江苏省-徐州市-2020届高考物理 专题2 力与直线运动导学案(无答案).doc

合集下载

2020版江苏省高考物理二轮专题复习讲义:专题一 2 第2讲 力与物体的直线运动

2020版江苏省高考物理二轮专题复习讲义:专题一 2 第2讲 力与物体的直线运动

第2讲 力与物体的直线运动真题再现(2018·高考江苏卷)从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k 与时间t 的关系图象是( )详细分析:选A.设小球抛出瞬间的速度大小为v 0,抛出后,某时刻t 小球的速度v =v 0-gt ,故小球的动能E k =12m v 2=12m (v 0-gt )2,结合数学知识知,选项A 正确. 考情分析命题研究分析近几年的考题可以看出,高考命题突出对运动图象的理解、牛顿第二定律的应用等知识的考查,另外主要从匀变速直线运动规律的应用能力、应用图象分析物体运动规律的能力、牛顿第二定律在力学运动中以及在系统问题、多阶段问题中的应用能力等方面进行命题.此部分仍是高考必考题,在今后备考中尤其要注重对运动图象的分析匀变速直线运动规律的应用【高分快攻】1.匀变速直线运动问题常用的六种解题方法2.追及问题的解题思路和技巧(1)解题思路(2)解题技巧①紧抓“一图三式”,即过程示意图、时间关系式、速度关系式和位移关系式.②审题应抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”“恰好”“最多”“至少”等,往往对应一个临界状态,满足相应的临界条件.③若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已停止运动,另外最后还要注意对解的讨论分析.【典题例析】(多选) (2019·镇江模拟)建筑工人常常徒手抛砖块,当砖块上升到最高点时,被楼上的师傅接住用以砌墙,若某次以10 m/s 的速度从地面竖直向上抛出一个砖块,楼上的师傅没有接住,g 取10 m/s 2,空气阻力可以忽略,则( )A .砖块上升的最大高度为10 mB .经2 s 砖块回到抛出点C .砖块回到抛出点前0.5 s 时间内通过的距离为3.75 mD .被抛出后上升过程中,砖块做变减速直线运动[详细分析] 由h =v 202g得,砖块上升的最大高度h =5 m ,选项A 错误;砖块上升的时间t =v 0g=1 s ,上升阶段与下降阶段的时间对称,经2 s 砖块回到抛出点,选项B 正确;砖块被抛出后经0.5 s 上升的高度h ′=v 0t ′-12gt ′2=3.75 m ,由于上升阶段与下降阶段的时间、位移具有对称性,所以砖块回到抛出点前0.5 s 时间内通过的距离为3.75 m ,选项C 正确;砖块被抛出后加速度不变,故上升过程砖块做匀减速直线运动,选项D 错误.[答案] BC【题组突破】角度1 解决直线运动方法的灵活运用1.如图所示,某“闯关游戏”的笔直通道上每隔8 m 设有一个关卡,各关卡同步放行和关闭,放行和关闭的时间分别为5 s 和2 s .关卡刚放行时,一同学立即在关卡1处以加速度2 m/s 2由静止加速到2 m/s ,然后匀速向前,则最先挡住他前进的关卡是( )A .关卡2B .关卡3C .关卡4D .关卡5详细分析:选C.该同学加速到2 m/s 时所用时间为t 1,由v 1=at 1,得t 1=v 1a=1 s ,通过的位移x 1=12at 21=1 m ,然后匀速前进的位移x 2=v 1(t -t 1)=8 m ,因x 1+x 2=9 m>8 m ,即这位同学已通过关卡2,距该关卡1 m ,当关卡关闭t 2=2 s 时,此同学在关卡2、3之间通过了x 3=v 1t 2=4 m 的位移,接着关卡放行t = 5 s ,同学通过的位移x 4=v 1t =10 m ,此时距离关卡4为x 5=16 m -(1+4+10) m =1 m ,关卡关闭2 s ,经过t 3=x 5v 1=0.5 s 后关卡4最先挡住他前进. 角度2 追及、相遇问题2.[一题多解](2019·南通模拟)在水平轨道上有两列火车A 和B 相距x ,A 车在后面做初速度为v 0、加速度大小为2a 的匀减速直线运动,而B 车同时做初速度为零、加速度为a 的匀加速直线运动,两车运动方向相同.要使两车不相撞,求A 车的初速度v 0满足什么条件.详细分析:两车不相撞的临界条件是,A 车追上B 车时其速度与B 车相等.设A 、B 两车从相距x 到A 车追上B 车时,A 车的位移为x A 、末速度为v A 、所用时间为t ;B 车的位移为x B 、末速度为v B ,运动过程如图所示,现用如下四种方法解答:法一(临界法):利用位移公式、速度公式求解,对A 车有x A =v 0t +12×(-2a )×t 2,v A =v 0+(-2a )×t对B 车有x B =12at 2,v B =at 两车位移关系有x =x A -x B追上时,两车不相撞的临界条件是v A =v B联立以上各式解得v 0=6ax故要使两车不相撞,A 车的初速度v 0应满足的条件是v 0≤6ax .法二(函数法):利用判别式求解,由法一可知x A =x +x B ,即v 0t +12×(-2a )×t 2=x +12at 2 整理得3at 2-2v 0t +2x =0这是一个关于时间t 的一元二次方程,当根的判别式Δ=(-2v 0)2-4·3a ·2x =0时,两车刚好不相撞,所以要使两车不相撞,A 车的初速度v 0应满足的条件是v 0≤6ax .法三(图象法):利用v -t 图象求解,先作A 、B 两车的v -t 图象,如图所示,设经过t 时间两车刚好不相撞,则对A 车有v A =v ′=v 0-2at对B 车有v B =v ′=at以上两式联立解得t =v 03a经t 时间两车发生的位移之差为原来两车间距离x ,它可用图中的阴影面积表示,由图象可知x =12v 0·t =12v 0·v 03a =v 206a所以要使两车不相撞,A 车的初速度v 0应满足的条件是v 0≤6ax .法四(相对运动法):巧选参考系求解.以B 车为参考系,A 车的初速度为v 0,加速度为a ′=-2a -a =-3a .A 车追上B 车且刚好不相撞的条件是:v =0,这一过程A 车相对于B 车的位移为x ,由运动学公式 v 2-v 20=2a ′x 得:02-v20=2·(-3a)·x所以v0=6ax.故要使两车不相撞,A车的初速度v0应满足的条件是v0≤6ax.答案:v0≤6ax牛顿运动定律的应用【高分快攻】1.动力学的两类基本问题的处理思路受力情况F合F合=maa运动学公式运动情况(v、x、t)2.瞬时加速度的求解(1)两类模型①刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.②弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要一段时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.(2)求解瞬时加速度的一般思路分析瞬时变化前后物体的受力情况→列牛顿第二定律方程→求瞬时加速度【典题例析】(2019·高考全国卷Ⅱ)一质量为m=2 000 kg的汽车以某一速度在平直公路上匀速行驶.行驶过程中,司机忽然发现前方100 m处有一警示牌,立即刹车.刹车过程中,汽车所受阻力大小随时间的变化可简化为图(a)中的图线.图(a)中,0~t1时间段为从司机发现警示牌到采取措施的反应时间(这段时间内汽车所受阻力已忽略,汽车仍保持匀速行驶),t 1=0.8 s ;t 1~t 2时间段为刹车系统的启动时间,t 2=1.3 s ;从t 2时刻开始汽车的刹车系统稳定工作,直至汽车停止.已知从t 2时刻开始,汽车第1 s 内的位移为24 m ,第4 s 内的位移为1 m.(1)在图(b)中定性画出从司机发现警示牌到刹车系统稳定工作后汽车运动的v -t 图线;(2)求t 2时刻汽车的速度大小及此后的加速度大小;(3)求刹车前汽车匀速行驶时的速度大小及t 1~t 2时间内汽车克服阻力做的功;从司机发现警示牌到汽车停止,汽车行驶的距离约为多少(以t 1~t 2时间段始末速度的算术平均值替代这段时间内汽车的平均速度)?[详细分析] (1)v -t 图象如图所示.(2)设刹车前汽车匀速行驶时的速度大小为v 1,则t 1时刻的速度也为v 1;t 2时刻的速度为v 2.在t 2时刻后汽车做匀减速运动,设其加速度大小为a .取Δt =1 s .设汽车在t 2+(n -1)Δt ~t 2+n Δt 内的位移为s n ,n =1,2,3….若汽车在t 2+3Δt ~t 2+4Δt 时间内未停止,设它在t 2+3Δt 时刻的速度为v 3,在t 2+4Δt 时刻的速度为v 4,由运动学公式有s 1-s 4=3a (Δt )2①s 1=v 2Δt -12a (Δt )2② v 4=v 2-4a Δt ③联立①②③式,代入已知数据解得v 4=-176m/s ④ 这说明在t 2+4Δt 时刻前,汽车已经停止.因此,①式不成立.由于在t 2+3Δt ~t 2+4Δt 内汽车停止,由运动学公式v 3=v 2-3a Δt ⑤2as 4=v 23⑥联立②⑤⑥式,代入已知数据解得a =8 m/s 2,v 2=28 m/s ⑦或者a =28825m/s 2,v 2=29.76 m/s ⑧ 但⑧式情形下,v 3<0,不合题意,舍去.(3)设汽车的刹车系统稳定工作时,汽车所受阻力的大小为f 1.由牛顿第二定律有f 1=ma ⑨在t 1~t 2时间内,阻力对汽车冲量的大小为I =12f 1(t 2-t 1)⑩ 由动量定理有I =mv 1-mv 2⑪由动能定理,在t 1~t 2时间内,汽车克服阻力做的功为W =12mv 21-12mv 22⑫ 联立⑦⑨○10⑪⑫式,代入已知数据解得 v 1=30 m/s ⑬W =1.16×105 J ⑭从司机发现警示牌到汽车停止,汽车行驶的距离s 约为s =v 1t 1+12(v 1+v 2)(t 2-t 1)+v 222a⑮ 联立⑦⑬⑮式,代入已知数据解得s =87.5 m .⑯[答案] (1)见解+析图 (2)28 m/s 8 m/s 2(3)30 m/s 1.16×105 J 87.5 m【题组突破】角度1 瞬时加速度问题1.如图所示,两个质量均为m 的小球A 、B 用细绳相连,小球A 与一个轻弹簧相连,弹簧另一端固定在竖直墙上,小球用一根细线连在天花板上,开始时,两小球都静止不动,这时细线与水平方向的夹角是θ=45°,弹簧水平,重力加速度为g ,现突然把细线剪断.在剪断线的瞬间,小球A 的加速度大小是( )A .22g B.5g C .2g D .2g详细分析:选B.细线剪断前,小球A 受到4个力作用,重力、弹簧的弹力、细线的拉力和细绳的拉力,由力的平衡条件,可知:弹簧的弹力F =2mg ,剪断细线的瞬间,小球A 只受弹簧的弹力和重力,此时弹簧的弹力还是F =2mg ,所以此时A 球的合力F A =(mg )2+(2mg )2=5mg ,由牛顿第二定律可知,在剪断线的瞬间,小球A 的加速度大小a =5g ,故B 正确,A 、C 、D 错误.角度2 多过程动力学问题2.(2019·宿迁质检)如图所示,质量分别为0.5 kg 、0.2 kg 的弹性小球A 、B穿过一绕过定滑轮的轻绳,绳子末端与地面距离为0.8 m ,小球距离绳子末端6.5m ,小球A 、B 与轻绳间的滑动摩擦力都为自身重力的12,设最大静摩擦力等于滑动摩擦力.现由静止同时释放A 、B 两个小球,不计绳子质量,忽略与定滑轮相关的摩擦力,g =10 m/s 2.(1)求释放A 、B 两个小球后,A 、B 各自加速度大小;(2)小球B 从开始释放经多长时间落到地面?详细分析:(1)由题意知 B 与轻绳间的滑动摩擦力 f B =km B g =1.0 N ,而 A 与轻绳间的滑动摩擦力f A =km A g =2.5 N.即 f B <f A .所以为保证 A 、B 对轻绳的力相同,只能A 受静摩擦力作用,且大小与 f B 相同.对B 有m B g -km B g =m B a B解得a B =5 m/s 2对 A 有m A g -km B g =m A a A解得a A =8 m/s 2.(2)设经历时间t 1小球 B 脱离绳子,此时小球 B 下落高度为h B ,获得速度为v B ,依题意有12a A t 21+12a B t 21=6.5 m 解得t 1=1 s此时B 下落 h B =12a B t 21=2.5 m 小球B 离开绳时的速度为 v B =a B t 1=5 m/s小球B 脱离绳子后在重力作用下匀加速下落,设此时距地面高度为H ,再经时间t 2落地有H =6.5 m +0.8 m -2.5 m =4.8 mH =v B t 2+12gt 22解得t 2=0.6 s故B 从开始释放到落地共经历时间t =t 1+t 2=1.6 s.答案:(1)8 m/s 2 5 m/s 2(2)1.6 s动力学的运动图象问题【高分快攻】【典题例析】(多选)(2018·高考全国卷Ⅲ)甲、乙两车在同一平直公路上同向运动,甲做匀加速直线运动,乙做匀速直线运动.甲、乙两车的位置x随时间t的变化如图所示.下列说法正确的是()A.在t1时刻两车速度相等B.从0到t1时间内,两车走过的路程相等C.从t1到t2时间内,两车走过的路程相等D.在t1到t2时间内的某时刻,两车速度相等[详细分析]x-t图象某点的切线斜率表示瞬时速度,A错误;前t1时间内,由于甲、乙的出发点不同,故路程不同,B错误;t1~t2时间内,甲、乙的位移和路程都相等,大小都为x2-x1,C正确;t1~t2时间内,甲的x-t图象在某一点的切线与乙的x-t图象平行,此时刻两车速度相等,D正确.[答案]CD【题组突破】角度1动力学中的速度图象1.(2019·镇江模拟)两个物体从同一高度同时由静止开始下落,经过一段时间分别与水平地面发生碰撞(碰撞过程时间极短)后反弹,碰撞前后瞬间速度大小不变,其中一个物体所受空气阻力可忽略,另一个物体所受空气阻力大小与物体速率成正比.下列分别用虚线和实线描述的两物体运动的v-t图象,可能正确的是()详细分析:选D.若不计空气阻力,则物体下落后,先做匀加速直线运动,与地面碰撞后做竖直上抛运动(匀减速直线运动),加速度不变;若考虑空气阻力,下落过程中,速度越来越大,则空气阻力越来越大,根据牛顿第二定律可知,加速度越来越小且小于g,与地面碰撞后,速度越来越小,则空气阻力越来越小,根据牛顿第二定律可知,加速度越来越小且大于g,根据速度-时间图象的斜率表示加速度大小可知,D正确.角度2动力学中的加速度图象2.(多选) (2019·徐州模拟)一汽车在高速公路上以v0=30 m/s的速度匀速行驶,t=0时刻,驾驶员采取某种措施,汽车运动的加速度随时间变化的关系如图所示,以初速度方向为正,下列说法正确的是( )A .t =6 s 时车速为5 m/sB .t =3 s 时车速为零C .前9 s 内的平均速度为15 m/sD .前6 s 内车的位移为90 m详细分析:选BC.0~3 s ,汽车做匀减速直线运动,3 s 末的速度v 3=v 0+a 1t 1=(30-10×3) m/s =0,B 正确;3~9 s ,汽车做匀加速直线运动,t =6 s 时速度v 6=a 2t 2=5×3 m/s =15 m/s ,A 错误;前3 s 内的位移x 3=0-v 202a 1=0-3022×(-10) m =45 m ,3~9 s 内的位移x 3~9=12a 2t 23=12×5×62 m =90 m ,则前9 s 内的位移为x 9=x 3+x 3~9=135 m ,平均速度为v =x 9t 总=1359m/s =15 m/s ,C 正确;3~6 s 内的位移x 3~6=12a 2t 22=12×5×32 m =22.5 m ,则前6 s 内的位移为x 6=x 3+x 3~6=67.5 m ,D 错误.角度3 动力学中的位移图象3.(多选)甲、乙两个物体在同一直线上运动,其x -t 图象如图所示,其中直线b 与曲线a 相切于点(4,-15).已知甲做匀变速直线运动,下列说法正确的是( )A .前4 s 内两物体运动方向相同B .前4 s 内甲的平均速度是乙的平均速度的157倍 C .t =0时刻,甲的速度大小为9 m/sD .甲的加速度大小为2 m/s 2详细分析:选AD.x -t 图象的斜率的正负表示运动的方向,故前4 s 内两物体运动方向相同,均为负方向,故A 正确;甲做匀变速直线运动,则甲的x -t 图象对应于a ;前4 s 内甲的平均速度为:v 1=(-15 m )-9 m 4 s=-6 m/s ,前 4 s 乙的平均速度为:v 2=(-15 m )-(-7 m )4 s=-2 m/s ,故前4 s 内甲的平均速度是乙的平均速度的3倍,故B 错误;t 0=0时刻,甲的位移为s 0=9 m ,t 1=1 s 时,s 1=0,t 2=4 s 末,甲的位移为s 2=-15 m ,因为甲做匀变速直线运动,设初速度为v 0,加速度为a ,则s 1-s 0=v 0t 1+12at 21①,s 2-s 0=v 0t 2+12at 22 ②,代入数据并联立①②式解得v 0=10 m/s ,a =2 m/s 2,故C 错误,D 正确.连接体问题【高分快攻】(多选)(2019·高考全国卷Ⅲ)如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力.细绳对物块的拉力f 随时间t 变化的关系如图(b)所示,木板的速度v 与时间t 的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s 2.由题给数据可以得出( )A .木板的质量为1 kgB .2~4 s 内,力F 的大小为0.4 NC .0~2 s 内,力F 的大小保持不变D .物块与木板之间的动摩擦因数为0.2[详细分析] 由题图(c)可知木板在0~2 s 内处于静止状态,再结合题图(b)中细绳对物块的拉力f 在0~2 s 内逐渐增大,可知物块受到木板的摩擦力逐渐增大,故可以判断木板受到的水平外力F 也逐渐增大,选项C 错误;由题图(c)可知木板在2~4 s 内做匀加速运动,其加速度大小为a 1=0.4-04-2 m/s 2=0.2 m/s 2,在4~5 s 内做匀减速运动,其加速度大小为a 2=0.4-0.25-4m/s 2=0.2 m/s 2,另外由于物块静止不动,同时结合题图(b)可知物块与木板之间的滑动摩擦力F f =f ,故对木板进行受力分析,由牛顿第二定律可得F -F f =ma 1、F f =ma 2,解得m =1 kg 、F =0.4 N ,选项A 、B 均正确;由于不知道物块的质量,所以不能求出物块与木板之间的动摩擦因数,选项D 错误.[答案] AB【题组突破】角度1 整体法和隔离法的应用1.(多选)(2019·南京二模)如图甲所示,斜面体放在粗糙的水平地面上,两斜面光滑且倾角分别为53°和37°,两小滑块P 和Q 用绕过滑轮不可伸长的轻绳连接,分别置于两个斜面上,且轻绳平行于斜面,已知P 、Q 和斜面体均静止不动.若交换两滑块位置,如图乙所示,再由静止释放,斜面体仍然静止不动,P 的质量为m ,取sin 53°=0.8,cos 53°=0.6,重力加速度大小为g ,不计滑轮的质量和摩擦,则下列判断正确的是( )A .Q 的质量为43m B .在图甲中,斜面体与地面间有摩擦力C .在图乙中,滑轮受到轻绳的作用力大小为425mg D .在图乙中,斜面体对地面的摩擦力方向水平向左详细分析:选AC.两斜面光滑且倾角分别为53°和37°,如题图甲放置,则根据沿绳方向的力相等知mg sin 53°=m Q g sin 37°,解得m Q =43m ,选项A 正确;在题图甲中,整个系统处于静止状态,斜面体与地面之间无摩擦力,选项B 错误;在题图乙中,设绳子拉力为T ,根据牛顿第二定律知43mg sin 53°-T =43ma ,T -mg sin 37°=ma ,解得T =45mg ,滑轮受到轻绳的作用力大小为N =2T =425mg ,选项C 正确;对题图乙中的斜面体受力分析,两根绳子对滑轮的作用力竖直向下,则水平方向上P 、Q 对斜面体作用力的合力为F x =43mg cos 53°cos 37°-mg cos 37° cos 53°=425mg ,方向向右,则地面对斜面体的摩擦力向左,由牛顿第三定律可知,斜面体对地面的摩擦力方向水平向右,选项D 错误.角度2 传送带模型2.(多选) (2019·苏州模拟)如图所示,光滑斜面与倾斜传送带在同一个平面内,传送带以速度v 0逆时针匀速转动,现有一滑块从斜面上由静止释放,若滑块与传送带间的动摩擦因数恒定,规定沿斜面向下的速度方向为正方向,则滑块在传送带上滑动时的速度随时间变化的图线可能是( )详细分析:选ACD.滑块在传送带上受到重力、传送带的支持力和摩擦力作用,合力是重力沿斜面的分力和摩擦力的合力,若传送带对滑块的摩擦力小于重力沿斜面的分力,则滑块一直做加速运动,故A正确;若传送带对滑块的摩擦力大于重力沿斜面的分力,滑块先做匀减速直线运动,若滑块的速度足够大,传送带足够短,则滑块在速度没有减小到0就通过了传送带,滑块的位移大于传送带的长度,则滑块一直做匀减速运动.故C正确;若滑块的速度比较小,在滑块的速度减小到0时,滑块的位移仍小于传送带的长度,则滑块的速度等于0时,仍然在传送带上.由于传送带沿斜面向上运动,滑块在传送带上受到沿斜面向上的摩擦力,将沿斜面向上做加速运动,由运动的对称性可知,若传送带的速度足够大,则滑块返回出发点的速度大小仍然等于v1,故D正确,B错误.角度3滑块—滑板模型=1 kg 和m B=5 kg,3.如图,两个滑块A和B的质量分别为m放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.详细分析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B所受的摩擦力大小分别为f1、f2,木板与地面间的滑动摩擦力为f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1.在物块B与木板达到共同速度前有f1=μ1m A g ①f2=μ1m B g②f3=μ2(m+m A+m B)g③由牛顿第二定律得f1=m A a A④f2=m B a B⑤f2-f1-f3=ma1⑥设在t1时刻,B与木板达到共同速度,其大小为v1.由运动学公式有v1=v0-a B t1⑦v1=a1t1⑧联立①②③⑤⑥⑦⑧式,代入已知数据得v1=1 m/s.⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2.对于B与木板组成的体系,由牛顿第二定律有f1+f3=(m B+m)a2⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2.设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2⑫对A有v2=-v1+a A t2⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2⑮A和B相遇时,A与木板的速度也恰好相同.因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B⑯联立以上各式,并代入数据得s0=1.9 m.(也可用如图所示的速度-时间图线求解)答案:见解+析滑块—滑板模型是近几年来高考考查的热点,涉及摩擦力的分析判断、牛顿运动定律、匀变速运动等主干知识,能力要求较高,滑块和滑板的位移关系、速度关系是解答滑块—滑板模型问题的切入点,前一运动阶段的末速度是下一运动阶段的初速度,解题过程中必须以地面为参考系.(建议用时:40分钟)一、单项选择题1.(2019·宿迁二模)元宵节期间人们燃放起美丽的焰火以庆祝中华民族的传统节日,按照设计,某种型号的装有焰火的礼花弹从专用炮筒中射出后,在3 s末到达离地面90 m的最高点时炸开,构成各种美丽的图案.假设礼花弹从炮筒中竖直向上射出时的初速度是v0,上升过程中所受的阻力大小始终是自身重力的k倍,g=10 m/s2,那么v0和k分别等于() A.30 m/s,1B.30 m/s,0.5C.60 m/s,0.5 D.60 m/s,1详细分析:选D.本题考查运动学规律和牛顿第二定律,利用运动学知识有x =v 0+v 2·t ,代入数据得v 0=60 m/s ;对上升过程中的礼花弹受力分析,如图所示.由牛顿第二定律有:mg +F f =ma ,又F f =kmg ,a =603m/s 2=20 m/s 2,解得:k =1.故A 、B 、C 错,D 对.2.甲、乙两汽车在一平直公路上同向行驶.在t =0到t =t 1的时间内,它们的 v -t 图象如图所示.在这段时间内( )A .汽车甲的平均速度比乙的大B .汽车乙的平均速度等于 v 1+v 22C .甲、乙两汽车的位移相同D .汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大详细分析:选A.根据v -t 图线与时间轴围成的面积表示位移,可以看出汽车甲的位移x 甲大于汽车乙的位移x 乙,选项C 错误;根据v =x t得,汽车甲的平均速度v 甲大于汽车乙的平均速度v 乙,选项A 正确;汽车乙的位移x 乙小于初速度为v 2、末速度为v 1的匀减速直线运动的位移x ,即汽车乙的平均速度小于v 1+v 22,选项B 错误;v -t 图象的斜率大小反映了加速度的大小,因此汽车甲、乙的加速度大小都逐渐减小,选项D 错误.3.(2019·淮安质检)如图,a 、b 、c 、d 为光滑斜面上的四个点.一小滑块自a 点由静止开始下滑,通过ab 、bc 、cd 各段所用时间均为T .现让该滑块自b 点由静止开始下滑,则该滑块( )A .通过bc 、cd 段的时间均大于TB .通过c 、d 点的速度之比为1∶2C .通过bc 、cd 段的位移之比为1∶3D .通过c 点的速度等于通过bd 段的平均速度详细分析:选A.当滑块由a 点静止下滑时,滑块沿光滑的斜面做匀加速直线运动,加速度大小为a ′.假设ab 段的间距为x ,则bc 、cd 段的间距应分别为3x 、5x ,x bc ∶x cd =3∶5,C 错误;如果滑块由b 点静止释放,显然滑块通过bc 、cd 段的时间均大于T ,A 正确;滑块在c 点的速度应为v 1= 2a ′·3x ,滑块在d 点的速度应为v 2=2a ′·8x ,则v 1∶v 2=3∶8,B 错误;因为x bc ∶x cd =3∶5,显然通过c 点的时刻不是bd 的中间时刻,则滑块通过c 点的速度不等于bd 段的平均速度,D 错误.4.(2019·南通质检)处于竖直平面内的某圆周的两条直径AB 、CD 间夹角为60°,其中直径AB 水平,AD 与CD 是光滑的细杆.从A 点和C 点分别静止释放两小球,从A 、C 点下落到D 点的时间分别是t 1、t 2,则t 1∶t 2是( )A .1∶1B .3∶2 C.3∶ 2D .2∶ 3 详细分析:选C.由图可知,s CD =2R ,a CD =32g ,由几何关系可得出s AD =3R ,a AD =12g ,由运动学公式s =12at 2,可得t 1t 2=s AD a CD s CD a AD ,代入数据得t 1t 2=32,故C 正确. 5.一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,动能变为原来的9倍.该质点的加速度为( )A.s t2 B .3s 2t 2 C.4s t 2 D .8s t2 详细分析:选A.设质点的初速度为v 0、末速率为v t ,由末动能为初动能的9倍,得末速度为初速度的3倍,即v t =3v 0,由匀变速直线运动规律可知,s t =v 0+3v 02=2v 0,由加速度的定义可知质点的加速度a =3v 0-v 0t =2v 0t ,由以上两式可知,a =s t2,A 项正确,B 、C 、D 项错误. 6.(2019·泰州二模)如图甲所示,某人正通过定滑轮将质量为m 的物体提升到高处.滑轮的质量和摩擦均不计,物体获得的加速度a 与绳子对物体竖直向上的拉力T 之间的函数关系如图乙所示.由图可以判断以下说法正确的是( )①图线与纵轴的交点M的值a M=-g②图线与横轴的交点N的值T N=mg③图线的斜率等于物体的质量m④图线的斜率等于物体质量的倒数1 mA.②④B.②③C.①②③D.①②④详细分析:选D.对物体受力分析,受重力mg和拉力T,根据牛顿第二定律,有T-mg=ma,得a=Tm-g.当T=0时,a=-g,即图线与纵轴的交点M的值a M=-g,①正确;当a=0时,T=mg,故图线与横轴的交点N的值T N=mg,②正确;图线的斜率表示质量的倒数1m,③错误,④正确.7.(2018·高考全国卷Ⅰ)如图,轻弹簧的下端固定在水平桌面上,上端放有物块P,系统处于静止状态.现用一竖直向上的力F作用在P上,使其向上做匀加速直线运动.以x表示P离开静止位置的位移,在弹簧恢复原长前,下列表示F和x之间关系的图象可能正确的是()详细分析:选A.假设物块静止时弹簧的压缩量为x0,则由力的平衡条件可知kx0=mg,在弹簧恢复原长前,当物块向上做匀加速直线运动时,由牛顿第二定律得F+k(x0-x)-mg=ma,由以上两式解得F=kx+ma,显然F和x为一次函数关系,且在F轴上有截距,则A正确,B、C、D错误.8.小球从一定高度处由静止下落,与地面碰撞后回到原高度再次下落,重复上述运动.取小球的落地点为原点建立坐标系,竖直向上为正方向.下列速度v和位置x的关系图象中,能描述该过程的是()。

最新届高考物理二轮复习提优导学案:专题二 力与直线运动3_【能力呈现】

最新届高考物理二轮复习提优导学案:专题二 力与直线运动3_【能力呈现】

能力呈现【考情分析】牛顿第二定律是高考中每年必考的热点内容,既会单独考查,又会与电磁学内容结合考查学生的综合处理问题的能力.近几年高考主要考查匀变速直线运动的公式、规律及运动图象的应用,题型多以选择题和计算题为主,题目新颖,与生活实际联系密切。

考查直线运动和力的关系时大多综合牛顿运动定律、受力分析、运动过程分析等内容.201220132014力与直线运动T4:变加速直线运动T14: 牛顿运动定律与匀加速运动T5:匀变速运动的图象T8:牛顿运动定律【备考策略】本专题的核心是匀变速直线运动以及描述运动和力关系的牛顿第二定律.在复习中,要灵活应用匀变速直线运动的公式,强化牛顿第二定律分析问题的思路和应用,重点抓住“两个分析”和“一个桥梁"。

“两个分析”是指受力分析和运动情景分析,“一个桥梁"是指加速度是联系运动和受力的桥梁。

综合应用牛顿运动定律和运动学公式解决问题。

1. (2014·天津)质点做直线运动的速度—时间图象如图所示,则该质点()A. 在第1 s 末速度方向发生了改变B 。

在第2 s 末加速度方向发生了改变C. 在前2 s 内发生的位移为零D. 第3 s 末和第5 s 末的位置相同解析:速度的正负表示速度的方向,而在前2 s 内,运动方向没有变化,故A 错;图象的斜率表示加速度,第2 s 末斜率不变,所以加速度不变,故B 错;前2 s 内的图象都在时间轴上方,质点位移的大小为图线与坐标轴所围成的面积大小,故C 错;同理,由图象面积可知,第4 s 内和第5 s 内的位移大小相等、方向相反,故D 正确。

答案:D2. (2014·江苏)一汽车从静止开始做匀加速直线运动,然后刹车做匀减速直线运动,直到停止.下列关于速度v 和位移x 的关系图象中,能描述该过程的是( )解析:开始时汽车做匀加速直线运动,根据匀变速直线运动速度位移关系有v=112a x ,故选项C 、D 错误;刹车后汽车做匀减速直线运动,有2021-2(-)v a x x A 正确,选项B 错误。

(新课标)2020版高考物理大二轮复习专题一力与运动第二讲力与物体的直线运动教学案

(新课标)2020版高考物理大二轮复习专题一力与运动第二讲力与物体的直线运动教学案

第二讲力与物体的直线运动[答案] (1)合外力为零(2)(4)热点考向一运动学基本规律的应用【典例】(2019·全国卷Ⅰ)如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H.上升第一个H4所用的时间为t1,第四个H4所用的时间为t2.不计空气阻力,则t2t1满足( )A.1<t2t1<2 B.2<t2t1<3C.3<t2t1<4 D.4<t2t1<5[思路引领] 可考虑逆向思维法,将竖直上抛运动等效为逆向的自由落体运动.[解析] 本题应用逆向思维求解,即运动员的竖直上抛运动可等同于从一定高度处开始的自由落体运动,所以第四个H4所用的时间为t2=2×H4g,第一个H4所用的时间为t1=2H g -2×34Hg,因此有t2t1=12-3=2+3,即3<t2t1<4,选项C正确.[答案] C1.匀变速直线运动的“四类公式”2.处理匀变速直线运动的五种方法迁移一以生产、生活实际考查1.(多选)(2019·河北名校联盟)拥堵已成为现代都市一大通病,发展“空中轨道列车”(简称空轨,如图所示)是缓解交通压力的重要举措.假如某空轨从甲站沿直线运动到乙站,为了使旅客舒适,其加速度不能超过2.5 m/s 2,行驶的速度不能超过50 m/s.已知甲、乙两站之间的距离为2.5 km ,下列说法正确的是( )A .空轨从静止开始加速到最大速度的最短时间为25 sB .空轨从最大速度开始刹车到停下来运动的最小位移为500 mC .从甲站运动到乙站的最短时间为70 sD .从甲站运动到乙站的最大平均速度为25 m/s[解析] 空轨从静止开始以最大加速度加速到最大速度时所用时间最短,则最短时间为t 1=v maxa max=20 s ,选项A 错误;以最大加速度刹车时,空轨从最大速度开始刹车到停下来运动的位移最小,由v 2max =2a max x 解得最小位移为x =500 m ,选项B 正确;以最大加速度加速到最大速度,然后以最大速度匀速运动,再以最大加速度刹车时,空轨从甲站到乙站的运动时间最短,且刹车时间与加速时间相等,等于t 1,两段时间对应的位移相等,等于x ,匀速运动时间为t 2=2500 m -2xv max=30 s ,所以最短时间为t =2t 1+t 2=70 s ,选项C 正确;从甲站运动到乙站的最大平均速度为v =250070m/s =35.7 m/s ,选项D 错误. [答案] BC迁移二 以追及、相遇模型考查2.(2019·福建四校联考)货车A 在平直公路上以20 m/s 的速度匀速行驶,当司机发现正前方有一辆静止的轿车B 时,两车间的距离仅有75 m .(这段公路很窄,无法靠边让道)(1)若此时B 车立即以2 m/s 2的加速度启动,通过计算判断:如果A 车司机没有刹车,是否会撞上B 车.若不相撞,求两车间的最小距离;若相撞,求出从A 车发现B 车到A 车撞上B 车的时间.(2)若A 车司机发现B 车,立即刹车(不计反应时间)做匀减速直线运动,加速度大小为2 m/s 2(两车均视为质点),为避免碰撞,在A 车刹车的同时,B 车立即做匀加速直线运动(不计反应时间),B 车的加速度至少为多大才能避免发生事故.(结果保留两位小数)[解析] (1)设两车不相撞,经过的时间为t 时,两车速度相等,则有v A =v B对B 车又有v B =at 联立可得t =10 st 时间内A 车的位移x A =v A t =200 m t 时间内B 车的位移x B =12at 2=100 m因为x B +x 0=175 m<x A所以假设不成立,两车会相撞,设经过时间t 1两车相撞,有v A t 1=x 0+12at 21代入数据解得t 1=5 s ,另一解舍去.(2)已知A 车的加速度大小a A =2 m/s 2,初速度v A =20 m/s设B 车的加速度大小为a B ,B 车运动时间为t 2时两车速度相等,且此时两车恰好不相撞,则有v A ′=v A -a A t 2,v B ′=a B t 2且v A ′=v B ′在时间t 2内A 车的位移大小x A ′=v A t 2-12a A t 22B 车的位移大小x B ′=12a B t 22又x B ′+x 0=x A ′联立并代入数据解得a B =0.67 m/s 2. [答案] (1)会相撞 5 s (2)0.67 m/s 2追及减速运动的物体时,要注意隐含条件,即两物体相遇时,要先判断被追物体的速度是否已经减为零,根据t =⎪⎪⎪⎪⎪⎪v 0a 首先分析出相遇时减速物体的状态.热点考向二 挖掘图像信息解决动力学问题【典例】 (多选)(2019·全国卷Ⅲ)如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力.细绳对物块的拉力f 随时间t 变化的关系如图(b)所示,木板的速度v 与时间t 的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s 2.由题给数据可以得出( )A .木板的质量为1 kgB .2 s ~4 s 内,力F 的大小为0.4 NC .0~2 s 内,力F 的大小保持不变D .物块与木板之间的动摩擦因数为0.2[思路引领] 题图(b)中细绳上拉力的变化情况与木板的受力情况不易联系在一起,是本题的易错点.要通过力传感器固定判断出物块相对于地面静止,从而判断木板的受力情况,由v -t 图像求出木板在施加力F 时的加速度和撤掉F 时的加速度,根据牛顿第二定律求解待求物理量.[解析] 由题图(c)可知木板在0~2 s 内处于静止状态,再结合题图(b)中细绳对物块的拉力f 在0~2 s 内逐渐增大,可知物块受到木板的摩擦力逐渐增大,故可以判断木板受到的水平外力F 也逐渐增大,选项C 错误;由题图(c)可知木板在2~4 s 内做匀加速运动,其加速度大小为a 1=0.4-04-2m/s 2=0.2 m/s 2,在4~5 s 内做匀减速运动,其加速度大小为a 2=0.4-0.25-4m/s 2=0.2 m/s 2,另外由于物块静止不动,同时结合题图(b)可知物块与木板之间的滑动摩擦力F f =f ,故对木板进行受力分析,由牛顿第二定律可得F -F f =ma 1、F f =ma 2,解得m =1 kg 、F =0.4 N ,选项A 、B 均正确;由于不知道物块的质量,所以不能求出物块与木板之间的动摩擦因数,选项D 错误.[答案] AB1.从v-t图像巧分析四个物理量(1)速度:从速度轴上读出速度,正负表示物体的运动方向.(2)时间:从时间轴上读出时刻,两时刻的差值表示物体的运动时间.(3)位移:由图线与时间轴围成的面积表示位移,时间轴上方表示位移的方向与规定的正方向相同,下方表示位移的方向与规定的正方向相反.(4)加速度:由图线的斜率求得,斜率的正、负表示加速度的方向.2.求解运动图像与牛顿第二定律综合问题的基本思路迁移一动力学中的F-t图像1.(多选)(2019·泰安模拟)物体最初静止在倾角θ=30°的足够长斜面上,如图甲所示受到平行斜面向下的力F的作用,力F随时间变化的图像如图乙所示,开始运动2 s后物体以2 m/s的速度匀速运动,下列说法正确的是(g取10 m/s2)( )A .物体的质量m =1 kgB .物体的质量m =2 kgC .物体与斜面间的动摩擦因数μ=33D .物体与斜面间的动摩擦因数μ=7315[解析] 由开始运动2 s 后物体以2 m/s 的速度匀速运动,可知0~2 s 内物体的加速度大小为a =1 m/s 2;在0~2 s 内对物体应用牛顿第二定律得,F 1+mg sin30°-μmg cos30°=ma,2 s 后由平衡条件可得,F 2+mg sin30°-μmg cos30°=0,联立解得m =1 kg ,μ=7315,选项A 、D 正确. [答案] AD迁移二 动力学中的a -F 图像2.(多选)(2019·河北六校联考)用一水平力F 拉静止在水平面上的物体,在F 从零开始逐渐增大的过程中,加速度a 随外力F 变化的图像如图所示,g =10 m/s 2,则可以得出( )A .物体与水平面间的最大静摩擦力B .F 为14 N 时物体的速度C .物体与水平面间的动摩擦因数D .物体的质量[解析] 由题图可知,物体在水平面间的最大静摩擦力为7 N ,A 正确;由F -μmg =ma ,解得a =1mF -μg ,将F 1=7 N ,a 1=0.5 m/s 2,F 2=14 N ,a 2=4 m/s 2代入上式可得m =2kg ,μ=0.3,C 、D 正确;因物体做变加速运动,无法求出F 为14 N 时物体的速度,B 错误.[答案] ACD处理运动图像时容易出现的错误有以下几点:(1)对于x -t 图像,图线在纵轴上的截距表示t =0时物体的位置;对于v -t 和a -t 图像,图线在纵轴上的截距并不表示t =0时物体的位置.(2)在v -t 图像中,两条图线的交点不表示两物体相遇,而是表示两物体速度相同.(3)v -t 图像中两条图线在v 轴上的截距不同,不少同学误认为两物体的初始位置不同,位置是否相同应根据题中条件确定.热点考向三 利用牛顿运动定律解决多体问题【典例】 (2017·海南卷)一轻弹簧的一端固定在倾角为θ的固定光滑斜面的底部,另一端和质量为m 的小物块a 相连,如图所示.质量为35m 的小物块b 紧靠a 静止在斜面上,此时弹簧的压缩量为x 0.从t =0时开始,对b 施加沿斜面向上的外力,使b 始终做匀加速直线运动.经过一段时间后,物块a 、b 分离;再经过同样长的时间,b 距其出发点的距离恰好也为x 0.弹簧的形变始终在弹性限度内,重力加速度大小为g .求:(1)弹簧的劲度系数;(2)物块b 加速度的大小;(3)在物块a 、b 分离前,外力大小随时间变化的关系式. [思路引领] (1)由运动学公式知形变量为34x 0时二者分离.(2)分离时,ab 间没有弹力,a 、b 加速度相同.[解析] (1)对整体分析,根据平衡条件可知开始时沿斜面方向上重力的分力与弹簧弹力平衡,则有kx 0=⎝ ⎛⎭⎪⎫m +35m g sin θ, 解得k =8mg sin θ5x 0.(2)由题意可知,b 经两段相等的时间位移为x 0,由x =12at 2可知x 1x 0=14,说明当形变量x 2=x 0-x 1=3x 04时二者分离;对物块a 分析,因分离时a 、b 间没有弹力,a 、b 加速度相同,则对物块a ,根据牛顿第二定律可知kx 2-mg sin θ=ma ,解得a =g sin θ5.(3)设时间为t ,则经时间t 时,a 、b 运动的位移 x =12at 2=gt 2sin θ10, 弹簧形变量Δx =x 0-x ,对整体分析,由牛顿第二定律有F +k Δx -⎝ ⎛⎭⎪⎫m +35m g sin θ=⎝ ⎛⎭⎪⎫m +35m a ,解得F =825mg sin θ+4mg 2sin 2θ25x 0t 2,因分离时位移x =x 1=x 04,由x =x 04=12at 21解得t 1=5x 02g sin θ,故应保证t <5x 02g sin θ,F 的表达式才能成立.[答案] (1)8mg sin θ5x 0 (2)g sin θ5(3)F =825mg sin θ+4mg 2sin 2θ25x 0t 2⎝⎛⎭⎪⎫0≤t <5x 02g sin θ解决连接体问题应注意的问题1.整体法与隔离法的优点和使用条件(1)当连接体中各物体具有共同的加速度时,一般采用整体法;当系统内各物体的加速度不同时,一般采用隔离法.(2)求连接体内各物体间的相互作用力时必须用隔离法. 2.两物体分离或相对滑动的条件(1)叠加体类的连接体:两物体间刚要发生相对滑动时物体间的静摩擦力达到最大值. (2)靠在一起的连接体:分离时相互作用力为零,但此时两物体的加速度仍相同. 3.用滑轮连接的连接体的处理方法通过滑轮连接的两个物体:加速度相同,但轻绳的拉力不等于悬挂物体的重力.迁移一 平面上的多体模型1.(2019·江西六校联考)水平地面上有质量分别为m 和4m 的物块A 和B ,两者与地面的动摩擦因数均为μ.细绳的一端固定,另一端跨过轻质、光滑动滑轮与A 相连,动滑轮与B 相连,如图所示.初始时,细绳处于水平拉直状态.若物块A 在水平向右的恒力F 作用下向右移动了距离s ,重力加速度大小为g .求:(1)物块B 受到的摩擦力; (2)物块A 、B 的加速度大小.[解析] (1)物块B 受到的摩擦力大小为f =4μmg(2)设物块A 、B 的加速度大小分别为a A 、a B ,细绳中的张力为T .由牛顿第二定律得F -μmg -T =ma A2T -4μmg =4ma B物块A 移动了距离s ,则物块B 移动的距离为s 1=12s由A 和B 的位移关系得a A =2a B 联立解得a A =F -3μmg2ma B =F -3μmg 4m.[答案] (1)4μmg (2)F -3μmg 2m F -3μmg4m迁移二 斜面上的多体模型2.(2019·河南周口期末)如图所示,空间有场强大小为E ,方向沿斜面向下的匀强电场;光滑绝缘斜面的倾角为θ,底端固定一根劲度系数为k 的轻弹簧;彼此绝缘的A 、B 两物体静止在弹簧顶端,A 、B 接触但不粘连,A 的质量为m ,电荷量为+q ,B 的质量也为m ,不带电,弹簧处于弹性限度内,重力加速度为g ;某时刻,在沿斜面向上的大小为F 的外力作用下,A 、B 一起以相同的加速度向上做匀加速运动,则当A 、B 分离瞬间( )A .弹簧的形变量为0B .弹簧的形变量为x =qE +FkC .A 的速度达到最大D .A 的加速度为0[解析] A 、B 分离瞬间,A 、B 间无相互作用力且加速度相同,对B 受力分析,由牛顿第二定律可知F -mg sin θ=ma ,对A 受力分析,由牛顿第二定律可知kx -mg sin θ-qE =ma ,解得x =qE +Fk,A 错误,B 正确;由于此时A 具有向上的加速度,则A 的速度不是最大且加速度不为0,C 、D 错误.[答案] B斜面固定,多个物体沿斜面运动,外加电场、磁场或者一个力,这类题目的本质是平面问题移到了斜面上.处理此类问题,主要考虑两个方面.(1)分清斜面体是否光滑,若不光滑,动摩擦因数是否已知.(2)多个物体是否有相对运动,采用整体法或者隔离法,进行受力分析、运动分析,最后确定用“力法”还是“能法”求解.热点考向四 利用牛顿运动定律解决多过程问题【典例】 (2019·河北名校联盟)消防队员为缩短下楼的时间,往往抱着竖直的杆直接滑下.假设一名质量为60 kg 、训练有素的消防队员从七楼(即离地面18 m 的高度)抱着竖直的杆以最短的时间滑下.已知杆的质量为200 kg ,消防队员着地的速度不能大于6 m/s ,手和腿对杆的最大压力为1800 N ,手和腿与杆之间的动摩擦因数为0.5,设当地的重力加速度g 取10 m/s 2.假设杆是固定在地面上的,杆在水平方向不移动.试求:(1)消防队员下滑过程中的最大速度. (2)消防队员下滑过程中杆对地面的最大压力. (3)消防队员下滑的最短时间.[思路引领] (1)消防队员开始阶段自由下落的末速度为下滑过程的最大速度. (2)若消防员以最短时间滑下,他应先以加速度g 做匀加速直线运动,再做匀减速直线运动.[解析] (1)消防队员开始阶段自由下落的末速度即为下滑过程的最大速度v m , 有2gh 1=v 2m消防队员受到的滑动摩擦力F f =μF N =0.5×1800 N=900 N减速阶段的加速度大小:a 2=F f -mg m=5 m/s 2减速过程的位移为h 2,由v 2m -v ′2=2a 2h 2v ′=6 m/s又h =h 1+h 2以上各式联立可得:v m =12 m/s (2)以杆为研究对象得:F N ′=Mg +F f ′=2900 N根据牛顿第三定律得,杆对地面的最大压力为2900 N. (3)最短时间为t min =v m g +v m -v ′a 2=2.4 s.[答案] (1)12 m/s (2)2900 N (3)2.4 s1.多过程问题很多动力学问题中涉及的物体有两个或多个连续的运动过程,在物体不同的运动阶段,物体的运动情况和受力情况都发生了变化,这类问题称为牛顿运动定律中的多过程问题.2.类型多过程问题可根据涉及物体的多少分为单体多过程问题和多体多过程问题.3.解题策略(1)任何多过程的复杂物理问题都是由很多简单的小过程构成,有些是承上启下,上一过程的结果是下一过程的已知,这种情况需一步一步完成.(2)有些是树枝形,告诉的只是旁支,要求的是主干(或另一旁支),这就要求仔细审题,找出各过程的关联,按顺序逐个分析;对于每一个研究过程,选择什么规律,应用哪一个运动学公式要明确.(3)注意两个过程的连接处,通常加速度可能突变,但速度不会突变,速度是联系前后两个过程的桥梁.(2019·江西五校联考)避险车道是避免恶性交通事故发生的重要设施,由制动坡床和防撞设施等组成,如图竖直平面内,制动坡床视为与水平面夹角为θ的斜面.一辆长12 m 的载有货物的货车因刹车失灵从干道驶入制动坡床,当车速为23 m/s时,车尾位于制动坡床的底端,货物开始在车厢内向车头滑动,当货物在车厢内滑动了4 m时,车头距制动坡床顶端38 m,再过一段时间,货车停止.已知货车质量是货物质量的4倍,货物与车厢间的动摩擦因数为0.4;货车在制动坡床上运动受到的坡床阻力大小为货车和货物总重的0.44.货物与货车分别视为小滑块和平板,取cosθ=1,sinθ=0.1,g=10 m/s2.求:(1)货物在车厢内滑动时加速度的大小和方向;(2)制动坡床的长度.[解析] (1)设货物的质量为m ,货物在车厢内滑动过程中,货物与车厢间的动摩擦因数μ=0.4,受摩擦力大小为f ,加速度大小为a 1,则f +mg sin θ=ma 1① f =μmg cos θ②联立①②式并代入数据得a 1=5 m/s 2③a 1的方向沿制动坡床向下.(2)设货车的质量为M ,车尾位于制动坡床底端时的车速为v =23 m/s.货物在车厢内开始滑动到车头距制动坡床顶端s 0=38 m 的过程中,用时为t ,货物相对制动坡床的运动距离为s 1,在车厢内滑动的距离s =4 m ,货车的加速度大小为a 2,货车相对制动坡床的运动距离为s 2.货车受到制动坡床的阻力大小为F ,F 是货车和货物总重的k 倍,k =0.44,货车长度l 0=12 m ,制动坡床的长度为l ,则Mg sin θ+F -f =Ma 2④ F =k (m +M )g ⑤ s 1=vt -12a 1t 2⑥ s 2=vt -12a 2t 2⑦s =s 1-s 2 ⑧ l =l 0+s 0+s 2 ⑨,联立①②④~⑨并代入数据得l =98 m.[答案] (1)5 m/s 2沿制动坡床向下 (2)98 m解决“多过程”问题的关键:首先明确每个“子过程”所遵守的规律,其次找出它们之间的关联点,然后列出“过程性方程”与“状态性方程”.高考热点模型构建——“传送带”与“板块”模型考向一 “传送带”模型【典例1】 (2019·江淮十校联考)如图所示,工厂利用倾角θ=30°的皮带传输机,依次将轻放在皮带底端的每包质量为m =50 kg 的货物,从地面运送到高出水平地面h =2.5 m 的平台上,传输机的皮带以v =1 m/s 的速度顺时针转动且不打滑,货物无初速度地放在皮带上.已知货物与皮带间的动摩擦因数为μ=235,最大静摩擦力等于滑动摩擦力,g 取10 m/s 2.(1)求将每包货物从地面运送到平台上所用的时间t .(2)若皮带传输机由电动机带动,求把每包货物从地面运送到平台上,电动机需要多做的功W .[思路引领][解析] (1)设货物做加速运动时的加速度为a ,时间为t 1,位移为x 1,根据牛顿第二定律,有μmg cos θ-mg sin θ=ma ,代入数据解得a =1 m/s 2 则t 1=v a =1 s ,x 1=12at 21=0.5 m货物与皮带达到共同速度后,与皮带一起向上做匀速运动货物做匀速运动的时间t 2=hsin θ-x 1v=4.5 s故将每包货物从地面运送到平台上所用的时间t =t 1+t 2=5.5 s. (2)解法一:货物做加速运动的过程中,皮带的位移x 2=vt 1=1 m ,相对位移Δx =x 2-x 1=0.5 m根据能量守恒定律得W =μmg cos θ·Δx +mgh +12mv 2代入数据解得W =1425 J.解法二:货物做加速运动的过程中,皮带所受的摩擦力f1=f max=μmg cosθ,皮带的位移x2=vt1货物与皮带一起做匀速运动的过程中,皮带所受的摩擦力f2=mg sinθ,皮带的位移x3=vt2则W=W1+W2=f1x2+f2x3代入数据解得W=1425 J.[答案] (1)5.5 s (2)1425 J传送带问题的处理技巧(1)分析物体的受力情况要考虑物体与传送带间的相对运动.(2)求物体的加速度、速度和位移时不需要考虑传送带的运动情况,即相当于传送带是不动的.(3)求物体相对传送带的路程时,需要考虑传送带的运动情况,若物体与传送带运动方向相同,则相对路程为两者路程之差,若物体与传送带运动方向相反,则相对路程为两者路程之和.考向二“板块”模型【典例2】(2019·江苏卷)如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐.A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下.接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下.最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)A被敲击后获得的初速度大小v A;(2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′;(3)B被敲击后获得的初速度大小v B.[思路引领] 处理本题的关键点有二:一是弄清临界点(或转折点),即物块A与物块B 达到共同的速度或物块A离开物块B时的受力情况以及运动状态的变化为转折点,本题中临界点为A 、B 共速;二是两个关联,即发生转折前后物块的受力情况以及物块A 与物块B 的位移之间的关联,必要时要通过画图理清关系,即B 的位移与A 的位移之差应等于L .[解析] (1)由牛顿运动定律知,A 加速度的大小a A =μg 匀变速直线运动2a A L =v 2A 解得v A =2μgL (2)设A 、B 的质量均为m对齐前,B 所受合外力大小F =3μmg 由牛顿运动定律F =ma B ,得a B =3μg 对齐后,A 、B 所受合外力大小F ′=2μmg 由牛顿运动定律F ′=2ma B ′,得a B ′=μg(3)经过时间t ,A 、B 达到共同速度v ,位移分别为x A 、x B ,A 加速度的大小等于a A 则v =a A t ,v =v B -a B tx A =12a A t 2,x B =v B t -12a B t 2且x B -x A =L 解得v B =22μgL[答案] (1)2μgL (2)3μg μg (3)22μgL滑块与滑板间相对滑动的临界条件(1)运动学条件:若两物体速度或加速度不等,则会相对滑动.(2)力学条件:一般情况下,假设两物体间无相对滑动,先用整体法算出一起运动的加速度,再用隔离法算出滑块“所需要”的摩擦力f ,比较f 与最大静摩擦力f max 的关系,若f >f max ,则发生相对滑动.(3)滑块滑离滑板的临界条件:当滑板的长度一定时,滑块可能从滑板滑下,恰好滑到滑板的边缘达到共同速度是滑块滑离滑板的临界条件.1.(多选)(2019·昆明高三年级教学质检)如下图甲所示,倾角为37°的足够长的传送带以恒定速度运行,将一质量m =1 kg 的小物体以某一初速度放上传送带,物体相对地面的速度大小随时间变化的关系如图乙所示,取沿传送带向上为正方向,g 取10 m/s 2,sin37°=0.6,cos37°=0.8.则下列说法正确的是( )A .传送带沿逆时针转动,速度大小为4 m/sB .物体与传送带间的动摩擦因数为0.75C .0~8 s 内物体位移的大小为14 mD .0~8 s 内物体与传送带之间因摩擦而产生的热量为126 J[解析] 由题图可知小物体先反向做减速运动后向正方向做加速运动,故可知传送带速度方向沿顺时针方向,最终物体和传送带的速度相同,故传送带速度大小为4 m/s ,故A 错误;根据v -t 图像的斜率表示加速度,物体相对传送带滑动时的加速度大小为a =22 m/s2=1 m/s 2,由牛顿第二定律得μmg cos37°-mg sin37°=ma ,解得μ=0.875,故B 错误;0~8 s 内物体的位移为s =⎝ ⎛⎭⎪⎫-12×2×2+2+62×4 m =14 m ,故C 正确;0~8 s 内只有前6 s 内物体与传送带发生相对滑动,0~6 s 内传送带运动的距离为s 带=4×6 m=24 m,0~6 s 内物体的位移为s物=⎝ ⎛⎭⎪⎫-12×2×2+4×42 m =6 m ,因摩擦而产生的热量为Q =μmg cos37°·(s 带-s 物)=126 J ,故D 正确.[答案] CD2.(2019·武汉外校阶段性测试)如图1甲所示,静止在光滑水平面上的长木板B (长木板足够长)的左端放着小物块A .某时刻,A 受到水平向右的外力F 作用,F 随时间t 的变化规律如图乙所示,即F =kt ,其中k 为已知常数.若A 、B 之间的滑动摩擦力F f 的大小等于最大静摩擦力,且A 、B 的质量相等,则下列图2中可以定性地描述长木板B 运动的v -t 图像的是( )[解析] 以A 、B 整体为研究对象,A 、B 整体具有共同的最大加速度,由牛顿第二定律得a 1=F 2m ,对B 由牛顿第二定律有a 1=F f m ,对A 由牛顿第二定律有a 1=F -F fm ,达到最大加速度所经历的时间t =F k,由以上各式解得t =2F fk,此后B 将受恒力作用,做匀加速直线运动,v -t 图线为倾斜的直线,故B 正确.[答案] B专题强化训练(二)一、选择题1.(2019·贵阳高三监测)一物体做匀减速直线运动,4 s 内的位移为16 m ,速度大小变为原来的三分之一,方向不变.则该物体的加速度大小为( )A .1 m/s 2B .1.5 m/s 2C .2 m/s 2D .0.75 m/s 2[解析] 设该物体的初速度为v 0,加速度大小为a ,由题意知t =4 s ,根据匀变速直线运动规律,x =v 0+v 032·t ,v 03=v 0-at ,联立解得a =1 m/s 2,选项A 正确.[答案] A2.(多选)(2019·江西南昌三模)高速公路上甲、乙两车在同一车道上同向行驶.甲车在前,乙车在后,速度均为v 0=30 m/s ,距离s 0=100 m .t =0时刻甲车遇紧急情况后,甲、乙两车的加速度随时间变化的关系如图甲、乙所示.取运动方向为正方向.下列说法正确的是( )A .t =3 s 时两车相距最近B .0~9 s 内两车位移之差为45 mC .t =6 s 时两车相距最近,为10 mD .两车在0~9 s 内会相撞[解析] 由题图可画出两车的速度—时间图像,如图所示.由图像可知,t =6 s 时两车速度相等,此时两车相距最近,故A 错误;图中阴影部分面积为0~6 s 内两车位移之差,可得Δx =12×30×3 m+12×30×(6-3) m =90 m<100 m ,此时两车相距最近,为10 m ,所以两车不会相撞,故C 正确,D 错误;0~9 s 内两车位移之差Δx ′=12×30×3 m=45 m ,故B 正确.[答案] BC3.(2019·福州市质检)物体在水平地面上受到水平推力的作用,在6 s 内力F 、速度v 随时间变化如图所示,由图像可得( )A .物体的质量为2 kgB .物体在6 s 内运动的位移为6 mC .在0~2 s 内推力做的功为2 JD .物体与地面间的动摩擦因数为0.025[解析] 物体在0~2 s 内做匀加速直线运动,加速度为a =12m/s 2,由牛顿第二定律有:F -μmg =ma ,即:3-μmg =ma ;物体在2~6 s 内做匀速直线运动,因此有:μmg =1 N ,联立解得:物体的质量为m =4 kg ,物体与地面间的动摩擦因数为μ=0.025,选项A 错误,选项D 正确;根据v -t 图像所围的面积表示物体运动的位移可得物体在6 s 内运动的位移为x =12×2×1 m+4×1 m=5 m ,选项B 错误;力对物体所做的功等于力乘以力方向上的位移,因此在2 s 内推力做的功为W =Fx =3×12×2×1 J=3 J ,选项C 错误.[答案] D4.(2019·河南南阳一中开学考试)如图所示,一轻质长木板置于光滑水平地面上,木板上有质量分别为m A =1 kg 和m B =2 kg 的A 、B 两物块,A 、B 与木板之间的动摩擦因数都为μ=0.2,水平恒力F 作用在A 物块上,最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2.则( )A .若F =1 N ,则物块、木板都静止不动B .若F =1.5 N ,则A 物块所受摩擦力大小为1.5 NC .若F =4 N ,则B 物块所受摩擦力大小为4 ND .若F =8 N ,则B 物块的加速度大小为1 m/s 2[解析] A 与木板间的最大静摩擦力f A =μm A g =0.2×1×10 N=2 N ,B 与木板间的最大静摩擦力f B =μm B g =0.2×2×10 N=4 N ,设A 与木板恰好发生相对滑动时水平恒力大小为F 0,则由牛顿第二定律可知F 0-f A m A =f Am B,解得F 0=3 N ,F =1 N<F 0,则A 、B 均与木板保持。

高考物理二轮复习 专题一 力与运动 第2讲 力与物体的直线运动学案

高考物理二轮复习 专题一 力与运动 第2讲 力与物体的直线运动学案

第2讲力与物体的直线运动网络构建备考策略1.解决动力学问题要抓好关键词语(1)看到“刚好”“恰好”“正好”等字眼,想到“题述的过程存在临界点”。

(2)看到“最大、最小、至多、至少”等字眼,想到“题述的过程存在极值点”。

2.“四点”注意(1)x-t图象、v-t图象均表示直线运动。

(2)运动学公式中的v、a、x均为矢量,一定规定正方向。

(3)刹车问题中不能忽略实际运动情况。

(4)x-t、v-t、a-t图象相关量间的关系运动学中的图象问题x-t图象的理解及应用【典例1】 (多选)(2018·全国卷Ⅲ,18)甲、乙两车在同一平直公路上同向运动,甲做匀加速直线运动,乙做匀速直线运动。

甲、乙两车的位置x随时间t的变化如图1所示。

下列说法正确的是( )图1A.在t1时刻两车速度相等B.从0到t1时间内,两车走过的路程相等C.从t1到t2时间内,两车走过的路程相等D.在t1到t2时间内的某时刻,两车速度相等解析x-t图象某点的切线斜率表示瞬时速度,A错误;从0~t1时间内,由于甲、乙的出发点不同,故路程不同,B错误;t1~t2时间内,甲、乙的位移和路程都相等,大小都为x2-x1,C正确;t1~t2时间内,甲的x-t图象在某一点的切线与乙的x-t图象平行,此时刻两车速度相等,D正确。

答案CDv-t图象的理解及应用【典例2】 (多选)(2018·全国卷Ⅱ,19)甲、乙两汽车在同一条平直公路上同向运动,其速度—时间图象分别如图2中甲、乙两条曲线所示。

已知两车在t2时刻并排行驶。

下列说法正确的是( )图2A.两车在t 1时刻也并排行驶B.在t 1时刻甲车在后,乙车在前C.甲车的加速度大小先增大后减小D.乙车的加速度大小先减小后增大解析 本题可巧用逆向思维分析,两车在t 2时刻并排行驶,根据题图分析可知在t 1~t 2时间内甲车运动的位移大于乙车运动的位移,所以在t 1时刻甲车在后,乙车在前,B 正确,A 错误;依据v -t 图象斜率表示加速度分析出C 错误,D 正确。

(江苏专用)2020高考物理二轮复习第一部分专题一力与运动第二讲力与直线运动课件

(江苏专用)2020高考物理二轮复习第一部分专题一力与运动第二讲力与直线运动课件

(二)解题失误“为什么” 1.不清楚运动图像的点、斜率、面积等的物理意义。如 诊断卷第7题中,通过斜率来判断,运动员没有打开降落伞时 做自由落体运动,在打开伞后可能先做减速运动最终做匀速运
动,可能先做加速度减小的加速运动最终做匀速运动,也可能
本 课 内 容 结 束 直接做匀速运动。诊断卷第8题中,v2-x图线的斜率为物块加
速度
与时间轴平行的 直线
运动图像的三点提醒 (1)运动图像描述的是纵轴物理量随横轴物理量(通常为时间t) 变化的规律,而不是物体的运动轨迹。 (2)运动图像只能描述直线运动,不能描述曲线运动。 (3)x-t图像的交点才表示两物体相遇,而v-t图像的交点只能 说明此时两物体速度相等。
(三)掌握四种常用解题方法 1.基本公式法:如诊断卷第1题中,首先分析汽车从刚 进入ETC通道的识别区到刚好紧贴栏杆停下,这段时间汽车 的运动情况,针对刹车过程,题目已知量为初、末速度和加
本 课 内 容 结 束 好为零,整个过程演员的v-t图像和传感器显示的拉力随时间
的变化情况分别如图甲、乙所示,g取10 m/s2,则下列说法
正确的是
(
)
A.演员的体重为800 N B.演员在最后2 s内一直处于超重状态 C.传感器显示的最小拉力为600 N D.滑竿长4.5 m
解析:由两题图结合可知,静止时,传感器示数为800 N,除
动,故C正确,D错误。 答案:C
2.(2019·泰州中学检测)某人在五楼阳
台处竖直向上抛出一只皮球,其速
率—时间图像如图所示,下列说法
正确的是
本课内容结束
A.t1时刻皮球达到最高点
(
)
B.t2时刻皮球回到出发点
C.0~t1时间内,皮球的加速度一直在增大

力与直线运动教案-江苏省徐州市贾汪区建平中学高三物理复习

力与直线运动教案-江苏省徐州市贾汪区建平中学高三物理复习
学生活动:注意探索事物的本质,思考规律的特点。
学生活动:
对 运动情景的理解
学生活动:思考得出错误认识的根源:不注意探索事物的本质,思考不求甚解。
学生活动:带着问题阅读教材,阐述自己的观点。
学生活动:阅读问题,理清思路,阐述自己的观点
教学过程设计


二次备课
能力巩固
1.江苏)将一只皮球竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比.下列描绘皮球在上升过程中加速度大小a与时间t关系的图象,可能正确的是()
阅读问题,理清思路,阐述自己的观点。
做练习
小结
课外作业
教 学 小 结
【备考策略】
本专题知识的核心是匀变速直线运动以及描述运动和力关系的牛顿运动定律.牛顿第二定律是高考中每年的必考内容和热点内容,既会单独考查,又会与电磁内容结合考查学生的综合处理问题的能力.在复习中,要使学生深刻理解基本概念的内涵,掌握常用的分析方法和分析思路,强化练习利用牛顿第二定律分析问题的步骤.
2. (镇江一模)如图所示,质量为m的木板静止放在光滑水平面上.质量为2m、可视为质点的木块以水平速度v0从左端滑上木板.木块与木板间的动摩擦因数为μ,木板足够长.
(1)求木块和木板的加速度大小.
(2)求木块和木板速度相等所经历的时间及此时木块相对于木板的位移.
(3)若木板不是足够长,要使木块不从木板上滑落,求木板的第周周月日
班级节次
课题
力与直线运动
总课时数
第节
教学目标
匀变速直线运动的公式、规律及运动图象的应用
教学重难点
运动和力关系的牛顿运动定律
教学参考
教材,考点精讲
授课方法
讲授
教学辅助手段

江苏省徐州市高考物理二轮复习专题2力与直线运动导学案(无答案)(new)

江苏省徐州市高考物理二轮复习专题2力与直线运动导学案(无答案)(new)

(专题 2 力与直线运动)1.一个做匀减速直线运动的物体,经过3 s 速度刚好减为零。

若测得该物体在最后1 s 内的位移是1 m,那么该物体在这3 s 内的平均速度大小是()A.1 m/sB.3 m/sC.5 m/s D。

9 m/s2。

位于水平面上质量为m 的物体,在大小为F、方向与水平面成θ角的推力作用下做加速运动,物体与水平面间的动摩擦因数为μ,则物体的加速度大小为()A。

Fm B.cosFmθC.cosF mgmθμ-D.cos(sin)F mg Fmθμθ-+3。

甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的“·"表示人的重心.图乙是根据传感器采集到的数据画出的力-时间图象。

两图中a~g 各点均对应,其中有几个点在图甲中没有画出。

取重力加速度g=10 m/s 2。

根据图象分析可知()A。

人的重力为1 500 NB。

c点位置人处于超重状态C.e 点位置人处于失重状态D.d 点的加速度小于f 点的加速度4。

从同一地点同时开始沿同一直线运动的两个物体Ⅰ、Ⅱ的速度图象如图所示,在0~t0 时间内,下列说法正确的是()A 。

Ⅰ、Ⅱ两个物体的加速度都在不断减小B .Ⅰ物体的加速度不断增大,Ⅱ物体的加速度不断减小C .Ⅰ物体的位移等于Ⅱ物体的位移D .Ⅰ、Ⅱ两个物体的平均速度大小都大于122v v5.如图所示,光滑斜面 AE 被分成四个相等的部分,一物体由 A 点从静止释放,下列结论正确的是( )A .物体到达各点的速率之比 vB ∶ vC ∶ vD ∶ vE =1∶2∶ 3∶ 2B .物体到达各点经历的时间 t E =2t B = 2tC = 2t D3C。

物体从A 到E 的平均速度v=v BD。

物体通过每一部分时,其速度增量v B-v A=v C-v B=v D-v C=v E-v D6。

一小球从地面竖直上抛,后又落回地面,小球运动过程中所受空气阻力与速度成正比,取竖直向上为正方向。

2020版高考物理二轮复习第1部分专题1力与运动第2讲力与直线运动教案2

2020版高考物理二轮复习第1部分专题1力与运动第2讲力与直线运动教案2

力与直线运动[高考统计·定方向] (教师授课资源)考点考向五年考情汇总考向1.匀变速直线运动规律的应用2017·全国卷Ⅱ T 242018·全国卷ⅠT 142016·全国卷ⅢT 161.匀变速直线运动规律的应用考向2.匀变速直线运动推论及比例关系的应用2019·全国卷ⅠT 18考向1.图象的选取与转换2.运动图象问题考向2.图象信息的应用2018·全国卷Ⅲ T 182018·全国卷Ⅱ T 192016·全国卷Ⅰ T 21考向1.动力学的两类基本问题2019·全国卷Ⅲ T 202016·全国卷Ⅱ T 192018·全国卷Ⅱ T 242015·全国卷Ⅰ T 20考向2.瞬时性问题2018·全国卷Ⅰ T 15考向3.连接体问题2015·全国卷Ⅱ T 203.牛顿运动定律的应用考向4.临界和极值问题 2017·全国卷Ⅱ T 25 匀变速直线运动规律的应用(5年4考)❶近几年高考对匀变速直线运动规律的考查,重在基本规律的应用,命题背景来源于生活中的实际问题。

❷在2020年的备考中要加强以实际问题为背景的题目的训练。

1.(2018·全国卷Ⅰ·T 14)高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动。

在启动阶段,列车的动能( )A .与它所经历的时间成正比B .与它的位移成正比C .与它的速度成正比D .与它的动量成正比B [列车启动的过程中加速度恒定,由匀变速直线运动的速度与时间关系可知v =at ,且列车的动能为E k =mv 2,由以上整理得E k =ma 2t 2,动能与时间的平方成正比,动能与速1212度的平方成正比,A 、C 错误;将x =at 2代入上式得E k =max ,则列车的动能与位移成正比,12B 正确;由动能与动量的关系式E k =可知,列车的动能与动量的平方成正比,D 错误。

(课标版)2020高考物理二轮复习专题2力与直线运动课件

(课标版)2020高考物理二轮复习专题2力与直线运动课件

三、命题规律 本考点是对牛顿第二定律、运动学规律等基础知识的考查, 考查时常结合牛顿第二定律、运动学图象、绳及弹簧模型等知 识交汇命题,只要考生牢记相关知识及相互联系,仔细审题, 灵活进行知识迁移,即可轻松取分.
题组冲关调研
范有所得,练有高度
[范例调研]
[例 2] 消防队员为缩短下楼的时间,往往抱着竖直的杆直 接滑下.假设一名质量为 60 kg、训练有素的消防队员从七楼(即 离地面 18 m 的高度)抱着竖直的杆以最短的时间滑下.已知杆 的质量为 200 kg,消防队员着地的速度不能大于 6 m/s,手和腿 对杆的最大压力为 1 800 N,手和腿与杆之间的动摩擦因数为 0.5,设当地的重力加速度 g 取 10 m/s2.假设杆是固定在地面上 的,杆在水平方向不移动.试求:
Δx B.2t2
Δx C.3t2
2Δx D. 3t2
解析:物体做匀加速直线运动,通过一段位移 Δx 所用时间 为 2t,故该段位移中间时刻物体的瞬时速度是 v1=Δ2xt ;紧接着 通过下一段位移 Δx 所用时间为 t,故这一段位移中间时刻物体 的瞬时速度是 v2=Δtx;物体加速度的大小 a=ΔΔvt =vt2+-2tv1,解 得:a=Δ3tx2,故选 C.
一、解决两类动力学基本问题的思路
二、方法技巧总结 (1)瞬时问题要注意绳、杆弹力和弹簧弹力的区别,绳和轻 杆的弹力可以突变,而弹簧的弹力不能突变. (2)连接体问题要充分利用“加速度相等”这一条件或题 中特定条件,交替使用整体法与隔离法. (3)两类动力学基本问题的解题关键是运动分析、受力分 析,充分利用加速度的“桥梁”作用.
2.如图所示,某“闯关游戏”的笔直通道上每隔 8 m 设有 一个关卡,各关卡同步放行和关闭,放行和关闭的时间分别为 5 s 和 2 s.关卡刚放行时,一同学立即在关卡 1 处以加速度 2 m/s2 由静止加速到 2 m/s,然后匀速向前,则最先挡住他前进的关卡 是( C )5

高考物理二轮复习 专题二 力和直线运动精品教学案

高考物理二轮复习 专题二 力和直线运动精品教学案

【专题二】力和直线运动【考情分析】1.本专题涉及的考点有:参考系、质点;位移、速度和加速度;匀变速直线运动及其公式、图像。

《大纲》对位移、速度和加速度,匀变速直线运动及其公式、图像等考点均为Ⅱ类要求,即对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用。

质点的直线运动是历年高考的必考内容。

可以单独命题,也可以与其他知识点如电场、磁场、电磁感应等知识结合出现在计算题中。

近年这部分的考查更趋向于对考生分析问题、应用知识能力的考查。

2.从高考试题看,作为一个孤立的知识点单独考查的命题并不多,更多的是与牛顿定律、带电粒子在电磁场中的运动等结合起来,作为综合试题中的一个知识点而加以体现。

主要题型为选择题、解答题,其中解答题多为中等或较难题。

【知识归纳】1.物体或带电粒子做直线运动的条件是物体所受合力与速度方向平行2.物体或带电粒子做匀变速直线运动的条件是物体所受合力为恒力,且与速度方向平行 3.牛顿第二定律的内容是:物体运动的加速度与物体所受的合外力成正比,与物体的质量成反比,加速度的方向与物体所受合外力的方向一致,且二者具有瞬时对应关系,此定律可以采用控制变量法进行实验验证.4.速度-时间关系图线的斜率表示物体运动的加速度,图线所包围的面积表示物体运动的位移.在分析物体的运动时,常利用v -t 图象帮助分析物体的运动情况.5.超重或失重时,物体的重力并未发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化.当a =g 时,物体完全失重.物体发生超重或失重现象与物体的运动方向无关,只决定于物体的加速度方向. 6.匀变速直线运动的基本规律为: 速度公式:v 0+at 位移公式:2012x v t at =+速度和位移公式的推论为:v t 2-v 02=2ax 7.匀变速直线运动中间时刻的瞬时速度为12x v t==20t v v +位移中点的瞬时速度为2x v =2220tv v + 【考点例析】一、 匀变速直线运动规律的应用【例1】跳水是一项优美的水上运动,图甲是2008年北京奥运会跳水比赛中小将陈若琳和王鑫在跳台上腾空而起的英姿.如果陈若琳质量为m ,身高为L ,她站在离水面H 高的跳台上, 重心离跳台面的高度为h 1,竖直向上跃起后重心又升高了h 2达到最高点,入水时身体竖直,当手触及水面时伸直双臂做一个翻掌压水花的动作,如图乙所示,这时陈若琳的重心离水面约为h 3.整个过程中空气阻力可忽略不计,重力加速度为g ,求陈若琳从离开跳台到手触及水面的过程中可用于完成一系列动作的时间.【思路导引】(1)运动员在从起跳到手入水的过程中做什么运动? 答案 匀减速运动或竖直上抛运动.(2)上跃过程的位移为多少?下落过程中的位移又为多少?位移大小根据什么来确立的? 答案 上跃过程位移为重心位置的变化量h 2,下落过程的位移也是位移变化量(H+h 1+h 2-h 3),应根据重心位置的变化找位移.【解析】陈若琳跃起后可看作竖直向上的匀减速运动,重心上升的高度h 2,设起跳速度为v0,则v 02=2gh2上升过程的时间t 1=gv解得t 1=gh 22 陈若琳从最高处自由下落到手触及水面的过程中重心下落的高度x=H+h 1+h 2-h3设下落过程的时间为t 2,则x=21gt 22解得t 2=gx 2=g h h h H )(2321-++陈若琳要完成一系列动作可利用的时间t=t 1+t 2=gh 22+g h h h H )(2321-++【答案】gh 22+g h h h H )(2321-++【解题指导】1.匀变速直线运动常以体育运动为背景设置物理情景,处理此类问题时,应注意建立运动模型,如本题就是建立了竖2.尽管研究此跳水过程不能看成质点,但是求跳水过程的时间时,可看作质点来处理,3.若对运动情景不清晰时,可画出运动草图,使抽象问题形象化. 二、图象问题【例2】如图甲所示,质量m=2.0 kg 的物体静止在水平面上,物体跟水平面间的动摩擦因数μ=0.20.从t=0时刻起,物体受到一个水平力F 的作用而开始运动,前8 s 内F 随时间t 变化的规律如图乙所示.g 取10 m/s 2.求:(1)在图丙的坐标系中画出物体在前8 s 内的v —t 图象. (2)前8 s 内水平力F 所做的功.【解析】 (1)0~4 s 内,由牛顿第二定律得F -μmg=ma 1解得a 1=3 m/s 24 s 末物体的速度为v 4=a 1t 4=12 m/s4~5 s ,由牛顿第二定律得-F -μmg=ma 2 解得a 2=-7 m/s 25 s 末物体的速度为v 5=5 m/s再经时间t 停止,则t=350a v -=2.5 s 8 s 内的v —t 图象如图所示(2)0~4 s 内的位移为x 1=21a 1t 42=24 m4~5 s 内位移为x 2=224252a v v -=8.5 m5 s 后水平力消失,所以前8 s 内力F 做的功为W=F 1x 1-F 2x 2=155 J (或由动能定理解)W -μm g (x 1+x 2)=21mv 52解得W =155 J【解题指导】1.v —t 图象反映的仍然是数学关系,只不过它有了具体的物理意义.因此要画v —t 图象,必须采用动力学的方法得到v 与t的数学关系.2.对于多过程问题要划分不同运动阶段,逐过程分析.3.v —t 图象斜率表示加速度,面积表示位移,因此第(2)问求位移时可借用图象来求,请同学们自己完成.三、 追及和相遇问题例3、车以25 m/s 的速度匀速直线行驶,在它后面有一辆摩托车,当两车相距1 000 m 时,摩托车从静止起动做匀加速运动追赶汽车,摩托车的最大速度可达30 m/s ,若使摩托车在4 min 时刚好追上汽车,摩托车追上汽车后,关闭油门,速度达到12 m/s 时,冲上光滑斜面,上滑最大高度为H,求:(1)摩托车做匀加速运动的加速度a ? (2)摩托车追上汽车前两车相距最大距离x ? (3)摩托车上滑最大高度H ?(g 取10 m/s 2) 解析 (1)设汽车位移为x 1,摩托车位移为x2摩托车的加速度为a ,摩托车达到最大速度所用时间为t ,则30=atx 1=25×240x 2=a2302+30(240-a 30)追上条件为x 2=x 1+1 000解得a=49=2.25 m/s 2(2)摩托车与汽车速度相等时相距最远,设此时刻为T ,最大距离为x m即25=aT解得T=9100sx m =1 000+25T -221aT =910250m=1 138 m(3)221Mv =MgH解得H=7.2 m答案 (1)2.25 m/s2 (2)1 138 m (3)7.2 m 【解题指导】分析追及问题的方法技巧1.要抓住一个条件,两个关系一个条件:即两者速度相等,它往往是物体间能否追上或两者距离最大,最小的临界条件,也是分析判断的切入点.两个关系:即时间关系和位移关系.通过画草图找出两物体的位移关系是解题的突破口.2.若被追赶的物体做匀减速直线运动,一定要注意追上前该物体是否已经停止运动. 3.仔细审题,充分挖掘题目中的隐含条件,同时注意 v —t 图象的应用. 四、动力学的两类基本问题【例4】一根质量分布均匀的长直绳AB ,在水平恒定外力F 的作用下,沿光滑水平面以v 0=2 m/s 的初速度做匀加速直线运动(忽略绳子的形变), 在头2 s 内所通过的位移等于绳长的6倍.如图甲所示,绳内距A 端x 处的张力(即绳内部之间的拉力)F T 与x 的关系如图乙所示,利用图象和题中的已知数据,求:(1)距A 端1.5 m 处绳内的张力多大? (2)绳子的质量多大?【解析】解法一 (1)由图象可知函数F T =(6-3x ) Nx=1.5 m 时绳间的拉力F T =1.5 N(2)由图象可得:绳长l=2 m ;水平恒力F=6 N由匀加速运动位移公式x=v 0t+21at 2得a=4 m/s2由牛顿第二定律得F=ma得m=aF=1.5 kg解法二 由图象可得:绳长l=2 m ;水平恒力F=6 N x=v 0t +21at 2得a=4 m/s2由牛顿第二定律得F=ma由题意可知:从x=1.5 m 处到B 端这段绳质量为4m, 以此段绳为研究对象 FT =4m a由图象得x=1.5 m 处F T =1.5 Nm=aF=1.5 kg 答案 (1)1.5 N (2)1.5 kg 【解题指导】1.牛顿第二定律应用的两类基本问题:物体的受力情况的分析加速度物体的运动状态及变化.2.分析复杂的动力学问题时应注意(1)仔细审题,分析物体的受力及受力的变化情况,确定并划分出物体经历的每个不同的过程.(2)逐一分析各个过程中的受力情况和运动情况,以及总结前一过程和后一过程的状态有何特点.(3)前一个过程的结束就是后一个过程的开始,两个过程的交接点受力的变化,状态的特点,往往是解题的关键.3.常用的解题方法:(1)整体与隔离法;(2)假设法. 【方法技巧】1.动力学的两类基本问题的处理思路(1)已知力求运动,应用牛顿第二定律求加速度,再根据物体的初始条件,应用运动学公式求出物体的运动情况——任意时刻的位置和速度,以及运动轨迹.(2)已知运动求力,根据物体的运动情况,求出物体的加速度,再应用牛顿第二定律,推断或者求出物体的受力情况.2.动力学问题通常是在对物体准确受力分析的基础上,采用___________或者是_________求合力,然后结合牛顿第二定律列式求解.正交分解法图解法3.匀减速直线运动问题通常看成反方向的匀加速直线运动来处理,这是利用了运动的_________性.在竖直上抛运动和类竖直上抛运动的处理中也常用此法.对称4.借用v-t图象分析:v-t图象表示物体的运动规律,形象而且直观.【专题训练】1.水平地面上放着一质量为1 kg的物体,t=0时在一个方向不变的水平拉力作用下运动,t=2 s时撤去拉力,物体在 4 s内速度随时间的变化图象如图所示,则物体()A.所受的摩擦力大小为1 NB.第1 s内受到的拉力大小是2 NC.在4 s末回到出发点D.在4 s内的平均速度为1.5 m/s2.如图甲所示,在光滑的水平面上,物体A在水平方向的外力F作用下做直线运动,其v—t图象如图乙所示,规定向右为正方向.下列判断正确的是()A.在3 s末,物体处于出发点右方B.在1~2 s内,物体正向左运动,且速度大小在减小C.在1~3 s内,物体的加速度方向先向右后向左D.在0~1 s内,外力F不断增大3.一种巨型娱乐器材可以让人体验超重和失重的感觉.一个可乘多个人的环形座舱套在竖直柱子上,由升降机运送到几十米的高处,然后让座舱自由下落.下落一定高度后,制动系统启动,座舱做减速运动,到地面时刚好停下.下列判断正确的是()A.座舱在自由下落的过程中人处于超重状态B.座舱在自由下落的过程中人处于完全失重状态CD.座舱在减速运动的过程中人处于失重状态4.沼泽地的下面蕴藏着丰富的泥炭,泥炭是沼泽地积累的植物残体,它的纤维状和海绵状的物理结构导致人在其上面行走时容易下陷(设在下陷过程中,泥炭对人的阻力不计).如果整个下陷的过程是先加速再减速最后匀速运动,那么,下列说法中正确的是()A.当在加速向下运动时,人对沼泽地的压力大于沼泽地对人的支持力B.当在减速向下运动时,人对沼泽地的压力小于沼泽地对人的支持力C.在整个运动过程中,人对沼泽地的压力是先大于后等于沼泽地对他的支持力D.在整个运动过程中,人对沼泽地的压力大小总是等于沼泽地对他的支持力5.如图所示,质量为2 kg的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力作用下,由静止开始运动,水平拉力做的功W和物体发生的位移x之间的关系如图所示,g 取10 m/s2,则()A.此物体在AB段做匀加速直线运动B.此物体在AB段做匀速直线运动C.此物体在OA段做匀加速直线运动D.此物体在OA段做匀速直线运动6.静止不动的航空母舰上的舰载飞机在助推装置的作用下获得v0=40m/s的初速度,接着在滑行跑道上做匀加速滑行达到v1=80 m/s的速度后起飞,滑行距离x1=75 m,而一般民航客机从静止开始做匀加速滑行达到v2=40 m/s的速度后起飞,滑行距离x2=2 000 m,求滑行时舰载飞机的加速度a1与民航客机的加速度a2的比值.7.某些城市交通部门规定汽车在市区某些街道行驶速度不得超过v m=30 km/h.一辆汽车在该水平路段紧急刹车时车轮抱死,沿直线滑行一段距离后停止,交警测得车轮在地面上滑行的痕迹长x m=10 m.从手册中查出该车轮与地面间的动摩擦因数μ=0.72,取g=10 m/s2.(1)请你判断汽车是否违反规定超速行驶.(2)目前,有一种先进的汽车制动装置,可保证车轮在制动时不被抱死,使车轮仍有一定的滚动,安装了这种防抱死装置的汽车,在紧急刹车时不但可以使汽车便于操控,而且可获得比车轮抱死更大的制动力,从而使刹车距离大大减小.假设汽车安装防抱死装置后刹车制动力恒为F,驾驶员的反应时间为t,汽车的质量为m,汽车正常行驶的速度为v,试推出刹车距离x的表达式.8.如图所示,一足够长的光滑斜面倾角为θ=30°,斜面AB与水平面BC连接,质量m=2 kg的物体置于水平面上的D点,D点距B点d=7 m.物体与水平面间的动摩擦因数μ=0.2,当物体受到一水平向左的恒力F=8 N 作用t=2 s 后撤去该力,不考虑物体经过B 点时的碰撞损失,重力加速度g 取10 m/s 2.求撤去拉力F 后,经过多长时间物体经过B 点?【参考答案】1.解析 2~4 s 内只受摩擦力F f =ma =1 N ,A 对;第1 s 内由牛顿第二定律F-F f =ma ′,F=3 N ,B 错;图象面积表示位移, C 错;v=1.25 m/s ,D 错.答案:A2.解析 由图象面积的意义知A 对;1~2 s 内向右运动,B 错;1~3 s 内直线的斜率不变,加速度不变,C 错;0~1 s 内tv∆∆在减小,a 减小,F=ma 减小,D 错. 答案 A3.解析 由超重、失重的条件看加速度,当运动的加速度向下时,失重,且向下的a=g 时,处于完全失重;加速度向上时,处于超重状态,由此确定B 、C 项正确.答案:BC 4.答案:D 5.解析 W F =F·x ,AB 段直线的斜率表示力F ,F ==-61527 2 N , F f =μmg =0.1×2×10 N=2 N ,F=F f , B 正确F OA =315=5 N>F f , C 正确. 答案 BC6.解析 对舰载飞机有v 12-v 02=2a 1x1对民航客机有v 22=2a 2x2得 2212021221)(v x v v x a a -= 代入数据解得8021=a a 【答案】807.解析 (1)因为汽车刹车且车轮抱死后,汽车受滑动摩擦力作用做匀减速运动,所以滑动摩擦力大小F f =μmg汽车的加速度a=mF f -=-μg由v 12-v 02=2ax且v 1=0得v 0=m gx 2=12 m/s=43.2 km/h>30 km/h 即这辆车是超速的.(2)刹车距离由两部分组成,一是司机在反应时间内汽车行驶的距离x 1,二是刹车后匀减速行驶的距离x 2.x=x1+x 2=vt +av 22加速度大小a=mF则x=vt +Fm v 22答案 (1)这辆车是超速的 (2)x=vt+Fm v 228.解析 在F 的作用下物体运动的加速度a 1,由牛顿运动定律得F-μmg =ma 1解得a 1=2 m/s 2F作用2 s 后的速度v 1和位移x 1分别为v 1=a 1t=4 m/s ;x 1=21a 1t 2=4 m撤去F 后,物体运动的加速度为a 2μmg=ma 2解得a 2=2 m/s 2第一次到达B 点所用时间t 1,则d-x 1=v 1t 1-21a 2t 12解得t 1=1s此时物体的速度v 2=v 1-a 2t 1=2 m/s当物体由斜面重回B 点时,经过时间t 2,物体在斜面上运动的加速度为a 3,则Mg sin 30°=ma 3t2=322a v =0.8 s第二次经过B 点时间为t=t 1+t 2=1.8 s所以撤去F后,分别经过1 s和1.8 s 物体经过B点.答案 1 s 1.8 s。

2020高三物理高考二轮复习(2)力与物体的直线运动-教案、学案、习题全(精品)

2020高三物理高考二轮复习(2)力与物体的直线运动-教案、学案、习题全(精品)

专题二 力与物体的直线运动一. 专题要点第一部分:匀变速直线运动在力学中的应用1.物体或带电粒子做直线运动的条件是物体所受的合外力与速度方向平行。

2.物体或带电粒子做匀变速直线运动的条件是物体所受的合外力为恒力且与速度方向平行。

3.牛顿第二定律的内容是:物体运动时的加速度与物体所受的合外力成正比,与物体的质量成反比,加速度的方向与所受合外力的方向相同,且二者具有瞬时对应关系,此定律可以用控制变量法进行实验验证。

4.速度时间关系图像的斜率表示物体运动的加速度,图像所包围的面积表示物体运动的位移。

在分析物体的运动时常利用v-t 图像帮助分析物体的运动情况。

5.超重或失重时,物体的重力并未发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化。

当a=g 时物体完全失重。

6.匀变速直线运动的基本规律为 速度公式:at v v t +=0位移公式:2021at t v x +⋅=速度与位移关系式:ax v v t 2202=- 7.匀变速直线运动 平均速度:20t v v t x v +=或 位移中点的瞬时速度2220tv v v +=中点第二部分:匀变速直线运动在电学中的应用1. 带电粒子在电场中直线运动的问题:实质是在电场中处理力学问题,其分析方法与力学中相同。

首先进行受力分析,然后看物体所受的合外力与速度方向是否一致,其运动类型有电场加速运动和交变的电场内往复运动2. 带电粒子在磁场中直线运动问题:洛伦兹力的方向始终垂直于粒子的速度方向。

3. 带电粒子在复合场中的运动情况一般较为复杂,但是它仍然是一个力学问题,同样遵循力和运动的各条基本规律。

4. 若带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动,如果是匀强电场和匀强磁场,那么重力和电场力都是恒力,洛伦兹力与速度方向垂直,而其大小与速度大小密切相关。

只有带电粒子的速度大小不变,才可能做直线运动,也即匀速直线运动。

二. 考纲要求 考点 要求 考点解读 参考系、质点Ⅰ本专题知识是整个高中物理的基础,高考对本部分考查的重点是匀变速直线运动的公式及应用;v- t 图像的理解及应用,其命题情景较为新颖,(如高速公路上的车距问题、追及相遇问题)竖直上抛与自由落体运动的规律及其应用;强调对牛顿第二定律分析、计算和应用考查,而牛顿第三定律贯穿于综合分析过程中。

最新届高考物理二轮复习提优导学案:专题二 力与直线运动3_【能力提升】

最新届高考物理二轮复习提优导学案:专题二 力与直线运动3_【能力提升】

能力提升匀变速直线运动基本规律的应用抓住一段运动过程,寻找v0、v、t、x、a五个量中的任三个量,选用合适的规律列式.对于缺少的物理量,可以题设,实际解题过程中往往会消去。

由于运动学公式较多,因此解运动学问题时往往可以一题多解。

例1 (2014·海南)短跑运动员完成100 m赛跑的过程可简化为匀加速运动和匀速运动两个阶段。

一次比赛中,某运动员用11.00 s跑完全程。

已知运动员在加速阶段的第2 s内通过的距离为7.5 m,求该运动员的加速度及在加速阶段通过的距离.解析:根据题意,运动员在第1 s和第2 s内都做匀加速运动.设运动员在匀加速阶段的加速度为a,在第1 s和第2 s内通过的位移分别为s1和s2,由运动学规律得s1=12a20t,s1+s2=12a(2t0)2,式中t0=1 s.联立以上两式并代入已知条件得a=5 m/s2。

设运动员做匀加速运动的时间为t1,匀速运动时间为t2,匀速运动的速度为v,跑完全程的时间为t,全程的距离为s.依题意及运动学规律得t=t1+t2,v=at1,s=12a21t+vt2,设加速阶段通过的距离为s’,则s'=12a21t,联立以上四式,并代入数据得s’=10 m.答案:5 m/s210 m变式训练1(2014·海南)将一物体以某一初速度竖直上抛.物体在运动过程中受到一大小不变的空气阻力作用,它从抛出点到最高点的运动时间为t1,再从最高点回到抛出点的运动时间为t2。

如果没有空气阻力作用,它从抛出点到最高点所用的时间为t0.则()A. t1>t0,t2<t1B。

t1〈t0,t2〉t1C。

t1〉t0,t2〉t1D。

t1<t0,t2〈t1解析:由题可知,空气阻力大小不变,故三段运动均为匀变速直线运动,根据匀变速直线运动的特点将三个过程均看成初速度为零的匀变速直线运动,由h=12at2可知,加速度大的用时短,故正确答案为B.答案:B动力学的两类基本问题1. 两类动力学问题的求解思路2。

高考物理二轮专题突破专题二力与物体的直线运动1动力学观点在力学中的应用导学案

高考物理二轮专题突破专题二力与物体的直线运动1动力学观点在力学中的应用导学案

高考物理二轮专题突破专题二力与物体的直线运动1动力学观点在力学中的应用导学案力与物体的直线运动第1讲:动力学观点在力学中的应用一、知识梳理1、物体或带电体做匀变速直线运动的条件是:物体或带电体所受合力为恒力,且与速度方向共线、2、匀变速直线运动的基本规律为速度公式:v=v0+at、位移公式:x=v0t+at2、速度和位移公式的推论:v2-v=2ax、中间时刻的瞬时速度:==、任意相邻两个连续相等的时间内的位移之差是一个恒量,即Δx=xn+1-xn=a(Δt)2、3、速度时间关系图线的斜率表示物体的速度,匀变速直线运动的x-t图象是一条抛物线、5、超重或失重时,物体的重力并未发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化、物体发生超重或失重现象与物体的运动方向无关,只决定于物体的加速度方向、当a有竖直向上的分量时,超重;当a有竖直向下的分量时,失重;当a=g且竖直向下时,完全失重、规律方法1、动力学的两类基本问题的处理思路2、解决动力学问题的常用方法(1)整体法与隔离法、(2)正交分解法:一般沿加速度方向和垂直于加速度方向进行分解,有时根据情况也可以把加速度进行正交分解、(3)逆向思维法:把运动过程的末状态作为初状态的反向研究问题的方法,一般用于匀减速直线运动问题,比如刹车问题、竖直上抛运动的问题、二、题型、技巧归纳高考题型一运动学基本规律的应用【例1】(xx全国丙卷16)一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍、该质点的加速度为()A、B、C、D、高考预测1 一个物体以初速度v0沿光滑斜面向上运动,其速度v随时间t变化的规律如图1所示,在连续两段时间m和n 内对应面积均为S,则经过b时刻vb的大小为()图1A、B、C、D、高考预测2 广泛应用于我国高速公路的电子不停车收费系统(ETC)是目前世界上最先进的收费系统,过往车辆无须停车即能够实现收费、如图2所示为某高速公路入口处的两个通道的示意图,ETC收费岛(阴影区域)长为d=36m、人工收费窗口在图中虚线MN上,汽车到达窗口时停车缴费时间需要t0=20s、现有甲、乙两辆汽车均以v=30m/s的速度并排行驶,根据所选通道特点进行减速进入收费站,驶入收费岛区域中的甲车以v0=6 m/s的速度匀速行驶、设两车减速和加速的加速度大小均为3m/s2,求图2(1)从开始减速到恢复速度v,甲车比乙车少用的时间;(2)乙车交费后,当恢复速度v时离甲车的距离、高考题型二挖掘图象信息解决动力学问题【例2】(多选)如图3(a)所示,质量相等的a、b两物体,分别从斜面上的同一位置A由静止下滑,经B点的水平面上滑行一段距离后停下、不计经过B点时的能量损失,用传感器采集到它们的速度木板模型”问题【例4】如图8所示,有两个高低不同的水平面,高水平面光滑,低水平面粗糙、一质量为5kg、长度为2m的长木板靠在低水平面边缘A点,其表面恰好与高水平面平齐,长木板与低水平面间的动摩擦因数为0、05,一质量为1kg可视为质点的滑块静止放置,距A点距离为3m,现用大小为6N、水平向右的外力拉滑块,当滑块运动到A点时撤去外力,滑块以此时的速度滑上长木板、滑块与长木板间的动摩擦因数为0、5,取g=10m/s2、求:图8(1)滑块滑动到A点时的速度大小;(2)滑块滑动到长木板上时,滑块和长木板的加速度大小分别为多少?(3)通过计算说明滑块能否从长木板的右端滑出、高考预测7 (多选)如图9甲所示,足够长的木板B静置于光滑水平面上,其上放置小滑块A、木板B受到随时间t变化的水平拉力F作用时,用传感器测出木板B的加速度a,得到如图乙所示的a-F图象,g取10m/s2,则()图9A、滑块A的质量为4kgB、木板B的质量为1kgC、当F=10N时木板B的加速度为4m/s2D、滑块A与木板B间的动摩擦因数为0、1高考预测8 如图10所示,在足够高的光滑水平台面上静置一质量为3kg的长木板A,A右端用轻绳绕过光滑的轻质定滑轮与质量为1kg的物体B连接,木板A的右端与滑轮之间的距离足够大、当B从静止开始下落距离0、8m时,在木板A的右端轻放一质量为1kg的小铁块C(可视为质点),最终C恰好未从木板A上滑落、A、C间的动摩擦因数μ=0、4,且最大静摩擦力等于滑动摩擦力、重力加速度g=x10m/s2、求:图10(1)在木板上放小铁块前瞬间木板的速度大小;(2)木板A的长度l、规律总结1、“滑块—木板模型”类问题中,滑动摩擦力的分析方法与传送带类似,但这类问题比传送带类问题更复杂,因为木板往往受到摩擦力的影响也做匀变速直线运动,处理此类物体匀变速运动问题要注意从速度、位移、时间等角度,寻找它们之间的联系、2、要使滑块不从木板的末端掉下来的临界条件是滑块到达木板末端时的速度与木板的速度恰好相等、参考答案【例1】答案A解析动能变为原来的9倍,则质点的速度变为原来的3倍,即v=3v0,由s=(v0+v)t和a=得a=,故A对、高考预测1 答案C解析设b时刻的速度为vb,加速度为a,根据x =v0t+at2得:S=vam-am2①S=vbn-an2②vb=va-am③①②③联立得:vb=、高考预测2 答案(1)18s (2)564m 解析(1)甲车进入收费岛之前的减速时间:t1==8s,通过收费岛的时间:t2==6s离开收费岛的加速时间为:t3=t1=8s,所以:t甲=t1+t2+t3=22s乙车的时间:t乙=+t0=40s所以甲车比乙车少用的时间为:Δt=t乙-t甲=18s、(2)甲车开始减速时与MN的距离为:l甲=t1+d=180m乙车开始减速时与MN 的距离为:l乙==150mΔt′==1s即甲车开始减速后1s乙车开始减速、所以从甲车开始减速到乙车恢复速度v共经过t′=41s的时间、x甲=t12+d+v(t′-t甲)=894mx乙=2=300m所以乙车交费后,当恢复速度v时离甲车的距离为:Δx=x甲-x 乙-Δl=564m、【例2】答案AC解析由题图(b)图象斜率可知a做加速运动时的加速度比b做加速运动时的加速度大,故A正确;物体在水平面上的运动是匀减速运动,a从t1时刻开始,b从t2时刻开始、由图象与坐标轴围成的面积表示位移可知,a在水平面上做匀减速运动的位移比b在水平面上做匀减速运动的位移大,故B错误;设斜面倾角为θ,物体在斜面上运动的加速度为a==gsinθ-μgcosθ,因为a的加速度大于b的加速度,所以a与斜面间的动摩擦因数比b的小,故C正确,同理,D错误、高考预测3 答案B解析没有空气阻力时,物体只受重力,做竖直上抛运动,v-t图象是向下倾斜的直线,如虚线所示;有空气阻力时:上升阶段,根据牛顿第二定律,有:mg+Ff=ma,故a=g+,由于阻力随着速度减小而减小,故加速度逐渐减小,最小值为g;下降阶段,根据牛顿第二定律,有:mg-Ff=ma,故a=g-,由于阻力随着速度增大而增大,故加速度减小;v-t图象的斜率表示加速度,故图线与t轴的交点对应时刻的加速度为g,切线与虚线平行;故A、C、D错误,B正确、高考预测4 答案BC解析对B,mg-F=ma、对A,F-mAgsinθ=mAa、得:a=g故m→+∞时,a1=g,B正确、m=0时,a2=-gsinθ,选项C正确、【例3】答案(1)8、9s (2)2m/s2 8s解析(1)当传送带匀速向上传动时,对铁矿石沿传送带方向Ff-mgsinθ=ma垂直传送带方向:FN-mgcosθ-F=0其中F=1、4mg,Ff=μFN,解得:a=2m/s2则铁矿石运动到与传送带速度相等所需要的时间为:t1==s=5s对应的位移为:x1=at =252m=25m根据以上计算可知,铁矿石在传送带上受到的滑动摩擦力大于铁矿石重力沿传送带方向的分力,所以当铁矿石的速度与传送带速度相等以后,铁矿石会随传送带匀速运动到B端,则其匀速运动时间为:t2==s=3、9s所以铁矿石从传送带的A端运动到B端所需要的时间为:t=t1+t2=8、9s、(2)只有铁矿石一直加速运动到B点时,所用时间才会最短,根据问题(1)分析可知,铁矿石在传送带上的最大加速度是2m/s2,所以传送带的最小加速度为:amin=2 m/s2则有:L=at′2,代入数据解得最短时间为:t′=8s、高考预测5 答案C解析传送带静止时,物块匀速下滑,故mgsinθ=Ff,当传送带的速度大于物块的速度时,物块受到向下的摩擦力,根据受力分析可知,物块向下做加速运动,当速度达到与传送带速度相等时,物块和传送带具有相同的速度匀速下滑,故C正确,故选C、高考预测6 答案(1)3m (2)2s解析(1)对滑块,由牛顿第二定律可得:μmg=ma1,得:a1=2m/s2设经过t1滑块与传送带共速v,有:v=v0-at1v=a1t1,解得:v=2m/s,t1=1s 滑块位移为x1==1m传送带位移为x2==4m故滑块相对传送带的位移Δx=x2-x1=3m(2)共速之后,设滑块与传送带一起减速,则滑块与传送带间的静摩擦力为Ff,有:Ff=ma=4N>μmg=2N,故滑块与传送带相对滑动、滑块做减速运动,加速度仍为a1、滑块减速时间为t2,有:t2==1s,故:t=t1+t2=2s、【例4】答案(1)6m/s (2)5 m/s2 0、4m/s2 (3)能解析(1)根据牛顿第二定律有:F=ma根据运动学公式有:v2=2aL0联立方程代入数据解得:v=6m/s其中m、F分别为滑块的质量和受到的拉力,a是滑块的加速度,v即是滑块滑到A点时的速度大小,L0是滑块在高水平面上运动的位移、(2)根据牛顿第二定律有:对滑块有:μ1mg=ma1代入数据解得:a1=5m/s2对长木板有:μ1mg -μ2(m+M)g=Ma2,代入数据解得:a2=0、4m/s2、其中M为长木板的质量,a1、a2分别是此过程中滑块和长木板的加速度,μ1、μ2分别是滑块与长木板间和长木板与低水平面间的动摩擦因数、(3)设滑块滑不出长木板,从滑块滑上长木板到两者相对静止所用时间为t则:v-a1t=a2t代入数据解得:t=s,则此过程中滑块的位移为:x1=vt-a1t2长木板的位移为:x2=a2t2x1-x2=m>L式中L=2m为长木板的长度,所以滑块能滑出长木板右端、高考预测7 答案BC解析由图知,当F=8N时,加速度为:a=2m/s2,对整体分析:F=(mA+mB)a,解得:mA+mB=4kg,当F大于8N时,A、B发生相对滑动,对B有:a==F-,由图示图象可知,图线的斜率:k====1,解得:mB=1kg,滑块A的质量为:mA =3kg、当a=0时,F=6N,代入解得μ=0、2,故A、D错误,B正确;根据F=10N>8N时,滑块与木板相对滑动,B的加速度为:aB=a==F-μg=(10-)m/s2=4 m/s2、故C正确、高考预测8 答案(1)2m/s (2)0、8m解析(1)在木板上放小铁块前,把A、B看作整体,由牛顿第二定律有mBg=(mA+mB)a1v=2a1h 解得:v1=2m/s、(2)在木板上放小铁块后,取向右为正方向,由牛顿第二定律对小铁块有:μmCg=mCa2得a2=4m/s2对木板有:mBg-μmCg=(mA+mB)a3得a3=1、5m/s2由题意知,小铁块滑到木板左端时,小铁块与木板的速度相同,则有a2t=v1+a3t解得:t=0、8s由运动学公式可知:l=v1t+a3t2-a2t2解得:l=0、8m、。

高三物理二轮专题复习导学案微专题2 力与直线运动

高三物理二轮专题复习导学案微专题2 力与直线运动

教学过程1.匀变速直线运动的基本规律(1) 速度公式v=v0+at,位移公式x=v0t+12at2,位移速度公式v2-v20=2ax,平均速度公式v=xt=v0+v2=v t2.(2) 任意两个相邻相等的时间内位移之差是一个恒量,即Δx=aT2,可推广为x m -x n=(m-n)aT2.2.牛顿第二定律F合=ma.(1) F合=0,物体做匀速直线运动或静止.(2) F合≠0且与v共线,物体做变速直线运动.①F合不变,物体做匀变速直线运动.例:自由落体运动是初速度v0=0、加速度为g的匀加速直线运动;竖直上抛运动是初速度v0≠0、加速度为g的匀减速直线运动.②F合大小变化,物体做变加速直线运动.考向一匀变速直线运动的规律及应用1.(2023·江苏卷)电梯上升过程中,某同学用智能记录了电梯速度随时间变化的关系,如图所示.电梯加速上升的时段是()A.从20.0s到30.0sB.从30.0s到40.0sC.从40.0s到50.0sD.从50.0s到60.0s2.(2023·山东卷)如图所示,电动公交车做匀减速直线运动进站,连续经过R、S、T三点,已知ST间的距离是RS的两倍,RS段的平均速度是10m/s,ST段的平均速度是5m/s,则公交车经过T点时的瞬时速度为()A.3m/s B.2m/sC.1m/s D.0.5m/s考向二牛顿运动定律的应用3.(2022·江苏卷)高铁车厢里的水平桌面上放置一本书,书与桌面间的动摩擦因数为0.4,最大静摩擦力等于滑动摩擦力,取g=10 m/s2.若书不滑动,则高铁的最大加速度不超过()A.2.0 m/s2B.4.0 m/s2C.6.0 m/s2D.8.0 m/s24.(2023·北京卷)如图所示,在光滑水平地面上,两相同物块用细线相连,两物块质量均为1kg,细线能承受的最大拉力为2N.若在水平拉力F作用下,两物块一起向右做匀加速直线运动.则F的最大值为()A.1N B.2NC.4N D.5N考向1匀变速直线运动的规律及应用(2023·苏州八校适应性检测)一物块在水平外力作用下由静止开始沿光滑水平面做直线运动,其速度v随位移x变化的图像如图所示,下列关于物块速度v 随时间t、加速度a随速度v变化的图像中可能正确的是()A B C D(2022·南京、盐城二模)广场喷泉是城市一道亮丽的风景.如图所示,喷口竖直向上喷水,已知喷管的直径为D,水在喷口处的速度为v0.重力加速度为g,不考虑空气阻力的影响,则在离喷口高度为H时的水柱直径为()A.D B.D v0v20+2gHC.D2v0v20-2gHD.D2v0v20+2gH考向2动力学基本问题分析(2023·南京六校联考)如图所示,两根直木棍AB和CD相互平行,固定在同一个水平面上.一个圆柱形工件P架在两木棍之间,在水平向右的推力F的作用下,恰好能向右匀速运动(设最大静摩擦力等于滑动摩擦力).若保持两木棍在同一水平面内,但将它们间的距离稍微减小一些后再固定.仍将工件P架在两木棍之间,用同样的水平推力F向右推该工件,则下列说法中正确的是()A.向右匀速运动B.向右加速运动C.可能静止不动D.条件不足,无法判定如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m的小球.若升降机在匀速运行过程中突然停止,并以此时为零时刻,在后面一段时间内传感器显示弹簧弹力F随时间t变化的图像如图乙所示,g为重力加速度,则()甲乙A.升降机停止运行前在向下运动B.t1~t3时间内小球向下运动,速度先增大,后减小C .t 1~t 2时间内小球处于超重状态D .t 3~t 4时间内小球向下运动,速度一直增大 考向3 动力学中的连接体问题(2023·镇江三模)如图所示,A 、B 叠放在粗糙水平桌面上,一根轻绳跨过光滑定滑轮连接A 、C ,滑轮左侧轻绳与桌面平行,A 、B 间动摩擦因数为μ,B 与桌面间动摩擦因数为μ4,A 、B 、C 质量分别为2m 、2m 和m ,各接触面间最大静摩擦力等于滑动摩擦力,将C 由图示位置静止释放,要使A 、B 间发生相对滑动,则μ满足的条件是( )A .μ<12 B .μ≥12 C .μ<27D .μ≥27(2022·辅仁中学)a 、b 两物体的质量分别为m 1、m 2,由轻质弹簧相连.当用恒力F 竖直向上拉着a ,使a 、b 一起向上做匀加速直线运动时,弹簧伸长量为x 1;当用大小仍为F 的恒力沿水平方向拉着a ,使a 、b 一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x 2,如图所示,则( )A .x 1一定等于x 2B .x 1一定大于x 2C .若m 1>m 2,则x 1<x 2D .若m 1<m 2,则x 1<x 2(2023·湖南卷改编)如图所示,光滑水平地面上有一质量为2m 的小车在水平推力F 的作用下加速运动.车厢内有质量均为m 的A 、B 两小球,两球用轻杆相连,A 球靠在光滑左壁上,B 球处在车厢水平底面上,且与底面的动摩擦因数为μ,杆与竖直方向的夹角为θ,杆与车厢始终保持相对静止,假设最大静摩擦力等于滑动摩擦力.下列说法中正确的是( )A.若B球受到的摩擦力为零,则F=2mg tan θB.若推力F向左,且tan θ≤μ,则F的最大值为2mg tan θC.若推力F向左,且μ<tan θ≤2μ,则F的最大值为2mg(2μ-tan θ)D.若推力F向右,且tan θ>2μ,则F的范围为4mg(tan θ-2μ)≤F≤4mg(tan θ+2μ)1.(2023·南京三模)潜艇从海水高密度区域驶入低密度区域,浮力顿减,称之为“掉深”.如图甲所示,某潜艇在高密度海水区域沿水平方向缓慢航行.t=0时,该潜艇“掉深”,随后采取措施成功脱险,在0~30 s 时间内潜艇竖直方向的v-t 图像如图乙所示(设竖直向下为正方向).不计水的黏滞阻力,则()甲乙A.潜艇在“掉深”时的加速度为1 m/s2B.t=30 s潜艇回到初始高度C.潜艇竖直向下的最大位移为100 mD.潜艇在10~30 s时间内处于超重状态2.(2023·南京六校联考)在平直公路上有甲、乙两车,甲车超过乙车后两车位移x和时间t的比值xt与时间t之间的关系如图所示(图像只记录了3s 内的情况),下列说法中正确的是()A.甲车的加速度大小为1 m/s2B.乙车做的是匀减速直线运动C.甲车在这2s内的位移为18mD.甲、乙两车再次相遇前的最大距离为9m3.图甲是某人站在接有传感器的力板上做下蹲、起跳和回落动作的示意图,图中的小黑点表示人的重心.图乙是力板所受压力随时间变化的图像,取g=10 m/s2.根据图像分析可知()甲乙A.人的重力可由b点读出,约为300 NB.b到c的过程中,人先处于超重状态,再处于失重状态C.人在双脚离开力板的过程中,处于完全失重状态D.人在b点对应时刻的加速度大于在c点对应时刻的加速度4.(2022·常州5月模拟)如图甲所示,A、B两物体叠放在一起,放在光滑的水平面上,从静止开始受到一变力的作用,该力与时间的关系如图乙所示,A、B始终相对静止,则下列说法中错误的是()A.t0时刻,A、B间静摩擦力最大B.t0时刻,B速度最大C.2t0时刻,A、B间静摩擦力最大D.2t0时刻,A、B位移最大5.(2023·金陵中学)如图所示,光滑的水平地面上有三块木块a、b、c质量均为m,a、c之间用轻质细绳连接.现用一水平恒力F作用在b上,三者开始一起做匀加速运动,运动过程中把一块橡皮泥粘在某一木块上面,系统仍加速运动,且始终没有相对滑动.则在粘上橡皮泥并达到稳定后,下列说法中错误的是()A.无论粘在哪块木块上面,系统的加速度一定减小B.若粘在a木块上面,绳的拉力和a、b间摩擦力一定都减小C.若粘在b木块上面,绳的拉力和a、b间摩擦力一定都减小D.若粘在c木块上面,绳的拉力和a、b间摩擦力一定都增大6.(2023·中华中学)如图甲所示为无人机,它具有4个旋翼,可以通过调整旋翼倾斜度而产生不同方向的升力.2020黄埔马拉松在12月27日拉开序幕,此次赛事无人机在拍摄、巡查、安保等方面大显身手.赛事开始,调整旋翼使无人机以竖直向上的恒定升力F=20N从地面静止升起,到达稳定速度过程中,其运动图像如图乙所示.已知无人机质量为m=1kg,飞行时受到的空气阻力与速率成正比,即f=k v,方向与速度方向相反.取g=10m/s2.(1) 求k值和1s末无人机的加速度大小.(2) 调整旋翼角度以改变升力,使无人机以v0=1m/s 水平飞行进行录像,求此时的升力大小和升力方向与水平方向所夹锐角θ的正切值.(答案允许含根号)甲乙7.(2022·海门中学)如图所示,一个质量为M、长为L的圆管竖直放置,顶端塞有一个质量为m的弹性小球,M=4m,球和管间的滑动摩擦力和最大静摩擦力大小均为4mg.管从下端离地面距离为H处自由落下,运动过程中,管始终保持竖直,每次落地后向上弹起的速度与落地时速度大小相等,不计空气阻力,重力加速度为g.(1) 求管第一次落地弹起时管和球的加速度.(2) 管第一次落地弹起后,若球没有从管中滑出,求球与管刚达到相同速度时,管的下端距地面的高度.(3) 若管第二次弹起后球没有从管中滑出,求L应满足的条件.板书设计:。

2020高考物理二轮复习专题二力与直线运动教学案

2020高考物理二轮复习专题二力与直线运动教学案

【2019最新】精选高考物理二轮复习专题二力与直线运动教学案考情分析命题解读本专题的考点分为两大板块,一个是运动学部分,另一个为牛顿运动定律,其中,匀变速直线运动的规律及运动图象问题和牛顿运动定律及应用为高频考点。

从近三年命题情况看,命题特点为:(1)注重基础与迁移。

如匀变速直线运动的规律及非常规运动图象问题,行车安全问题等考查学生的理解能力。

难度属于中等。

(2)注重过程与方法。

如板块问题、多过程问题等,以选择题的形式考查学生的推理能力,以计算题的形式考查学生的分析综合能力。

难度属于偏难。

整体难度偏难,命题指数★★★★★,复习目标是达B冲A。

1.(2017·徐州××县中学高三第一次质检)一个做匀减速直线运动的物体,经过3 s速度刚好减为零。

若测得该物体在最后1 s内的位移是1 m,那么该物体在这3 s内的平均速度大小是( )A.1 m/sB.3 m/sC.5 m/sD.9 m/s解析采用逆向思维法,根据x=at2得,物体的加速度大小a== m/s2=2 m/s2,则物体的初速度v0=at′=23 m/s=6 m/s,物体在这3 s内的平均速度== m/s=3 m/s,故B项正确,A、C、D项错误。

答案B2.(2017·江苏清江中学月考)位于水平面上质量为m的物体,在大小为F、方向与水平面成θ角的推力作用下做加速运动,物体与水平面间的动摩擦因数为μ,则物体的加速度大小为( )图1A. B.Fcos θmC. D.Fcos θ-μ(mg+Fsin θ)m解析对物体受力分析如图所示,在水平方向: Fcos θ-f=ma,在竖直方向:FN-Fsin θ-mg=0,又f=μFN,以上联立解得a=,故D项正确。

答案D3.(2017·扬州模拟)图2甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的“·”表示人的重心。

图乙是根据传感器采集到的数据画出的力-时间图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(专题 2 力与直线运动)1.一个做匀减速直线运动的物体,经过3 s 速度刚好减为零。

若测得该物体在最后1 s 内的位移是1 m,那么该物体在这3 s 内的平均速度大小是()A.1 m/sB.3 m/sC.5 m/sD.9 m/s2.位于水平面上质量为m 的物体,在大小为F、方向与水平面成θ角的推力作用下做加速运动,物体与水平面间的动摩擦因数为μ,则物体的加速度大小为()A.Fm B.cosFmθC.cosF mgmθμ-D.cos(sin)F mg Fmθμθ-+3.甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的“·”表示人的重心。

图乙是根据传感器采集到的数据画出的力-时间图象。

两图中a~g 各点均对应,其中有几个点在图甲中没有画出。

取重力加速度g=10 m/s 2。

根据图象分析可知()A.人的重力为1 500 NB.c点位置人处于超重状态C.e 点位置人处于失重状态D.d 点的加速度小于f 点的加速度4. 从同一地点同时开始沿同一直线运动的两个物体Ⅰ、Ⅱ的速度图象如图所示,在0~t0 时间内,下列说法正确的是()A .Ⅰ、Ⅱ两个物体的加速度都在不断减小B .Ⅰ物体的加速度不断增大,Ⅱ物体的加速度不断减小C .Ⅰ物体的位移等于Ⅱ物体的位移D .Ⅰ、Ⅱ两个物体的平均速度大小都大于122v v 5.如图所示,光滑斜面 AE 被分成四个相等的部分,一物体由 A 点从静止释放,下列结论正确的是( )A .物体到达各点的速率之比 vB ∶ vC ∶ vD ∶ vE =1∶ 2∶ 3∶ 2B .物体到达各点经历的时间 t E =2t B =2t C = 2t D3C .物体从 A 到 E 的平均速度 v =v BD .物体通过每一部分时,其速度增量 v B -v A =v C -v B =v D -v C =vE -v D 6.一小球从地面竖直上抛,后又落回地面,小球运动过程中所受空气阻力与速度 成正比,取竖直向上为正方向。

下列关于小球运动的速度 v 、加速度 a 、位移 x 、 机械能 E 随时间 t 变化的图象中,可能正确的有( )7.一人乘电梯上楼,在竖直上升过程中加速度 a 随时间 t 变化的图线如所示,以竖直向上为a 的正方向,则人对地板的压力()A.t=2 s 时最大B.t=2 s 时最小C.t=8.5 s 时最大D.t=8.5s 时最小8.如图甲所示,静止在水平地面上的物块A,受到水平向右的拉力F 作用,F 与时间t的关系如图乙所示,设物块与地面的最大静摩擦力f m与滑动摩擦力大小相等,则( )A.0~t1时间内物块A 的加速度逐渐增大B.t2 时刻物块A 的加速度最大C.t3 时刻物块A 的速度最大D.t2~t4 时间内物块A 一直做减速运动9.如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前得到越来越广泛的应用。

一架质量m=2 kg 的无人机,其动力系统所能提供的最大升力F=36 N,运动过程中所受空气阻力大小恒为f=4 N。

g 取10 m/s 2。

(1)无人机悬停在距地面某一高度处进行抓拍时,动力系统提供的作用力F1多大?(2)无人机在地面上从静止开始,以最大升力竖直向上起飞。

求在t=5 s 时离地面的高度h;(3)当无人机悬停在距离地面高度H=100 m 处,由于动力设备故障,无人机突然失去升力而坠落。

求无人机坠落地面时的速度v。

+m10.所示,质量分别为 M 和 m 的两物块与竖直轻弹簧相连,在水平面上处于静止 状态,现将 m 竖直向下压缩弹簧一段距离后由静止释放,当 m 到达最高点时,M 恰好对地面无压力。

已知弹簧劲度系数为 k ,弹簧形变始终在弹性限度内,重力加 速度为 g ,则( )A .当 m 到达最高点时,m 的加速度为(1M)gB .当 m 到达最高点时,M 的加速度为 gC .当 m 速度最大时,弹簧的形变量为Mg kD .当 m 速度最大时,M 对地面的压力为 Mg 11.如图所示,有两个高低不同的水平面,高水平面光滑,低水平面粗糙。

一质量 为 5 kg 、长度为 2 m 的长木板靠在高水平面边缘 A 点,其表面恰好与高水平面平 齐,长木板与低水平面间的动摩擦因数为 0.05。

一质量为 1 kg 可视为质点的滑块 静止放置,距 A 点距离为 3 m 。

现用大小为 6 N 、水平向右的外力拉小滑块,当小 滑块运动到 A 点时撤去外力,滑块以此时的速度滑上长木板,滑块与长木板间的 动摩擦因数为 0.5,取 g =10 m/s 2。

求:(1)滑块滑动到 A 点时的速度大小; (2)滑块滑动到长木板上时,滑块和长木板的加速度大小分别为多少? (3)通过计算说明滑块能否从长木板的右端滑出。

12.如图所示,光滑水平桌面上的布带上静止放着一质量为 m =1.0 kg 的小铁块,它离布带右端的距离为 L =0.5 m ,铁块与布带间动摩擦因数为μ=0.1。

现用力从 静止开始向左以 a 0=2 m/s 2的加速度将布带从铁块下抽出,假设铁块大小不计, 铁块不滚动,g 取 10m/s 2,求:(1)将布带从铁块下抽出需要多长时间? (2)铁块离开布带时的速度大小是多少?13.某质点从静止开始做匀加速直线运动,已知第 3 s 内通过的位移是 x ,则质点 运动的加速度为()A.32XB. 23X C 25X D . 52X14.在地质、地震、勘探、气象和地球物理等领域的研究中,需要精确的重力加速度 g 值,g 值可由实验精确测得,近年来测 g 值的一种方法叫“对称自由下落法”, 它是将测 g 转变为测长度和时间,具体做法是:将真空长直管沿竖直方向放置, 自其中 O 点上抛小球又落到原处的时间为 T 2,在小球运动过程中经过比 O 点高 H 的 P 点,小球离开 P 点到又回到 P 点所用的时间为 T 1,测得 T 1、T 2 和 H ,可求 得 g 等于()A.22218H T T - B . 22214H T T - C 2218H T T -()D . 221HT T -4() 15.一物体沿直线运动,用 x 表示运动位移,用 t 表示运动时间。

从 t =0 时刻开始 计时,物体x与 t 的图象如图所示,图线斜率的绝对值为 k ,则以下说法正确的是t( )A .物体做匀速直线运动,速度大小等于 kB .物体做变减速直线运动,加速度均匀减小C .物体做匀减速直线运动,加速度大小等于 kD .物体做匀减速直线运动,加速度大小等于 2k 16.如图,载货车厢通过悬臂固定在缆绳上,缆绳与水平方向夹角为θ,当缆绳带 动车厢以加速度 a 匀加速向上运动时,货物在车厢中与车厢相对静止,则货物与 车厢间的动摩擦因数至少为(假设滑动摩擦力等于最大静摩擦力,重力加速度为g)( )A.sincosa gg aθθ+ B.cossina gg aθθ+C.sin-cosa gg aθθ D.cos-sina gg aθθ17.将一质量为m 的小球靠近墙面竖直向上抛出,图甲是向上运动小球的频闪照片,图乙是下降时的频闪照片,O 是运动的最高点,甲、乙两次的闪光频率相同。

重力加速度为g。

假设小球所受阻力大小不变,则可估算小球受到的阻力大小约为( )A.mg B 13 mgC. 12mg D.110mg= 18.所示,质量分别为 m 1、m 2 的物块 A 、B 用一轻质绳相连置于粗糙水平面上, 用一水平力 F (F =k t ,k 为大于 0 的常数)向右拉 A ,已知 A 、B 与水平面间的动摩 擦因数相等且最大静摩擦力等于滑动摩擦力,绳的承受力足够大,则下列关于绳 中弹力大小 T 随时间 t 的变化关系的图象正确的是( )19.在平直公路上行驶的 a 车和 b 车,其位移-时间(x -t )图象分别为图中直线 a 和曲线b ,已知 b 车的加速度恒定且等于-2 m/s 2,t =3 s 时,直线 a 和曲线 b 刚好相切,则( )A.a 车做匀速运动且其速度为 va 8m/s3B .t =3 s 时 a 车和 b 车相遇但此时速度不等C .t =1 s 时 b 车的速度为 6 m/sD.t =0 s 时 a 车和 b 车的距离 s 0=9 m 20.广州塔,昵称小蛮腰,总高度达 600 米,游客乘坐观光电梯大约一分钟就可以 到达观光平台。

若电梯简化成只受重力与绳索拉力,已知电梯在 t =0 时由静止开 始上升,a -t 图象如图所示。

则下列相关说法正确的是( )A.t =4.5 s 时,电梯处于超重状态B.5~55 s 时间内,绳索拉力最小C.t=59.5 s 时,电梯处于超重状态D.t=60 s 时,电梯速度恰好为零21.运动质点的v-x 图象如图所示,图线为顶点在坐标原点、开口向右的一条抛物线,则下列判断正确的是()A.质点做初速度为零的匀加速直线运动B.质点的加速度大小为5 m/s2C.质点在3 s 末的速度大小为30 m/sD.质点在0~3 s 内的平均速度大小为7.5 m/s22.三角形传送带以1 m/s 的速度逆时针匀速转动,两边的传送带长都是2 m,且与水平方向的夹角均为37°。

现有两小物块A、B 从传送带顶端都以1 m/s 的初速度沿传送带下滑,物块与传送带间的动摩擦因数均为0.5。

(g取10 m/s 2,sin 37°=0.6,c o s37°=0.8)下列说法正确的是()A.物块A 到达底端的速度比B 到达底端的速度大B.A、B同时到达底端C.物块A 先到达传送带底端D.物块A、B 在传送带上的划痕长度之比为1∶ 323.如图(a),t=0时,水平桌面上质量为m=1 kg 的滑块获得v0=2 m/s 水平向右的初速度,同时对滑块施加一个水平向左的恒定拉力,前2 s 内滑块的速度-时间关系图线如图(b)所示。

求:(1)前2 s 内滑块的位移大小和方向;(2)滑块所受拉力和摩擦力大小;(3)若在t=2 s 时将拉力撤去,则撤力后滑块还能滑行多远距离?24.如图所示,倾角为θ的斜面底端固定挡板P,质量为m 的小物块A 与质量不计的木板B 叠放在斜面上,A 位于 B 的最上端且与P 相距L。

已知A 与B、B 与斜面间的动摩擦因数分别为μ1、μ2,且μ1>tan θ>μ2,最大静摩擦力等于滑动摩擦力,A 与挡板相撞没有机械能损失。

将A、B 同时由静止释放,求:(1)A、B 释放时,物块A 的加速度大小;(2)若A 与挡板不相碰,木板的最小长度l0;(3)若木板长度为l,整个过程中木板运动的总路程。

相关文档
最新文档