,CO的长是解题关键.16.【答案】0.7【解析】解;依据题意可得:{3.9}+{-1.8}-{1}=3.9-3-1.8+2-1+1=0.7,故答案为:0.7依据题意列出代数式解答即可.此题考查解一元一次不等式,关键是依据题意列出代数式解答.17.【答案】485【解析】解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r-1,OA=r,在Rt△OAE中,32+(r-1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5-OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.连接OA、OB,OB交AF于G,如图,利用垂径定理得到AE=BE=3,设⊙O的半径为r,则OE=r-1,OA=r,依据勾股定理得到32+(r-1)2=r2,解得r=5,再利用垂径定理得到OB⊥AF,AG=FG,则AG2+OG2=52,AG2+(5-OG)2=62,然后解方程组求出AG,从而得到AF的长.本题考查了圆周角、弧、弦的关系:在同圆或等圆中,假如两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理.18.【答案】(-1)n+1√3(√a−√a−1)【解析】解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=-,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,-),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1-(舍),x2=1+,∴EF====2(-1)=2-2,A2D2===,即A2的纵坐标为-;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△FA3D3中,∠FA3D3=30°,∴FD3=,∵OD3=2+2-2+=x,解得:x1=(舍),x2=+;∴GF===2(-)=2-2,A3D3===(-),即A3的纵坐标为(-);…∴A n(n为正整数)的纵坐标为:(-1)n+1();故答案为:(-1)n+1();先证明△OA1E是等边三角形,求出A1的坐标,作高线A1D1,再证明△A2EF是等边三角形,作高线A2D2,设A2(x,-),依据OD2=2+=x,解方程可得等边三角形的边长和A2的纵坐标,同理依次得出结论,并总结规律:发觉点A1、A3、A5…在x轴的上方,纵坐标为正数,点A2、A4、A6……在x轴的下方,纵坐标为负数,可以利用(-1)n+1来解决这个问题.本题考查了待定系数法求反比例函数解析式,等边三角形的性质和判定,直角三角形30度角的性质,勾股定理,反比例函数图象上点的坐标特征,并与方程相结合解决问题.19.【答案】解:(1)设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608化简得:4x2+12x-7=0∴(2x-1)(2x+7)=0,∴x=0.5=50%或x=-3.5(舍)答:进馆人次的月平均增长率为50%.(2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为:128(1+50%)3=128×278=432<500 答:校图书馆能接纳第四个月的进馆人次. 【解析】 (1)先分别表示出其次个月和第三个月的进馆人次,再依据第一个月的进馆人次加其次和第三个月的进馆人次等于608,列方程求解; (2)依据(1)所计算出的月平均增长率,计算出第四个月的进馆人次,再与500比较大小即可.本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.20.【答案】解:(2a -1a )÷(a 2+a 2aa -5a a )•(a 2a +2a a +2) =2a −a aa ÷a 2+a 2−5a 2aa •a 2+4a 2+4aa 2aa=2a −a aa •aa (a +2a )(a −2a )•(a +2a )22aa=-a +2a 2aa .∵√a +1+(n -3)2=0.∴m +1=0,n -3=0,∴m =-1,n =3.∴-a +2a 2aa =-−1+2×32×(−1)×3=56.∴原式的值为56.【解析】先通分,再利用因式分解,把可以分解的分解,然后统一化成乘法运算,约分化简,再将所给等式化简,得出m 和n 的值,最终代回化简后的分式即可.本题是分式化简求值题,须要娴熟驾驭通分和因式分解及分式乘除法运算.21.【答案】74 78【解析】解:(1)八年级及格的人数是4,平均数=,中位数=;故答案为:4;74;78;(2)计两个年级体质健康等级达到优秀的学生共有200×人;(3)依据以上数据可得:七年级学生的体质健康状况更好.(1)依据平均数和中位数的概念解答即可;(2)依据样本估计总体解答即可;(3)依据数据调查信息解答即可.本题考查了众数、中位数以及平均数的运用,驾驭众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.22.【答案】解:(1)如图,(2)已知:如图,∠BPD =120°,点A 、C 分别在射线PB 、PD 上,∠PAC =30°,AC =2√3,过A 、C 分别作PB 、PD 的垂线,它们相交于O ,以OA 为半径作⊙O ,OA ⊥PB ,求证:PB 、PC 为⊙O 的切线;证明:∵∠BPD =120°,PAC =30°,∴∠PCA =30°,∴PA =PC ,连接OP ,∵OA ⊥PA ,PC ⊥OC ,∴∠PAO =∠PCO =90°,∵OP =OP ,∴Rt △PAO ≌Rt △PCO (HL )∴OA =OC ,∴PB 、PC 为⊙O 的切线;(3)∵∠OAP =∠OCP =90°-30°=60°,∴△OAC 为等边三角形, ∴OA =AC =2√3,∠AOC =60°,∵OP 平分∠APC ,∴∠APO =60°,∴AP =√33×2√3=2,∴劣弧AC 与线段PA 、PC 围成的封闭图形的面积=S 四边形APCO -S 扇形AOC =2×12×2√3×2-60⋅a ⋅(2√3)2360=4√3-2π. 【解析】(1)过A 、C 分别作PB 、PD 的垂线,它们相交于O ,然后以OA 为半径作⊙O 即可;(2)写出已知、求证,然后进行证明;连接OP ,先证明Rt △PAO ≌Rt △PCO ,然后依据切线的判定方法推断PB 、PC 为⊙O 的切线;(3)先证明△OAC 为等边三角形得到OA=AC=2,∠AOC=60°,再计算出AP=2,然后依据扇形的面积公式,利用劣弧AC 与线段PA 、PC 围成的封闭图形的面积进行计算. 本题考查了作图-困难作图:困难作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟识基本几何图形的性质,结合几何图形的基本性质把困难作图拆解成基本作图,逐步操作.也考查了圆周角定理和扇形面积公式.23.【答案】0≤x ≤853 853≤x ≤1753 x >1753【解析】解:(1)∵0.1元/min=6元/h ,∴由题意可得,y 1=, y 2=,y 3=100(x≥0);(2)作出函数图象如图:结合图象可得:若选择方式A最省钱,则月通话时间x的取值范围为:0≤x≤,若选择方式B最省钱,则月通话时间x的取值范围为:≤x≤,若选择方式C最省钱,则月通话时间x的取值范围为:x>.故答案为:0≤x≤,≤x≤,x>.(3)∵小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,∴结合图象可得:小张选择的是方式A,小王选择的是方式B,将y=80分别代入y2=,可得6x-250=80,解得:x=55,∴小王该月的通话时间为55小时.(1)依据题意可以分别写出y1、y2、y3关于x的函数关系式,并写出相应的自变量的取值范围;(2)依据题意作出图象,结合图象即可作答;(3)结合图象可得:小张选择的是方式A,小王选择的是方式B,将y=81代入y2关于x的函数关系式,解方程即可得出小王该月的通话时间.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题须要的条件.24.【答案】解:(1)连接AG,∵菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,∴∠GAE=∠CAB=30°,AE=AH,AB=AD,∴A,G,C共线,AB-AE=AD-AH,∴HD=EB,延长HG交BC于点M,延长EG交DC于点N,连接MN,交GC于点O,则GMCN也为菱形,∴GC ⊥MN ,∠NGO =∠AGE =30°, ∴aa aa =cos30°=√32,∵GC =2OG ,∴aa aa =1√3,∵HGND 为平行四边形,∴HD =GN ,∴HD :GC :EB =1:√3:1.(2)如图2,连接AG ,AC ,∵△ADC 和△AHG 都是等腰三角形,∴AD :AC =AH :AG =1:√3,∠DAC =∠HAG =30°,∴∠DAH =∠CAG ,∴△DAH ∽△CAG ,∴HD :GC =AD :AC =1:√3,∵∠DAB =∠HAE =60°,∴∠DAH =∠BAE ,在△DAH 和△BAE 中, {aa =aa∠aaa =∠aaaaa =aa∴△DAH ≌△BAE (SAS )∴HD =EB ,∴HD :GC :EB =1:√3:1.(3)有改变.如图3,连接AG ,AC ,∵AD :AB =AH :AE =1:2,∠ADC =∠AHG =90°,∴△ADC ∽△AHG ,∴AD :AC =AH :AG =1:√5,∵∠DAC =∠HAG ,∴∠DAH =∠CAG ,∴△DAH ∽△CAG ,∴HD :GC =AD :AC =1:√5,∵∠DAB =∠HAE =90°,∴∠DAH =∠BAE ,∵DA :AB =HA :AE =1:2,∴△ADH ∽△ABE ,∴DH :BE =AD :AB =1:2,∴HD :GC :EB =1:√5:2【解析】(1)连接AG ,由菱形AEGH 的顶点E 、H 在菱形ABCD 的边上,且∠BAD=60°,易得A ,G ,C 共线,延长HG 交BC 于点M ,延长EG 交DC 于点N ,连接MN ,交GC 于点O ,则GMCN 也为菱形,利用菱形对角线相互垂直,结合三角函数可得结论;(2)连接AG ,AC ,由△ADC 和△AHG 都是等腰三角形,易证△DAH ∽△CAG 与△DAH ≌△BAE ,利用相像三角形的性质及菱形的性质可得结论;(3)连接AG ,AC ,易证△ADC ∽△AHG 和△ADH ∽△ABE ,利用相像三角形的性质可得结论.本题是菱形与相像三角形,全等三角形,三角函数等学问点的综合运用,难度较大.25.【答案】解:(1)函数的对称轴为:x =-a 2a =54=a 1+a 22,而且x 2-x 1=112, 将上述两式联立并解得:x 1=-32,x 2=4,则函数的表达式为:y =a (x +32)(x -4)=a (x 2-4x +32x -6),即:-6a =-4,解得:a =23, 故抛物线的表达式为:y =23x 2-53x -4;(2)当x 2=94时,y 2=2,①当a ≤a +2≤54时(即:a ≤-34), y 1≤y 2,则23a 2-53a -4≤2,解得:-2≤a ≤-92,而a ≤-34,故:-2≤a ≤−34;②当54≤a ≤a +2(即a ≥54)时,则23(a +2)2-53(a +2)-4≤2,同理可得:-34≤a ≤54,故a 的取值范围为:-2≤a ≤54;(3)∵当∠BDC =∠MCE ,△MDC 为等腰三角形,故取DC 的中点H ,过点H 作线段CD 的中垂线交直线BD 与点M ,则点M 为符合条件的点, 点H (12,-92), 将点C 、D 坐标代入一次函数表达式:y =mx +n 并解得:直线CD 的表达式为:y =-x -4,同理可得:直线BD 的表达式为:y =53x -203…①,直线DC ⊥MH ,则直线MH 表达式中的k 值为1,同理可得直线HM 的表达式为:y =x -5…②,联立①②并解得:x =52,故点M (52,-52).【解析】(1)函数的对称轴为:x=-==,而且x 2-x 1=,将上述两式联立并解得:x 1=-,x 2=4,即可求解;(2)分a≤a+2≤、≤a≤a+2两种状况,分别求解即可; (3)取DC 的中点H ,过点H 作线段CD 的中垂线交直线BD 与点M ,则点M 为符合条件的点,即可求解.本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质等,其中(2),要留意分类求解,避开遗漏.。
2023年山东省中考数学真题(附答案解析)
(满分:120分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
温馨提示:
1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.
【解析】根据从上边看得到的图形是俯视图,可得答案.
【详解】解:俯视图是从上面看到的图形,应该是:
故选:D.
【点睛】本题主要考查简单几何体的三视图,掌握俯视图是从上边看得到的图形是解题的关键.
4.一元二次方程 根的情况为( )
A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定
【答案】A
如图,连接 ,则 , 是等边三角形
∴ ,弓形 的面积相等
∴阴影 的面积=扇形 的面积
∴图中三个阴影部分的面积之和 ;
故选:C.
【点睛】本题考查了不规则图形面积的计算,正确添加辅助线、掌握求解的方法是解题关键.
8.已知点 是等边 的边 上的一点,若 ,则在以线段 为边的三角形中最小内角的大小为( )
A. B. C. D.
所有结果共有36种,其中点数之和等于7的结果有6种,概率为
故答案为: .
【点睛】本题考查概率的计算,运用列表或树状图列示出所有可能结果是解题的关键.
14.如图, 分别与 相切于 两点,且 .若点 是 上异于点 的一点,则 的大小为___________.
【答案】 或
【解析】根据切线的性质得到 ,根据四边形内角和为 ,得出 ,然后根据圆周角定理即可求解.
2024年山东省威海市中考数学真题(含答案)
2024年山东省威海市中考数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.一批食品,标准质量为每袋454g.现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( )A.+7B.﹣5C.﹣3D.102.据央视网2023年10月11日消息,中国科学技术大学中国科学院量子创新研究院与上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光子的量子计算原型机“九章三号”,再度刷新了光量子信息的技术水平和量子计算优越性的世界纪录.“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍,在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机花费超过二百亿年的时间.将“百万分之一”用科学记数法表示为( )A.1×10﹣5B.1×10﹣6C.1×10﹣7D.1×10﹣83.下列各数中,最小的数是( )A.﹣2B.﹣(﹣2)C.−12D.−24.下列运算正确的是( )A.x5+x5=x10B.m+n2•1n=mnC.a6÷a2=a4D.(﹣a2)3=﹣a55.下列几何体都是由四个大小相同的小正方体搭成的.其中主视图、左视图和俯视图完全相同的是( )A.B.C.D.6.如图,在扇形AOB中,∠AOB=90°,点C是AO的中点.过点C作CE⊥AO交AB于点E,过点E作ED⊥OB,垂足为点D.在扇形内随机选取一点P,则点P落在阴影部分的概率是( )A .14B .13C .12D .237.定义新运算:①在平面直角坐标系中,{a ,b }表示动点从原点出发,沿着x 轴正方向(a ≥0)或负方向(a <0)平移|a |个单位长度,再沿着y 轴正方向(b ≥0)或负方向(b <0)平移|b |个单位长度.例如,动点从原点出发,沿着x 轴负方向平移2个单位长度,再沿着y 轴正方向平移1个单位长度,记作(﹣2,1).②加法运算法则:{a ,b }+{c ,d }={a +c ,b +d },其中a ,b ,c ,d 为实数.若{3,5}+{m ,n }={﹣1,2},则下列结论正确的是( )A .m =2,n =7B .m =﹣4,n =﹣3C .m =4,n =3D .m =﹣4,n =38.《九章算术》是我国古老的数学经典著作,书中提到这样一道题目:以绳测井.若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意是:用绳子测量水井的深度.如果将绳子折成三等份,一份绳长比井深多4尺;如果将绳子折成四等份,一份绳长比井深多1尺.绳长、井深各是多少尺?若设绳长x 尺,井深y 尺,则符合题意的方程组是( )A .3x−y =44x−y =1B .3x +4=y4x +1=yC −y =4−y =1D +4=y +1=y 9.如图,在▱ABCD 中,对角线AC ,BD 交于点O ,点E 在BC 上,点F 在CD 上,连接AE ,AF ,EF ,EF 交AC 于点G .下列结论错误的是( )A .若CE CF =ADAB ,则EF ∥BDB .若AE ⊥BC ,AF ⊥CD ,AE =AF ,则EF ∥BD C .若EF ∥BD ,CE =CF ,则∠EAC =∠FAC D .若AB =AD ,AE =AF ,则EF ∥BD10.同一条公路连接A ,B ,C 三地,B 地在A ,C 两地之间.甲、乙两车分别从A 地、B 地同时出发前往C 地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.如图表示甲、乙两车之间的距离y (km )与时间x (h )的函数关系.下列结论正确的是( )A .甲车行驶83h 与乙车相遇B .A ,C 两地相距220km C .甲车的速度是70km /h D .乙车中途休息36分钟二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.计算:12−8×6= .12.因式分解:(x +2)(x +4)+1= .13.如图,在正六边形ABCDEF 中,AH ∥FG ,BI ⊥AH ,垂足为点I .若∠EFG =20°,则∠ABI = .14.计算:4x−2+x 22−x = .15.如图,在平面直角坐标系中,直线y 1=ax +b (a ≠0)与双曲线y 2=kx (k ≠0)交于点A(﹣1,m),B(2,﹣1).则满足y1≤y2的x的取值范围 .16.将一张矩形纸片(四边形ABCD)按如图所示的方式对折,使点C落在AB上的点C′处,折痕为MN,点D落在点D′处,C′D′交AD于点E.若BM=3,BC′=4,AC′=3,则DN= .三、解答题(本大题共8小题,共72分)17.(6分)某公司为节能环保,安装了一批A型节能灯,一年用电16000千瓦•时.后购进一批相同数量的B型节能灯,一年用电9600千瓦•时.一盏A型节能灯每年的用电量比一盏B型节能灯每年用电量的2倍少32千瓦•时.求一盏A型节能灯每年的用电量.18.(8分)为增强学生体质,某校在八年级男生中试行“每日锻炼,每月测试”的引体向上训练活动,设定6个及以上为合格.体育组为了解一学期的训练效果,随机抽查了20名男生2至6月份的测试成绩.其中,2月份测试成绩如表1,6月份测试成绩如图1(尚不完整).整理本学期测试数据得到表2和图2(尚不完整).表1:2月份测试成绩统计表个数0136810人数484121表2:本学期测试成绩统计表平均数/个众数/个中位数/个合格率2月 2.6a 120%3月 3.13425%4月44535%5月 4.555540%6月b86c请根据图表中的信息,解答下列问题:(1)将图1和图2中的统计图补充完整,并直接写出a ,b ,c 的值;(2)从多角度分析本次引体向上训练活动的效果;(3)若将此活动在邻校八年级推广,该校八年级男生按400人计算,以随机抽查的20名男生训练成绩为样本,估算经过一学期的引体向上训练,可达到合格水平的男生人数.19.(8分)某校九年级学生开展利用三角函数解决实际问题的综合与实践活动,活动之一是测量某护堤石坝与地平面的倾斜角.测量报告如下表(尚不完整).课题测量某护堤石坝与地平面的倾斜角成员组长:×××组员:×××,×××,×××测量工具竹竿,米尺测量示意图说明:AC 是一根笔直的竹竿.点D 是竹竿上一点,线段DE 的长度是点D 到地面的距离.∠α是要测量的倾斜角测量数据…………(1)设AB=a,BC=b,AC=c,CE=d,DE=e,CD=f,BE=g,AD=h,请根据表中的测量示意图,从以上线段中选出你认为需要测量的数据,把表示数据的小写字母填写在“测量数据”一栏.(2)根据(1)中选择的数据,写出求∠α的一种三角函数值的推导过程.(3)假设sinα≈0.86,cosα≈0.52,tanα≈1.66,根据(2)中的推导结果,利用计算器求出∠α的度数.你选择的按键顺序为 .20.(9分)感悟如图1,在△ABE中,点C,D在边BE上,AB=AE,BC=DE.求证:∠BAC=∠EAD.应用(1)如图2,用直尺和圆规在直线BC上取点D,点E(点D在点E的左侧),使得∠EAD=∠BAC,且DE=BC(不写作法,保留作图痕迹);(2)如图3,用直尺和圆规在直线AC上取一点D,在直线BC上取一点E,使得∠CDE=∠BAC,且DE=AB(不写作法,保留作图痕迹).21.(9分)定义我们把数轴上表示数a的点与原点的距离叫做数a的绝对值.数轴上表示数a,b的点A,B之间的距离AB=a﹣b(a≥b).特别的,当a≥0时,表示数a的点与原点的距离等于a﹣0.当a<0时,表示数a的点与原点的距离等于0﹣a.应用如图,在数轴上,动点A从表示﹣3的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A,B之间的距离等于3个单位长度?(2)求点A,B到原点距离之和的最小值.22.(10分)如图,已知AB是⊙O的直径,点C,D在⊙O上,且BC=CD.点E是线段AB 延长线上一点,连接EC并延长交射线AD于点F.∠FEG的平分线EH交射线AC于点H,∠H=45°.(1)求证:EF是⊙O的切线;(2)若BE=2,CE=4,求AF的长.23.(10分)如图,在菱形ABCD中,AB=10cm,∠ABC=60°,E为对角线AC上一动点,以DE为一边作∠DEF=60°,EF交射线BC于点F,连接BE,DF.点E从点C出发,沿CA方向以每秒2cm的速度运动至点A处停止.设△BEF的面积为y cm2,点E的运动时间为x秒.(1)求证:BE=EF;(2)求y与x的函数表达式,并写出自变量x的取值范围;(3)求x为何值时,线段DF的长度最短.24.(12分)已知抛物线y=x2+bx+c(b<0)与x轴交点的坐标分别为(x1,0),(x2,0),且x1<x2.(1)若抛物线y1=x2+bx+c+1(b<0)与x轴交点的坐标分别为(x3,0),(x4,0),且x3<x4,试判断下列每组数据的大小(填写<、=或>):①x1+x2 x3+x4;②x1﹣x3 x2﹣x4;③x2+x3 x1+x4.(2)若x1=1,2<x2<3,求b的取值范围;(3)当0≤x≤1时,y=x2+bx+c(b<0)最大值与最小值的差为916,求b的值.2024年山东省威海市中考数学试题参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.C2.B3.A4.C5.D6.B7.B8.C9.D10.A二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.−2312.(x+3)213.50°14.﹣x﹣215.﹣1≤x<0或x≥216.3 2三、解答题(本大题共8小题,共72分)17.(6分)解:设一盏B型节能灯每年的用电量为x千瓦•时,则一盏A型节能灯每年的用电量为(2x﹣32)千瓦•时,根据题意得:160002x−32=9600x,解得:x=96,经检验,x=96是所列方程的解,且符合题意,∴2x﹣32=2×96﹣32=160(千瓦•时).答:一盏A型节能灯每年的用电量为160千瓦•时.18.(8分)解:(1)6月测试成绩中,引体向上3个的人数为20﹣4﹣1﹣6﹣4=5(人),补充统计图如下:c =1+6+420×100%=55%,根据表2可得a =1,b =120(4×1+5×3+1×6+6×8+4×10)=5.65,(2)本次引体向上训练活动的效果明显,理由如下:从平均数和合格率看,平均数和合格率逐月增加,从中位数看,引体向上个数逐月增加,从众数看,引体向上的个数越来越大(答案不唯一,合理即可);(3)400×55%=220(人),答:估算经过一学期的引体向上训练,可达到合格水平的男生人数约220人.19.(8分)解:(1)需要的数据为:AB =a ,AC =c ,DE =e ,CD =f ;(2)过点A 作AM ⊥CB 于点M ,则∠AMB =90°,∵DE ⊥CB ,∴DE ∥AM ,∴△CDE∽△CAM,∴DEAM=CDCA,即eAM=fc,∴AM=ecf,∴sinα=AMAB=ecfa=ecaf;(3)∵sinα=ecaf,∴按键顺序为2ndF,sin,0,•,8,6,=,故答案为:①.20.(9分)解:感悟:过点A作AH⊥BE于点H,∵AB=AE,BC=DE,∴∠BAH=∠EAH,∠CAH=∠DAH,∴∠BAC=∠DAE;应用:(1)解:如图2:点D,E即为所求;(2)点D,E即为所求.21.(9分)解:(1)设经过x秒,点A,B之间的距离等于3个单位长度,则:|(﹣3+x)﹣(12﹣2x)|=3,解得:x=4或x=6,答:经过4秒或6秒,点A,B之间的距离等于3个单位长度;(2)设经过x秒,点A,B到原点距离之和为y,则y=|﹣3+x|+|12﹣2x|,当x≤3时,y=|﹣3+x|+|12﹣2x|=3﹣x+12﹣2x=﹣3x+15,当x=3时,y值最小,为6,当3<x≤6时,y=|﹣3+x|+|12﹣2x|=﹣3+x+12﹣2x=﹣x+9,当x=6时,y值最小,为3,当x>6时,y=|﹣3+x|+|12﹣2x|=﹣3+x﹣12+2x=3x﹣15,当x=6时,y有极小值,为3,综上所述,点A,B到原点距离之和的最小值为3.22.(10分)(1)证明:如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵BC=CD,∴∠DAC=∠BAC,∴∠OCA=∠DAC,∴OC∥AF,∵EH平分∠FEG,∴∠FEH=∠GEH,∵∠GEH=∠H+∠BAC,∠FEH=∠F+∠BAF,∴2∠H+2∠BAC=∠F+∠BAF,∴∠BAF=2∠BAC,∴∠F=2∠H=90°,∴∠OCE=∠F=90°,即OC⊥EF,∵OC是半径,∴EF是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,即∠OCB+∠BCE=90°,∴∠OBC+∠BAC=90°,又∵OB=OC,∴∠OBC=∠OCB,∴∠BCE=∠EAC,∵∠CEB=∠CAE,∴△BCE∽△CAE,∴BE CE =CE AE =BC AC =24=12,∴CE 2=BE •AE ,即16=2AE ,解得AE =8,∴AB =8﹣2=6,在Rt △ABC 中,AB =6,BC AC =12,∴BC =655,AC =1255,∵∠F =∠ACB =90°,∠FAC =∠BAC ,∴△FAC ∽△CAB ,∴AF AC =ACAB ,∴AF =AC 2AB =245.23.(10分)(1)证明:设CD 与EF 相交于点M ,∵四边形ABCD 为菱形,∴BC ﹣=DC ,∠BCE =∠DCE ,AB ∥CD ,∵∠ABC =60°,∴∠DCF =60°,在△BCE 和△DCE 中,BC =DC ∠BCE =∠DCE СЕ=СЕ,∴△BCE ≌△DCE (SAS ),∴∠CBE=∠CDE,BE=DE,∵∠DMF=∠DEF+∠CDE=∠DCF+∠CFE,又∵∠DEF=∠DCF=60°,∴∠CDE=∠CFE,∴∠CBE=∠CFE,∴BE=EF;(2)解:过点E作EN⊥BC于N,则∠ENC=90°,∵BE=EF,∴BF=2BN,∵四边形ABCD为菱形,∠ABC=60°,∴ВС=АВ=10cm,∠АСВ=∠BСD=60°,即∠ECN=60°,∵CE=2x cm,∴EN=CE•sin60°=2x•32=3x(cm),CN=CE•cos60°=2x•12=x(cm),∴BN=BC﹣CN=10﹣x(cm),∴BF=2(10﹣x)cm,∴у=12ВF•ЕN=12×2(10﹣х)×3х=−3х2+103х,∵0<2x≤10,∴0<x≤5,∴y=−3х2+103х(0<x≤5);(3)解:∵BE=DE,BE=EF,∴DE=EF,∵∠DEF=60°,∴△DEF为等边三角形,∴DE=DF﹣EF,∴BE=DF,∴线段DF的长度最短,即BE的长度最短,当BE⊥AC时,BE取最短,如图,∵四边形ABCD是菱形,∴АВ=ВС,∵∠ABC=60°,∴△ABC为等边三角形,∴AE=AB=AC=10cm,∵BE⊥AC,∴CE=12AC=5cm,∴x=CE2=52,∴当x=52时,线段DF的长度最短.24.(12分)解:(1)∵y=x2+bx+c(b<0)与x轴交点的坐标分别为(x1,0),(x2,0),且x1<x2,∴x1+x2=﹣b,且抛物线开口向上,∵y1=x2+bx+c+1(b<0)与x轴交点的坐标分别为(x3,0),(x4,0),且x1<x4,即y=x2+bx+c(b<0)向上平移1个单位,∴x1<x3<x4<x2,且x1+x4=﹣b,∴①x1+x2=x1+x4;∵x2﹣x1>x4﹣x3∴x2﹣x4>x1﹣x3,即②x1﹣x5<x2﹣x4;∴x1+x3>x1+x4,即③x2+x3>x1+x4,故答案为:=;<;>;(2)∵x1=1,2<x2<3,∴3<x2+x1<4∴3<﹣b<4,∴﹣4<b<﹣3;(3)抛物线y=x2+bx+c(b<0)顶点坐标为(−b2,4c−b24),对称轴为直线x=−b2>0,当x=0时,y=c;当x=1时,y=1+b+c;①当在x=0 取得最大值,在x=1取得最小值时,有c−(1+b+c)=916,解得b=−25 16;②当在x=0取得最大值,在顶点取得最小值时,有c−4c−b24=916,解得b=32(舍去)或b=−32;③当在x=1取得最大值,在顶点取得最小值时,有1+b+c−4c−b24=916,解得b=−72(舍去)或b=−12,综上所述,b的值为−32或−12或−2516.。
2023年山东省济南市中考数学真题(解析版)
济南市2023年九年级学业水平考试数学试题本试卷共8页,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5mm 黑色签字笔将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.下列几何体中,主视图是三角形的为()A. B.C. D.【答案】A 【解析】【分析】分别判断出各选项中的几何体的主视图,即可得出答案.【详解】解:A 、圆锥的主视图是三角形,故本选项符合题意;B 、球的主视图是圆,故本选项不符合题意;C 、长方体的主视图是长方形,故本选项不符合题意;D 、三棱柱的主视图是长方形,故本选项不符合题意;故选:A .【点睛】本题考查了简单几何体的三视图,熟知常见几何体的主视图是解本题的关键.2.2022年我国粮食总产量再创新高,达686530000吨.将数字686530000用科学记数法表示为()A.80.6865310B.86.865310C.76.865310 D.768.65310【答案】B 【解析】【分析】科学记数法的表示形式为10n a 的形式,其中110a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10 时,n 是正数;当原数的绝对值1 时,n 是负数.【详解】解:866.68360503000851 ,故选:B【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a 的形式,其中110a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.如图,一块直角三角板的直角顶点放在直尺的一边上.如果170 ∠,那么2 的度数是()A.20B.25C.30D.45【答案】A 【解析】【分析】根据两直线平行,同位角相等可得13 ,再结合三角板的特征利用平角定义即可算出2 的度数.【详解】解:如下图进行标注,AB CD ∥∵,1370 ,2180903907020 ,故选:A .【点睛】本题考查了平行线性质,三角形平角的定义,利用三角板的特点求出结果是解答本题的关键.4.实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是()A.0abB.0a bC.33a bD.33a b【答案】D 【解析】【分析】根据题意可得32,2b a ,然后根据数的乘法和加法法则以及不等式的性质进行判断即可.【详解】解:由题意可得:32,2b a ,所以b a ,∴,30,033,3a b ab a b a b ,观察四个选项可知:只有选项D 的结论是正确的;故选:D .【点睛】本题考查了实数与数轴以及不等式的性质,正确理解题意、得出32,2b a 是解题的关键.5.下图是度量衡工具汉尺、秦权、新莽铜卡尺和商鞅方升的示意图,其中既是轴对称图形又是中心对称图形的是()A. B.C. D.【答案】A 【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,是中心对称图形,故此选项符合题意;B 、是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、不是轴对称图形,不是中心对称图形,故此选项不符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:A .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.将一个图形沿着一条直线翻折后,直线两侧能完全重合的图形是轴对称图形,将一个图形绕一点旋转180度后能与自身重合的图形是中心对称图形;轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.下列运算正确的是()A.248a a aB.43a a aC.325a a D.422a a a 【答案】D 【解析】【分析】根据同底数幂的乘除法、合并同类项、幂的乘方等运算法则逐项判断即得答案.【详解】解:A 、246a a a ,故本选项运算错误,不符合题意;B 、4a 与3a 不是同类项,不能合并,故本选项运算错误,不符合题意;C 、326a a ,故本选项运算错误,不符合题意;D 、422a a a ,故本选项运算正确,符合题意;故选:D .【点睛】本题考查了同底数幂的乘除法、合并同类项、幂的乘方等知识,熟练掌握相关运算法则是解题的关键.7.已知点 14,A y , 22,B y , 33,C y 都在反比例函数 0ky k x的图象上,则1y ,2y ,3y 的大小关系为()A.321y y yB.132y y yC.312y y y D.231y y y 【答案】C 【解析】【分析】先根据函数解析式中的比例系数k 确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【详解】解:∵在反比例函数(0)ky k x中,0k , 此函数图象在二、四象限,420 ∵,点 14,A y ,2(2,)B y 在第二象限,10y ,20y ,∵函数图象在第二象限内为增函数,420 ,120y y .30 ∵,3(3,)C y 点在第四象限,30y \<,1y ∴,2y ,3y 的大小关系为312y y y .故选:C .【点睛】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.8.从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为()A.13B.12C.23D.34【答案】B 【解析】【分析】根据题意画树状图,再利用概率公式,即可得到答案.【详解】解:根据题意,画树状图如下:一共有12种情况,被抽到的2名同学都是男生的情况有6种,61122P,故选:B .【点睛】本题考查了列表法或画树状图法求概率,熟练掌握概率公式是解题关键.9.如图,在ABC 中,AB AC ,36BAC ,以点C 为圆心,以BC 为半径作弧交AC 于点D ,再分别以B ,D 为圆心,以大于12B D 的长为半径作弧,两弧相交于点P ,作射线CP 交AB 于点E ,连接DE .以下结论不正确...的是()A.36BCEB.BC AEC.512BE AC D.512AEC BEC S S △△【答案】C 【解析】【分析】由题意得,BC DC ,CE 平分ABC ,根据三角形内角和及角平分线判断A 即可;由角平分线求出36ACE A ,得到AE CE ,根据三角形内角和求出72BEC B ,得到CE BC ,即可判断B ;证明ABC CBE △∽△,得到AB BCBC BE,设1,AB BC x ,则1BE x ,求出x ,即可判断C ;过点E 作EG BC 于G ,EH AC 于H ,由角平分线的性质定理推出EG EH ,即可根据三角形面积公式判断D .【详解】解:由题意得,BC DC ,CE 平分ABC ,∵在ABC 中,AB AC ,36BAC ,∴72ABC ACB ∵CE 平分ABC ,∴36BCE ,故A 正确;∵CE 平分ABC ,72ACB ∴36ACE A ,∴AE CE ,∵72ABC ,36BCE ,∴72BEC B ,∴CE BC ,∴BC AE ,故B 正确;∵,A BCE ABC CBE ,∴ABC CBE △∽△,∴AB BCBC BE,设1,AB BC x ,则1BE x ,∴11x x x,∴21x x ,解得12x,∴13122BE,∴352BE AC,故C 错误;过点E 作EG BC 于G ,EH AC 于H,∵CE 平分ACB ,EG BC ,EH AC ,∴EG EH∴112122AEC BECAC EHS ACS BC BC EG △△,故D 正确;故选:C .【点睛】此题考查了等腰三角形等边对等角,相似三角形的判定和性质,角平分线的作图及性质,解一元二次方程,熟练掌握各知识点是解题的关键.10.定义:在平面直角坐标系中,对于点 11,P x y ,当点 22,Q x y 满足 12122x x y y 时,称点22,Q x y 是点 11,P x y 的“倍增点”,已知点 11,0P ,有下列结论:①点 13,8Q , 22,2Q 都是点1P 的“倍增点”;②若直线2y x 上的点A 是点1P 的“倍增点”,则点A 的坐标为 2,4;③抛物线223y x x 上存在两个点是点1P 的“倍增点”;④若点B 是点1P 的“倍增点”,则1PB 的最小值是5.其中,正确结论的个数是()A.1B.2C.3D.4【答案】C 【解析】【分析】①根据题目所给“倍增点”定义,分别验证12,Q Q 即可;②点 ,2A a a ,根据“倍增点”定义,列出方程,求出a 的值,即可判断;③设抛物线上点2,23D t t t 是点1P 的“倍增点”,根据“倍增点”定义列出方程,再根据判别式得出该方程根的情况,即可判断;④设点 ,B m n ,根据“倍增点”定义可得 21m n ,根据两点间距离公式可得 22211PB m n ,把 21n m 代入化简并配方,即可得出21PB 的最小值为165,即可判断.【详解】解:①∵ 11,0P , 13,8Q ,∴ 121282288103,x x y y ,∴ 12122x x y y ,则 13,8Q 是点1P 的“倍增点”;∵ 11,0P , 22,2Q ,∴ 121222212202,x x y y ,∴ 12122x x y y ,则 22,2Q 是点1P 的“倍增点”;故①正确,符合题意;②设点 ,2A a a ,∵点A 是点1P 的“倍增点”,∴ 2102a a ,解得:0a ,∴ 0,2A ,故②不正确,不符合题意;③设抛物线上点2,23D t t t 是点1P 的“倍增点”,∴ 22123t t t ,整理得:2450t t ,∵ 24415360 ,∴方程有两个不相等实根,即抛物线223y x x 上存在两个点是点1P 的“倍增点”;故③正确,符合题意;④设点 ,B m n ,∵点B 是点1P 的“倍增点”,∴ 21m n ,∵ ,B m n , 11,0P ,∴ 22211PB m n 22121m m2565m m 2316555m,∵50 ,∴21PB 的最小值为165,∴1PB 5,故④正确,符合题意;综上:正确的有①③④,共3个.故选:C .【点睛】本题主要考查了新定义,解一元一次方程,一元二次方程根的判别式,两点间的距离公式,解题的关键是正确理解题目所给“倍增点”定义,根据定义列出方程求解.二、填空题:本题共6小题,每小题4分,共24分.直接填写答案.11.因式分解:216x =__________.【答案】(x+4)(x-4)【解析】【分析】【详解】x 2-16=(x+4)(x-4),故答案为:(x+4)(x-4)12.围棋起源于中国,棋子分黑白两色.一个不透明的盒子中装有3个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则盒子中棋子的总个数是_________.【答案】12【解析】【分析】利用概率公式,得出黑色棋子的数量除以对应概率,即可算出棋子的总数.【详解】解:13124,∴盒子中棋子的总个数是12.故答案为:12.【点睛】本题考查了简单随机事件概率的相关计算,事件出现的概率等于出现的情况数与总情况数之比.13.关于x 的一元二次方程2420x x a 有实数根,则a 的值可以是_________(写出一个即可).【答案】2(答案不唯一)【解析】【分析】由于方程有实数根,则其根的判别式0 ,由此可以得到关于a 的不等式,解不等式就可以求出a 的取值范围,进而得出答案.【详解】解:∵关于x 的一元二次方程2420x x a 有实数根,∴ 22444120b ac a ,即1680a ,解得:2a ,∴a 的值可以是2.故答案为:2(答案不唯一).【点睛】本题考查一元二次方程 200ax bx c a 的根与判别式的关系,当0a 时,方程有两个不相等的实数根;当0a 时,方程有两个相等的实数根;当a<0时,方程没有实数根.14.如图,正五边形ABCDE 的边长为2,以A 为圆心,以AB 为半径作弧BE ,则阴影部分的面积为_________(结果保留 ).【答案】65【解析】【分析】根据正多边形内角和公式求出正五边形的内角和,再求出A 的度数,利用扇形面积公式计算即可.【详解】解:正五边形的内角和 52180540 ,5401085A ,2108263605ABES 扇形,故答案为:65.【点睛】本题考查了扇形面积和正多边形内角和的计算,熟练掌握扇形面积公式和正多边形内角和公式是解答本题的关键.15.学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,1l 和2l 分别表示两人到小亮家的距离 km s 和时间 h t 的关系,则出发__________h 后两人相遇.【答案】0.35【解析】【分析】根据题意和函数图象中的数据可以计算出小明和小亮的速度,从而可以解答本题.【详解】解:由题意和图象可得,小明0.5小时行驶了 6 3.5 2.5km ,∴小明的速度为: 2.55km/h 0.5,小亮0.4小时行驶了6km ,∴小明的速度为:615km/h 0.4 ,设两人出发h x 后两人相遇,∴ 155 3.5x 解得0.35x ,∴两人出发0.35后两人相遇,故答案为:0.35【点睛】本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.如图,将菱形纸片ABCD 沿过点C 的直线折叠,使点D 落在射线CA 上的点E 处,折痕CP 交AD 于点P .若30ABC ,2AP ,则PE 的长等于__________.【答案】26【解析】【分析】过点A 作AQ PE 于点Q ,根据菱形性质可得75DAC ,根据折叠所得30E D ,结合三角形的外角定理得出45EAP ,最后根据cos 45PQ AP tan 30AQ EQ 求解.【详解】解:过点A 作AQ PE 于点Q ,∵四边形ABCD 为菱形,30ABC ,∴AB BC CD AC ,30ABC D ,∴ 118030752DAC ,∵CPE △由CPD △沿CP 折叠所得,∴30E D ,∴753045EAP ,∵AQ PE ,2AP ,∴cos 45PQ AP AQ PQ ,∴tan 30AQ EQ∴PE EQ PQ.【点睛】本题主要考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是熟练掌握菱形和折叠的性质,正确画出辅助线,构造直角三角形求解.三、解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.计算: 1011tan 602 .【答案】3【解析】【分析】根据绝对值的意义、负整数指数幂、零指数幂以及特殊角的三角函数值分别计算后,再根据二次根式加减运算法则求解即可得到答案.【详解】解: 1011tan 60221 3 .【点睛】本题考查了绝对值的意义、负整数指数幂运算、零指数幂运算、特殊角的三角函数值、二次根式加减运算,熟练掌握相关运算法则是解本题的关键.18.解不等式组: 223235x x x x①②,并写出它的所有整数解.【答案】13x ,整数解为0,1,2【解析】【分析】分别求解两个不等式,再写出解集,最后求出满足条件的整数解即可.【详解】解:解不等式①,得1x ,解不等式②,得3x ,在同一条数轴上表示不等式①②的解集,原不等式组的解集是13x ,∴整数解为0,1,2.【点睛】本题主要考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法和步骤,以及写出不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”.19.已知:如图,点O 为ABCD Y 对角线AC 的中点,过点O 的直线与AD ,BC 分别相交于点E ,F .求证:DE BF.【答案】详见解析【解析】【分析】根据平行四边形的性质得出AD BC ,AD BC ∥,进而得出EAO FCO ,OEA OFC ,再证明AOE COF ≌△△,根据全等三角形的性质得出AE CF ,再利用线段的差得出AD AE BC CF ,即可得出结论.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ,AD BC ∥,∴EAO FCO ,OEA OFC ,∵点O 为对角线AC 的中点,∴AO CO ,∴AOE COF ≌△△,∴AE CF ,∴AD AE BC CF ,∴DE BF .【点睛】本题考查平行四边形的性质,全等三角形的判定与性质,正确理解题意是解题的关键.20.图1是某越野车的侧面示意图,折线段ABC 表示车后盖,已知1m AB ,0.6m BC ,123ABC ,该车的高度 1.7m AO .如图2,打开后备箱,车后盖ABC 落在AB C 处,AB 与水平面的夹角27B AD .(1)求打开后备箱后,车后盖最高点B 到地面l 的距离;(2)若小琳爸爸的身高为1.8m ,他从打开的车后盖C 处经过,有没有碰头的危险?请说明理由.(结果精确到.....001m .,参考数据:sin 270.454 ,cos 270.891 ,tan 270.510 1.732 )【答案】(1)车后盖最高点B 到地面的距离为2.15m(2)没有危险,详见解析【解析】【分析】(1)作B E AD ,垂足为点E ,先求出B E 的长,再求出B E AO 的长即可;(2)过C 作C F B E ,垂足为点F ,先求得63AB E ,再得到60C B F AB C AB E ,再求得cos600.3B F B C ,从而得出C 到地面的距离为2.150.3 1.85 ,最后比较即可.【小问1详解】如图,作B E AD ,垂足为点E在Rt AB E △中∵27B AD ,1AB AB ∴sin 27B EAB∴sin 2710.4540.454B E AB ∵平行线间的距离处处相等∴0.454 1.7 2.154 2.15B E AO 答:车后盖最高点B 到地面的距离为2.15m .【小问2详解】没有危险,理由如下:过C 作C F B E ,垂足为点F∵27B AD ,90B EA∴63AB E∵123AB C ABC∴60C B F AB C AB E在Rt B FC 中,0.6B C BC ∴cos600.3B F B C .∵平行线间的距离处处相等∴C 到地面的距离为2.150.3 1.85 .∵1.85 1.8∴没有危险.【点睛】本题主要考查了解直角三角形的应用,掌握直角三角形的边角关系是解题的关键.21.2023年,国内文化和旅游行业复苏势头强劲.某社团对30个地区“五一”假期的出游人数进行了调查,获得了它们“五一”假期出游人数(出游人数用m 表示,单位:百万)的数据,并对数据进行统计整理.数据分成5组:A 组:112m ;B 组:1223m ;C 组:2334m ;D 组:3445m ;E 组:4556m .下面给出了部分信息:a .B 组的数据:12,13,15,16,17,17,18,20.b.不完整的“五一”假期出游人数的频数分布直方图和扇形统计图如下:请根据以上信息完成下列问题:(1)统计图中E 组对应扇形的圆心角为____________度;(2)请补全频数分布直方图;(3)这30个地区“五一”假期出游人数的中位数是___________百万;(4)各组“五一”假期的平均出游人数如下表:组别A 112m B 1223m C 2334m D 3445m E 4556m 平均出游人数(百万)5.51632.54250求这30个地区“五一”假期的平均出游人数.【答案】(1)36(2)详见解析(3)15.5(4)20百万【解析】【分析】(1)由E 组的个数除以总个数,再乘以360 即可;(2)先用D 组所占百分比乘以总个数得出其个数,再用总个数减去A 、B 、D 、E 组的个数得出C 组个数,最后画图即可;(3)根据中位数的定义可得出中位数为第15和16个数的平均数,第15和16个数均在B 组,求解即可;(4)根据加权平均数的求解方法计算即可.【小问1详解】33603630,故答案为:36;【小问2详解】D 组个数:3010%3 个,C 组个数:30128334 个,补全频数分布直方图如下:【小问3详解】共30个数,中位数为第15和16个数的平均数,第15和16个数均在B 组,∴中位数为151615.52百万,故答案为:15.5;【小问4详解】5.51216832.544235032030(百万),答:这30个地区“五一”假期的平均出游人数是20百万.【点睛】本题考查了扇形统计图和频数分布直方图的相关知识,涉及求扇形所对的圆心角的度数,画频数分布直方图,求中位数,求加权平均数,熟练掌握知识点,并能够从题目中获取信息是解题的关键.22.如图,AB ,CD 为O 的直径,C 为O 上一点,过点C 的切线与AB 的延长线交于点P ,2ABC BCP ,点E 是 BD的中点,弦CE ,BD 相交于点E .(1)求OCB 的度数;(2)若3EF ,求O 直径的长.【答案】(1)60(2)【解析】【分析】(1)根据切线的性质,得出OC PC ,再根据直角三角形两锐角互余,得出90OCB BCP ,再根据等边对等角,得出OCB OBC ,再根据等量代换,得出2OCB BCP ,再根据90OCB BCP ,得出290BCP BCP ,即390BCP ,得出30BCP ,进而计算即可得出答案;(2)连接DE ,根据圆周角定理,得出90DEC ,再根据中点的定义,得出 DEEB ,再根据同弧或同弦所对的圆周角相等,得出1302DCE ECB FDE DCB ,再根据正切的定义,得出DE ,再根据30 角所对的直角边等于斜边的一半,得出2CD DE 【小问1详解】解:∵PC 与O 相切于点C ,∴OC PC ,∴90OCB BCP ,∵OB OC ,∴OCB OBC ,∵2ABC BCP ,∴2OCB BCP ,∴290BCP BCP ,即390BCP ,∴30BCP ,∴260OCB BCP ;【小问2详解】解:如图,连接DE ,∵CD 是O 直径,∴90DEC ,∵点E 是 BD的中点,∴ DEEB ,∴1302DCE ECB FDE DCB,在Rt FDE △中,∵3EF ,30FDE ,∴tan 30EF DE,在Rt DEC △中,∵30DCE ,∴2CD DE∴O 的直径的长为.【点睛】本题考查了切线的性质、直角三角形两锐角互余、等边对等角、圆周角定理及其推论、锐角三角函数、含30 角的直角三角形的性质,解本题的关键在熟练掌握相关的性质定理.23.某校开设智能机器人编程的校本课程,购买了A ,B 两种型号的机器人模型.A 型机器人模型单价比B 型机器人模型单价多200元,用2000元购买A 型机器人模型和用1200元购买B 型机器人模型的数量相同.(1)求A 型,B 型机器人模型的单价分别是多少元?(2)学校准备再次购买A 型和B 型机器人模型共40台,购买B 型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A 型和B 型机器人模型各多少台时花费最少?最少花费是多少元?【答案】(1)A 型编程机器人模型单价是500元,B 型编程机器人模型单价是300元(2)购买A 型机器人模型10台和B 型机器人模型30台时花费最少,最少花费是11200元【解析】【分析】(1)设A 型编程机器人模型单价是x 元,B 型编程机器人模型单价是 200x 元,根据:用2000元购买A 型机器人模型和用1200元购买B 型机器人模型的数量相同即可列出关于x 的分式方程,解方程并检验后即可求解;(2)设购买A 型编程机器人模型m 台,购买A 型和B 型编程机器人模型共花费w 元,根据题意可求出m 的范围和W 关于m 的函数关系式,再结合一次函数的性质即可求出最小值【小问1详解】解:设A 型编程机器人模型单价是x 元,B 型编程机器人模型单价是 200x 元.根据题意,得20001200200x x 解这个方程,得500x 经检验,500x 是原方程的根.200300x 答:A 型编程机器人模型单价是500元,B 型编程机器人模型单价是300元.【小问2详解】设购买A 型编程机器人模型m 台,购买B 型编程机器人模型 40m 台,购买A 型和B 型编程机器人模型共花费w 元,由题意得:403m m ,解得10m .∴5000.83000.840w m m 即1609600w m ,∵1600 ,∴w 随m 的增大而增大.∴当10m 时,w 取得最小值11200,此时4030m ;答:购买A 型机器人模型10台和B 型机器人模型30台时花费最少,最少花费是11200元.【点睛】本题考查了分式方程的应用、一元一次不等式的应用和一次函数的性质,正确理解题意、找准相等与不等关系、得出分式方程与不等式是解题的关键.24.综合与实践如图1,某兴趣小组计划开垦一个面积为28m 的矩形地块ABCD 种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为2m a .【问题提出】小组同学提出这样一个问题:若10a ,能否围出矩形地块?【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB 为m x ,BC 为m y .由矩形地块面积为28m ,得到8xy ,满足条件的 ,x y 可看成是反比例函数8y x的图象在第一象限内点的坐标;木栏总长为10m ,得到210x y ,满足条件的 ,x y 可看成一次函数210y x 的图象在第一象限内点的坐标,同时满足这两个条件的 ,x y 就可以看成两个函数图象交点的坐标.如图2,反比例函数 80y x x的图象与直线1l :210y x 的交点坐标为 1,8和_________,因此,木栏总长为10m 时,能围出矩形地块,分别为:1m AB ,8m BC ;或AB ___________m ,BC __________m .(1)根据小颖的分析思路,完成上面的填空.【类比探究】(2)若6a ,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由.【问题延伸】当木栏总长为m a 时,小颖建立了一次函数2y x a .发现直线2y x a 可以看成是直线2y x 通过平移得到的,在平移过程中,当过点 2,4时,直线2y x a 与反比例函数 80y x x的图象有唯一交点.(3)请在图2中画出直线2y x a 过点 2,4时的图象,并求出a 的值.【拓展应用】小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“2y x a 与8y x图象在第一象限内交点的存在问题”.(4)若要围出满足条件的矩形地块,且AB 和BC 的长均不小于1m ,请直接写出a 的取值范围.【答案】(1) 4,2;4;2;(2)不能围出,理由见解析;(3)图见解析,8a ;(4)817a 【解析】【分析】(1)联立反比例函数和一次函数表达式,求出交点坐标,即可解答;(2)根据6a 得出,26y x ,在图中画出26y x 的图象,观察是否与反比例函数图像有交点,若有交点,则能围成,否则,不能围成;(3)过点 2,4作1l 的平行线,即可作出直线2y x a 的图象,将点 2,4代入2y x a ,即可求出a 的值;(4)根据存在交点,得出方程 820x a a x有实数根,根据根的判别式得出8a ,再得出反比例函数图象经过点 1,8, 8,1,则当2y x a 与8y x 图象在点 1,8左边,点 8,1右边存在交点时,满足题意;根据图象,即可写出取值范围.【详解】解:(1)∵反比例函数 80y x x,直线1l :210y x ,∴联立得:8210y x y x ,解得:1118x y ,2242x y ,∴反比例函与直线1l :210y x 的交点坐标为 1,8和 4,2,当木栏总长为10m 时,能围出矩形地块,分别为:1m AB ,8m BC ;或4m AB ,2m BC .故答案为: 4,24;2.(2)不能围出.∵木栏总长为6m ,∴26x y ,则26y x ,画出直线26y x 的图象,如图中2l 所示:∵2l 与函数8y x图象没有交点,∴不能围出面积为28m 的矩形;(3)如图中直线3l 所示,3l 即为2y x a 图象,将点 2,4代入2y x a ,得:422a ,解得8a ;(4)根据题意可得∶若要围出满足条件的矩形地块,2y x a 与8y x图象在第一象限内交点的存在问题,即方程 820x a a x有实数根,整理得:2280x ax ,∴ 24280a ,解得:8a ,把1x 代入8y x 得:188y ,∴反比例函数图象经过点 1,8,把1y 代入8y x 得:81x ,解得:8x ,∴反比例函数图象经过点 8,1,令 1,8A , 8,1B ,过点 1,8A , 8,1B 分别作直线3l 的平行线,由图可知,当2y x a 与8y x图象在点A 左边,点B 右边存在交点时,满足题意;把 8,1代入2y x a 得:116a ,解得:17a ,∴817a .【点睛】本题主要考查了反比例函数和一次函数综合,解题的关键是正确理解题意,根据题意得出等量关系,掌握待定系数法,会根据函数图形获取数据.25.在平面直角坐标系xOy 中,正方形ABCD 的顶点A ,B 在x 轴上, 2,3C , 1,3D .抛物线 220y ax ax c a 与x 轴交于点 2,0E 和点F .(1)如图1,若抛物线过点C ,求抛物线的表达式和点F 的坐标;(2)如图2,在(1)的条件下,连接CF ,作直线CE ,平移线段CF ,使点C 的对应点P 落在直线CE 上,点F 的对应点Q 落在抛物线上,求点Q 的坐标;(3)若抛物线 220y ax ax c a 与正方形ABCD 恰有两个交点,求a 的取值范围.【答案】(1)233384y x x, 4,0F ;(2) 4,6 ;(3)103a 或3358a 【解析】【分析】(1)将点 2,3C , 2,0E 代入抛物线22y ax ax c ,利用待定系数法求出抛物线的表达式,再令0y ,求出x 值,即可得到点F 的坐标;(2)设直线CE 的表达式为y kx b ,将点 2,3C , 2,0E 代入解析式,利用待定系数法求出直线CE 的表达式为:33y x 42,设点233,384Q t t t ,根据平移的性质,得到点2332,684P t t t ,将点P 代入33y x 42,求出t 的值,即可得到点Q 的坐标;(3)根据正方形和点C 的坐标,得出3BC ,2OB ,1OA ,将 2,0E 代入22y ax ax c ,求得 222819y ax ax a a x a ,进而得到顶点坐标 1,9a ,分两种情况讨论:①当抛物线顶点在正方形内部时,②当抛物线与直线BC 交点在点C 上方,且与直线AD 交点在点D 下方时,分别列出不等式组求解,即可得到答案.【小问1详解】解:∵抛物线22y ax ax c 过点 2,3C ,2,0E 443440a a c a a c ,解得:383a c , 抛物线表达式为233384y x x,当0y 时,2333084x x ,解得:12x (舍去),24x ,4,0F ;【小问2详解】解:设直线CE 的表达式为y kx b ,∵直线过点 2,3C , 2,0E ,2320k b k b ,解得:3432k b,直线CE 的表达式为:33y x 42,∵点Q 在抛物线233384y x x 上,设点233,384Q t t t ,2,3C ∵, 4,0F ,且PQ 由CF 平移得到,点Q 向左平移2个单位,向上平移3个单位得到点2332,684P t t t,∵点P 在直线CE 上,将2332,684P t t t 代入33y x 42 ,23333642428t t t ,整理得:216t ,解得:14t ,24t (舍去),当4x 时, 233443684y Q 点坐标为 4,6 ;【小问3详解】解:∵四边形ABCD 是正方形, 2,3C ,3BC AB ,2OB ,1OA AB OB ,点A 和点D 的横坐标为1 ,点B 和点C 的横坐标为2,将 2,0E 代入22y ax ax c ,得:8c a ,222819y ax ax a a x a , 顶点坐标为 1,9a ,①如图,当抛物线顶点在正方形内部时,与正方形有两个交点,9390a a ,解得:103a ;②如图,当抛物线与直线BC 交点在点C 上方,且与直线AD 交点在点D下方时,与正方形有两个交点,222228312183a a a a a a ,解得:3358a ,综上所述,a 的取值范围为103a 或3358a .【点睛】本题是二次函数综合题,考查了二次函数的图象和性质,待定系数法求函数解析式,平移的性质,函数图像上点的坐标特征,抛物线与直线交点问题,解一元二次方程,解一元一次不等式组等知识,利用。
2024年山东省滨州市中考数学试题+答案详解
2024年山东省滨州市中考数学试题+答案详解(试题部分)温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求. 1. 12−的绝对值是( )A. 2B. 12 C. 12− D. 2−2. 如图,一个三棱柱无论怎么摆放,其主视图不可能是( )A. B.C. D.3. 数学中有许多精美的曲线,以下是“悬链线”“黄金螺旋线”“三叶玫瑰线”和“笛卡尔心形线”.其中不是轴对称图形的是( )A. B.C. D.4. 下列运算正确的是( )A. ()336n n =B. 22(2)4a a −=−C. 824x x x ÷=D. 23m m m ⋅=5. 若点()12,N a a −在第二象限,那么a 的取值范围是( ) A. 12a > B. 12a < C. 102a << D. 102a ≤< 6. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:某同学分析上表后得出如下结论:①这些运动员成绩的平均数是1.65;②这些运动员成绩的中位数是1.70;③这些运动员成绩的众数是1.75.上述结论中正确的是( )A. ②③B. ①③C. ①②D. ①②③7. 点()11,M x y 和点()22,N x y 在反比例函数223k k y x−+=(k 为常数)的图象上,若120x x <<,则120y y ,,的大小关系为( )A. 120y y <<B. 120y y >>C. 120y y <<D. 120y y >>8. 刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt ABC △中,90C ∠=︒,,,AB BC CA 的长分别为,,c a b .则可以用含,,c a b 的式子表示出ABC 的内切圆直径d ,下列表达式错误的是( )A. d a b c =+−B. 2ab d a b c =++C. d =D. |()()|d a b c b =−−第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9. 若分式11x −在实数范围内有意义,则x 的取值范围是_____.10.小的整数是___________.11. 将抛物线2y x =−先向右平移1个单位长度,再向上平移2个单位长度,则平移后抛物线的顶点坐标为____________.12. 一副三角板如图1摆放,把三角板AOB 绕公共顶点O 顺时针旋转至图2,即AB OD ∥时,1∠的大小为____________︒.13. 如图,在ABC 中,点D ,E 分别在边,AB AC 上.添加一个条件使ADE ACB ∽,则这个条件可以是____________.(写出一种情况即可)14. 如图,四边形ABCD 内接于⊙O ,若四边形AOCD 是菱形,∠B 的度数是______.15. 如图,四边形AOBC 四个顶点的坐标分别是(1,3)A −,(0,0)O ,(3,1)B −,(5,4)C ,在该平面内找一点P ,使它到四个顶点的距离之和PA PO PB PC +++最小,则P 点坐标为____________.16. 如图,在边长为1的正方形网格中,点A ,B 均在格点上.(1)AB 的长为____________;(2)请只用..无刻度的直尺,在如图所示的网格中,画出以AB 为边的矩形ABCD ,使其面积为263,并简要说明点C ,D 的位置是如何找到的(不用证明):____________. 三、解答题:本大题共8个小题,满分72分.解答时请写出必要的演推过程.17. 计算:()11222−⎫⎛+−⨯−− ⎪⎝⎭ 18. 解方程:(1)21132x x −+=; (2)240x x −=.19. 欧拉是历史上享誉全球的最伟大的数学家之一,他不仅在高等数学各个领域作出杰出贡献,也在初等数学中留下了不凡的足迹.设a ,b ,c 为两两不同的数,称()()()()()()()0,1,2,3n n nn a b c P n a b a c b c b a c a c b =++=−−−−−−为欧拉分式. (1)写出0P 对应的表达式;(2)化简1P 对应的表达式.20. 某校劳动实践基地共开设五门劳动实践课程,分别是A :床铺整理,B :衣物清洗,C :手工制作、D :简单烹饪、E :绿植栽培;课程开设一段时间后,季老师采用抽样调查的方式在全校学生中开展了“我最喜欢的劳动实践课程”为主题的问卷调查.根据调查所收集的数我进行整理、绘制了如下两幅不完整的统计图.根据图中信息,请回答下列问题:(1)请将条形统计图补充完整,并直接写出“手工制作”对应的扇形圆心角度数;(2)若该校共有1800名学生,请你估计全校最喜欢“绿植栽培”的学生人数;(3)小兰同学从B ,C ,D 三门课程中随机选择一门参加劳动实践,小亮同学从C ,D ,E 三门课程中随机选择一门参加劳动实践,求两位同学选择相同课程的概率.21. 【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在ABC 中,若AD BC ⊥,BD CD =,则有B C ∠=∠;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB AC =,即知AB BD AC CD +=+,若把①中的BD CD =替换为AB BD AC CD +=+,还能推出B C ∠=∠吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出B C ∠=∠,并分别提供了不同的证明方法.小军小民ADB 与△【问题解决】(1)完成①的证明;(2)把②中小军、小民的证明过程补充完整.22. 春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入-运营成本)为w (单位:元),求w 与x 之间的函数关系式;(3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?如图1,ABC 中,点D ,E ,F 分别在三边BC CA AB ,,上,且满足DF AC DE AB ,∥∥.23. ①求证:四边形AFDE 为平行四边形;②若AB BD AC DC=,求证:四边形AFDE 为菱形; 24. 把一块三角形余料MNH (如图2所示)加工成菱形零件,使它的一个顶点与MNH △的顶点M 重合,另外三个顶点分别在三边MN NH HM ,,上,请在图2上作出这个菱形.(用尺规作图,保留作图痕迹,不写作法.)25. 【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题: ABC 中,)【得出结论】sin sin sin a b c A B C==. 【基础应用】在ABC 中,75B ∠=︒,45C ∠=︒,2BC =,利用以上结论求AB 的长;【推广证明】 进一步研究发现,sin sin sin a b c A B C==不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足2sin sin sin a b c R A B C===(R 为ABC 外接圆的半径). 请利用图1证明:2sin sin sin a b c R A B C===.【拓展应用】如图2,四边形ABCD 中,2AB =,3BC =,4CD =,90B C ∠=∠=︒.求过A ,B ,D 三点的圆的半径.2024年山东省滨州市中考数学试题+答案详解(答案详解)温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题,每小题3分,满分24分.每小题只有一个选项符合题目要求.1.12−的绝对值是()A. 2B. 12C.12− D. 2−【答案】B【解析】【分析】本题考查了绝对值,根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.【详解】解:∵11 22−=,∴12−的绝对值是12,故选:B.2. 如图,一个三棱柱无论怎么摆放,其主视图不可能是()A. B.C. D.【答案】A【解析】【分析】本题考查了物体的三视图,根据三棱柱的表面由2个三角形,1个正方形,2个矩形构成即可判断求解,掌握三棱柱的结构特点是解题的关键.【详解】解:∵三棱柱的表面由2个三角形,1个正方形,2个矩形构成,∴其主视图可能是三角形或正方形或矩形,不可能是圆,故选:A.3. 数学中有许多精美的曲线,以下是“悬链线”“黄金螺旋线”“三叶玫瑰线”和“笛卡尔心形线”.其中不是轴对称图形的是()A. B.C. D.【答案】B【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进行判断即可.【详解】解:A,C,D选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;B选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形.故选:B.4. 下列运算正确的是( )A. ()336n n =B. 22(2)4a a −=−C. 824x x x ÷=D. 23m m m ⋅=【答案】D【解析】【分析】本题考查了幂的运算.根据幂的乘方运算、积的乘方运算、同底数幂的乘法运算、同底数幂的除法运算逐项验证即可得到答案.【详解】解:A 、()3396n n n =≠,本选项不符合题意;B 、222(2)44a a a −=≠−,本选项不符合题意;C 、8264x x x x ÷=≠,本选项不符合题意;D 、23m m m ⋅=,本选项符合题意;故选:D .5. 若点()12,N a a −在第二象限,那么a 的取值范围是( ) A. 12a > B. 12a < C. 102a << D. 102a ≤< 【答案】A【解析】【分析】本题考查各象限内的点的坐标特点,解一元一次不等式组.根据点()12,N a a −在第二象限可得不等式组1200a a −<⎧⎨>⎩,求解即可. 【详解】解:∵点()12,N a a −在第二象限,∴1200a a −<⎧⎨>⎩, 解得:12a >. 故选:A .6. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:某同学分析上表后得出如下结论:①这些运动员成绩的平均数是1.65;②这些运动员成绩的中位数是1.70;③这些运动员成绩的众数是1.75.上述结论中正确的是( )A. ②③B. ①③C. ①②D. ①②③ 【答案】A【解析】【分析】本题考查了平均数、中位数、众数.根据平均数、中位数、众数的意义求解即可.【详解】解:①这些运动员成绩的平均数是()12 1.53 1.62 1.653 1.74 1.751 1.8 1.615⨯+⨯+⨯+⨯+⨯+⨯=,原说法不正确;②这些运动员成绩的中位数是从小到大排列第8个数为1.70,原说法正确;③这些运动员成绩出现最多的是1.75,则的众数是1.75,原说法正确.故选:A .7. 点()11,M x y 和点()22,N x y 在反比例函数223k k y x −+=(k 为常数)的图象上,若120x x <<,则120y y ,,的大小关系为( )A. 120y y <<B. 120y y >>C. 120y y <<D. 120y y >>【答案】C【解析】【分析】本题考查了反比例函数的性质,利用配方法可得()2223120k k k −+=−+>,进而得到反比例函数的图象分布在一、三象限,0x >时,0y >,0x <时,0y <,据此即可求解,利用配方法得到()2223120k k k −+=−+>是解题的关键.【详解】解:∵()2223120k k k −+=−+>, ∴反比例函数的图象分布在一、三象限,0x >时,0y >,0x <时,0y <,∵120x x <<,∴120y y <<,故选:C .8. 刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt ABC △中,90C ∠=︒,,,AB BC CA 的长分别为,,c a b .则可以用含,,c a b 的式子表示出ABC 的内切圆直径d ,下列表达式错误的是( )A. d a b c =+−B. 2ab d a b c =++C. d =D. |()()|d a b c b =−−【答案】D【解析】【分析】如图,设E F G 、、为切点,连接OC OD OE OF 、、、,则OE AC ⊥,再结合切线长定理可判定A ,再结合三角形的面积可判定B ,再由d a b c =+−,结合完全平方公式与勾股定理可判断C ,通过举反例可得D 错误.【详解】解:如图,设E F G 、、为切点,连接OC OD OE OF 、、、,则OE AC ⊥,OD BC ⊥,OF AB ⊥,2d OD OE OF ===,由切线长定理得,AE AF =,CE CD =,BD BF =,∵90ACB OEC ODC ∠=∠=∠=︒,CE CD =,∴四边形ODCE 是正方形, ∴2d CE CD OD ===, ∴2d AE b =−,2d BD a =−,∴2d BF a =−, ∴22d d AF c a c a ⎛⎫=−−=−+ ⎪⎝⎭, ∵AE AF =, ∴22d d b c a −=−+, ∴d a b c =+−,故A 正确,不合题意;∵ABC BOC AOC AOB S S S S =++△△△△, ∴11112222222d d d ab a b c =⨯+⨯+⨯, ∴2ab ad bd cd =++ ∴2ab d a b c=++,故B 正确,不合题意; ∵d a b c =+−,∴()22d a b c =+− 222222a b c ab ac bc =+++−−,∵222+=a b c ,222222d c ab ac bc ∴=+−−()()22c c a b c a =−−−()()2c a c b =−−,∵0d >,d ∴=C 正确;令3a =,4b =,5c =,3452d a b c ∴=+−=+−=,而()()()()34541a b c b −−=−⨯−=,|()()|d a b c b ∴≠−−,故D 错误;故选D【点睛】本题考查的是三角形的内切圆的性质,勾股定理的应用,分解因式的应用,举反例的应用,切线长定理的应用,掌握基础知识并灵活应用是解本题的关键.第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9. 若分式11x−在实数范围内有意义,则x的取值范围是_____.【答案】x≠1【解析】【分析】分式有意义的条件是分母不等于零.【详解】∵分式11x−在实数范围内有意义,∴x−1≠0,解得:x≠1故答案为x≠1.【点睛】此题考查分式有意义的条件,解题关键在于分母不等于零使得分式有意义.10.小的整数是___________.【答案】2或3【解析】的大小,然后确定范围在其中的整数即可.【详解】2<,323<<<小的整数为2或3,故答案为:2或3【点睛】本题考查了无理数的估算和大小比较,掌握无理数估算的方法是正确解答的关键.11. 将抛物线2y x=−先向右平移1个单位长度,再向上平移2个单位长度,则平移后抛物线的顶点坐标为____________.【答案】()1,2【解析】【分析】本题考查了二次函数的图象与几何变换和二次函数的性质.根据“上加下减,左加右减”的规律进行解答即可.【详解】解:由抛物线2y x =−先向右平移1个单位长度,再向上平移2个单位长度,根据“上加下减,左加右减”规律可得抛物线是()212y x =−−+,∴顶点坐标是()1,2故答案为:()1,2.12. 一副三角板如图1摆放,把三角板AOB 绕公共顶点O 顺时针旋转至图2,即AB OD ∥时,1∠的大小为____________︒.【答案】75【解析】【分析】本题考查了的平行线的性质,三角形的外角性质.由AB OD ∥,推出45BOD B ∠=∠=︒,再利用三角形的外角性质即可求解.【详解】解:∵AB OD ∥,∴45BOD B ∠=∠=︒,∴1453075BOD D ∠=∠+∠=︒+︒=︒,故答案为:75.13. 如图,在ABC 中,点D ,E 分别在边,AB AC 上.添加一个条件使ADE ACB ∽,则这个条件可以是____________.(写出一种情况即可)【答案】ADE C ∠=∠或AED B ∠=∠或AD AE AC AB= 【解析】 【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.利用有两组角对应相等的两个三角形相似添加条件.【详解】解:DAE CAB ∠=∠,∴当ADE C ∠=∠时,ADE ACB ∽.当AED B ∠=∠时,ADE ACB ∽. 当AD AE AC AB=时,ADE ACB ∽. 故答案为:ADE C ∠=∠或AED B ∠=∠或AD AE AC AB =. 14. 如图,四边形ABCD 内接于⊙O ,若四边形AOCD 是菱形,∠B 的度数是______.【答案】60°##60度【解析】【分析】根据圆内接四边形的性质得到∠B +∠D =180°,根据菱形的性质,圆周角定理列式计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠B +∠D =180°,∵四边形OACD 是菱形,∴∠AOC =∠D ,由圆周角定理得,∠B =12∠AOC , ∴∠B +2∠B =180°,解得,∠B =60°,故答案为:60°.【点睛】本题考查的是圆内接四边形的性质,菱形的性质,掌握圆内接四边形的对角互补是解题的关键. 15. 如图,四边形AOBC 四个顶点的坐标分别是(1,3)A −,(0,0)O ,(3,1)B −,(5,4)C ,在该平面内找一点P ,使它到四个顶点的距离之和PA PO PB PC +++最小,则P 点坐标为____________.【答案】108,99⎛⎫⎪⎝⎭##181,99⎛⎫ ⎪⎝⎭ 【解析】 【分析】本题考查了一次函数的应用,两点之间线段最短.连接AB OC 、相交于点P ,根据“两点之间线段最短”知PA PO PB PC +++最小,利用待定系数法求得直线AB 和OC 的解析式,联立即可求解.【详解】解:连接AB OC 、相交于点P ,根据“两点之间线段最短”知PA PO PB PC +++最小,设直线AB 的解析式为y kx b =+,则有331k b k b −+=⎧⎨+=−⎩, 解得12k b =−⎧⎨=⎩, ∴直线AB 的解析式为2y x =−+,设直线OC 的解析式为y mx =,则有45m =, 解得45m =, ∴直线OC 的解析式为45y x =, 联立得425x x =−+,解得109x=,则4108599y=⨯=,∴P点坐标为108,99⎛⎫ ⎪⎝⎭,故答案为:108,99⎛⎫ ⎪⎝⎭.16. 如图,在边长为1的正方形网格中,点A,B均在格点上.(1)AB的长为____________;(2)请只用..无刻度的直尺,在如图所示的网格中,画出以AB为边的矩形ABCD,使其面积为263,并简要说明点C,D的位置是如何找到的(不用证明):____________.【答案】①. ②. 取点,E F,得到正方形ABEF,AF交格线于点C,BE交格线于点D,连接DC,得到矩形ABCD,即为所求.【解析】【分析】本题考查了网格与勾股定理,勾股定理的逆定理,矩形的性质与判定,掌握勾股定理是解题的关键.(1)根据勾股定理直接计算即可求解;(2)取点,E F,得到正方形ABEF,AF交格线于点D,BE交格线于点C,连接DC,得到矩形ABCD,即为所求.【详解】(1)AB==(2)取点,E F,则AF AB===ABEF,∴正方形ABEF13=,AF交格线于点D,BE交格线于点C,连接DC ,得到矩形ABCD ,∵DG FH , ∴23AD AG AF AH ==,∴23AD AF BC ===,∴矩形ABCD 263=, 如图,矩形ABCD ,即为所求..故答案为:取点,E F ,得到正方形ABEF ,AF 交格线于点D ,BE 交格线于点C ,连接DC ,得到矩形ABCD ,即为所求.三、解答题:本大题共8个小题,满分72分.解答时请写出必要的演推过程.17. 计算:()11222−⎫⎛+−⨯−− ⎪⎝⎭ 【答案】0【解析】【分析】本题考查了实数的混合运算,根据实数的运算法则和运算律即可求解,掌握据实数的运算法则和运算律是解题的关键. 【详解】解:原式13122=+−, 13122=−+, =11−+,0=.18. 解方程:(1)21132x x −+=; (2)240x x −=.【答案】(1)5x =(2)10x =,24x =.【解析】【分析】本题主要考查了解一元一次方程和一元二次方程,解题的关键是熟练掌握解方程的一般步骤,准确计算.(1)先去分母,再去括号,然后移项并合并同类项,最后系数化为1即可得解;(2)用因式分解法,解一元二次方程即可.【小问1详解】 解:21132x x −+=, 去括号得:()()22131x x −=+,去括号得:4233x x −=+,移项合并同类项得:5x =;【小问2详解】解:240x x −=,分解因式得:()40x x −=,∴0x =或40x −=,解得:10x =,24x =.19. 欧拉是历史上享誉全球的最伟大的数学家之一,他不仅在高等数学各个领域作出杰出贡献,也在初等数学中留下了不凡的足迹.设a ,b ,c 为两两不同的数,称()()()()()()()0,1,2,3n n nn a b c P n a b a c b c b a c a c b =++=−−−−−−为欧拉分式. (1)写出0P 对应的表达式;(2)化简1P 对应的表达式.【答案】(1)()()()()()()0111P a b a c b c b a c a c b =++−−−−−−(2)10P =【解析】 【分析】本题考查分式的化简求值,弄清欧拉公式的特点,利用分式的加减法计算是解题的关键. (1)将0n =代入欧拉公式即可;(2)将1n =代入欧拉公式化简计算即可.【小问1详解】解:当0n =时,()()()()()()0000a b c P a b a c b c b a c a c b =++−−−−−− ()()()()()()111a b a c b c b a c a c b =++−−−−−− 【小问2详解】 ()()()()()()1a b c P a b a c b c b a c a c b =++−−−−−− ()()()()()()a b a c b c a b a c b c a b c =−+−−−−−− ()())()()()(a b c b a c c a b a b a c b c =−−−−−−+− ()()()ab ac ab bc ca b c b c bc a a =−−−−−−++ ()()()ab ac ab bc ca b c b c bc a a =−−−−−−++ 0=.20. 某校劳动实践基地共开设五门劳动实践课程,分别是A :床铺整理,B :衣物清洗,C :手工制作、D :简单烹饪、E :绿植栽培;课程开设一段时间后,季老师采用抽样调查的方式在全校学生中开展了“我最喜欢的劳动实践课程”为主题的问卷调查.根据调查所收集的数我进行整理、绘制了如下两幅不完整的统计图.根据图中信息,请回答下列问题:(1)请将条形统计图补充完整,并直接写出“手工制作”对应的扇形圆心角度数;(2)若该校共有1800名学生,请你估计全校最喜欢“绿植栽培”的学生人数;(3)小兰同学从B,C,D三门课程中随机选择一门参加劳动实践,小亮同学从C,D,E三门课程中随机选择一门参加劳动实践,求两位同学选择相同课程的概率.【答案】(1)补充条形统计图见解析;“手工制作”对应的扇形圆心角度数为72︒;(2)估计全校最喜欢“绿植栽培”的学生人数为540人;(3)甲乙两位同学选择相同课程的概率为:29.【解析】【分析】(1)根据选择“E”的人数及比例求出总人数,总人数乘以D占的比例求得“D”的人数,总人数减去其他类别的人数求得“A”的人数,据此即可将条形统计图补充完整,再用360度乘以“C”占的比例即为“手工制作”对应的扇形圆心角度数;(2)利用样本估计总体思想求解;(3)通过列表或画树状图列出所有等可能的情况,再从中找出符合条件的情况数,再利用概率公式计算.【小问1详解】解:参与调查的总人数为:3030%100÷=(人),“D”的人数10025%25⨯=(人),“A”的人数1001020253015−−−−=(人),“手工制作”对应的扇形圆心角度数2036072 100⨯︒=︒,补充条形统计图如图:【小问2详解】解:180030%540⨯=(人),因此估计全校最喜欢“绿植栽培”的学生人数为540人;【小问3详解】解:画树状图如下:由图可知,共有9种等可能的情况,其中两位同学选择相同课程的情况有2种, 因此甲乙两位同学选择相同课程的概率为:29. 【点睛】本题考查条形统计图、扇形统计图、利用样本估计总体、利用画树状图或者列表法求概率等,解题的关键是将条形统计图与扇形统计图的信息进行关联,掌握画树状图或者列表法求概率的原理. 21. 【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在ABC 中,若AD BC ⊥,BD CD =,则有B C ∠=∠;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB AC =,即知AB BD AC CD +=+,若把①中的BD CD =替换为AB BD AC CD +=+,还能推出B C ∠=∠吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出B C ∠=∠,并分别提供了不同的证明方法.小军小民 ADB 与△【问题解决】(1)完成①的证明;(2)把②中小军、小民的证明过程补充完整.【答案】(1)见解析 (2)见解析【解析】【分析】题目主要考查全等三角形的判定和性质,勾股定理解三角形,理解题意,作出辅助线,综合运用这些知识点是解题关键.(1)根据题意利用全等三角形的判定和性质即可证明;(2)小军证明:分别延长,DB DC 至E ,F 两点,使得,BE AB CF AC ==,根据全等三角形的判定和性质得出E F ∠∠=,再由等边对等角及三角形的外角性质即可证明;小民证明:利用勾股定理得出AD ==,AD ==AB BD AC CD −=−,然后求和得出AB AC =,即可证明.【小问1详解】证明:∵AD BC ⊥,∴90ADB ADC ∠∠==︒, 在Rt ADB 与Rt ADC 中,90AD AD ADB ADC BD CD ∠∠=⎧⎪==︒⎨⎪=⎩,∴()SAS Rt ADB Rt ADC ≌,∴B C ∠=∠;【小问2详解】小军证明:分别延长,DB DC 至E ,F 两点,使得,BE AB CF AC ==,如图所示:∵AB BD AC CD +=+,∴BE BD CF CD +=+即DE DF =,∵AD BC ⊥,∴90ADB ADC ∠∠==︒,在Rt ADE 与Rt ADF 中,90AD AD ADB ADC ED FD ∠∠=⎧⎪==︒⎨⎪=⎩,∴()SAS Rt ADE Rt ADF ≌,∴E F ∠∠=,∵,BE AB CF AC ==,∴E EAB F FAC ∠∠∠∠===,∴,E EAB ABC F FAC ACB ∠∠∠∠∠∠+=+=,∴ABC ACB ∠∠=;小民:证明:∵AD BC ⊥.∴ADB 与ADC △均为直角三角形,根据勾股定理,AD ==,AD ==∵AB BD AC CD +=+①,∴AB BD AC CD −=−②,+①②得:AB AC =,∴B C ∠=∠.22. 春节期间,全国各影院上映多部影片,某影院每天运营成本为2000元,该影院每天售出的电影票数量y (单位:张)与售价x (单位:元/张)之间满足一次函数关系(3080x ≤≤,且x 是整数),部分数据如下表所示:(1)请求出y 与x 之间的函数关系式;(2)设该影院每天的利润(利润=票房收入-运营成本)为w (单位:元),求w 与x 之间的函数关系式;(3)该影院将电影票售价x 定为多少时,每天获利最大?最大利润是多少?【答案】(1)()43243080y x x =−+≤≤(2)()2432420003080w x x x =−+−≤≤ (3)定价40元/张或41元/张时,每天获利最大,最大利润是4560元【解析】【分析】本题是一次函数与二次函数的应用,解题的关键是得出函数解析式,并熟练掌握二次函数的性质. (1)设y 与x 之间的函数关系式为y kx b =+,根据待定系数法代入求解即可;(2)“利润=票房收入-运营成本”可得函数解析式;(2)将函数解析式配方成顶点式,由3080x ≤≤,且x 是整数,结合二次函数的性质求解可得.【小问1详解】解:设y 与x 之间的函数关系式为y kx b =+,则1644012450k b k b =+⎧⎨=+⎩,解得4324k b =−⎧⎨=⎩, ∴y 与x 之间的函数关系式()43243080y x x =−+≤≤;【小问2详解】由题意得:22000(4324)200043242000w xy x x x x =−=−+−=−+−,即w 与x 之间的函数关系式为:()2432420003080w x x x =−+−≤≤.【小问3详解】()2281432420004()456130802w x x x x =−+−=−−+≤≤, x 是整数,且 3080x ≤≤,∴ 当40x =或41时,w 取得最大值,最大值为4560.价格低更能吸引顾客,定价40元/张或41元/张时,每天获利最大,最大利润是4560元.如图1,ABC 中,点D ,E ,F 分别在三边BC CA AB ,,上,且满足DF AC DE AB ,∥∥.23. ①求证:四边形AFDE 为平行四边形;②若AB BD AC DC=,求证:四边形AFDE 为菱形; 24. 把一块三角形余料MNH (如图2所示)加工成菱形零件,使它的一个顶点与MNH △的顶点M 重合,另外三个顶点分别在三边MN NH HM ,,上,请在图2上作出这个菱形.(用尺规作图,保留作图痕迹,不写作法.)【答案】23. ①见解析;②见解析24. 见解析【解析】【分析】本题考查了平行四边形的判定定理、菱形的判定定理、尺规作图,熟练掌握相关判定定理是解题的关键.(1)①DF AC DE AB ,∥∥,即可证明四边形AFDE 为平行四边形;②由DF AC DE AB ,∥∥,可得DF BD AC BC =,DE CD AB BC=,即DF BC AC BD ⋅=⋅, DE BC AB CD ⋅=⋅,再由AB BD AC DC=,得AB DC AC BD ⋅=⋅,因此DF DE =,进而即可证明四边形AFDE 为菱形; (2)作NMH ∠的角平分线,交NH 于点P ,作MP 的垂直平分线,交MN 于点D ,交MH 于点E ,则四边形MDPE 是菱形.【23题详解】①证明:DF AC DE AB ∥,∥,∴四边形AFDE 为平行四边形;②DF AC ∥,DF BD AC BC∴=, 即DF BC AC BD ⋅=⋅DE AB ∥,DE CD AB BC∴=, 即DE BC AB CD ⋅=⋅, 又AB BD AC DC =, AB DC AC BD ∴⋅=⋅,DF DE ∴=,由①知四边形AFDE 为平行四边形,∴四边形AFDE 为菱形;【24题详解】如图,菱形MDPE 即为所求.∵MP 平分NMH ∠,∴DMP EMP ∠=∠,∵DE 是MP 的垂直平分线,∴DM DP =,EM EP =,∴DMP DPM ∠=∠,=EMP EPM ∠∠,∴DPM EMP ∠=∠,EPM DMP ∠=∠,∴DP ME ∥,EP DM ∥,∴四边形MDPE 是平行四边形,∵DM DP =,∴平行四边形MDPE 是菱形.25. 【教材呈现】现行人教版九年级下册数学教材85页“拓广探索”第14题: ABC 中,)【得出结论】sin sin sin a b c A B C==. 【基础应用】在ABC 中,75B ∠=︒,45C ∠=︒,2BC =,利用以上结论求AB 的长;【推广证明】 进一步研究发现,sin sin sin a b c A B C==不仅在锐角三角形中成立,在任意三角形中均成立,并且还满足2sin sin sin a b c R A B C ===(R 为ABC 外接圆的半径). 请利用图1证明:2sin sin sin a b c R A B C===.【拓展应用】如图2,四边形ABCD 中,2AB =,3BC =,4CD =,90B C ∠=∠=︒.求过A ,B ,D 三点的圆的半径.【答案】教材呈现:见解析;基础应用:AB =;推广证明:见解析;拓展应用:R =. 【解析】。
2024年山东省威海市中考数学试题(含解析)
扬州市2024年初中毕业升学考试数学注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置,在试卷第一面的右下角填写好座位号.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,必须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.实数2的倒数是()A.2- B.2C.12-D.122.“致中和,天地位焉,万物育焉”,对称之美随处可见.下列选项分别是扬州大学、扬州中国大运河博物馆、扬州五亭桥、扬州志愿服务的标识.其中的轴对称图形是()A.B.C.D.3.下列运算中正确的是()A.222()a b a b -=-B.523a a a -=C.()235a a = D.236326a a a ⋅=4.第8个全国近视防控宣传教育月的主题是“有效减少近视发生,共同守护光明未来”.某校积极响应,开展视力检查.某班45名同学视力检查数据如下表:视力 4.34.44.54.64.74.84.95.0人数7447111053这45名同学视力检查数据的众数是()A.4.6B.4.7C.4.8D.4.95.在平面直角坐标系中,点()1,2P 关于原点的对称点P'的坐标是()A.()1,2 B.()1,2- C.()1,2- D.()1,2--6.如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥B.圆锥C.三棱柱D.长方体7.在平面直角坐标系中,函数42=+y x 的图像与坐标轴的交点个数是()A.0B.1C.2D.48.1202年数学家斐波那契在《计算之书》中记载了一列数:1,1,2,3,5,……,这一列数满足:从第三个数开始,每一个数都等于它的前两个数之和.则在这一列数的前2024个数中,奇数的个数为()A.676B.674C.1348D.1350二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.近年来扬州经济稳步发展:2024年4月26日,扬州市统计局、国家统计局扬州调查队联合发布一季度全市实现地区生产总值约18700000万元,把18700000这个数用科学记数法表示为____.10.分解因式:2242a a -+=_____.11.某学习小组做抛掷一枚瓶盖的实验,整理的实验数据如表:累计抛掷次数501002003005001000200030005000盖面朝上次数2854106158264527105615872650盖面朝上频率0.56000.54000.53000.52670.52800.52700.52800.52900.530随着实验次数的增大,“盖面朝上”的概率接近于__________(精确到0.01).12.有意义,则x 的取值范围是___.13.若用半径为10cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥底面圆的半径为____cm .14.如图,已知一次函数(0)y kx b k =+≠的图象分别与x 、y 轴交于A 、B 两点,若2OA =,1OB =,则关于x 的方程0kx b +=的解为_____.15.《九章算术》是中国古代的数学专著,是《算经十书》中最重要的一部,书中第八章内容“方程”里记载了一个有趣的追及问题,可理解为:速度快的人每分钟走100米,速度慢的人每分钟走60米,现在速度慢的人先走100米,速度快的人去追他.问速度快的人追上他需要____分钟.16.物理课上学过小孔成像的原理,它是一种利用光的直线传播特性实现图像投影的方法.如图,燃烧的蜡烛(竖直放置)AB 经小孔O 在屏幕(竖直放置)上成像A B ''.设36cm AB =,24cm A B ''=.小孔O 到AB 的距离为30cm ,则小孔O 到A B ''的距离为_____cm .17.如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x=>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为_____.18.如图,已知两条平行线1l 、2l ,点A 是1l 上的定点,2AB l ⊥于点B ,点C 、D 分别是1l 、2l 上的动点,且满足AC BD =,连接CD 交线段AB 于点E ,BH CD ⊥于点H ,则当BAH ∠最大时,sin BAH ∠的值为_____.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:0|3|2sin 302)π-+︒--;(2)化简:2(2)1x x x -÷-+.20.解不等式组260412x x x -≤⎧⎪⎨-<⎪⎩,并求出它的所有整数解的和.21.2024年5月28日,神舟十八号航天员叶光富、李聪、李广苏密切协同,完成出舱活动,活动时长达8.5小时,刷新了中国航天员单次出舱活动时间纪录,进一步激发了青少年热爱科学的热情.某校为了普及“航空航天”知识,从该校1200名学生中随机抽取了200名学生参加“航空航天”知识测试,将成绩整理绘制成如下不完整的统计图表:成绩统计表组别成绩x (分)百分比A 组60x <5%B 组6070x ≤<15%C 组7080x ≤<aD 组8090x ≤<35%E 组90100x ≤≤25%成绩条形统计图根据所给信息,解答下列问题:(1)本次调查的成绩统计表中=a ________%,并补全条形统计图;(2)这200名学生成绩的中位数会落在________组(填A 、B 、C 、D 或E );(3)试估计该校1200名学生中成绩在90分以上(包括90分)的人数.22.2024年“五一”假期,扬州各旅游景区持续火热.小明和小亮准备到东关街、瘦西湖、运河三湾风景区、个园、何园(分别记作A 、B 、C 、D 、E )参加公益讲解活动.(1)若小明在这5个景区中随机选择1个景区,则选中东关街的概率是______;(2)小明和小亮在C 、D 、E 三个景区中,各自随机选择1个景区,请用画树状图或列表的方法,求小明和小亮选到相同景区的概率.23.为了提高垃圾处理效率,某垃圾处理厂购进A 、B 两种机器,A 型机器比B 型机器每天多处理40吨垃圾,A 型机器处理500吨垃圾所用天数与B 型机器处理300吨垃圾所用天数相等.B 型机器每天处理多少吨垃圾?24.如图1,将两个宽度相等的矩形纸条叠放在一起,得到四边形ABCD .(1)试判断四边形ABCD 的形状,并说明理由;(2)已知矩形纸条宽度为2cm ,将矩形纸条旋转至如图2位置时,四边形ABCD 的面积为28cm ,求此时直线AD CD 、所夹锐角1∠的度数.25.如图,已知二次函数2y x bx c =-++的图像与x 轴交于(2,0)A -,(1,0)B 两点.(1)求b c 、的值;(2)若点P 在该二次函数的图像上,且PAB 的面积为6,求点P 的坐标.26.如图,已知PAQ ∠及AP 边上一点C .(1)用无刻度直尺和圆规在射线AQ 上求作点O ,使得2COQ CAQ ∠=∠;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O 为圆心,以OA 为半径的圆交射线AQ 于点B ,用无刻度直尺和圆规在射线CP 上求作点M ,使点M 到点C 的距离与点M 到射线AQ 的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若3sin 5A =,12CM =,求BM 的长.27.如图,点A B M E F 、、、、依次在直线l 上,点A B 、固定不动,且2AB =,分别以AB EF 、为边在直线l 同侧作正方形ABCD 、正方形EFGH ,90PMN ∠=︒,直角边MP 恒过点C ,直角边MN 恒过点H .(1)如图1,若10BE =,12EF =,求点M 与点B 之间的距离;(2)如图1,若10BE =,当点M 在点B E 、之间运动时,求HE 的最大值;(3)如图2,若22BF =,当点E 在点B F 、之间运动时,点M 随之运动,连接CH ,点O 是CH 的中点,连接HB MO 、,则2OM HB +的最小值为_______.28.在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =,O 是ABC 的外接圆,点D 在 O 上(AD BD >),连接AD 、BD 、CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD -与CD 的数量关系为________;【一般化探究】(2)如图2,若60ACB ∠=︒,点C 、D 在AB 同侧,判断AD BD -与CD 的数量关系并说明理由;【拓展性延伸】(3)若ACB α∠=,直接写出AD 、BD 、CD 满足的数量关系.(用含α的式子表示)参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将该选项的字母代号填涂在答题卡相应位置上)1.【答案】D 【解析】解:∵1212⨯=,∴2的倒数为12,故选:D .2.【答案】C【解析】解:A ,B ,D 选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;C 选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:C .3.【答案】B【解析】解:A 、()2222a b a ab b -=-+,原选项错误,不符合题意;B 、523a a a -=,正确,符合题意;C 、()236a a =,原选项错误,不符合题意;D 、2353·26a a a =,原选项错误,不符合题意;故选:B .4.【答案】B【解析】解:这45名同学视力检查数据中,4.7出现的次数最多,因此众数是4.7.故选:B .5.【答案】D【解析】∵点()1,2P 关于原点的对称点为P',∴P'的坐标为(-1,-2),故选D .6.【答案】C【解析】解:根据图示,上下是两个三角形,中间是长方形,∴三棱柱,故选:C .7.【答案】B【解析】当0x =时,422y ==,∴42=+y x 与y 轴的交点为()0,2;由于42x +是分式,且当2x ≠-时,402x ≠+,即0y ≠,∴42=+y x 与x 轴没有交点.∴函数42=+y x 的图像与坐标轴的交点个数是1个,故选:B .8.【答案】D【解析】这一列数为:1,1,2,3,5,8,13,21,34,…可以发现每3个数为一组,每一组前2个数为奇数,第3个数为偶数.由于202436742÷= ,即前2024个数共有674组,且余2个数,∴奇数有674221350⨯+=个.故选:D二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.【答案】71.8710⨯【解析】718700000 1.8710=⨯,故答案为:71.8710⨯.10.【答案】()221a -【解析】解:先提取公因式2后继续应用完全平方公式分解即可:原式()()2222121a a a =-+=-,故答案为:()221a -.11.【答案】0.53【解析】解:由表中数据可得:随着实验次数的增大,“盖面朝上”的概率接近0.53,故答案为:0.5312.【答案】2x ≥【解析】解:根据题意,使二次根式有意义,即x ﹣2≥0,解得:x ≥2.故答案为:x ≥2.13.【答案】5【解析】解:圆锥的侧面展开图的弧长为210210(cm)ππ⨯÷=,∴圆锥的底面半径为1025(cm)ππ÷=,故答案为:5.14.【答案】2x =-【解析】解:∵2OA =,∴(2,0)A -,∵一次函数y kx b =+的图象与x 轴交于点(2,0)A -,∴当0y =时,2x =-,即0kx b +=时,2x =-,∴关于x 的方程0kx b +=的解是2x =-.故答案为:2x =-.15.【答案】2.5【解析】解:根据题意,设t 分钟追上,∴10060100t t +=,解得, 2.5t =,∴速度快的人追上速度慢的人需要2.5分钟,故答案为:2.5.16.【答案】20【解析】由题意得:AB A B ''∥,∴AOB A OB ''∽△△,如图,过O 作OC AB ⊥于点C ,CO 交A B ''于点C ',∴OC A B '''⊥,30cm OC =,∴A B OC AB OC '''=,即243630OC '=,∴20OC '=(cm ),即小孔O 到A B ''的距离为20cm ,故答案为:20.17.【答案】23【解析】解:如图,过点D 作DE x ⊥轴于点E .∵点A 的坐标为(1,0),∴1OA =,∵30BAC ∠=︒,BC x ⊥,设BC a =,则3AD AC a ==,由对称可知AC AD =,30DAB BAC ∠=∠=︒,∴60,30DAC ADE ︒∠=︒∠=,∴32AE a =,32DE a =,∴33(13,),1,22B a a D a ⎛⎫++ ⎪ ⎪⎝⎭,∵点B 的对应点D 落在该反比例函数的图像上,∴()3313122k a a a ⎛⎫=+=⋅+ ⎪ ⎪⎝⎭,解得:233a =,∵反比例函数图象在第一象限,∴k =,故答案为:18.【答案】13【解析】解:∵两条平行线1l 、2l ,点A 是1l 上的定点,2AB l ⊥于点B ,∴点B 为定点,AB 的长度为定值,∵12l l ∥,∴ACE BDE ∠=∠,CAE DBE =∠∠,∵AC BD =,∴()ASA ACE BDE ≌,∴12BE AE AB ==,∵BH CD ⊥,∴90BHE ∠=︒,∴点H 在以BE 为直径的圆上运动,如图,取线段BE 的中点O ,以点O 为圆心,OB 为半径画圆,则点H 在O 上运动,∴当AH 与O 相切时BAH ∠最大,∴OH AH ⊥,∵2AE OB OE ==,∴3AO AE OE OE =+=,∵OH OE =,∴3sin 13OH OE AO O BAH E ==∠=,故答案为:13.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.【答案】(1)3π-;(2)11x +【解析】解:(1)0|3|2sin 302)π-+︒--13212=π-+⨯-311=π-+-3π=-;(2)2(2)1x x x -÷-+2112x x x -=⋅+-11x =+.20.【答案】132x <≤,整数和为6【解析】解:260412x x x -≤⎧⎪⎨-<⎪⎩①②,由①得,26x ≤,解得,3x ≤;由②得,241x x <-,移项得,241x x -<-,解得,12x >,∴原不等式组的解为:132x <≤,∴所有整数解为:1,2,3,∴所有整数解的和为:1236++=.21.【答案】(1)20,条形统计图见详解(2)D(3)300人【解析】【小问1详解】5153522105%%%%%a -=---=,C 组人数为:20020%40⨯=,补全条形统计图如图所示:故答案为:20【小问2详解】55124005%%%%%+=<+,51532075505%%%%++=>+,∴200名学生成绩的中位数会落在D组.【小问3详解】120025%300⨯=(人)估计该校1200名学生中成绩在90分以上(包括90分)的人数为300人.22.【答案】(1)1 5(2)1 3【解析】【小问1详解】解:由题意得从这些景区随机选择1个景区,选中东关街的有1种可能,∴选中东关街的概率是1 5,故案䅁为:1 5;【小问2详解】列表如下:小亮小明C D EC CC CD CED DC DD DEE EC ED EE 共有9种等可能结果,其中小明和小亮选到相同景区的结果有3种结果,∴小明和小亮选到相同景区的概率:3193P ==;答:小明和小亮选到相同景区的概率13.23.【答案】B 型机器每天处理60吨【解析】解:设B 型机器每天处理x 吨垃圾,则A 型机器每天处理(40)x +吨垃圾,根据题意,得50030040x x =+,解得60x =.经检验,60x =是所列方程的解.答:B 型机器每天处理60吨.24.【答案】(1)四边形ABCD 是菱形,理由见详解(2)130∠=︒【解析】【小问1详解】解:四边形ABCD 是菱形,理由如下,如图所示,过点A 作AT NP ⊥于点T ,过点C 作CU EH ⊥于点U ,根据题意,四边形EFGH ,四边形MNPQ 是矩形,∴EH FG MQ NP ,,∴AB DC AD BC ,,∴四边形ABCD 是平行四边形,∵宽度相等,即AT CU =,且90ATB CUB ABT CBU ∠=∠=︒∠=∠,,∴()ATB CUB AAS ≌,∴AB CB =,∴平行四边形ABCD 是菱形;【小问2详解】解:如图所示,过点A 作AR CD ⊥于点R ,根据题意,2AR cm =,∵·8ABCD S CD AR ==四边形,∴4CD =,由(1)可得四边形ABCD 是菱形,∴4AD =,在Rt ATD 中,12AR AD =,∴130∠=︒.25.【答案】(1)12b c =-=,(2)122434()()P P ---,,,【解析】【小问1详解】解:二次函数2y x bx c =-++的图像与x 轴交于(2,0)A -,(1,0)B 两点,∴42010b c b c --+=⎧⎨-++=⎩,解得,12b c =-⎧⎨=⎩,∴12b c =-=,;【小问2详解】解:由(1)可知二次函数解析式为:22y x x =--+,(2,0)A -,(1,0)B ,∴1(2)3AB =--=,设(),P m n ,∴1·62PAB S AB n == ,∴4n =,∴4n =±,∴当224x x --+=时,1870∆=-=-<,无解,不符合题意,舍去;当224x x --+=-时,13x =-,22x =;∴122434()()P P ---,,,.26.【答案】(1)作图见详解(2)作图见详解(3)BM =【解析】【小问1详解】解:如图所示,∴2COQ CAQ ∠=∠;点O 即为所求【小问2详解】解:如图所示,连接BC ,以点B 为圆心,以BC 为半径画弧交AQ 于点1B ,以点1B 为圆心,以任意长为半径画弧交AQ 于点11C D ,,分别以点11C D ,为圆心,以大于1112C D 为半径画弧,交于点1F ,连接11B F 并延长交AP 于点M ,∵AB 是直径,∴90ACB ∠=︒,即BC AP ⊥,根据作图可得11111111B C B D C F D F ==,,∴1MB AQ ⊥,即190MB B ∠=︒,1MB 是点M 到AQ 的距离,∵1BC BB =,∴()1Rt BCM Rt BB M HL ≌,∴1CM B M =,点M 即为所求点的位置;【小问3详解】解:如图所示,根据作图可得,212COQ CAQ MC MW MC AQ ∠=∠==⊥,,,连接BC ,∴在Rt AMW 中,3sin 5WM A AM ==,∴55122033WM AM ⨯===,∴20128AC AM CM =-=-=,∵AB 是直径,∴90ACB ∠=︒,∴3sin 5BC A AB ==,设3BC x =,则5AB x =,∴在Rt ABC 中,()()222538x x =+,解得,2x =(负值舍去),∴36BC x ==,在Rt BCM 中,BM ===.27.【答案】(1)4或6;(2)12.5;(3).【解析】【小问1详解】解:设BM x =,则10ME x =-,∵四边形ABCD 、EFGH 是正方形,∴90ABC CBM ∠=∠=︒,90HEF MEH ∠=∠=︒,2AB BC ==,∴90CBM MEH ∠=∠=︒,90BCM CMB ∠+∠=︒,∵90PMN ∠=︒,∴90EMH CMB ∠+∠=︒,∴BCM EMH ∠=∠,∴BCM EMH ∽,∴BC BM EM EH =,即21012x x =-,则210240x x -+=,解得:6x =或4x =,∴6BM =或4BM =;【小问2详解】设BM x =,则10ME x =-,∵四边形ABCD 、EFGH 是正方形,∴90ABC CBM ∠=∠=︒,90HEF MEH ∠=∠=︒,2AB BC ==,∴90CBM MEH ∠=∠=︒,90BCM CMB ∠+∠=︒,∵90PMN ∠=︒,∴90EMH CMB ∠+∠=︒,∴BCM EMH ∠=∠,∴BCM EMH ∽,∴BC BM EM EH =,即210x x HE =-,∴()22115512.522HE x x x =-+=--+,当5BM =时,HE 有最大,最大值为12.5;【小问3详解】连接FH ,∵四边形EFGH 是正方形,∴45HFE ∠=︒,即点H 在对角线FH 所在直线上运动,如图,作B 关于FH 的对称点B ',连接B C ',过C 作CQ FG ⊥于点Q ,∴'BF B F =,四边形BFQC 为矩形,则点'B G Q 、、三点共线,2BC FQ ==,22CQ BF ==∴'22B F FB ==,∴''20B Q B F FQ =-=,∵90CMH ∠= ,点O 是CH 的中点,∴12OM CH =,∴2OM HB CH HB +=+,∴当C H B '、、三点共线时,CH HB +有最小值B C ',∴在Rt 'CB Q 中,由勾股定理得:B C '====∴2OM HB +的最小值为,故答案为:28.【答案】(1)AD BD CD -=;(2)AD BD CD -=(3)当D 在 BC 上时,2sin 2CD AD BD α⋅=-;当D 在 AB 上时,2sin 2CD AD BD α⋅=+【解析】解:∵CA CB =,60ACB ∠=︒,∴ABC 是等边三角形,则60CAB ∠=︒∵O 是ABC 的外接圆,∴AD 是BAC ∠的角平分线,则30DAB ∠=︒∴AD BC⊥∵四边形ACDB 是圆内接四边形,∴120CDB ∠=︒∴30DCB DBC ∠=∠=︒设,AD BC 交于点E ,则BE CE =,设1BD =,则1CD BD ==在Rt BDE △中,∴33cos3022BE BD BD =︒⋅==∴3BC =,∵AD 是直径,则90ABD Ð=°,在Rt △ABD 中,2AD BD =2=∴211AD BD -=-=∴AD BD CD-=(2)如图所示,在AD 上截取DF BD =,∵ AB AB=∴60ADB ACB ∠=∠=︒∴DBF 是等边三角形,∴BF BD =,则60BFD ∠=︒∴120AFB ∠=︒∵四边形ACDB 是圆内接四边形,∴120CDB ∠=︒∴AFB CDB ∠=∠;∵CA CB =,60ACB ∠=︒,∴ABC 是等边三角形,则60CAB ∠=︒∴AB BC =,又∵ BDBD =∴BCD BAF=∠∠在,AFB CDB 中AFB CDB BAF BCD AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS AFB CDB ≌∴AF CD =,∴AD BD AD DF AF CD -=-==即AD BD CD -=;(3)解:①如图所示,当D 在 BC上时,在AD 上截取DE BD =,∵ AB AB=∴ACB ADBÐ=Ð又∵,CA CB DE DB==∴CAB DEB ∽,则ABC EBD ∠=∠∴AB BC EB BD =即AB EB BC BD=又∵ABC EBD∠=∠∴ABE CBD∠=∠∴ABE CBDV V ∽∴AE AB BE CD BC BD==∵AE AD DE AD BD=-=-∴AD BD AB CD BC-=如图所示,作CF AB ⊥于点F ,在Rt BCF 中,1122BCF BAC α∠=∠=,∴sin 2BC BF α⋅=∴2sin 2AB BC α=⋅∴2sin 2AD BD CD α-=,即2sin 2CD AD BD α⋅=-②当D 在 AB 上时,如图所示,延长BD 至G ,使得DG DA =,连接AG ,∵四边形ACDB 是圆内接四边形,∴180GAD ACB ADB ∠=∠=︒-∠又∵,CA CB DG DA==∴CAB DAG ∽,则CAB DAG ∠=∠∴AC AB AD AG =即AC AD AB AG=,又∵CAB DAG∠=∠∴CAD BAG∠=∠∴CAD BAG∽∴CD AC BG AB=,∵BG BD DG BD AD=+=+同①可得2sin2AB AC α=⋅∴2sin 2CD AC AC BD AD AB AC α==+⋅∴2sin 2CD AD BD α⋅=+综上所述,当D 在 BC 上时,2sin 2CD AD BD α⋅=-;当D 在 AB 上时,2sin 2CD AD BD α⋅=+.。
2024年山东省枣庄市、聊城市、临沂市、菏泽市、东营市中考数学试卷正式版含答案解析
绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列实数中,平方最大的数是( )C. −1D. −2A. 3B. 122.用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3.2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( )A. 0.619×103B. 61.9×104C. 6.19×105D. 6.19×1064.下列几何体中,主视图是如图的是( )A. B. C. D.5.下列运算正确的是( )A. a4+a3=a7B. (a−1)2=a2−1C. (a3b)2=a3b2D. a(2a+1)=2a2+a6.为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( ) A. 200B. 300C. 400D. 5007.如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN.若∠ABN =120°,则n 的值为( )A. 12B. 10C. 8D. 68.某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( ) A. 19B. 29C. 13D. 239.如图,点E 为▱ABCD 的对角线AC 上一点,AC =5,CE =1,连接DE 并延长至点F ,使得EF =DE ,连接BF ,则BF 为( )A. 52B. 3C. 72D. 410.根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ; ②1班学生的最低身高小于150cm ; ③2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( ) A. ①②B. ①③C. ②③D. ①②③二、填空题:本题共6小题,每小题3分,共18分。
2024年山东省枣庄市中考 数学试题(枣庄聊城临沂菏泽)(解析版)
2024年枣庄市初中学业水平考试数学本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1.下列实数中,平方最大的数是()A.3B.12C.1-D.2-【答案】A【解析】【分析】本题考查的是实数的大小比较,乘方运算,先分别计算各数的乘方,再比较大小即可.【详解】解:∵239=,21124⎛⎫=⎪⎝⎭,()211-=,()224-=,而1149 4<<<,∴平方最大的数是3;故选A2.用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】本题考查的是中心对称图形与轴对称图形的概念,常见的中心对称图形有平行四边形、圆形、正方形、长方形等等.常见的轴对称图形有等腰三角形,矩形,正方形,等腰梯形,圆等等.根据中心对称图形与轴对称图形的概念,进行判断即可.把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A .该图形是轴对称图形,不是中心对称图形,故此选项不合题意;B .该图形是轴对称图形,不是中心对称图形,故此选项不合题意;C .该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D .该图形既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D .3.2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为()A.30.61910⨯ B.461.910⨯ C.56.1910⨯ D.66.1910⨯【答案】C【解析】【分析】本题考查用科学记数法的表示方法,一般形式为10n a ⨯,其中110a ≤<,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的值与小数点移动位数相同,确定a 与n 的值是解题关键.【详解】解:61.9万5619000 6.1910==⨯,故选:C .4.下列几何体中,主视图是如图的是()A . B. C. D.【答案】D【解析】【分析】本题考查了几何体的三视图,从前面看到的图形是主视图,从上面看到的图形是俯视图,从左边看到的图形是左视图.能看到的线画实线,看不到的线画虚线.根据主视图是从正面看到的图形分析即可.【详解】解:A .主视图是等腰三角形,不符合题意;B .主视图是共底边的两个等腰三角形,故不符合题意;C .主视图是上面三角形,下面半圆,故不符合题意;D .主视图是上面等腰三角形,下面矩形,故符合题意;故选:D .5.下列运算正确的是()A.437a a a += B.()2211a a -=-C.()2332ab a b = D.()2212a a a a+=+【答案】D【解析】【分析】本题考查合并同类项,幂的乘方运算,完全平方公式,单项式乘以多项式,掌握其运算法则是解决此题的关键.按照运算规律进行计算即可.【详解】解:A .式子中两项不是同类项,不能合并,故A 不符合题意;B .()22121a a a -=-+,故B 不符合题意;C .()2362a b a b =,故C 不符合题意;D .()2212a a a a +=+,故D 符合题意.故选D .6.为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为()A.200B.300C.400D.500【答案】B【解析】【分析】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.设改造后每天生产的产品件数为x ,则改造前每天生产的产品件数为()100x -,根据“改造后生产600件的时间与改造前生产400件的时间相同”列出分式方程,解方程即可.【详解】解:设改造后每天生产的产品件数为x ,则改造前每天生产的产品件数为()100x -,根据题意,得:600400100x x =-,解得:300x =,经检验300x =是分式方程的解,且符合题意,答:改造后每天生产的产品件数300.故选:B .7.如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN ∠=︒,则n 的值为()A.12B.10C.8D.6【答案】A【解析】【分析】本题考查的是正多边形的性质,正多边形的外角和,先求解正多边形的1个内角度数,得到正多边形的1个外角度数,再结合外角和可得答案.【详解】解:∵正方形BCMN ,∴90NBC ∠=︒,∵120ABN ∠=︒,∴36090120150ABC ∠=︒-︒-︒=︒,∴正n 边形的一个外角为18015030︒-︒=︒,∴n 的值为3601230︒=︒;故选A8.某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是()A.19 B.29 C.13 D.23【答案】C【解析】【分析】本题考查了用列表法或画树状图法求概率.首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及甲与乙恰好选择同一项活动的情况,再利用概率公式求解即可求得答案.【详解】解:设跳绳、踢毽子、韵律操分别为A 、B 、C ,画树状图如下,共有9种等可能的结果,甲、乙恰好选择同一项活动的有3种情况,故他们选择同一项活动的概率是3193=,故选:C .9.如图,点E 为ABCD Y 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为()A.52 B.3 C.72 D.4【答案】B【解析】【分析】本题考查了平行四边形的性质,平行线分线段成比例定理,平行证明相似等知识点,正确作辅助线是解题关键.作辅助线如图,由平行正相似先证DEC GAE ∽,再证BGF AGE ∽,即可求得结果.【详解】解:延长DF 和AB ,交于G 点,∵四边形ABCD 是平行四边形,∴DC AB ∥,DC AB =即DC AG ∥,∴DEC GAE∽∴CE DE DC AE GE AG==,∵5AC =,1CE =,∴514AE AC CE =-=-=,∴14CE DE DC AE GE AG ===,又∵EF DE =,14DE DE GE EF FG ==+,∴13EF FG =,∵14DC DC AG AB BG ==+,DC AB =,∴13DC BG =,∴13EF DC FG BG ==,∴34BG FG AG EG ==∴AE BF ∥,∴BGF AGE ∽,∴34BF FG AE EG ==∵4AE =,∴3BF =.故选:B .10.根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ;②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm .上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③【答案】D【解析】【分析】本题考查了二元一次方程、不等式的应用,设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,然后利用不等式性质可求出170a ≥,即可判断①,③;根据2班班长的对话,得140b >,290y b +=,然后利用不等式性质可求出150y <,即可判断②.【详解】解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b ,根据1班班长的对话,得180x ≤,350x a +=,∴350x a=-∴350180a -≤,解得170a ≥,故①,③正确;根据2班班长的对话,得140b >,290y b +=,∴290b y =-,∴290140y ->,∴150y <,故②正确,故选:D .二、填空题:本题共6小题,每小题3分,共18分.11.因式分解:22x y xy +=________.【答案】()2xy x +【解析】【分析】本题考查了因式分解,直接提取公因式xy 即可.【详解】解:原式()2xy x =+,故答案为:()2xy x +.12.写出满足不等式组21215x x +≥⎧⎨-<⎩的一个整数解________.【答案】1-(答案不唯一)【解析】【分析】本题考查一元一次不等式组的解法,解题的关键是正确掌握解一元一次不等式组的步骤.先解出一元一次不等式组的解集为13x -≤<,然后即可得出整数解.【详解】解:21215x x +≥⎧⎨-<⎩①②,由①得:1x ≥-,由②得:3x <,∴不等式组的解集为:13x -≤<,∴不等式组的一个整数解为:1-;故答案为:1-(答案不唯一).13.若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为________.【答案】14##0.25【解析】Δ0=时,方程有两个相等的实数根”是解题的关键.根据方程的系数结合根的判别式,即可得出2242440b ac m ∆=-=-⨯⨯=,解之即可得出结论.【详解】解:∵关于x 的方程2420x x m -+=有两个相等的实数根,∴2242444160b ac m m ∆=-=-⨯⨯=-=,解得:14m =.故答案为:14.14.如图,ABC 是O 的内接三角形,若OA CB ∥,25ACB ∠=︒,则CAB ∠=________.【答案】40︒##40度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识,利用圆周角定理求出AOB ∠的度数,利用等边对等角、三角形内角和定理求出OAB ∠的度数,利用平行线的性质求出OAC ∠的度数,即可求解.【详解】解∶连接OB ,∵25ACB ∠=︒,∴250AOB ACB ∠=∠=︒,∵OA OB =,∴()1180652OAB OBA AOB ∠=∠=︒-∠=︒,∵OA CB ∥,∴25A OAC CB ∠=︒∠=,∴40CAB OAB OAC ∠=∠-∠=︒,故答案为:40︒.15.如图,已知MAN ∠,以点A 为圆心,以适当长为半径作弧,分别与AM 、AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN ∠内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE ∠=︒,则F 到AN 的距离为________.【答案】【解析】【分析】如图,过F 作FH AC ⊥于H ,证明BAP CAP ∠=∠,DE AB ⊥,122AF BF AB ===,再证明45FAH ∠=︒,再结合勾股定理可得答案.【详解】解:如图,过F 作FH AC ⊥于H ,由作图可得:BAP CAP ∠=∠,DE AB ⊥,122AF BF AB ===,∵67.5PQE ∠=︒,∴67.5AQF ∠=︒,∴9067.522.5BAP CAP ∠=∠=︒-︒=︒,∴45FAH ∠=︒,∴22AH FH AF ===,∴F 到AN 的距离为;【点睛】本题考查了作图−复杂作图:基本作图,三角形的内角和定理的应用,勾股定理的应用,等腰三角形的判定,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质,逐步操作.16.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.【答案】()2,1【解析】【分析】本题考查了新定义,点的规律,根据新定义依次计算出各点的坐标,然后找出规律,最后应用规律求解即可.【详解】解:点()1,4经过1次运算后得到点为()131,42⨯+÷,即为()4,2,经过2次运算后得到点为()42,21÷÷,即为()2,1,经过3次运算后得到点为()22,131÷⨯+,即为()1,4,……,发现规律:点()1,4经过3次运算后还是()1,4,∵202436742÷= ,∴点()1,4经过2024次运算后得到点()2,1,故答案为:()2,1.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.(1)计算:1122-⎛⎫+-- ⎪⎝⎭;(2)先化简,再求值:212139a a a +⎛⎫-÷ +-⎝⎭,其中1a =.【答案】(1)3(2)3a -2-【解析】【分析】本题主要考查实数的运算、分式的运算:(1)根据求算术平方根和负整数指数幂、有理数的减法的运算法则计算即可;(2)先通分,然后求解即可.【详解】(1)原式112+322=+=(2)原式()()3123333a a a a a a ++⎛⎫-÷ ⎪+++-⎝⎭()()332·32a a a a a +-+=++3a =-将1a =代入,得原式132=-=-18.【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F A ,D ,E 在同一条直线上,且AD DE =,DEFDAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.【答案】(1)A ,P 两点间的距离为89.8米;(2)②【解析】【分析】本题考查的是全等三角形的判定与性质的应用,解直角三角形的应用,灵活应用知识点是解本题的关键;(1)如图,过B 作BH AP ⊥于H ,先求解cos79600.1911.4AH AB =⋅︒≈⨯=,sin79600.9858.8BH AB =⋅︒≈⨯=,再求解37APB ∠=︒及PH 即可;(2)由全等三角形的判定方法可得()ASA ADP EDF ≌,可得AP EF =,从而可得答案.【详解】解:如图,过B 作BH AP ⊥于H ,∵60AB =米,79PAB ∠=︒,sin790.98︒≈,cos790.19︒≈,∴cos79600.1911.4AH AB =⋅︒≈⨯=,sin79600.9858.8BH AB =⋅︒≈⨯=,∵79PAB ∠=︒,64PBA ∠=︒,∴180796437APB ∠=︒-︒-︒=︒,∴tan tan 370.75BH APB PH∠=︒=≈,∴58.878.40.75PH ≈=,∴11.478.489.8AP AH PH =+=+=(米);即A ,P 两点间的距离为89.8米;(2)∵AD DE =,DEFDAP ∠=∠,当F ,D ,P 在同一条直线上时,∴ADP EDF ∠=∠,∴()ASA ADP EFD ≌,∴AP EF =,∴只需测量EF 即可得到AP 长度;∴乙小组的方案用到了②;19.某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水平,从全校学生的模型设计成绩中随机抽取部分学生的模型设计成绩(成绩为百分制,用x 表示),并将其分成如下四组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤.下面给出了部分信息:8090x ≤<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题:(1)请补全频数分布直方图;(2)所抽取学生的模型设计成绩的中位数是________分;(3)请估计全校1000名学生的模型设计成绩不低于80分的人数;(43:2的比例确定这次活动各人的综合成绩.某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下:模型设计科技小论文甲的成绩9490乙的成绩9095通过计算,甲、乙哪位学生的综合成绩更高?【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【解析】【分析】(1)先求解总人数,再求解7080x ≤<的人数,再补全图形即可;(2)根据中位数的含义确定第25个,第26个数据的平均数即可得到中位数;(3)由总人数乘以80分含80以上的人数百分比即可得到答案;(4)根据加权平均数公式分别计算甲,乙二人成绩,再比较即可【小问1详解】解:∵510%50÷=,而8090x ≤<有20人,∴7080x ≤<有502051015---=,补全图形如下:。
2024年山东省青岛市中考数学试卷正式版含答案解析
绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共9小题,每小题3分,共27分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.“海葵一号”是完全由我国自主设计建造的深水油气田“大国重器”,集原油生产、存储、外输等功能于一体,储油量达60000立方米.将60000用科学记数法表示为( )A. 6×103B. 60×103C. 0.6×105D. 6×1042.下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3.实数a,b,c,d在数轴上对应点的位置如图所示,这四个实数中绝对值最小的是( )A. aB. bC. cD. d4.如图所示的正六棱柱,其俯视图是( )A. B. C. D.5.下列计算正确的是( )A. a+2a=3a2B. a5÷a2=a3C. (−a)2⋅a3=−a5D. (2a3)2=2a66.如图,将正方形ABCD先向右平移,使点B与原点O重合,再将所得正方形绕原点O顺时针方向旋转90°,得到四边形A′B′C′D′,则点A的对应点A′的坐标是( )A. (−1,−2)B. (−2,−1)C. (2,1)D. (1,2)7.为筹备运动会,小松制作了如图所示的宣传牌,在正五边形ABCDE 和正方形CDFG 中,CF ,DG 的延长线分别交AE ,AB 于点M ,N ,则∠FME 的度数是( ) A. 90° B. 99° C. 108° D. 135°8.如图,A ,B ,C ,D 是⊙O 上的点,半径OA =3,AB ⏜=CD ⏜,∠DBC =25°,连接AD ,则扇形AOB 的面积为( ) A. 54π B. 58π C. 52π D.512π9.二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =−1,则过点M(c,2a −b)和点N(b 2−4ac,a −b +c)的直线一定不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限二、填空题:本题共6小题,每小题3分,共18分。
2024年山东省济宁市中考数学试卷(附答案)
2024年山东省济宁市中考数学试卷(附答案)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求。
1.(3分)﹣3的绝对值是()A.3B.C.﹣3D.﹣【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:|﹣3|=3,故选:A.【点评】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“建”字一面的相对面上的字是()A.人B.才C.强D.国【分析】根据正方体表面展开图的特征进行判断即可.【解答】解:由正方体表面展开图的“相间、Z端是对面”可知,“建”与“国”是对面,故选:D.【点评】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的“相间、Z端是对面”是正确解答的关键.3.(3分)下列运算正确的是()A.B.C.D.【分析】根据每一选项依次计算判断即可得解.【解答】选项A:和不是同类二次根式,不能合并,不合题意;选项B:,正确,符合题意;选项C:=≠1,所以C错误,不合题意;选项D:∵≥0,∴=5,故D错误,不合题意.故选:B.【点评】本题主要考查了二次根式的运算,熟练掌握相关知识是解题的关键.4.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,E是AB的中点,连接OE.若OE=3,则菱形的边长为()A.6B.8C.10D.12【分析】根据菱形对角线互相垂直得到△AOB是直角三角形,再利用直角三角形斜边上的中线等于斜边的一半即可求解.【解答】∵四边形ABCD是菱形,∴AC⊥BD,∴△AOB是直角三角形,∵E是AB的中点,∴OE=AB,∵OE=3,∴AB=6,即菱形的边长为6.故选:A.【点评】本题主要考查了菱形的性质和直角三角形斜边上的中线等于斜边的一半,熟练掌握相关知识是解题的关键.5.(3分)为了解全班同学对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,班主任对全班50名同学进行了问卷调查(每名同学只选其中的一类),依据50份问卷调查结果绘制了全班同学喜爱节目情况扇形统计图(如图所示).下列说法正确的是()A.班主任采用的是抽样调查B.喜爱动画节目的同学最多C.喜爱戏曲节目的同学有6名D.“体育”对应扇形的圆心角为72°【分析】根据全面调查和抽样调查的定义以及扇形统计图中各个部分所表示的数量和所占的百分比解答即可.【解答】解:班主任采用的是全面调查,故选项A说法错误,不符合题意;喜爱娱乐节目的同学最多,故选项B说法错误,不符合题意;喜爱戏曲节目的同学有:50×6%=3(名),故选项C说法错误,不符合题意;“体育”对应扇形的圆心角为:360°×20%=72°,故选项D说法错误,不符合题意;故选:D.【点评】本题考查扇形统计图以及全面调查和抽样调查,理解扇形统计图表示各个部分所占整体的百分比是正确判断的关键.6.(3分)如图,边长为2的正六边形ABCDEF内接于⊙O,则它的内切圆半径为()A.1B.2C.D.【分析】根据正六边形的性质以及勾股定理进行计算即可.【解答】解:如图,连接OA,OB,过点O作OM⊥AB,垂足为点M,∵六边形ABCDEF是正六边形,点O是它的中心,∴∠AOB==60°,∵OA=OB,∴△AOB是正三角形,∵OM⊥AB,∴AM=BM=AB=1,在Rt△AOM中,OA=2,AM=1,∴OM==,即它的内切圆半径为,故选:D.【点评】本题考查正多边形和圆,掌握正六边形的性质以及勾股定理是正确解答的关键.7.(3分)已知点A(﹣2,y1),B(﹣1,y2),C(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【分析】根据反比例函数图象上点的坐标特征及反比例函数性质解答即可.【解答】解:在反比例函数y=中k<0,反比例函数图象分布在第二、四象限,在每个象限内,y随x的增大而增大,∵C(3,y3)在第四象限,∴y3<0,∵﹣2<﹣1,∴0<y1<y2,∴y3<y1<y2,故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数性质是关键.8.(3分)解分式方程时,去分母变形正确的是()A.2﹣6x+2=﹣5B.6x﹣2﹣2=﹣5C.2﹣6x﹣1=5D.6x﹣2+1=5【分析】原方程两边同乘2(3x﹣1)去分母即可.【解答】解:原方程两边同乘2(3x﹣1)得2(3x﹣1)﹣2=5,即6x﹣2﹣2=5故选:A.【点评】本题考查解分式方程﹣去分母,找到正确的最简公分母是解题的关键.9.(3分)如图,分别延长圆内接四边形ABCD的两组对边,延长线相交于点E,F.若∠E=54°41',∠F=43°19',则∠A的度数为()A.42°B.41°20'C.41°D.40°20'【分析】根据圆内接四边形对角互补得出∠A+∠BCD=180°,再根据三角形外角的性质得出∠CDF=∠A+∠E,∠BCD=∠F+∠CDF,由此得到2∠A+∠F+∠E=180°,即可求解.【解答】解:∵四边形ABCD是圆内接四边形,∴∠A+∠BCD=180°,∵∠CDF是△ADE的外角,∴∠CDF=∠A+∠E,∵∠BCD是△CDF的外角,∴∠BCD=∠F+∠CDF,∴∠BCD=∠F+∠A+∠E,∴∠A+∠F+∠A+∠E=180°,∴2∠A+∠F+∠E=180°,∵∠E=54°41',∠F=43°19',∴2∠A+54°41'+43°19'=180°,∴∠A=41°,故选:C.【点评】本题考查了圆内接四边形的性质及三角形外角的性质,度分秒的换算,熟练掌握这些知识点是解题的关键.10.(3分)如图,用大小相等的小正方形按照一定规律拼正方形.第一幅图有1个正方形,第二幅图有5个正方形,第三幅图有14个正方形……按照此规律,第六幅图中正方形的个数为()A.90B.91C.92D.93【分析】根据所给图形,依次求出图形中正方形的个数,发现规律即可解决问题.【解答】解:由所给图形可知,第一幅图中正方形的个数为:1=12;第二幅图中正方形的个数为:5=12+22;第三幅图中正方形的个数为:14=12+22+32;第四幅图中正方形的个数为:30=12+22+32+42;…,所以第n幅图中正方形的个数为:12+22+32+…+n2,当n=6时,12+22+32+…+62=91(个),即第六幅图中正方形的个数为91个.故选:B.【点评】本题主要考查了图形变化的规律,能根据所给图形发现正方形个数变化的规律是解题的关键.二、填空题:本大题共5小题,每小题3分,共15分。
2024年山东省东营市中考数学试卷附答案
2024年山东省东营市中考数学试卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。
每小题选对得3分,选错、不选或选出的答案超过一个均记零分。
1.(3分)-3的绝对值是()A. 3B.-3C.士3D.石2.(3分)下列计算正确的是()A.x2•x3=炒B.(x-1) 2=x2-1C.(x y2) 2=汀D.-½尸=-43.(3分)已知,直线all b, 把一块含有30°角的直角三角板如图放置,三角板的斜边所在直线交b千点A,则乙2=( )abA.50°B.60°C.70°D.80°4.(3分)某几何体的俯视图如图所示,下列几何体(箭头所示为正面)的俯视图与其相同的是()A. B.C.D5.(3分)用配方法解一元二次方程x2-2x-2023 =O, 将它转化为(x+a)2=b的形式,则矿的值为()A.-2024B.2024C.-1D. 16.(3分)如图,四边形AB CD是矩形,直线EF分别交AD,BD千点E,F, O, 下列条件中()A.0为矩形ABCD两条对角线的交点B.EO=FOC.AE=CFD.EF上BD7.(3分)如图,四边形ABCD是平行四边形,从(D A C=BD,@AB=BC, 这三个条件中任意选取两个()三C A.1_ B.上 C.l D.旦3 2 3 68.(3分)习近平总书记强调,中华优秀传统文化是中华民族的根和魂.东营市某学校组织开展中华优秀传统文化成果展示活动,小慧同学制作了一把扇形纸扇.如图,OB=Scm,纸扇完全打开后(竹条宽度忽略不计)的夹角乙AOC=l20°,现需在扇面一侧绘制山水画() cm气AA.竺nB.75TIC.125TID.150TI9.(3分)已知抛物线y=a x2+b x+c Ca*O)的图象如图所示,则下列结论正确的是()yXA.abc<OB. a -b=OC.3a -c=OD.am2+bm::::;a -b Cm为任意实数)10.(3分)如图,在正方形ABCD中,AC与BD交千点o,且BH=BD,连接DH,BC千点E,F, 连接BE心旦立;BF 2®tan乙H=森-1;@BE平分乙CBD;@2AB2=DE•DH.其中正确结论的个数是()D cAA.1个B.2个C.3个D.4个二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分。
2024年山东省烟台市中考数学试卷(含答案)
2024年山东省烟台市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分)每小题都给出标号为A,B,C ,D四个备选答案,其中有且只有一个是正确的。
1.下列实数中的无理数是( )A.B.3.14C.D.2.下列计算结果为a6的是( )A.a2•a3B.a12÷a2C.a3+a3D.(a2)33.如图是由8个大小相同的小正方体组成的几何体,若从标号为①②③④的小正方体中取走一个,使新几何体的左视图既是轴对称图形又是中心对称图形,则应取走( )A.①B.②C.③D.④4.实数a,b,c在数轴上的位置如图所示,下列结论正确的是( )A.b+c>3B.a﹣c<0C.|a|>|c|D.﹣2a<﹣2b5.目前全球最薄的手撕钢产自中国,厚度只有0.015毫米,约是A4纸厚度的六分之一.已知1毫米=1百万纳米,0.015毫米等于多少纳米?将结果用科学记数法表示为( )A.0.15×103纳米B.1.5×104纳米C.15×10﹣5纳米D.1.5×10﹣6纳米6.射击运动队进行射击测试,甲、乙两名选手的测试成绩如图,其成绩的方差分别记为S甲2和S乙2,则S甲2和S乙2的大小关系是( )≈A.S甲2>S乙2B.S甲2<S乙2C.S甲2=S乙2D.无法确定7.某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线OP 为∠AOB的平分线的有( )A.1个B.2个C.3个D.4个8.如图,在正方形ABCD中,点E,F分别为对角线BD,AC的三等分点,连接AE并延长交CD于点G,连接EF,FG.若∠AGF=α,则∠FAG用含α的代数式表示为( )A.B.C.D.9.《周髀算经》是中国现存最早的数理天文著作.书中记载这样一道题:“今有女子不善织,日减功迟.初日织五尺,末日织一尺,今三十日织讫.问织几何?”意思是:现有一个不擅长织布的女子,织布的速度越来越慢,并且每天减少的数量相同,第一天织了五尺布,最后一天仅织了一尺布,30天完工,问一共织了多少布?( )A.45尺B.88尺C.90尺D.98尺10.如图,水平放置的矩形ABCD中,AB=6cm,BC=8cm,菱形EFGH的顶点E,G在同一水平线上,点G与AB的中点重合,EF=2cm,∠E=60°,现将菱形EFGH以1cm/s 的速度沿BC方向匀速运动,当点E运动到CD上时停止.在这个运动过程中,菱形EFGH 与矩形ABCD重叠部分的面积S(cm2)与运动时间t(s)之间的函数关系图象大致是( )A.B.C.D.二、填空题(本大题共6个小题,每小题3分,满分18分)11.若代数式在实数范围内有意义,则x的取值范围为 .12.关于x的不等式m﹣≤1﹣x有正数解,m的值可以是 (写出一个即可).13.若一元二次方程2x2﹣4x﹣1=0的两根为m,n,则3m2﹣4m+n2的值为 .14.如图,在边长为6的正六边形ABCDEF中,以点F为圆心,以FB的长为半径作,剪如图中阴影部分做一个圆锥的侧面,则这个圆锥的底面半径为 .15.如图,在▱ABCD中,∠C=120°,AB=8,BC=10,E为边CD的中点,F为边AD上的一动点,将△DEF沿EF翻折得△D′EF,连接AD',BD',则△ABD′面积的最小值为 .16.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x﹣4﹣3﹣115y0595﹣27下列结论:①abc>0;②关于x的一元二次方程ax2+bx+c=9有两个相等的实数根;③当﹣4<x<1时,y的取值范围为0<y<5;④若点(m,y1),(﹣m﹣2,y2)均在二次函数图象上,则y1=y2;⑤满足ax2+(b+1)x+c<2的x的取值范围是x<﹣2或x>3.其中正确结论的序号为 .三、解答题(本大题共8个小题,满分72分)17.(6分)利用课本上的计算器进行计算,按键顺序如下:,若m是其显示结果的平方根,先化简:(+)÷,再求值.18.(7分)“山海同行,舰回烟台”.2024年4月23日,烟台舰与家乡人民共庆人民海军成立75周年.值此,某学校开展了“奋进万亿新征程,共筑强国强军梦”的主题研学活动.为了解学生参与情况,随机抽取部分学生对研学活动时长(用t表示,单位:h)进行调查.经过整理,将数据分成四组(A组:0≤t<2;B组:2≤t<4;C组:4≤t<6;D 组:6≤t<8),并绘制了如下不完整的条形统计图和扇形统计图.(1)请补全条形统计图;(2)扇形统计图中,a 的值为 ,D 组对应的扇形圆心角的度数为 ;(3)D 组中有男、女生各两人,现从这四人中随机抽取两人进行研学宣讲,请用树状图或表格求所抽取的两人恰好是一名男生和一名女生的概率.19.(8分)根据手机的素材,探索完成任务.探究太阳能热水器的安装素材一太阳能热水器是利用绿色能源造福人类的一项发明.某品牌热水器主要部件太阳能板需要安装在每天都可以有太阳光照射到的地方,才能保证使用效果,否则不予安装.素材二某市位于北半球,太阳光线与水平线的夹角为α,冬至日时,14°≤α≤29°;夏至日时,43°≤α≤76°.sin14°≈0.24,cos14°≈0.97,tan14°≈0.25sin29°≈0.48,cos29°≈0.87,tan29°≈0.55sin43°≈0.68,cos43°≈0.73,tan43°=0.94sin76°≈0.97,cos76°≈0.24,tan76°≈4.01素材三如图,该市甲楼位于乙楼正南方向,两楼东西两侧都无法获得太阳光照射.现准备在乙楼南面墙上安装该品牌太阳能板.已知两楼间距为54米,甲楼AB 共11层,乙楼CD共15层,一层从地面起,每层楼高皆为3.3米.AE为某时刻的太阳光线.问题解决任务一确定使用数据要判断乙楼哪些楼层不能安装该品牌太阳能板,应选择 日(填冬至或夏至)时,α为 (填14°,29°,43°,76°中的一个)进行计算.任务二探究安装范围利用任务一中选择的数据进行计算,确定乙楼中哪些楼层不能安装该品牌太阳能热水器.20.(8分)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”.康宁公司新研发了一批便携式轮椅计划在该月销售.根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元.设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?21.(9分)如图,正比例函数y=x与反比例函数y=的图象交于点A(,a).将正比例函数图象向下平移n(n>0)个单位后,与反比例函数图象在第一、三象限交于点B,C ,与x轴,y轴交于点D,E,且满足BE:CE=3:2,过点B作BF⊥x轴,垂足为点F,G为x轴上一点,直线BC与BG关于直线BF成轴对称,连接CG.(1)求反比例函数的表达式;(2)求n的值及△BCG的面积.22.(10分)在等腰直角△ABC中,∠ACB=90°,AC=BC,D为直线BC上任意一点,连接AD.将线段AD绕点D按顺时针方向旋转90°得线段ED,连接BE.【尝试发现】(1)如图1,当点D在线段BC上时,线段BE与CD的数量关系为 ;【类比探究】(2)当点D在线段BC的延长线上时,先在图2中补全图形,再探究线段BE与CD的数量关系并证明;【联系拓广】(3)若AC=BC=1,CD=2,请直接写出sin∠ECD的值.23.(11分)如图,AB是⊙O的直径,△ABC内接于⊙O,点I为△ABC的内心,连接CI并延长交⊙O于点D,E是上任意一点,连接AD,BD,BE,CE.(1)若∠ABC=25°,求∠CEB的度数;(2)找出图中所有与DI相等的线段,并证明;(3)若CI=2,DI=,求△ABC的周长.24.(13分)如图,抛物线与x轴交于A,B两点,与y轴交于点C,OC=OA ,AB=4,对称轴为直线l1:x=﹣1.将抛物线y1绕点O旋转180°后得到新抛物线y2,抛物线y2与y轴交于点D,顶点为E,对称轴为直线l2.(1)分别求抛物线y1和y2的表达式;(2)如图1,点F的坐标为(﹣6,0),动点M在直线l1上,过点M作MN∥x轴与直线l2交于点N,连接FM,DN,求FM+MN+DN的最小值;(3)如图2,点H的坐标为(0,﹣2),动点P在抛物线y2上,试探究是否存在点P,使∠PEH=2∠DHE?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10个小题,每小题3分,满分30分)每小题都给出标号为A,B,C ,D四个备选答案,其中有且只有一个是正确的。
2024年山东威海中考数学试题及答案(1)
2024年山东威海中考数学试题及答案注意事项:1.本试卷共6页,共120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.答题前,请务必用0.5毫米黑色签字笔将自己的姓名、考生号、座号填写在答题卡和试卷规定的位置上.3.所有的试题都必须在专用的“答题卡”上作答.写在试卷上或答题卡指定区域以外的答案一律无效.4.选择题用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号、作图题用2B 铅笔(加黑加粗,描写清楚)或0.5毫米的黑色签字笔作答.其它题目用0.5毫米的黑色签字笔作答.如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.5.不要求保留精确度的题目,计算结果保留准确值.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( )A. 7+ B. 5- C. 3- D. 102.据央视网10月11日消息,中国科学技术大学中国科学院量子创新研究院与上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光子的量子计算原型机“九章三号”,再度刷新了光量子信息的技术水平和量子计算优越性的世界纪录.“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍,在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机花费超过二百亿年的时间.将“百万分之一”用科学记数法表示为( )A 5110-´ B. 6110-´ C. 7110-´ D. 8110-´3. 下列各数中,最小的数是( )A. 2-B. ()2--C. 12-D. 4. 下列运算正确的是( )A. 5510x x x += B. 21m m n n n ¸×=C 624a a a ¸= D. ()325a a -=-..5.下列几何体都是由四个大小相同的小正方体搭成的.其中主视图、左视图和俯视图完全相同的是() A. B. C. D.6.如图,在扇形AOB 中,90AOB Ð=°,点C 是AO 的中点.过点C 作CE AO ^交»AB 于点E ,过点E 作ED OB ^,垂足为点D .在扇形内随机选取一点P ,则点P 落在阴影部分的概率是( )A. 14 B. 13 C. 12 D. 237. 定义新运算:①在平面直角坐标系中,{},a b 表示动点从原点出发,沿着x 轴正方向(0a ³)或负方向(0a <).平移a 个单位长度,再沿着y 轴正方向(0b ³)或负方向(0b <)平移b 个单位长度.例如,动点从原点出发,沿着x 轴负方向平移2个单位长度,再沿着y 轴正方向平移1个单位长度,记作{}2,1-.②加法运算法则:{}{}{},,,a b c d a c b d +=++,其中a ,b ,c ,d 为实数.若{}{}{}3,5,1,2m n +=-,则下列结论正确的是( )A. 2m =,7n = B. 4m =-,3n =-C. 4m =,3n = D. 4m =-,3n =8.《九章算术》是我国古老的数学经典著作,书中提到这样一道题目:以绳测井.若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意是:用绳子测量水井的深度.如果将绳子折成三等份,一份绳长比井深多4尺;如果将绳子折成四等份,一份绳长比井深多1尺.绳长、井深各是多少尺?若设绳长x 尺,井深y 尺,则符合题意的方程组是( )A. 3441x y x y -=ìí-=î B. 3441x yx y+=ìí+=îC. 4314x y x y ì-=ïïíï-=ïî D. 4314x y x y ì+=ïïíï+=ïî9. 如图,在ABCD Y 中,对角线AC ,BD 交于点O ,点E 在BC 上,点F 在CD 上,连接AE ,AF ,EF ,EF 交AC 于点G .下列结论错误的是( )A. 若CE AD CF AB=,则EF BD ∥B. 若AE BC ^,AF CD ^,AE AF =,则EF BD∥C. 若EF BD ∥,CE CF =,则EAC FACÐ=ÐD. 若AB AD =,AE AF =,则EF BD∥10.同一条公路连接A ,B ,C 三地,B 地在A ,C 两地之间.甲、乙两车分别从A 地、B 地同时出发前往C 地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.下图表示甲、乙两车之间的距离y (km )与时间x (h )的函数关系.下列结论正确的是( )A. 甲车行驶8h 3与乙车相遇B. A ,C 两地相距220kmC. 甲车的速度是70km /hD. 乙车中途休息36分钟二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.=________.12. 因式分解:()()241x x +++=________.13. 如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ^,垂足为点I .若20EFG Ð=°,则ABI Ð=________.14. 计算:2422x x x+=--________.15. 如图,在平面直角坐标系中,直线()10y ax b a =+¹与双曲线()20k y k x=¹交于点()1,A m -,()2,1B -.则满足12y y £的x 的取值范围______.16. 将一张矩形纸片(四边形ABCD )按如图所示的方式对折,使点C 落在AB 上的点C ¢处,折痕为MN ,点D 落在点D ¢处,C D ¢¢交AD 于点E .若3BM =,4BC ¢=,3AC ¢=,则DN =________.三、解答题(本大题共8小题,共72分)17.某公司为节能环保,安装了一批A 型节能灯,一年用电16000千瓦·时.后购进一批相同数量的B 型节能灯,一年用电9600千瓦·时.一盏A 型节能灯每年的用电量比一盏B 型节能灯每年用电量的2倍少32千瓦·时.求一盏A 型节能灯每年的用电量.18.为增强学生体质,某校在八年级男生中试行“每日锻炼,每月测试”的引体向上训练活动,设定6个及以上为合格.体育组为了解一学期的训练效果,随机抽查了20名男生2至6月份的测试成绩.其中,2月份测试成绩如表1,6月份测试成绩如图1(尚不完整).整理本学期测试数据得到表2和图2(尚不完整).2月份测试成绩统计表个0136810数人484121数表1本学期测试成绩统计表请根据图表中信息,解答下列问题:(1)将图1和图2中统计图补充完整,并直接写出a ,b ,c 的值;(2)从多角度分析本次引体向上训练活动的效果;(3)若将此活动在邻校八年级推广,该校八年级男生按400人计算,以随机抽查的20名男生训练成绩为样本,估算经过一学期的引体向上训练,可达到合格水平的男生人数.19.某校九年级学生开展利用三角函数解决实际问题的综合与实践活动,活动之一是测量某护堤石坝与地平面的倾斜角.测量报告如下表(尚不完整)(1)设AB a =,BC b =,AC c =,CE d =,DE e =,CD f =,BE g =,AD h =,请根据表中的测量示意图,从以上线段中选出你认为需要测量的数据,把表示数据的小写字母填写在“测量数据”一的的栏.(2)根据(1)中选择的数据,写出求a Ð的一种三角函数值的推导过程.(3)假设sin 0.86a »,cos 0.52a »,tan 1.66a »,根据(2)中的推导结果,利用计算器求出a Ð的度数,你选择的按键顺序为________.20. 感悟如图1,在ABE V 中,点C ,D 在边BE 上,AB AE =,BC DE =.求证:BAC EAD Ð=Ð.应用(1)如图2,用直尺和圆规在直线BC 上取点D ,点E (点D 在点E 的左侧),使得EAD BAC Ð=Ð,且DE BC =(2)如图3,用直尺和圆规在直线AC 上取一点D ,在直线BC 上取一点E ,使得CDE BAC Ð=Ð,且DE AB =(不写作法,保留作图痕迹).21. 定义我们把数轴上表示数a 的点与原点的距离叫做数a 的绝对值.数轴上表示数a ,b 的点A ,B 之间的距离()AB a b a b =-³.特别的,当0a ³时,表示数a 的点与原点的距离等于0a -.当a<0时,表示数a 的点与原点的距离等于0a -.应用如图,在数轴上,动点A 从表示3-的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B 从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A ,B 之间的距离等于3个单位长度?(2)求点A ,B 到原点距离之和的最小值.22. 如图,已知AB 是O e 的直径,点C ,D 在O e 上,且BC CD =.点E 是线段AB 延长线上一点,连接EC 并延长交射线AD 于点F .FEG Ð的平分线EH 交射线AC 于点H ,45H Ð=°.(1)求证:EF 是O e 的切线;(2)若2BE =,4CE =,求AF 23. 如图,在菱形ABCD 中,10cm AB =,60ABC Ð=°,E 为对角线AC 上一动点,以DE 为一边作60DEF Ð=°,EF 交射线BC 于点F ,连接BE DF ,.点E 从点C 出发,沿CA 方向以每秒2cm 的速度运动至点A 处停止.设BEF △的面积为2cm y ,点E 的运动时间为x 秒.(1)求证:BE EF =;(2)求y 与x 的函数表达式,并写出自变量x 的取值范围;(3)求x 为何值时,线段DF 的长度最短.24. 已知抛物线()20y x bx c b =++<与x 轴交点的坐标分别为()1,0x ,()2,0x ,且12x x <.(1)若抛物线()2110y x bx c b =+++<与x 轴交点的坐标分别为()3,0x ,()4,0x ,且34x x <.试判断下列每组数据的大小(填写<、=或>):①12x x +________34x x +;②13x x -________24x x -;③23x x +________14x x +.(2)若11x =,223x <<,求b 的取值范围;(3)当01x ££时,()20y x bx c b =++<最大值与最小值的差为916,求b 的值.参考答案注意事项:1.本试卷共6页,共120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.答题前,请务必用0.5毫米黑色签字笔将自己的姓名、考生号、座号填写在答题卡和试卷规定的位置上.3.所有的试题都必须在专用的“答题卡”上作答.写在试卷上或答题卡指定区域以外的答案一律无效.4.选择题用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号、作图题用2B铅笔(加黑加粗,描写清楚)或0.5毫米的黑色签字笔作答.其它题目用0.5毫米的黑色签字笔作答.如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.5.不要求保留精确度的题目,计算结果保留准确值.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)【1题答案】【答案】C【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】B【8题答案】【答案】C【9题答案】【答案】D【10题答案】【答案】A二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)【11题答案】【答案】-【12题答案】【答案】()23x +【13题答案】【答案】50°##50度【14题答案】【答案】2x --##2x--【15题答案】【答案】10x -£<或2x ³【16题答案】【答案】32三、解答题(本大题共8小题,共72【17题答案】【答案】160千瓦·时【18题答案】【答案】(1)见解析,1, 5.65,55%a b c ===(2)见解析 (3)220【19题答案】【答案】(1)AB a =,AC c =,DE e =,CD f =;(2)sin ec afa =,推导见解析; (3)①.【20题答案】【答案】见解析【21题答案】【答案】(1)过4秒或6秒(2)3【22题答案】【答案】(1)见解析 (2)245AF =【23题答案】【答案】(1)证明见解析;(2)()205y x =+<£; (3)52x =.【24题答案】【答案】(1)=;<;>;(2)43b -<<-(3)b 的值为32-或12-或2516-.2024年山东威海中考数学试题及答案注意事项:1.本试卷共6页,共120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.答题前,请务必用0.5毫米黑色签字笔将自己的姓名、考生号、座号填写在答题卡和试卷规定的位置上.3.所有的试题都必须在专用的“答题卡”上作答.写在试卷上或答题卡指定区域以外的答案一律无效.4.选择题用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号、作图题用2B 铅笔(加黑加粗,描写清楚)或0.5毫米的黑色签字笔作答.其它题目用0.5毫米的黑色签字笔作答.如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.5.不要求保留精确度的题目,计算结果保留准确值.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( )A. 7+ B. 5- C. 3- D. 102.据央视网10月11日消息,中国科学技术大学中国科学院量子创新研究院与上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光子的量子计算原型机“九章三号”,再度刷新了光量子信息的技术水平和量子计算优越性的世界纪录.“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍,在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机花费超过二百亿年的时间.将“百万分之一”用科学记数法表示为( )A 5110-´ B. 6110-´ C. 7110-´ D. 8110-´3. 下列各数中,最小的数是( )A. 2-B. ()2--C. 12-D. 4. 下列运算正确的是( )A. 5510x x x += B. 21m m n n n ¸×=C 624a a a ¸= D. ()325a a -=-..5.下列几何体都是由四个大小相同的小正方体搭成的.其中主视图、左视图和俯视图完全相同的是() A. B. C. D.6.如图,在扇形AOB 中,90AOB Ð=°,点C 是AO 的中点.过点C 作CE AO ^交»AB 于点E ,过点E 作ED OB ^,垂足为点D .在扇形内随机选取一点P ,则点P 落在阴影部分的概率是( )A. 14 B. 13 C. 12 D. 237. 定义新运算:①在平面直角坐标系中,{},a b 表示动点从原点出发,沿着x 轴正方向(0a ³)或负方向(0a <).平移a 个单位长度,再沿着y 轴正方向(0b ³)或负方向(0b <)平移b 个单位长度.例如,动点从原点出发,沿着x 轴负方向平移2个单位长度,再沿着y 轴正方向平移1个单位长度,记作{}2,1-.②加法运算法则:{}{}{},,,a b c d a c b d +=++,其中a ,b ,c ,d 为实数.若{}{}{}3,5,1,2m n +=-,则下列结论正确的是( )A. 2m =,7n = B. 4m =-,3n =-C. 4m =,3n = D. 4m =-,3n =8.《九章算术》是我国古老的数学经典著作,书中提到这样一道题目:以绳测井.若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意是:用绳子测量水井的深度.如果将绳子折成三等份,一份绳长比井深多4尺;如果将绳子折成四等份,一份绳长比井深多1尺.绳长、井深各是多少尺?若设绳长x 尺,井深y 尺,则符合题意的方程组是( )A. 3441x y x y -=ìí-=î B. 3441x yx y+=ìí+=îC. 4314x y x y ì-=ïïíï-=ïî D. 4314x y x y ì+=ïïíï+=ïî9. 如图,在ABCD Y 中,对角线AC ,BD 交于点O ,点E 在BC 上,点F 在CD 上,连接AE ,AF ,EF ,EF 交AC 于点G .下列结论错误的是( )A. 若CE AD CF AB=,则EF BD ∥B. 若AE BC ^,AF CD ^,AE AF =,则EF BD∥C. 若EF BD ∥,CE CF =,则EAC FACÐ=ÐD. 若AB AD =,AE AF =,则EF BD∥10.同一条公路连接A ,B ,C 三地,B 地在A ,C 两地之间.甲、乙两车分别从A 地、B 地同时出发前往C 地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.下图表示甲、乙两车之间的距离y (km )与时间x (h )的函数关系.下列结论正确的是( )A. 甲车行驶8h 3与乙车相遇B. A ,C 两地相距220kmC. 甲车的速度是70km /hD. 乙车中途休息36分钟二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.=________.12. 因式分解:()()241x x +++=________.13. 如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ^,垂足为点I .若20EFG Ð=°,则ABI Ð=________.14. 计算:2422x x x+=--________.15. 如图,在平面直角坐标系中,直线()10y ax b a =+¹与双曲线()20k y k x=¹交于点()1,A m -,()2,1B -.则满足12y y £的x 的取值范围______.16. 将一张矩形纸片(四边形ABCD )按如图所示的方式对折,使点C 落在AB 上的点C ¢处,折痕为MN ,点D 落在点D ¢处,C D ¢¢交AD 于点E .若3BM =,4BC ¢=,3AC ¢=,则DN =________.三、解答题(本大题共8小题,共72分)17.某公司为节能环保,安装了一批A 型节能灯,一年用电16000千瓦·时.后购进一批相同数量的B 型节能灯,一年用电9600千瓦·时.一盏A 型节能灯每年的用电量比一盏B 型节能灯每年用电量的2倍少32千瓦·时.求一盏A 型节能灯每年的用电量.18.为增强学生体质,某校在八年级男生中试行“每日锻炼,每月测试”的引体向上训练活动,设定6个及以上为合格.体育组为了解一学期的训练效果,随机抽查了20名男生2至6月份的测试成绩.其中,2月份测试成绩如表1,6月份测试成绩如图1(尚不完整).整理本学期测试数据得到表2和图2(尚不完整).2月份测试成绩统计表个0136810数人484121数表1本学期测试成绩统计表请根据图表中信息,解答下列问题:(1)将图1和图2中统计图补充完整,并直接写出a ,b ,c 的值;(2)从多角度分析本次引体向上训练活动的效果;(3)若将此活动在邻校八年级推广,该校八年级男生按400人计算,以随机抽查的20名男生训练成绩为样本,估算经过一学期的引体向上训练,可达到合格水平的男生人数.19.某校九年级学生开展利用三角函数解决实际问题的综合与实践活动,活动之一是测量某护堤石坝与地平面的倾斜角.测量报告如下表(尚不完整)(1)设AB a =,BC b =,AC c =,CE d =,DE e =,CD f =,BE g =,AD h =,请根据表中的测量示意图,从以上线段中选出你认为需要测量的数据,把表示数据的小写字母填写在“测量数据”一的的栏.(2)根据(1)中选择的数据,写出求a Ð的一种三角函数值的推导过程.(3)假设sin 0.86a »,cos 0.52a »,tan 1.66a »,根据(2)中的推导结果,利用计算器求出a Ð的度数,你选择的按键顺序为________.20. 感悟如图1,在ABE V 中,点C ,D 在边BE 上,AB AE =,BC DE =.求证:BAC EAD Ð=Ð.应用(1)如图2,用直尺和圆规在直线BC 上取点D ,点E (点D 在点E 的左侧),使得EAD BAC Ð=Ð,且DE BC =(2)如图3,用直尺和圆规在直线AC 上取一点D ,在直线BC 上取一点E ,使得CDE BAC Ð=Ð,且DE AB =(不写作法,保留作图痕迹).21. 定义我们把数轴上表示数a 的点与原点的距离叫做数a 的绝对值.数轴上表示数a ,b 的点A ,B 之间的距离()AB a b a b =-³.特别的,当0a ³时,表示数a 的点与原点的距离等于0a -.当a<0时,表示数a 的点与原点的距离等于0a -.应用如图,在数轴上,动点A 从表示3-的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B 从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A ,B 之间的距离等于3个单位长度?(2)求点A ,B 到原点距离之和的最小值.22. 如图,已知AB 是O e 的直径,点C ,D 在O e 上,且BC CD =.点E 是线段AB 延长线上一点,连接EC 并延长交射线AD 于点F .FEG Ð的平分线EH 交射线AC 于点H ,45H Ð=°.(1)求证:EF 是O e 的切线;(2)若2BE =,4CE =,求AF 23. 如图,在菱形ABCD 中,10cm AB =,60ABC Ð=°,E 为对角线AC 上一动点,以DE 为一边作60DEF Ð=°,EF 交射线BC 于点F ,连接BE DF ,.点E 从点C 出发,沿CA 方向以每秒2cm 的速度运动至点A 处停止.设BEF △的面积为2cm y ,点E 的运动时间为x 秒.(1)求证:BE EF =;(2)求y 与x 的函数表达式,并写出自变量x 的取值范围;(3)求x 为何值时,线段DF 的长度最短.24. 已知抛物线()20y x bx c b =++<与x 轴交点的坐标分别为()1,0x ,()2,0x ,且12x x <.(1)若抛物线()2110y x bx c b =+++<与x 轴交点的坐标分别为()3,0x ,()4,0x ,且34x x <.试判断下列每组数据的大小(填写<、=或>):①12x x +________34x x +;②13x x -________24x x -;③23x x +________14x x +.(2)若11x =,223x <<,求b 的取值范围;(3)当01x ££时,()20y x bx c b =++<最大值与最小值的差为916,求b 的值.参考答案注意事项:1.本试卷共6页,共120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.答题前,请务必用0.5毫米黑色签字笔将自己的姓名、考生号、座号填写在答题卡和试卷规定的位置上.3.所有的试题都必须在专用的“答题卡”上作答.写在试卷上或答题卡指定区域以外的答案一律无效.4.选择题用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号、作图题用2B铅笔(加黑加粗,描写清楚)或0.5毫米的黑色签字笔作答.其它题目用0.5毫米的黑色签字笔作答.如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.5.不要求保留精确度的题目,计算结果保留准确值.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)【1题答案】【答案】C【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】B【8题答案】【答案】C【9题答案】【答案】D【10题答案】【答案】A二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)【11题答案】【答案】-【12题答案】【答案】()23x +【13题答案】【答案】50°##50度【14题答案】【答案】2x --##2x--【15题答案】【答案】10x -£<或2x ³【16题答案】【答案】32三、解答题(本大题共8小题,共72【17题答案】【答案】160千瓦·时【18题答案】【答案】(1)见解析,1, 5.65,55%a b c ===(2)见解析 (3)220【19题答案】【答案】(1)AB a =,AC c =,DE e =,CD f =;(2)sin ec afa =,推导见解析; (3)①.【20题答案】【答案】见解析【21题答案】【答案】(1)过4秒或6秒(2)3【22题答案】【答案】(1)见解析 (2)245AF =【23题答案】【答案】(1)证明见解析;(2)()205y x =+<£; (3)52x =.【24题答案】【答案】(1)=;<;>;(2)43b -<<-(3)b 的值为32-或12-或2516-.。
2023年山东中考数学试题及答案
2023年山东中考数学试题及答案第一部分选择题1. 下列各组数中,哪组数互为相反数?A. 3和-3B. 4和-4C. -5和5D. -6和-9答案:C2. 已知正整数m和n满足m > n,则下列哪个不等式一定成立?A. m - 3 > n -3B. m + 4 > n + 4C. m × 2 > n × 2D. m ÷ 5 > n ÷ 5答案:C3. 去年某公司进口苹果的数量比前年增加30%,今年进口的苹果比去年增加40%。
今年进口苹果比前年增加了几成?A. 70%B. 72%C. 76%D. 78%答案:D4. 已知一个正整数加上35后,它的值比35减少了,这个正整数是:A. 34B. 35C. 36D. 37答案:A5. 如果一整数x加上5的和是10,那么此整数x是:A. -5B. 0C. 5D. 10答案:C第二部分填空题1. 将120元按比例分成2份,比是3:5,那么多的那份是\_\_\_元。
答案:752. 小明和小红共抄写书本30页,已知小明抄写的书页数是小红的2倍,小红抄写的书页数是小明抄写的\_\_\_倍。
答案:0.53. 如果a:b = 3:7,b:c = 5:9,那么a:b:c = \_\_\_: \_\_\_: \_\_\_。
答案:15:21:634. 一个筐里有红、黄、蓝三种苹果,红苹果占总数的40%,黄苹果占总数的30%,蓝苹果占总数的30%,则黄苹果数量是红苹果数量的\_\_\_倍。
答案:0.75第三部分解答题1. 一块宽度为3cm,长度为4cm的长方形区域,按边长2cm 的正方形进行填充,填充了几个正方形?答案:6个2. 在一个等边三角形ABC中,点D是AB的三分之一处,点E是BC的三分之二处,连接AE并延长到F点,则AF的长度是BC的\_\_\_倍。
答案:1.5倍3. 设a+b=15,a-b=5,求a和b的值。
2024年山东省济宁市中考数学试卷正式版含答案解析
绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−3的绝对值是( )A. 3B. −13C. −3 D. 132.如图是一个正方体的展开图,把展开图折叠成正方体后,有“建”字一面的相对面上的字是( )A. 人B. 才C. 强D. 国3.下列运算正确的是( )A. √ 2+√ 3=√ 5B. √ 2×√ 5=√ 10C. 2÷√ 2=1D. √ (−5)2=−54.如图,菱形ABCD的对角线AC,BD相交于点O,E是AB的中点,连接OE.若OE=3,则菱形的边长为( )A. 6B. 8C. 10D. 125.为了解全班同学对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,班主任对全班50名同学进行了问卷调查(每名同学只选其中的一类),依据50份问卷调查结果绘制了全班同学喜爱节目情况扇形统计图(如图所示).下列说法正确的是( )A. 班主任采用的是抽样调查B. 喜爱动画节目的同学最多C. 喜爱戏曲节目的同学有6名D. “体育”对应扇形的圆心角为72°6.如图,边长为2的正六边形ABCDEF内接于⊙O,则它的内切圆半径为( )A. 1B. 2C. √ 2D. √ 37.已知点A(−2,y1),B(−1,y2),C(3,y3)在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系是( ) A. y1<y2<y3 B. y2<y1<y3 C. y3<y1<y2 D. y3<y2<y18.解分式方程1−13x−1=−52−6x时,去分母变形正确的是( )A. 2−6x+2=−5B. 6x−2−2=−5C. 2−6x−1=5D. 6x−2+1=59.如图,分别延长圆内接四边形ABCD的两组对边,延长线相交于点E,F.若∠E=54°41′,∠F=43°19′,则∠A的度数为( )A. 42°B. 41°20′C. 41°D. 40°20′10.如图,用大小相等的小正方形按照一定规律拼正方形.第一幅图有1个正方形,第二幅图有5个正方形,第三幅图有14个正方形……按照此规律,第六幅图中正方形的个数为( )A. 90B. 91C. 92D. 93二、填空题:本题共5小题,每小题3分,共15分。
2024年山东省济南市中考数学试卷及答案解析
2024年山东省济南市中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求。
1.(4分)9的相反数是()A.﹣9B.C.D.92.(4分)黑陶是继彩陶之后中国新石器时代制陶工艺的又一个高峰,被誉为“土与火的艺术,力与美的结晶”.如图是山东博物馆收藏的蛋壳黑陶高柄杯.关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同3.(4分)截止2023年底,我国森林面积约为3465000000亩,森林覆盖率达到24.02%.将数字3465000000用科学记数法表示为()A.0.3465×109B.3.465×109C.3.465×108D.34.65×1084.(4分)若正多边形的一个外角是45°,则这个正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形5.(4分)如图,已知△ABC≌△DEC,∠A=60°,∠B=40°,则∠DCE的度数为()A.40°B.60°C.80°D.100°6.(4分)下列运算正确的是()A.3x+3y=6xy B.(xy2)3=xy6C.3(x+8)=3x+8D.x2•x3=x57.(4分)若关于x的方程x2﹣x﹣m=0有两个不相等的实数根,则实数m的取值范围是()A.B.C.m<﹣4D.m>﹣48.(4分)3月14日是国际数学节.某学校在今年国际数学节策划了“竞速华容道”“玩转幻方”和“巧解鲁班锁”三个挑战活动,如果小红和小丽每人随机选择参加其中一个活动,则她们恰好选到同一个活动的概率是()A.B.C.D.9.(4分)如图,在正方形ABCD中,分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点E和F,作直线EF,再以点A为圆心,以AD的长为半径作弧交直线EF于点G(点G在正方形ABCD内部),连接DG并延长交BC于点K.若BK=2,则正方形ABCD的边长为()A.B.C.D.10.(4分)如图1,△ABC是等边三角形,点D在边AB上,BD=2,动点P以每秒1个单位长度的速度从点B出发,沿折线BC﹣CA匀速运动,到达点A后停止,连接DP.设点P的运动时间为t(s),DP2为y.当动点P沿BC匀速运动到点C时,y与t的函数图象如图2所示.有以下四个结论:①AB=3;②当t=5时,y=1;③当4≤t≤6时,1≤y≤3;④动点P沿BC﹣CA匀速运动时,两个时刻t1,t2(t1<t2)分别对应y1和y2,若t1+t2=6,则y1>y2.其中正确结论的序号是()A.①②③B.①②C.③④D.①②④二、填空题:本题共5小题,每小题4分,共20分.直接填写答案.11.(4分)若分式的值为0,则实数x的值为.12.(4分)如图是一个可以自由转动的转盘,转盘被等分成四个扇形,转动转盘,当转盘停止时,指针落在红色区域的概率为.13.(4分)如图,已知l1∥l2,△ABC是等腰直角三角形,∠BAC=90°,顶点A,B分别在l1,l2上,当∠1=70°时,∠2=°.14.(4分)某公司生产了A,B两款新能源电动汽车.如图,l1,l2分别表示A款,B款新能源电动汽车充满电后电池的剩余电量y(kw•h)与汽车行驶路程x(km)的关系.当两款新能源电动汽车的行驶路程都是300km时,A款新能源电动汽车电池的剩余电量比B款新能源电动汽车电池的剩余电量多kw•h.15.(4分)如图,在矩形纸片ABCD中,,AD=2,E为边AD的中点,点F在边CD上,连接EF,将△DEF沿EF翻折,点D的对应点为D′,连接BD′.若BD′=2,则DF=.三、解答题:本题共10小题,共90分.解答应写出文字说明、证明过程或演算步骤.16.(7分)计算:.17.(7分)解不等式组:,并写出它的所有整数解.18.(7分)如图,在菱形ABCD中,AE⊥CD,垂足为E,CF⊥AD,垂足为F.求证:AF=CE.19.(8分)城市轨道交通发展迅猛,为市民出行带来极大方便.某校“综合实践”小组想测得轻轨高架站的相关距离,数据勘测组通过勘测得到了如下记录表:综合实践活动记录表活动内容测量轻轨高架站的相关距离测量工具测倾器,红外测距仪等过程资料轻轨高架站示意图相关数据及说明:图中点A,B,C,D,E,F在同一平面内,房顶AB,吊顶CF和地面DE所在的直线都平行,点F在与地面垂直的中轴线AE上,∠BCD=98°,∠CDE=97°,AE=8.5m,CD=6.7m.成果梳理…请根据记录表提供的信息完成下列问题:(1)求点C到地面DE的距离;(2)求顶部线段BC的长.(结果精确到0.01m,参考数据:sin15°≈0.259,cos15°≈0.966,tan15°≈0.268,sin83°≈0.993,cos83°≈0.122,tan83°≈8.144)20.(8分)如图,AB,CD为⊙O的直径,点E在上,连接AE,DE,点G在BD的延长线上,AB=AG,∠EAD+∠EDB=45°.(1)求证:AG与⊙O相切;(2)若,,求DE的长.21.(9分)2024年3月25日是第29个全国中小学生安全教育日,为提高学生安全防范意识和自我防护能力,某校开展了校园安全知识竞赛(百分制),八年级学生参加了本次活动.为了解该年级的答题情况,该校随机抽取了八年级部分学生的竞赛成绩(成绩用x表示,单位:分).并对数据(成绩)进行统计整理.数据分为五组:A:50≤x<60;B:60≤x<70;C:70≤x<80;D:80≤x<90;E:90≤x≤100.下面给出了部分信息:a:C组的数据:70,71,71,72,72,72,74,74,75,76,76,76,78,78,79,79.b:不完整的学生竞赛成绩频数分布直方图和扇形统计图如下:请根据以上信息完成下列问题:(1)求随机抽取的八年级学生人数;(2)扇形统计图中B组对应扇形的圆心角为度;(3)请补全频数分布直方图;(4)抽取的八年级学生竞赛成绩的中位数是分;(5)该校八年级共900人参加了此次竞赛活动,请你估计该校八年级参加此次竞赛活动成绩达到80分及以上的学生人数.22.(10分)近年来光伏建筑一体化广受关注.某社区拟修建A,B两种光伏车棚.已知修建2个A种光伏车棚和1个B种光伏车棚共需投资8万元,修建5个A种光伏车棚和3个B种光伏车棚共需投资21万元.(1)求修建每个A种,B种光伏车棚分别需投资多少万元?(2)若修建A,B两种光伏车棚共20个,要求修建的A种光伏车棚的数量不少于修建的B种光伏车棚数量的2倍,问修建多少个A种光伏车棚时,可使投资总额最少?最少投资总额为多少万元?23.(10分)已知反比例函数的图象与正比例函数y=3x(x≥0)的图象交于点A(2,a),点B是线段OA上(不与点A重合)的一点.(1)求反比例函数的表达式;(2)如图1,过点B作y轴的垂线l,l与的图象交于点D,当线段BD=3时,求点B 的坐标;(3)如图2,将点A绕点B顺时针旋转90°得到点E,当点E恰好落在的图象上时,求点E的坐标.24.(12分)在平面直角坐标系xOy中,抛物线C1:y=x2+bx+c经过点A(0,2),B(2,2),顶点为D;抛物线C2:y=x2﹣2mx+m2﹣m+2(m≠1),顶点为Q.(1)求抛物线C1的表达式及顶点D的坐标;(2)如图1,连接AD,点E是抛物线C1对称轴右侧图象上一点,点F是抛物线C2上一点,若四边形ADFE是面积为12的平行四边形,求m的值;(3)如图2,连接BD,DQ,点M是抛物线C1对称轴左侧图象上的动点(不与点A重合),过点M作MN∥DQ交x轴于点N,连接BN,DN,求△BDN面积的最小值.25.(12分)某校数学兴趣小组的同学在学习了图形的相似后,对三角形的相似进行了深入研究.(一)拓展探究如图1,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .(1)兴趣小组的同学得出AC 2=AD •AB .理由如下:∵∠ACB =90°∴∠A +∠B =90°∵CD ⊥AB ∴∠ADC =90°∴∠A +∠ACD =90°∴∠B =①_____∵∠A =∠A ∴△ABC ∽△ACD ∴=②_____∴AC 2=AD •AB请完成填空:①;②;(2)如图2,F 为线段CD 上一点,连接AF 并延长至点E ,连接CE ,当∠ACE =∠AFC 时,请判断△AEB 的形状,并说明理由.(二)学以致用(3)如图3,△ABC 是直角三角形,∠ACB =90°,AC =2,,平面内一点D ,满足AD =AC ,连接CD 并延长至点E ,且∠CEB =∠CBD ,当线段BE 的长度取得最小值时.求线段CE 的长.2024年山东省济南市中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求。
2024年山东省威海市中考数学真题卷及答案
威海市2024年初中学业考试数学注意事项:1.本试卷共6页,共120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.答题前,请务必用0.5毫米黑色签字笔将自己的姓名、考生号、座号填写在答题卡和试卷规定的位置上.3.所有的试题都必须在专用的“答题卡”上作答.写在试卷上或答题卡指定区域以............外的答案一律无效.........4.选择题用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号、作图题用2B 铅笔(加黑加粗,描写清楚)或0.5毫米的黑色签字笔作答.其它题目用0.5毫米的黑色签字笔作答.如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带................5.不要求保留精确度的题目,计算结果保留准确值.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是()A.7+ B.5- C.3- D.102.据央视网2023年10月11日消息,中国科学技术大学中国科学院量子创新研究院与上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光子的量子计算原型机“九章三号”,再度刷新了光量子信息的技术水平和量子计算优越性的世界纪录.“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍,在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机花费超过二百亿年的时间.将“百万分之一”用科学记数法表示为()A .5110-⨯ B.6110-⨯ C.7110-⨯ D.8110-⨯3.下列各数中,最小的数是()A.2- B.()2-- C.12-D.4.下列运算正确的是()A.5510x x x +=B.21m m n n n÷⋅=C .624a a a ÷= D.()325a a -=-5.下列几何体都是由四个大小相同的小正方体搭成的.其中主视图、左视图和俯视图完全相同的是()A. B. C. D.6.如图,在扇形AOB 中,90AOB ∠=︒,点C 是AO 的中点.过点C 作CE AO ⊥交 AB 于点E ,过点E 作ED OB ⊥,垂足为点D .在扇形内随机选取一点P ,则点P 落在阴影部分的概率是()A.14B.13C.12D.237.定义新运算:①在平面直角坐标系中,{},a b 表示动点从原点出发,沿着x 轴正方向(0a ≥)或负方向(0a <).平移a 个单位长度,再沿着y 轴正方向(0b ≥)或负方向(0b <)平移b 个单位长度.例如,动点从原点出发,沿着x 轴负方向平移2个单位长度,再沿着y 轴正方向平移1个单位长度,记作{}2,1-.②加法运算法则:{}{}{},,,a b c d a c b d +=++,其中a ,b ,c ,d 为实数.若{}{}{}3,5,1,2m n +=-,则下列结论正确的是()A.2m =,7n =B.4m =-,3n =-C.4m =,3n = D.4m =-,3n =8.《九章算术》是我国古老的数学经典著作,书中提到这样一道题目:以绳测井.若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意是:用绳子测量水井的深度.如果将绳子折成三等份,一份绳长比井深多4尺;如果将绳子折成四等份,一份绳长比井深多1尺.绳长、井深各是多少尺?若设绳长x 尺,井深y 尺,则符合题意的方程组是()A.3441x y x y -=⎧⎨-=⎩ B.3441x y x y+=⎧⎨+=⎩C.4314xy x y ⎧-=⎪⎪⎨⎪-=⎪⎩ D.4314xy x y ⎧+=⎪⎪⎨⎪+=⎪⎩9.如图,在ABCD Y 中,对角线AC ,BD 交于点O ,点E 在BC 上,点F 在CD 上,连接AE ,AF ,EF ,EF 交AC 于点G .下列结论错误的是()A.若CE ADCF AB=,则EF BD ∥B.若AE BC ⊥,AF CD ⊥,AE AF =,则EF BD ∥C.若EF BD ∥,CE CF =,则EAC FAC ∠=∠D.若AB AD =,AE AF =,则EF BD∥10.同一条公路连接A ,B ,C 三地,B 地在A ,C 两地之间.甲、乙两车分别从A 地、B 地同时出发前往C 地.甲车速度始终保持不变,乙车中途休息一段时间,继续行驶.下图表示甲、乙两车之间的距离y (km )与时间x (h )的函数关系.下列结论正确的是()A.甲车行驶8h 3与乙车相遇 B.A ,C 两地相距220km C.甲车的速度是70km /hD.乙车中途休息36分钟二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.1286=________.12.因式分解:()()241x x +++=________.13.如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠=________.14.计算:2422x x x+=--________.15.如图,在平面直角坐标系中,直线()10y ax b a =+≠与双曲线()20ky k x=≠交于点()1,A m -,()2,1B -.则满足12y y ≤的x 的取值范围______.16.将一张矩形纸片(四边形ABCD )按如图所示的方式对折,使点C 落在AB 上的点C '处,折痕为MN ,点D 落在点D '处,C D ''交AD 于点E .若3BM =,4BC '=,3AC '=,则DN =________.三、解答题(本大题共8小题,共72分)17.某公司为节能环保,安装了一批A 型节能灯,一年用电16000千瓦·时.后购进一批相同数量的B 型节能灯,一年用电9600千瓦·时.一盏A 型节能灯每年的用电量比一盏B 型节能灯每年用电量的2倍少32千瓦·时.求一盏A 型节能灯每年的用电量.18.为增强学生体质,某校在八年级男生中试行“每日锻炼,每月测试”的引体向上训练活动,设定6个及以上为合格.体育组为了解一学期的训练效果,随机抽查了20名男生2至6月份的测试成绩.其中,2月份测试成绩如表1,6月份测试成绩如图1(尚不完整).整理本学期测试数据得到表2和图2(尚不完整).2月份测试成绩统计表个数0136810人数484121表1本学期测试成绩统计表1平均数/个众数/个中位数/个合格率2月 2.6a120%3月 3.13425%4月44535%5月 4.555540%6月b86c表2请根据图表中的信息,解答下列问题:(1)将图1和图2中的统计图补充完整,并直接写出a,b,c的值;(2)从多角度分析本次引体向上训练活动的效果;(3)若将此活动在邻校八年级推广,该校八年级男生按400人计算,以随机抽查的20名男生训练成绩为样本,估算经过一学期的引体向上训练,可达到合格水平的男生人数.19.某校九年级学生开展利用三角函数解决实际问题的综合与实践活动,活动之一是测量某护堤石坝与地平面的倾斜角.测量报告如下表(尚不完整)课题测量某护堤石坝与地平面的倾斜角成员组长:×××组员:×××,×××,×××测量竹竿,米尺工具测量示意图说明:AC 是一根笔直的竹竿.点D是竹竿上一点.线段DE 的长度是点D 到地面的距离.α∠是要测量的倾斜角.测量数据…………(1)设AB a =,BC b =,AC c =,CE d =,DE e =,CD f =,BE g =,AD h =,请根据表中的测量示意图,从以上线段中选出你认为需要测量的数据,把表示数据的小写字母填写在“测量数据”一栏.(2)根据(1)中选择的数据,写出求α∠的一种三角函数值的推导过程.(3)假设sin 0.86α≈,cos 0.52α≈,tan 1.66α≈,根据(2)中的推导结果,利用计算器求出α∠的度数,你选择的按键顺序为________.20.感悟如图1,在ABE 中,点C ,D 在边BE 上,AB AE =,BC DE =.求证:BAC EAD ∠=∠.应用(1)如图2,用直尺和圆规在直线BC 上取点D ,点E (点D 在点E 的左侧),使得EAD BAC ∠=∠,且DE BC =(不写作法,保留作图痕迹);(2)如图3,用直尺和圆规在直线AC 上取一点D ,在直线BC 上取一点E ,使得CDE BAC ∠=∠,且DE AB =(不写作法,保留作图痕迹).21.定义我们把数轴上表示数a 的点与原点的距离叫做数a 的绝对值.数轴上表示数a ,b 的点A ,B 之间的距离()AB a b a b =-≥.特别的,当0a ≥时,表示数a 的点与原点的距离等于0a -.当a<0时,表示数a 的点与原点的距离等于0a -.应用如图,在数轴上,动点A 从表示3-的点出发,以1个单位/秒的速度沿着数轴的正方向运动.同时,动点B 从表示12的点出发,以2个单位/秒的速度沿着数轴的负方向运动.(1)经过多长时间,点A ,B 之间的距离等于3个单位长度?(2)求点A ,B 到原点距离之和的最小值.22.如图,已知AB 是O 的直径,点C ,D 在O 上,且BC CD =.点E 是线段AB 延长线上一点,连接EC 并延长交射线AD 于点F .FEG ∠的平分线EH 交射线AC 于点H ,45H ∠=︒.(1)求证:EF 是O 的切线;(2)若2BE =,4CE =,求AF的长.23.如图,在菱形ABCD 中,10cm AB =,60ABC ∠=︒,E 为对角线AC 上一动点,以DE 为一边作60DEF ∠=︒,EF 交射线BC 于点F ,连接BE DF ,.点E 从点C 出发,沿CA 方向以每秒2cm 的速度运动至点A 处停止.设BEF △的面积为2cm y ,点E 的运动时间为x 秒.(1)求证:BE EF =;(2)求y 与x 的函数表达式,并写出自变量x 的取值范围;(3)求x 为何值时,线段DF 的长度最短.24.已知抛物线()20y x bx c b =++<与x 轴交点的坐标分别为()1,0x ,()2,0x ,且12x x <.(1)若抛物线()2110y x bx c b =+++<与x 轴交点的坐标分别为()3,0x ,()4,0x ,且34x x <.试判断下列每组数据的大小(填写<、=或>):①12x x +________34x x +;②13x x -________24x x -;③23x x +________14x x +.(2)若11x =,223x <<,求b 的取值范围;(3)当01x ≤≤时,()20y x bx c b =++<最大值与最小值的差为916,求b 的值.威海市2024年初中学业考试数学注意事项:1.本试卷共6页,共120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.答题前,请务必用0.5毫米黑色签字笔将自己的姓名、考生号、座号填写在答题卡和试卷规定的位置上.3.所有的试题都必须在专用的“答题卡”上作答.写在试卷上或答题卡指定区域以............外的答案一律无效.........4.选择题用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号、作图题用2B铅笔(加黑加粗,描写清楚)或0.5毫米的黑色签字笔作答.其它题目用0.5毫米的黑色签字笔作答.如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带................5.不要求保留精确度的题目,计算结果保留准确值.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)【1题答案】【答案】C【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】B【8题答案】【答案】C【9题答案】【答案】D【10题答案】【答案】A二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)【11题答案】【答案】-【12题答案】【答案】()23x +【13题答案】【答案】50︒##50度【14题答案】【答案】2x --##2x--【15题答案】【答案】10x -≤<或2x ≥【16题答案】【答案】32三、解答题(本大题共8小题,共72分)【17题答案】【答案】160千瓦·时【18题答案】【答案】(1)见解析,1, 5.65,55%a b c ===(2)见解析(3)220【19题答案】【答案】(1)AB a =,AC c =,DE e =,CD f =;(2)sin ecaf α=,推导见解析;(3)①.【20题答案】【答案】见解析【21题答案】【答案】(1)过4秒或6秒(2)3【22题答案】【答案】(1)见解析(2)245AF =【23题答案】【答案】(1)证明见解析;(2)()205y x =+<≤;(3)52x =.【24题答案】【答案】(1)=;<;>;(2)43b -<<-(3)b 的值为32-或12-或2516-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省二○○八年中等学校招生考试
数 学 试 题
一、选择题:
1.只用下列图形不能镶嵌的是
A .三角形
B .四边形
C .正五边形
D .正六边形 2.下列计算结果正确的是
A .4332222y x xy y x -=⋅-
B .2253xy y x -=y x 22-
C .xy y x y x 4728324=÷
D .49)23)(23(2-=---a a a
3.在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为 A .-1<m <3
B .m >3
C .m <-1
D .m >-1
4.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.
将纸片展开,得到的图形是
5.若关于x 的一元二次方程0235)1(2
2
=+-++-m m x x m 的常数项为0,则m 的值等于 A .1
B .2
C .1或2
D .0
6.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是
A .10
B .16
C .18
D .20
图 1
B
图
2
A .
B .
C .
D .
7.若A (1,413y -
),B (2,45y -),C (3,4
1y )为二次函数2
45y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是
A .123y y y <<
B .213y y y <<
C .312y y y <<
D .132y y y <<
8.如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有 A .2个
B .3个
C .4个
D .5 个
二、填空题:本大题共8小题,每小题填对得4分,共32分.只要求填写最后结果.
9.在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.581亿帕的钢材.4.581亿帕用科学计数法表示为__________帕(保留两位有效数字).
10.如图,已知AB ∥CD ,BE 平分∠ABC , ∠CDE =150°,则∠C =__________.
11.分解因式:ab b a 8)2(2+- =____________.
12.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形, 俯视图是一个圆,那么这个几何体的侧面积是 .
13.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为 .
14.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:
则a n =
(用含n 的代数式表示).
15.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是 “上升数”的概率是 .
B
E
D
A
C
O
A
B
C
D
E
16.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:
① AD =BE ; ② PQ ∥AE ; ③ AP =BQ ; ④ DE =DP ; ⑤ ∠AOB =60°.
恒成立的有______________(把你认为正确的序号都填上).
三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 17.(本题满分6分) 先化简,再求值:
1
1a b a b ⎛⎫- ⎪-+⎝⎭
÷22
2b a ab b -+,其中21+=a ,21-=b .
18.(本题满分8分)
振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3︰4︰5︰8︰6,又知此次调查中捐款25元和30元的学生一共42人.
(1)他们一共调查了多少人?
(2)这组数据的众数、中位数各是多少?
(3)若该校共有1560名学生,估计全校学生捐款多少元?
19.(本题满分8分)
为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?
/元
A
B
C
E D
O P Q
20.(本题满分10分)
在梯形ABCD 中,AB ∥CD ,∠A =90°, AB =2,BC =3,CD =1,E 是AD 中点. 求证:CE ⊥BE .
21. (本题满分10分)
如图,AC 是某市环城路的一段,AE ,BF ,CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A ,B ,C .经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上,AB =2km ,∠DAC =15°.
(1)求B ,D 之间的距离; (2)求C ,D 之间的距离.
22.(本题满分10分)
(1)探究新知:
如图1,已知△ABC 与△ABD 的面积相等, 试判断AB 与CD 的位置关系, 并说明理由.
(2)结论应用:
① 如图2,点M ,N 在反比例函数x
k
y (k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .
试证明:MN ∥EF .
② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与EF 是否平行.
A
C
B
D
E A B
C
中
山路
文
化
路
D 和平
路
45° 15°
30°
环城路
E
F
A
B
D
C
图 1
23.(本题满分12分)
在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC 交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切?
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
B
图 1
B D
图 2
图 3。