梯形辅助线做法练习题
最新梯形常见辅助线作法(教师版)
梯形常见辅助线作法11、平移法2(1)梯形内平移一腰(过一顶点做腰的平行线)3[例1]如图,在等腰梯形ABCD中,AD∥BC,AB=CD,∠C=60°,AD=15cm,4BC=49cm,求CD的长.5解:过D作DE∥AB交BC于E,则四边形ABED为平行四边形.6∴AD=BE=15cm,AB=DE.7∴EC=BC-BE=BC-AD=49-15=34cm.8又∵AB=CD,∴ DE=CD.9又∵∠C=60°,10∴△CDE是等边三角形,11即CD=EC=34cm.12(2)梯形外平移一腰(过一顶点做腰的平行线)13[例2]如图,在梯形ABCD中,AB∥CD,四边形ACED是平行四边形,延长DC交BE于F. 求14证:EF=FB15证明:过点B作BG∥AD,交DC的延长线于G16∴四边形ABGD是平行四边形∴AD=BG17∵ACED中,AD∥CE AD=CE18∴CE∥BG且CE=BG ∴∠CEF=∠GBF 19又∵∠CFE=∠GFB20∴△ECF≌△BGF( ASA)21∴EF=FB22 AD CEFB点评:过梯形上底或下底的一个端点作另一腰的平行线,可将梯形转化为一个平行四边形23和三角形。
24(3)梯形内平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到25同一个三角形中。
26[例3]如图,已知:梯形ABCD中,AD∥BC,27∠C+∠B=90°,M,N分别是AD,BC的中点.28求证:MN=1() 2BC AD29证明:过点E分别作AB、CD的平行线,交BC于点G、H ,30则四边形ABGE,EDCH为平行四边形∴AE=BG,ED=HC31∵AB∥EG ∴∠B=∠EGF32又∵DC∥EH ∴∠C=∠EHF33则∠EGH+∠EHG=∠B+∠C=90°,△EGH是直角三角形34∵E、F分别是AD、BC的中点∴AE=ED,BF=CF ∴GF=FH 35则有EF=12GH=12(BC-BG-HC)=12(BC-AD)36(4)平移对角线(过一顶点做对角线的平行线)37[例4]求证:对角线相等的梯形是等腰梯形38已知:在梯形ABCD中,AD∥BC,对角线39求证:AB=DC40证明:过点D作DE∥AC交BC的延长线于点E 41B B则四边形ACED 是平行四边形 ∴AC=DE42 ∵DE=AC=DB ∴∠DBC=∠E ∠ACB=∠E ∴∠DBC=∠ACB 43 又∵BD=CA BC=CB ∴△ABC ≌△DCB(SAS) 44 ∴AB=DC45 点评:过梯形的一个顶点作对角线的平行线,将对角线的有关条件转化到一个三角形中。
《梯形》辅助线专题训练
《梯形》辅助线专题训练通常情况下,通过做辅助线,把梯形转化为三角形、平行四边形,是解决梯形问题的基本思路。
至于选取哪种方法,要结合题目图形和已知条件。
常见的几种辅助线的作法如下:作法图形平移腰,转化为三角形、平行四边形。
ABCD E平移对角线,转化为三角形、平行四边形。
ABCDE延长两腰,转化为三角形。
ABCD E作高,转化为直角三角形和矩形。
ABCD EF中位线与腰中点连线。
ABCD EF一、平移1、平移一腰例1. 如图所示,在直角梯形ABCD 中,∠A =90°,AB ∥DC ,AD =15,AB =16,BC =17. 求CD 的长。
解:过点D 作DE ∥BC 交AB 于点E.又AB ∥CD ,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8.例2.梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围。
解:过点B 作BM//AD 交CD 于点M ,在△BCM 中,BM=AD=4, CM=CD -DM=CD -AB=8-3=5,所以BC 的取值范围是:5-4<BC<5+4,即1<BC<9。
2、平移两腰例3.如图,在梯形ABCD 中,AD//BC ,∠B +∠C=90°,AD=1,BC=3,E 、F 分别是AD 、BC 的中点,连接EF ,求EF 的长。
ABCDABCD E解:过点E 分别作AB 、CD 的平行线,交BC 于点G 、H ,可得∠EGH +∠EHG=∠B +∠C=90° 则△EGH 是直角三角形因为E 、F 分别是AD 、BC 的中点,容易证得F 是GH 的中点所以)(2121CH BG BC GH EF --==1)13(21)(21)]([21)(21=-=-=+-=--=AD BC DE AE BC DE AE BC3、平移对角线例4.已知:梯形ABCD 中,AD//BC ,AD=1,BC=4,BD=3,AC=4,求梯形ABCD 的面积。
北京市八年级数学下册 梯形的辅助线课后练习
梯形的辅助线课后练习题一:(1)如图,直角梯形ABCD中,AD∥BC,∠B=90°,腰AB= 4,两底之差为2,求另一腰CD的长;(2)在梯形ABCD中,AD∥BC,AB=CD,∠B=60°,AD=8,BC=14,求梯形ABCD的周长;(3)如下图,在等腰梯形ABCD中,AB∥CD,DC=AD=BC,且对角线AC垂直于腰BC,求那个梯形各内角的度数;(4)如图,在梯形ABCD中,AD∥BC,∠B+∠C=90°,AD=1,BC=3,E、F别离是AD、BC的中点,那么EF= .题二:(1)如图,在梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,E、F、M、N别离为AB、CD、BC、DA的中点,已知BC=7,MN=3,那么EF= ;(2)如图,在梯形ABCD中,AD=DC,AB=DC,∠D=120°,对角线CA平分∠BCD,且梯形的周长为20,则梯形ABCD的面积为;(3)如图,等腰梯形ABCD中,AD∥BC,AD=3,AB= 4,BC=7,求∠B的度数;(4)如图,梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,E在BC上,CE=2,那么DE= .题三:已知:等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,那么等腰梯形的下底是cm.题四:已知:等腰梯形的一个底角等于60°,它的两底别离为4cm和7cm,那么它的周长为cm.题五:如下图,在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,且AD= 4,BC=8,求AC的长.题六:如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,假设AD=3,BC=7,求梯形ABCD面积的最大值.题七:如图,梯形ABCD中,AD∥B C,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,假设AD=2.7,AF=4,AB=6,求CE的长.题八:如图,在梯形ABCD中,AB∥CD,∠A+∠B=90°,CD=5,AB=11,点M、N别离为AB、CD的中点,求线段MN的长.题九:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AB= 4,AD=3,BC=5,点M是边CD的中点,连接AM、BM.求△ABM的面积.题十:如图,已知直角梯形ABCD中,AD∥BC(AD<BC),∠B=90°,AB=AD+BC.点E是CD的中点,点F是AB上的点,∠ADF= 45°,FE=a,梯形ABCD的面积为m.(1)求证:BF=BC;(2)求△DEF的面积(用含a、m的代数式表示).题十一:以线段a=16,b=13为梯形的两底,c=10,d=6为腰画梯形,如此的梯形( ) A.只能画出一个B.能画出2个C.能画出无数个D.不能画出题十二:以线段a=5,b=10,c=15,d=20做梯形四边形,如此的梯形(不全等的)( ) A.至少能做3个B.恰好能做2个C.仅仅只能做1个D.一个也不能做梯形的辅助线课后练习参考答案题一:(1)25;(2)34;(3)60°,60°,120°,120°;(4)1.详解:(1)过D作DE⊥BC于E,∵AB⊥BC,DE⊥BC,AD∥BC,∴四边形ADEB是个矩形,∴AB=DE= 4,CE=BC AD=2,Rt△DEC中,CD=22+=22DE CE+=25;42;(2)过A、D点作AE⊥BC于E,DF⊥BC于F,∵AB=CD,∠B=∠C,AE=DF,∴△ABE≌△DCF,∴BE=CF,∵AD=8,BC=14,BE=CF=3,又∵在Rt△ABE中,∠B=60°,∴AB=2BE=6,∴梯形ABCD的周长为8+14+6+6=34;(3)如下图,过点C作CE∥AD,又DC∥AE,∴四边形AECD为平行四边形,又DC=AD=BC,∴四边形AECD为菱形,∴AE=CE=BC,∴∠EAC=∠ECA,∠CEB=∠B,∵∠B+∠CAB=90°,即3∠CAE=90°,∴∠CAE=30°,∴∠B=60°=∠DAB,∠D=∠DCB=120°;(4)过点E作AB、CD的平行线,与BC别离交于G,H,∵∠B+∠C=90°,∴∠EGH=∠B,∠EHG=∠C,∴∠EGH+∠EHG=90°,∴四边形ABGE和四边形CDEH都是平行四边形,△EGH为直角三角形,∵E、F别离是AD、BC的中点,∴BG=CH=0.5,GH=2,GH=1,∴EF=1.依照直角三角形中斜边上的中线是斜边的一半知,EF=12题二:(1)4;(2)13;(3)60°;(4)5.详解:(1)过点N别离作N G∥AB,NH∥CD,得平行四边形ABGN和平行四边形DCHN,∴∠NGM+∠NHM=∠B+∠C=90°,GH=BC AD,MG=MH,∴GH=2MN=6,∴AD=76=1,∴EF= 4;(2)∵在梯形ABCD中,AB=DC,∴梯形ABCD是等腰梯形,∴∠D+∠DCB=180°,∵∠D=120°,∴∠B=∠DCB=60°,∵对角线CA平分∠BCD,∴∠ACB=30°,∵AD=DC,∴∠DAC=∠ACD=30°,∴∠BAC=90°,∴BC=2AB,∵梯形的周长为AD+DC+BC+AB=5AB=20,∴AB= 4,∴AC=43,BC=8,过点A作AE⊥BC于点E,∵AB= 4,AC=43,BC=8,=123;∴AE=23,∴梯形ABCD的面积为(4+8)×23×12(3)过点A作AE∥DC交BC于E,∵AD∥BC,∴四边形AECD是平行四边形,∴EC=AD=3,DC=AE,∴BE=BC CE=73= 4,∴CD=AB= 4,∴AE=AB=BE= 4,∴△ABE是等边三角形,∴∠B=60°;(4)过D作DF∥AC交BC的延长线于F,∵AD∥BC,∴四边形ACFD是平行四边形,∴CF=AD=3,∵BC=7,∴BF=BC+CF=7+3=10,∵CE=2,∴BE=72=5,EF=2+3=5,∴BE=EF,BF=5.又∵AC⊥BD,DF∥AC,∴∠BDF=90°,∴DE=12题三:6cm.详解:过D作DE∥AB交BC于E,∵DE∥AB,AD∥BC,∴四边形ABED是平行四边形,∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,∴△DEC是等边三角形,∴EC=CD= 4cm,∴BC= 4cm+2cm=6cm.题四:17cm.详解:过上底极点D作DE∥AB交BC于E,那么四边形ABED是平行四边形,∴DE=AB,AD=BE,∵梯形的一个底角是60°,∴∠C=60°,又∵腰长AB=CD=DE,∴△CDE是等边三角形,∴CD=CE=BC BE=74=3cm,∴它的周长为3+7+3+4=17cm.题五:62详解:过D作DE∥AC交BC的延长线于E,∵AD∥BC,AB=CD,∴四边形ABCD是等腰梯形,∴ADEC是平行四边形,∴AD=CE,AC=DE,即可得出BE=BC+CE=BC+AD=12,又∵AC=BD,∴BD=ED,∴△BDE为等腰直角三角形,∴AC=BD=62题六:25.详解:过D作DE∥AC交BC延长线于E,∵AD∥BC,DE∥AC,∴四边形ACED是平行四边形,∴AD=CE,∴依照等底等高的三角形面积相等得出△ADC的面积等于△DCE的面积,即梯形ABCD的面积等于△BDE的面积,∵AC⊥BD,DE∥AC,∴∠BDE=90°,BE=3+7=10,∴现在△BDE的边BE边上的高越大,它的面积就越大,即当高是12BE时最大,即梯形的最大面积是12×10×12×10=25.题七:2.3.详解:延长AF、BC交于点G,∵AD∥BC,∴∠D=∠FCG,∠DAF=∠G,又DF=CF,∴△AFD≌△GFC,∴AG=2AF=8,CG=AD=2.7,∵AF⊥AB,AB=6,∴BG=10,∴BC=BG CG=7.3,∵AE=BE,∴∠BAE=∠B,∴∠EAG=∠AGE,∴AE=GE,∴BE=12BG=5,∴CE=BC BE=2.3.题八:3.详解:如图,过D作DE∥BC,DF∥MN,∵在梯形ABCD中,AB∥CD,DE∥BC,∴CD=BE=5,AE=AB BE=115=6,∵M为AB的中点,∴MB=AM=12AB=12×11=5.5,ME=MB BE=5.55=0.5,∵N为DC的中点,∴DN=12DC=12×5=2.5,在四边形DFMN中,DC∥AB,DF∥MN,∴FM=DN=2.5,∴FE=FM+ME=2.5+0.5=3=12AE,∴F为AE的中点,又∵DE∥BC,∴∠B=∠AED,∵∠A+∠B=90°,∴∠A+∠AED=90°,∴∠ADE=90°,即△ADE是直角三角形,∴DF=MN=12A E=12×6=3.题九:8.详解:延长AM交BC的延长线于点N,∵AD∥BC,∴∠DAM=∠N,∠D=∠MCN,∵点M是边CD的中点,∴DM=CM,∴△ADM≌△NCM(AAS),∴CN=AD=3,AM=MN=12AN,∴BN=BC+CN=5+3=8,∵∠ABC=90°,∴S△ABN=12×AB•BN=12×4×8=16,∴S△ABM=12S△ABN=8,即△ABM的面积为8.题十:见详解.详解:(1)∵四边形ABCD是直角梯形,∴∠A=90°,∵∠ADF=45°,∴∠AFD= 45°,∴AD=AF,∵AB=AF+BF,AB=AD+BC,∴BF=BC;(2)连接FC,设AD=AF=x,BC=BF=y,连接CF,作DH⊥BC于H,易证四边形ABHD为矩形、△CDF为直角三角形,又∵E是CD中点,∴CD=2EF=2a,由勾股定理得x2+y2=2a2…①,由直角梯形的面积公式可得:(x+y)2=2m…②,由②①,得xy=m a2,∵S△DFC=S梯形ABCD S△AFD S△BFC=12(x+y)2 12x2 12y2 = xy,∴S△DEF=12S△DFC=12m12a2.题十一:D.详解:如图,过点B作BE∥AD,那么显现平行四边形ABED和一个△BEC,∵AB=13,CD=16,AD=10,BC=6∴CE=3,BE=10,∵3+6<10,∴BE,CE,BC不能组成三角形∴如此的梯形一个也不能作.应选D.题十二:C.详解:作DE∥AB,那么DE=AB,①当a=5为上底,b=10为下底,c、d为腰时,105=5,与15,20不能组成三角形,故不知足题意;②当a=5为上底,b=15为下底,b、d为腰时,155=10,与10,20不能组成三角形,故不知足题意;③当a=5为上底,d=20为下底,b、c为腰时,205=15,与10,15能够组成三角形,故知足题意;④当b=10为上底,c=15为下底,a、d为腰时,1510=5,与5,20不能组成三角形,故不知足题意;⑤当b=10为上底,d=20为下底,a、c为腰时,2010=10,与5,15不能组成三角形,故不知足题意;⑥当c=15为上底,d=20 为下底,a、b为腰时,2015=5,与5,10不能组成三角形,故不知足题意;综上可得只有当a=5为上底,d=20为下底,b、c为腰时,知足题意,即以线段a=5,b=10,c=15,d=20做梯形四边形,如此的梯形(不全等的)只能做一个.应选C.。
梯形中常用的辅助线
图 5
例 4 在 课 外 活 动 课 上 , 师 让 同学 们 老 做 ~个 对 角线 互相 垂直 的 等腰 梯形 形状 的风
A E B F B C。H ? D。 G } D. 故 E ∥ G F ∥ E 即四边形 E G F H, G H, FH
是 平 行 四边形 .
1 '
( )o c 6
( )0 D 6√
D
解 :如 图 4 所 示 , 点 D 作 过
构 造全 等 三角 形
D /A 交 B E/ C C的 延 长 线 于点 E, 则
四边 形 A E 为 CD
C E
例 6 在梯形 A C 中,D/ B ,E= BD A / CA
B D E, F=C 求 证 : F.
故 J 形 = A C )e s ^ 去(B+ D A 梯黝
= ×2 5× 1 2= 1 o. 5
F G是 三 角 形 的 中 位 线, 则
4 平移 对 角线— — 构造 平行 四边形 和 以 .
两条 对角 线为 边 的三 角形
F
C
E I C。I / F A F G/
因为 A B∥ C A D, P∥ B , 以 , C所 四边形
AC P B是平 行 四边形 . 因而有
APD = C =3 。 AP =BC, 0, AB = PC .
可得 F= 0, F B= F, D= F. 5 ̄ A
则 B F=A 4 C B= , F=C D=1 . 0
1
E /B , F= 1 A ) F / C E ( D+ .
证 明 : 图 如 6 联 结 A 并 , F
A D
平 行 四边 形 , 从
黄立宗推荐-梯形辅助线的常见作法--好--
梯形辅助线的常见作法---黄立宗编排梯形是一种特殊的四边形。
它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。
辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。
例1:(如图1)已知在梯形ABCD中,AD//BC,BA=DC。
求证:B= C证明:过点D作DM//AB交BC于点M。
因为 AD//BC DM//AB 所以AB=DM因为 BA=DC 所以 DM=DCDMC= CDMC= B B= C(2)梯形外平移一腰例2:(如图2)在梯形ABCD中,AB∥DC,作□ACED延长DC交BE于F,求证:EF=FB证明:过点B作BG∥AD,交DC的延长线于G∴四边形ABGD是平行四边形∴AD=BG∵□ACED中,AD∥CE AD=CE∴CE∥BG且CE=BG ∴∠1=∠2又∵∠3=∠4 ∴⊿ECF≌⊿BGF∴:EF=FB(3)梯形内平移两腰例3 :(如图3)在梯形ABCD中,AD∥BC,AD﹤BC,E、F分别为AD、BC的中点,且EF⊥BC,试说明∠B=∠C解:过E作EM∥AB,EN∥CD,分别交BC于M,N得□ABME ,□NCDE∴AE=BM DE=CN, ∵AE=DE ∴BM=CN又∵BF=CF ∴FM=FN∵EF⊥BC ∴EM=EN ∴∠1=∠2∵EM∥AB,EN∥CD, ∴∠1=∠B , ∠2=∠C∴∠B=∠C(4)延长两腰例4:(如图4)在梯形ABCD中, ∠B=∠C ,AD∥BC,求证:梯形ABCD是等腰梯形。
证明:延长BA,CD交于点E∵∠B=∠C ∴BE=CE∵AD∥BC ∴∠EAD=∠B ∠EDA=∠C∵∠B=∠C ∴∠EAD=∠EDA∴AB=CD结论得证(5)过梯形上底的两端点向下底作高例5:(如图5)在梯形ABCD中,DC∥AB,AD=BC,若AD=5,CD=2 ,AB=8,求梯形ABCD的面积。
解:过点D、C分别作DE⊥AB于E,CF⊥AB于F.根据等腰梯形的轴对称性可知,AE=BF.∵DC∥AB, DE⊥AB,CF⊥AB∴四边形CDEF是矩形∴DC=EF∴AE=(AB-EF)= (AB-CD)=3∴ DE===4∴=(2+8)x4=20(6)平移对角线 ---求证:对角线相等的梯形是等腰梯形。
梯形与重心经典例题
类型一:梯形中的辅助线1、(2010北京)已知:如图,在梯形ABCD中,AD//BC,AB=DC=AD=2,BC=4。
求∠B的度数及AC的长。
思路点拨:平移一腰,把梯形分成一个平行四边形和三角形。
解法一:过A点作AE∥DC交BC于点E.∵AD∥BC,∴四边形AECD是平行四边形.∴AD=EC,AE=DC.∵AB=DC=AD=2,BC=4,∴AE=BE=EC=AB.可证△BAC是直角三角形,△ABE是等边三角形.∴∠BAC=90°,∠B=60°.在Rt△ABC中,.∴∠B=60°,.解法二:分别作AF⊥BC,DG⊥BC,F、G是垂足,∴∠AFB=∠DGC=90°.∵AD∥BC,∴四边形AFGD是矩形.∴AF=DG.∵AB=DC.∴Rt△AFB≌Rt△DGC.∴BF=CG.∵AD=2,BC=4,∴BF=1.在Rt△AFB中,∵2BF=AB,∴∠B=60°.∵BF=1,∴.∵FC=3,由勾股定理,得,∴∠B=60°,.总结升华:在用平移线段的方法作梯形的辅助线时,无论是平移一腰还是平移一条对角线,都是将梯形问题转化成三角形和平行四边形的问题来解决;举一反三:【变式1】(平移对角线)已知梯形ABCD的面积是32,两底与高的和为16,如果其中一条对角线与两底垂直,则另一条对角线长为___________________【答案】梯形ABCD中,AD∥BC,BD⊥BC.设AD=x,BC=y,DB=z,由题得:x+y+z=16,,(熟记梯形面积公式)解得x+y=8,z=8,过D作DE∥AC交BC的延长线于E.∴四边形ADEC是平行四边形,(注意这种辅助线的作法很常用)∴DE=AC,AD=CE.(将“上底+下底”转化到一条线段上)在Rt△DBE中,∠DBE=90°,BE=BC+CE=x+y=8,BD=8,根据勾股定理得,∵AC=DE,.【变式2】(过顶点作高)已知AB=BC,AB∥CD,∠D=90°,AE⊥BC.求证:CD=CE.分析:这是一个直角梯形,通过作CF⊥AB,可以将梯形分成矩形和直角三角形,结合直角梯形的性质,利用两次全等,达到证明CD=CE的目的.证明:如图,连结AC,过C作CF⊥AB于F.在△CFB和△AEB中,(这是直角梯形中常见的辅助线)∴△CFB≌△AEB(AAS)∴CF=AE.∵∠D=90°,CF⊥AB且AB∥CD,∴AFCD是矩形∴AD=CF,∴AD=AE.在Rt△ADC和Rt△AEC中,∴Rt△ADC≌Rt△AEC(HL)∴CD=CE.【变式3】(延长两腰)如图,在梯形中,,,、为、的中点。
数学人教版八年级下册第十八章梯形的中位线和常用辅助线--
(A)ab/2 D (B) ab (C)( a+b)/2 F (D) ab/4
C
2
(二)、选择题:
1. 梯形中位线的长是高的2倍,面 积是18cm ,则梯形的中位线的长 是( B).
(A)6√2 cm (B)6 cm (C)3√2 cm 3 cm
( D)
2. 如图,直角梯形ABCD的中位线 EF的长为a,垂直于底的 腰长 AB 为b, 图中阴影部分的面积 为( A ).
A
E
A D
E
B
F
C
梯形的中位线平行于两底, 并且等于两底和的一半·
A
E D
∵EF是梯形ABCD的中位线
F ∴
EF ∥A D∥ BC
B
C
1 EF (AD+BC) 2
已知,梯形ABCD中,AD∥BC,E是 腰AB的中点,DE ⊥CE, 求证: AD+BC=CD。
A E D
证明:(一) 延长DE交CB 延长线于F
A 15 B 8 F C ED Nhomakorabea构造旋转变换
其 他 方 法
F是梯形的腰DC的中点
A
D
F
B C
E
梯形ABCD面积与哪个图形面 积相等?
梯形中位线的定义
A D
E
B
F 连接梯形两腰中 点的线段叫梯形 的中位线
C
已知:点 E和F分别是梯形ABCD的腰 AB、DC的中点,猜想EF与AD+BC的 数量关系,以及EF与AD、BC的位置 关系,并加以证明。
54º
B
E
O
补 三 B
A
D C
角 1、 若梯形ABCD是等腰梯形时,
ΔOBC是什么三角形?
梯形常见辅助线
梯形常见辅助线姓名___________班级__________学号__________分数___________一、填空题1.(15180-2011陕西)如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,若AD =3,BC =7,则梯形ABCD 面积的最大值____________. A DC B2.(5032)如图所示,在等腰梯形ABCD 中,∠B =45°,已知腰长是3cm ,则∠ADC =______度,高DE =_____.AB C D E3.(5031-2009广东湛江)如图,在梯形ABCD 中,AB ∥CD ,∠A +∠B =90°,CD =5,AB =11,点M ,N 分别为AB ,CD 的中点,则线段MN = .BM4.(2552)如图,在梯形ABCD 中,AD ∥BC ,∠B +∠C =90°,AD =1,BC =3,E 、F 分别是AD 、BC 的中点,则EF = . F A B C DE5.(1367)等腰梯形的腰长与上底相等,下底是上底的2倍,则这个梯形的各内角度数分别为______________.6.(1422-2009浙江南充)如图等腰梯形ABCD 中,AD ∥BC ,∠B =60°,AD =4,BC =7,则梯形ABCD 的周长是 .DC A B二、证明题7.(15316)如图,在梯形ABCD 中,AD ∥BC ,∠B =70°,∠C =40°,求证:CD =BC -ADDB C A三、解答题8.(14896)如图,在梯形ABCD 中,AD ∥BC ,E 是DC 的中点,EF ⊥AB 于点F .求证:S 梯形ABCD =AB ×EF . G F EDB C A9.(5242)如图,梯形ABCD 中,AD ∥BC ,AE ⊥BC ,BD=5cm ,AC=6cm ,AE=3cm ,求梯形ABCD 面积。
怎样梯形中的辅助线
难点突破:怎样做梯形中的辅助线梯形是一种特殊的四边形,它是平行四边形和三角形知识的综合,通过适当地添加辅助线,把梯形转化为三角形、平行四边形的组合图形,再运用三角形、平行四边形的知识去解决梯形的有关问题。
下面列举数例,以说明梯形中常见辅助线的作法.一、平移一腰法例1如图1,梯形ABCD中,AB∥CD,以AC、AD为边作ACED.DC 的延长线交BE于F.求证:EF=FB.简析:在梯形ABFD中,过C作CG∥BF交AB于G,由GBFC得CG=FB,再证△EDF≌△CAG,得EF=CG=FB.例 2如图2,梯形ABCD中,AB//CD,︒,80D。
C=∠︒=∠50求证:ABCD=。
AD-图2证明:过点A作AE//BC交DC于E,所以︒C∠50AED==∠因为︒D=∠80所以︒∠50DAE=所以DAE∠=AED∠所以DEAD=易证ECAB=,所以AB=AD-CD二、平移对角线法过梯形上底的一个端点作某一条对角线的平行线,构造平行四边形和三角形,从而引出证题思路。
如:例 3. 如图2,梯形ABCD 中,AB//CD ,中位线EF=7cm ,对角线︒=∠⊥30BDC ,BD AC ,求梯形的高。
图2证明:过点B 作BG//AC 交DC 的延长线于G 。
因为BD AC ⊥,所以CGAB ,BD BG=⊥。
因为︒=∠30BDC所以)CD AB (21GD 21BG+==因为EF 2CD AB =+, 所以7EF BG ==因为︒=∠=∠30G BH BDC , 所以5.3BG 21GH ==, 所以=-=225.37BH237即梯形的高为cm237。
例 4. 如图2,等腰梯形ABCD 中,AD ∥BC ,AB=CD ,AC ⊥BD 于O 点.若中位线长为m ,求梯形ABCD 的面积S .三、延长双腰法延长两腰相交于一点,可构造两个三角形,利用这两个三角形的有关条件和性质进行证明,也是常用的方法之一。
如:例5. 如图5,已知梯形ABCD 中,AB//CD ,︒=∠+∠90B A ,M 、N 分别是AB 、CD 的中点。
梯形辅助线专练
例 1.如图所示,在梯形 ABCD 中,AD // BC , AB = 8, DC = 6,Z B = 45°, BC = 10, 求梯形上底AD 的长. 分析:作AE 丄BC , DF 丄BC ,垂足分别为E 、F ,这样可构造两个直角三角形 . 解:分别过点A 、D 作AE 丄BC , DF 丄BC ,垂足分别为E 、F ,则四边形AEFD 是矩形. 在 Rt △ ABE 中,•••/ B = 45°,「. AE = BE. 设 AE = BE = x ,贝V AB = x = 8, x = 4,「. AE = BE = DF = 4, 在 Rt △ DFC 中,CF = = 2,AD = EF = BC — BE — CF = 10— 4 — 2= 8-4. 例2.如图所示,在直角梯形 ABCD 中,/ A = 90 °, =17.求CD 的长. 解:过点D 作DE // BC 交AB 于点E. 又AB // CD ,所以四边形 BCDE 是平行四边形. 所以 DE = BC = 17, CD = BE. 在Rt △ DAE 中,由勾股定理,得 AE 2= DE 2 — AD 2,即即 AE 2= 172— 152= 64. 所以AE = 8. 所以 BE = AB — AE = 16 — 8 = 8. 即 CD = 8. 例3.如图所示,在等腰梯形ABCD 中,AD // BC,对角线 的面积.解:过点D 作DE // AC 交BC 的延长线于点 E. 又 AD // BC , .四边形ACED 是平行四边形. --AC = DE , S A ADC = S A ECD .-S AADC =S ADAB ,…S ADAB =S AECD..S A DBE = S 梯形 ABCD .•••四边形ABCD 是等腰梯形,••• AC = BD. •/ AC = DE ,• BD = DE = 6cm.•/ AC 丄 BD , AC // DE , • DE 丄 BD.2• S 梯形 ABCD = S A DBE = BD • DE = x 6X 6= 18 ( cm )AB // DC , AD = 15, AB = 16, BC B AC 丄 BD ,BD = 6cm.求梯形 ABCD 例4.如图所示,四边形ABCD 中,AD 不平行于BC ,AC = BD ,AD = BC.判断四边形 ABCD 的形状,并证明你的结论. 解:四边形ABCD 是等腰梯形. 证明:延长 AD 、BC 相交于点E ,如图所示. •/ AC = BD , AD = BC , AB = BA , •△ DAB BA CBA.• / DAB =Z CBA. • E A = EB.又 AD = BC ,• DE = CE ,Z EDC = Z ECD.而/ E +Z EAB + Z EBA =Z E +Z EDC + Z ECD = 180°,•••/ EDC = Z EAB ,••• DC // AB.例5.如图所示,在梯形ABCD中,求证:CE丄BE.证明:延长CE交BA的延长线于•/ CD // BF,•/ D = Z EAF,/ DCE = Z F.•/ DE = AE ,•••△CDE ◎△ FAE.AF = CD = 1 , EF= CE.•/ AB = 2, BC = 3 , • AB + AF = BC.即BF = BC. • BE 丄CE.*4.如图所示,在等腰梯形AD = 30, BC = 70,求BD 的长.5. 如图所示,已知等腰梯形的锐角等于60°,它的两底分别为15cm和49cm,求它的腰长.6. 如图所示,已知等腰梯形ABCD中,AD // BC , AC丄BD , AD + BC = 10, DE丄BC于E,求DE的长.1. 若等腰梯形的锐角是60°长为 ___________ cm.2. 如图所示,已知等腰梯形腰梯形的周长为(A. 19,它的两底分别为11cm, 35cm,则它的腰ABCD 中,AD // BC,/ B = 60°, AD = 2, BC = 8,则此等)B. 20 D. 22**3.如图所示,积为()A. 130B.140C.150AB //CD ,C. 21AE 丄DC , AE = 12, BD = 20 , AC = 15,则梯形ABCD 的面D. 160C又AD不平行于BC,「.四边形ABCD是等腰梯形. AB //CD , AB = 2, BC = 3, CD = 1. E 是AD 的中点,F,中,已知AD // BC,对角线AC与BD 互相垂直,且ABCD△n7. 如图所示,梯形ABCD 中,AB // CD,/ D= 2/B , AD + DC = 8,求AB 的长.**8.如图所示,梯形ABCD中,AD // BC, (1)若E是AB的中点,且AD + BC = CD , 则DE与CE有何位置关系?(2)E是/ ADC与/ BCD的角平分线的交点,贝U DE与CE 有何位置关系?1、梯形ABCD 中,AD // BC, / B=50。
由一道中考题看梯形辅助线的作法
例 3 如图 5 ,在 梯形 A C 中 ,D/ BD A /
B E为 D C。 C的 中 点 , 接 A B . 探 索 连 E、 E 试
线, 由等底同高可知 砸 =
问题 得 证 .
梯 形 肋,
| s 晒和 . 形 肋 的关系 , △ s 梯 并证 明你 的结论.
证明: 延长 A 交 B E, C的延长线于点
,
一
l=
3
,
故
图7
EF-
.
A- +b 3 n
C.b- a 2 4 -
B2 a ) . +b (
D.a- b 4 4 -
解: 如图 8 过 D点作 AC的平行 线交 , B C的延长线 于 G点 ,则 四边形 A G C D为
图5
平 行 四边形 , D AB G为 等腰 直角 三角形 ,
解法 3 如 图 3 过点 D作 D : , G上B C于
求解 方法 , 而这些 不 同的求 解方 法恰好给 点 G. 把梯 形 A C B D分 割成矩 形 A G B D和
我 们展 示 了梯 形 中辅 助线 的几种 常 见作 等腰 直角三角 形 D C 则 A =D G , B G=G = C
x G : 1x x 3
:
.
E = 、 . F要 /
பைடு நூலகம்
C
图 3
小结 : 梯形问题常添辅助线之三 , 作梯 形 的高 , 将梯形分成矩形和 三角形 .
图 1
解 法 4 如 图 4 取 ∞ 的中点 G, : , 连接
小结 : 梯形 问题常添辅助线之一 、 平移 E 则 E G, G是梯形 A C B D的 中位线 , 四边形
梯形中常见的辅助线总结
梯形中的辅助线注意梯形割与补,巧变成为□和△.基本图形如下:1.平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形.【例1】已知:如图2,在梯形ABCD中,.求证:.【例2】如图,在梯形ABCD 中,AD∥BC , E、F 分别是AD 、BC 的中点,若.AD = 7 ,BC = 15 ,求EF .2.延长梯形的两腰,使它们交于一点,可得到两个相似三角形或等腰三角形、直角三角形等进一步解决问题.【例3】.如图,在梯形中, , ,梯形的面积与梯形的面积相等.求证: .3.从梯形上底的两端向下底引垂线作高,可以得到一个矩形和两个直角三角形.然后利用构造的直角三角形和矩形解决问题.【例4】.如图,在梯形中,.求证:.4.平移一条对角线一般是过上底的一个端点作一条对角线的平行线,与另一底的延长线相交,得到一个平行四边形和三角形,把梯形问题转化为平行四边形和三角形问题解决.【例5】.如图,等腰梯形中, , ,且 ,是高,是中位线,求证:.【例6】.已知:如图,在梯形中, .求证:梯形是等腰梯形.5.遇到梯形一腰中点的问题可以作出梯形的中位线,中位线与上、下底都平行,且三线段有数量关系. 或利用“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形解决问题.【例7】.已知:如图4,在梯形中,是的中点,且.求证:.【例8】.已知:梯形 ABCD中AD BC,E为AB中点,且AD+BC=DC , 求证:DE⊥EC,DE平分∠ADC,CE平分∠BCD.6.当遇到以上的梯形辅助线添加后不能解决问题时,可以特题特解,结合具体问题中的具体条件,寻求特殊的方法解决问题.比如可将对角线绕中点旋转、利用一腰中点旋转、将梯形补成平行四边形或三角形问题.【例9】.已知:如图5,在梯形ABCD 中, M、N分别是BD 、AC 的中点.求证:.【例10】.如图,梯形中, ,、分别平分和 ,为中点,求证:.【例11】.已知:如图,在梯形中,是CD的中点.求证:.【例12】.如图,梯形中, ,为腰的中点,求证:.l.分析:平移一腰BC到DE,将题中已知条件转化在同一等腰三角形中解决,即AB=2CD.x证明:过D作 ,交AB于E.∵ AB平行于CD,且 ,∴四边形是菱形.∴又∴为等边三角形.∴又 ,∴∴.2.分析:由条件 ,我们通过平移AB 、DC ;构造直角三角形MEN ,使EF 恰好是△MEN 的中线.解:过E 作EM∥AB ,EN ∥DC ,分别交BC 于M 、N ,∵ , ∴∴是直角三角形,∵ , , ∴ . ∵、分别是、的中点,∴为的中点,∴ .3.分析:条件是两个梯形的面积相等,而结论是三线段长的平方关系,如果延长两腰交于一点,就可得到三个相似的三角形,再利用相似三角形的面积比与相似比的关系变形就可得出结论.证明:延长、使它们相交于点,∵ ,∴∴ .同理,∵故得∴此题仅做参考4.分析:过上底向下底作两高,构造Rt△,然后利用两三角形全等解决问题.证明:分别过D、C、作AB的垂线,垂足分别为E、F.∵ ,∴ .又 ,∴≌ .∴5分析:由梯形中位线性质得 ,欲证 ,只要证.过点作 ,交的延长线于 ,就可以把、和移到三角形中,再证明等式成立就简单多了.证明:过点作交的延长线于点 ,则四边形是平行四边形.∴ ,∵四边形是等腰梯形∴ ,∴又∵ ,∴ ,∴ ,∴ .∵ ,∴又∵ ,∴ .6.证明:过D作 ,交BA延长线于E.则四边形是平行四边形. ∴.∴又 ,∴于是,可得∴∴梯形ABCD是等腰梯形.7.证明:取的中点F,连结FE.则∵ ,∴.∴.8.∴EF∥AD∥BC EF=(AD+BC) ∴∠1=∠5,∠3=∠6 ∵DC=AD+BC∴EF=DC=DF=CF ∴∠1=∠2,∠3=∠4 ∴∠2=∠5,∠4=∠6 ∴∠1+∠3+∠2+∠4=180° ∴∠1+∠3=90° ∴DE⊥C,DE平分ADC,CE平分∠CD证法2:延长CE与DA延长线交于一点F,过程略.证法3:在DC上截取DF=AD,连结AF、BF、EF解决.9.证明:连结并延长 ,交于E.则 .∴又N是AC的中点,∴ ,故取一腰的中点,连结顶点和这个中点并延长与对边的延长线相交,可得两个全等三角形.分析:要证明 ,可以利用为中点,延长与的延长线交于 ,,得到 ,再证明即可.10.证明:延长、交于点 F,显然.∴ , . 又∵ ,, ,∴ ,∴∴是线段的垂直平分线.∴ ,∴ .评注:添加辅助线后,沟通了、与的11.证明:延长AE、BC相交于点F.易证.∴ ,∵ ,∴即 .∴BE是等腰底边上的高.∴ .12.说明:在图5中,相当于由绕点E旋转得到;在图6中,分析:与梯形ABCD的面积关系不明显,如果利用梯形助特点把它补成如图7的平行四边形,它们之间的关系就清晰了.梯形补成平行四边形,各种关系明显、直观,解题思路清晰.证明:延长 ,使 ,延长 ,使;则 ,则四边形是平行四边形.为的中点,连结 ,与交于点 .连结、 ,则.∵ ,是中点, ∴为中点且是中点.∴四边形是平行四边形,∴ ,∴是由绕点E旋转得到.。
梯形中常见的辅助线(含答案)
梯形中常见的辅助线内容基本要求略高要求较高要求梯形会识别梯形、等腰梯形:了解等腰梯形的性质和判定.掌握梯形的槪念,会用等腰梯形的性质和判定解决简单问题.例我们可以看到,梯形本身的性质并不多,所以实际解梯形的问题时,往往通过添加辅助线将梯形分成三角形或平行四边形,三角形是最简单的直线形,而平行四边形具有很好的对称性质•下而给出几个常见的添加辅助线的方法.1.作梯形的高:一般是过梯形的一个顶点作高,英好处是将梯形分成一个直角三角形和一个直角梯形,从而可以用勾股;4^理,如果过梯形的两个顶点分别作高•则会出现矩形•2.过梯形的一个顶点作另一腰的平行线:这样便将梯形分成了一个平行四边形和一个三角形,这样做的好处是可以将两条腰拉到同一个三角形中,并且三角形的另一条边恰好是梯形的两底之差,从而将问题集中到三角形中•3.延长梯形的两腰交于一点:这样做可以同样地使问题转化为三角形的问题.4.过梯形一腰的中点作另一腰的平行线:可以将梯形等积变换成一个平行四边形.5.连接梯形一个顶点和另一腰上的中点并延长交另一底边:可以将梯形等积变换成一个三角形.常见的辅助线添加方式如下:梯形中的辅助线较多,其实质是采用割补法将梯形问题划归为三角形、平行四边形问题处理.解题时要根据题目的条件和结论来确总作哪种辅助线.常见辅助线1.梯形问题通常是通过分割和拼接转化为三角形或平行四边形,英分割拼接的方法有如下几种(如图):1,把梯形分成一个平行四边形和一个三角形(图1所示):【答案】(1)作一腰的平行线; (2)作另一底边的垂线: (3)作对角线的平行线:(4)交于一点:(5)对称中心: (6)对称轴.【例1】 等腰梯形ABCD 中,AD//BC,若AD=3, AB=4・ BC=7,则ZB= 【答案】60° 如图,直角梯形ABCD 中,AB//CD. CB 丄AB, △ABD 是等边三角形,若AB=2,则BC=在梯形ABCD 中,AD//BC. AD=5, BC=7.若E 为DC 的中点,対线交BC 的延长线于F 点,则BF= •梯形ABCD 中.AD//BC,若对角线AC 丄BD ■且AC=5cm. BD=12cm,则梯形的而积等于((1)平移一腰,即从梯形的一个顶点(2)从同一底的两端. ,把梯形分成一个矩形和两个宜角三角形(图2所示);(3)平移对角线,即过底的一端图2,可以借助新得的平行四边形或三角形来研究梯形(图3所示):(4)延长梯形的两腰.图3,得到两个三角形,如果梯形是等腰梯形,则得到两个等腰三角形(图4所示):(5)以梯形一腰的中点为.图4,作某图形的中心对称图形(图5、图6所(6)以梯形一腰为.图5 图6,作梯形的轴对称图形(图7所【例2】【答案】 73【例3】【答案】 12 【例4】 A. 30cw- B. 60CW' C- 90cm~2D- } 69 cm-【例10】如图,等腰梯形ABCD 中,AB//CD.对角线AC 平分Z BAD, ZB=60。
梯形辅助线的常见作法[1]
例谈梯形中的常用辅助线一、平移1、平移一腰:从梯形的一个顶点作一腰的平行线,把梯形转化为一个三角形和一个平行四边形。
[例1]如图1,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。
2、平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中。
[例2]如图2,在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC 的中点,连接EF,求EF的长。
3、平移对角线:过梯形的一个顶点作对角线的平行线,将已知条件转化到一个三角形中。
5,求证:AC⊥BD。
[例3]如图3,在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD=2[例4]如图4,在梯形ABCD中,AB//DC,AC=15cm,BD=20cm,高DH=12cm,求梯形ABCD的面积。
二、延长即延长两腰相交于一点,可使梯形转化为三角形。
[例5]如图5,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD的长。
三、作对角线即通过作对角线,使梯形转化为三角形。
[例6]如图6,在直角梯形ABCD中,AD//BC,AB⊥AD,BC=CD,BE⊥CD于点E,求证:AD=DE。
四、作梯形的高1、作一条高,从底边的一个端点作另一条底边的垂线,把梯形转化为直角三角形或矩形。
[例7]如图7,在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF//AB,交AD于点E,求证:四边形ABFE是等腰梯形。
2、作两条高:从同一底边的两个端点作另一条底边的垂线,把梯形转化为两个直角三角形和一个矩形。
[例8]如图8,在梯形ABCD中,AD为上底,AB>CD,求证:BD>AC。
五、作中位线1、已知梯形一腰中点,作梯形的中位线。
[例9]如图9,在梯形ABCD中,AB//DC,O是BC的中点,∠AOD=90°,求证:AB+CD=AD。