二次函数及其图像专项_练习题.doc

合集下载

二次函数的图像与性质经典练习题(11套)附带详细答案

二次函数的图像与性质经典练习题(11套)附带详细答案

练习一21.二次函数的图像开口向____,对称轴是____,顶点坐标是___yax_,图像有最___点,x___时,y随x的增大而增大,x___时,y随x的增大而减小。

12222.关于,yx,y3x的图像,下列说法中不正确的是()yx3A.顶点相同B.对称轴相同C.图像形状相同D.最低点相同223.两条抛物线yx与在同一坐标系内,下列说法中不正确的是()yxA.顶点相同B.对称轴相同C.开口方向相反D.都有最小值24.在抛物线上,当y<0时,x的取值范围应为()yxA.x>0B.x<0C.x≠0D.x≥0225.对于抛物线yx与yx下列命题中错误的是()xA.两条抛物线关于轴对称B.两条抛物线关于原点对称C.两条抛物线各自关于y轴对称D.两条抛物线没有公共点26.抛物线y=-bx+3的对称轴是___,顶点是___。

127.抛物线y=-(x2)-4的开口向___,顶点坐标___,对称轴___,x_2__时,y随x的增大而增大,x___时,y随x的增大而减小。

28.抛物线y2(x1)3的顶点坐标是()A.(1,3)B.(1,3)C.(1,3)D.(1,3)为()9.已知抛物线的顶点为(1,2),且通过达式(1,10),则这条抛物线的表22A.y=3(x1)-2B.y=3(x1)+222C.y=3-2D.y=-3-2(x1)(x1)210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达yax式为()22A.y=a+3B.y=a-3(x2)(x2)22C.y=a(x2)+3D.y=a(x2)-324411.抛物线的顶点坐标是()yxxA.(2,0)B.(2,-2)C.(2,-8)D.(-2,-8)2212.对抛物线y=2(x2)-3与y=-2(x2)+4的说法不正确的是()A.抛物线的形状相同B.抛物线的顶点相同C.抛物线对称轴相同D.抛物线的开口方向相反213.函数y=a+c与y=ax+c(a≠0)在同一坐标系内的图像是图中的()x243243214.化yxx为y=xx为ya(x h)k的形式是____,图像的开口向____,顶点是____,对称轴是____。

二次函数图像与性质运用练习题

二次函数图像与性质运用练习题

二次函数图像与性质运用练习题1、二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠﹣1),其中正确结论的是 。

2、已知一元二次方程230x bx +-=的一根为3-,在二次函数23y x bx =+-的图象上有三点14 5,y ⎛⎫- ⎪⎝⎭、25 4,y ⎛⎫- ⎪⎝⎭、31 6,y ⎛⎫⎪⎝⎭,1y 、2y 、3y 的大小关系是 。

3、若是方程(x -a )(x -b )= 1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为( ) A .x 1<x 2<a <b B .x 1<a <x 2<b C .x 1<a <b <x 2 D .a <x 1<b <x 2 4、若二次函数c x x y +-=62的图象经过A (-1,y 1)、B (2,y 2)、C (23+,y 3)三点,则关于y 1、y 2、y 3大小关系是 。

4、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,且关于x 的一元二次方程ax 2+bx +c ﹣m =0没有实数根,有下列结论:①b 2﹣4ac >0;②abc <0;③m >2.其中,正确结论的是 。

5、抛物线y =ax 2+bx +c 的顶点为D (﹣1,2),与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b 2﹣4ac <0;②a +b +c <0;③c ﹣a =2;④方程ax 2+bx +c ﹣2=0有两个相等的实数根.其中正确结论的个数为 。

6、“如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m 、n (m <n )是关于x 的方程1﹣(x ﹣a )(x ﹣b )=0的两根,且a <b ,则a 、b 、m 、n 的大小关系是( ) A . m <a <b <nB . a <m <n <bC . a <m <b <nD . m <a <n <b7、二次函数的图象如图,对称轴为1=x .若关于x 的一元二次方程02=-+t bx x (为实数)在41<<-x 的范围内有解,则t 的取值范围是 。

中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)

中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)

中考数学真题《二次函数图象性质与应用》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(55题)一 、单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =--- 下列说法正确的是( ) A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-32.(2023·广西·统考中考真题)将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线是( )A .2(3)4y x =-+B .2(3)4y x =++C .2(3)4y x =+-D .2(3)4y x =--3.(2023·湖南·统考中考真题)如图所示 直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是( )A .b 恒大于0B .a b 同号C .a b 异号D .以上说法都不对4.(2023·辽宁大连·统考中考真题)已知抛物线221y x x =--,则当03x ≤≤时 函数的最大值为( )A .2-B .1-C .0D .25.(2023·四川成都·统考中考真题)如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点 下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A B 两点之间的距离为5D .当1x <-时 y 的值随x 值的增大而增大6.(2023·河南·统考中考真题)二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2023·内蒙古通辽·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()()1020x ,,, 其中101x << 下列四个结论:①0abc < ①0a b c ++> ①230b c +< ①不等式22cax bx c x c ++<-+的解集为02x <<.其中正确结论的个数是( )A .1B .2C .3D .48.(2023·四川自贡·统考中考真题)经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x为自变量)与x 轴有交点,则线段AB 长为( ) A .10B .12C .13D .159.(2023·四川达州·统考中考真题)如图,拋物线2y ax bx c =++(,,a b c 为常数)关于直线1x =对称.下列五个结论:①0abc > ①20a b += ①420a b c ++> ①2am bm a b +>+ ①30a c +>.其中正确的有( )A .4个B .3个C .2个D .1个10.(2023·四川泸州·统考中考真题)已知二次函数223y ax ax =-+(其中x 是自变量) 当03x <<时对应的函数值y 均为正数,则a 的取值范围为( ) A .01a <<B .1a <-或3a >C .30a -<<或0<<3aD .10a -≤<或0<<3a11.(2023·四川凉山·统考中考真题)已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是( )A .<0abcB .420a b c -+<C .30a c +=D .20am bm a ++≤(m 为实数)12.(2023·四川南充·统考中考真题)抛物线254y x kx k =-++-与x 轴的一个交点为(,0)A m 若21m -≤≤,则实数k 的取值范围是( ) A .2114k -≤≤ B .k ≤214-或1k ≥ C .5k -≤≤98D .5k ≤-或k ≥9813.(2023·安徽·统考中考真题)已知反比例函数()0ky k x=≠在第一象限内的图象与一次函数y x b =-+的图象如图所示,则函数21y x bx k =-+-的图象可能为( )A .B .C .D .14.(2023·四川广安·统考中考真题)如图所示 二次函数2(y ax bx c a b c =++、、为常数 0)a ≠的图象与x 轴交于点()()3,0,1,0A B -.有下列结论:①0abc > ①若点()12,y -和()20.5,y -均在抛物线上,则12y y < ①50a b c -+= ①40a c +>.其中正确的有( )A .1个B .2个C .3个D .4个15.(2023·四川遂宁·统考中考真题)抛物线()20y ax bx c a =++≠的图象如图所示 对称轴为直线2x =-.下列说法:①0abc < ①30c a -> ①()242a ab at at b -+≥(t 为全体实数) ①若图象上存在点()11,A x y 和点()22,B x y 当123m x x m <<<+时 满足12y y =,则m 的取值范围为52m -<<-.其中正确的个数有( )A .1个B .2个C .3个D .4个16.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0 对称轴为直线=1x - 下列四个结论:①<0abc ①420a b c -+< ①30a c += ①当31x -<<时20ax bx c ++< 其中正确结论的个数为( )A .1个B .2个C .3个D .4个17.(2023·浙江宁波·统考中考真题)已知二次函数2(31)3(0)y ax a x a =-++≠ 下列说法正确的是( ) A .点(1,2)在该函数的图象上 B .当1a =且13x -≤≤时 08y ≤≤ C .该函数的图象与x 轴一定有交点D .当0a >时 该函数图象的对称轴一定在直线32x =的左侧 18.(2023·新疆·统考中考真题)如图,在平面直角坐标系中 直线1y mx n =+与抛物线223y ax bx =+-相交于点A B .结合图象 判断下列结论:①当23x -<<时 12y y > ①3x =是方程230ax bx +-=的一个解①若()11,t - ()24,t 是抛物线上的两点,则12t t < ①对于抛物线 223y ax bx =+- 当23x -<<时 2y 的取值范围是205y <<.其中正确结论的个数是( )A .4个B .3个C .2个D .1个19.(2023·山东东营·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点A B 与y 轴交于点C 对称轴为直线=1x - 若点A 的坐标为()4,0-,则下列结论正确的是( )A .20a b +=B .420a b c -+>C .2x =是关于x 的一元二次方程()200ax bx c a ++=≠的一个根D .点()11,x y ()22,x y 在抛物线上 当121x x >>-时120y y <<20.(2023·四川乐山·统考中考真题)如图,抛物线2y ax bx c =++经过点(1,0)(,0)A B m -、 且12m << 有下列结论:①0b < ①0a b +> ①0a c <<- ①若点1225,,,33C y D y ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭在抛物线上,则12y y >.其中 正确的结论有( )A .4个B .3个C .2个D .1个21.(2023·湖南岳阳·统考中考真题)若一个点的坐标满足(),2k k 我们将这样的点定义为“倍值点”.若关于x 的二次函数()()212y t x t x s =++++(,s t 为常数 1t ≠-)总有两个不同的倍值点,则s 的取值范围是( ) A .1s <- B .0s < C .01s << D .10s -<<22.(2023·山东烟台·统考中考真题)如图,抛物线2y ax bx c =++的顶点A 的坐标为1,2m ⎛⎫- ⎪⎝⎭与x 轴的一个交点位于0合和1之间,则以下结论:①0abc > ①20b c +> ①若图象经过点()()123,,3,y y -,则12y y > ①若关于x 的一元二次方程230ax bx c ++-=无实数根,则3m <.其中正确结论的个数是( )A .1B .2C .3D .423.(2023·湖南·统考中考真题)已知0m n >> 若关于x 的方程2230x x m +--=的解为()1212,x x x x <.关于x 的方程2230x x n +--=的解为3434,()x x x x <.则下列结论正确的是( ) A .3124x x x x <<<B .1342x x x x <<<C .1234x x x x <<<D .3412x x x x <<<24.(2023·湖北随州·统考中考真题)如图,已知开口向下的抛物线2y ax bx c =++与x 轴交于点(60),对称轴为直线2x =.则下列结论正确的有( ) ①0abc < ①0a b c -+>①方程20cx bx a ++=的两个根为1211,26x x ==-①抛物线上有两点()11,P x y 和()22,Q x y 若122x x <<且124x x +>,则12y y <.A .1个B .2个C .3个D .4个25.(2023·浙江杭州·统考中考真题)设二次函数()()(0,,y a x m x m k a m k =--->是实数),则( ) A .当2k =时 函数y 的最小值为a - B .当2k =时 函数y 的最小值为2a - C .当4k =时 函数y 的最小值为a - D .当4k =时 函数y 的最小值为2a -26.(2023·湖南·统考中考真题)已知()()111222,,,P x y P x y 是抛物线243y ax ax =++(a 是常数 )0a ≠上的点 现有以下四个结论:①该抛物线的对称轴是直线2x =- ①点()0,3在抛物线上 ①若122x x >>-,则12y y > ①若12y y =,则122x x +=-其中 正确结论的个数为( )A .1个B .2个C .3个D .4个27.(2023·山东聊城·统考中考真题)已知二次函数()20y ax bx c a =++≠的部分图象如图所示 图象经过点()0,2 其对称轴为直线=1x -.下列结论:①30a c +> ①若点()14,y - ()23,y 均在二次函数图象上,则12y y > ①关于x 的一元二次方程21ax bx c ++=-有两个相等的实数根 ①满足22ax bx c ++>的x 的取值范围为20x -<<.其中正确结论的个数为( ).A .1个B .2个C .3个D .4个28.(2023·山东·统考中考真题)若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点” 如:(1,3),(2,6),(0,0)A B C --等都是三倍点” 在31x -<<的范围内 若二次函数2y x x c =--+的图象上至少存在一个“三倍点”,则c 的取值范围是( ) A .114c -≤< B .43c -≤<-C .154c -<<D .45c -≤<29.(2023·广东·统考中考真题)如图,抛物线2y ax c =+经过正方形OABC 的三个顶点A B C 点B 在y 轴上,则ac 的值为( )A .1-B .2-C .3-D .4-30.(2023·湖北·统考中考真题)拋物线2(0)y ax bx c a =++<与x 轴相交于点()()3010A B -,,,.下列结论: ①0abc < ①240b ac -> ①320b c += ①若点()()122P m y Q m y -,,,在抛物线上 且12y y <,则1m ≤-.其中正确的结论有( ) A .1个B .2个C .3个D .4个31.(2023·黑龙江齐齐哈尔·统考中考真题)如图,二次函数()20y ax bx c a =++≠图像的一部分与x 轴的一个交点坐标为()3,0 对称轴为直线1x = 结合图像给出下列结论: ①0abc > ①2b a = ①30a c +=①关于x 的一元二次方程220(0)ax bx c k a +++=≠有两个不相等的实数根①若点()1,m y ()22,y m -+均在该二次函数图像上,则12y y =.其中正确结论的个数是( )A .4B .3C .2D .132.(2023·湖北鄂州·统考中考真题)如图,已知抛物线()20y ax bx c a =++≠的对称轴是直线1x = 且过点()1,0- 顶点在第一象限 其部分图象如图所示 给出以下结论:①0ab < ①420a b c ++> ①30a c +>①若()11,A x y ()22,B x y (其中12x x <)是抛物线上的两点 且122x x +>,则12y y > 其中正确的选项是( )A .①①①B .①①①C .①①①D .①①①33.(2023·山东枣庄·统考中考真题)二次函数2(0)y ax bx c a =++≠的图象如图所示 对称轴是直线1x = 下列结论:①0abc < ①方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3 ①若()1230,,,2y y ⎛⎫⎪⎝⎭是抛物线上的两点 那么12y y < ①1120a c +> ①对于任意实数m 都有()m am b a b +≥+ 其中正确结论的个数是( )A .5B .4C .3D .234.(2023·湖北十堰·统考中考真题)已知点()11,A x y 在直线319y x =+上 点()()2233,,,B x y C x y 在抛物线241y x x =+-上 若123y y y ==且123x x x <<,则123x x x ++的取值范围是( )A .123129x x x -<++<-B .12386x x x -<++<-C .12390x x x -<++<D .12361x x x -<++<35.(2023·湖北黄冈·统考中考真题)已知二次函数2(0)y ax bx c a =++<的图象与x 轴的一个交点坐标为(1,0)-对称轴为直线1x = 下列论中:①0a b c -+= ①若点()()()1233,,2,,4,y y y -均在该二次函数图象上,则123y y y << ①若m 为任意实数,则24am bm c a ++≤- ①方程210ax bx c +++=的两实数根为12,x x 且12x x <,则121,3x x <->.正确结论的序号为( )A .①①①B .①①①C .①①①D .①①36.(2023·四川·统考中考真题)已知抛物线2y ax bx c =++(a b c 是常数且a<0)过()1,0-和()0m ,两点 且34m << 下列四个结论:0abc >① 30a c +>② ③若抛物线过点()1,4,则213a -<<- ④关于x 的方程()()13a x x m +-=有实数根,则其中正确的结论有( )A .1个B .2个C .3个D .4个二 多选题37.(2023·湖南·统考中考真题)如图,抛物线2y ax bx c =++与x 轴交于点()3,0,则下列结论中正确的是( )A .0a >B .0c >C .240b ac -<D .930a b c ++=三 填空题38.(2023·内蒙古·统考中考真题)已知二次函数223(0)y ax ax a =-++> 若点(,3)P m 在该函数的图象上 且0m ≠,则m 的值为________.39.(2023·山东滨州·统考中考真题)要修一个圆形喷水池 在池中心竖直安装一根水管 水管的顶端安一个喷水头 使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高 高度为3m 水柱落地处离池中心3m 水管长度应为____________.40.(2023·湖南郴州·统考中考真题)抛物线26y x x c =-+与x 轴只有一个交点,则c =________.41.(2023·上海·统考中考真题)一个二次函数2y ax bx c =++的顶点在y 轴正半轴上 且其对称轴左侧的部分是上升的 那么这个二次函数的解析式可以是________.42.(2023·吉林长春·统考中考真题)2023年5月8日 C919商业首航完成——中国民商业运营国产大飞机正式起步.12时31分航班抵达北京首都机场 穿过隆重的“水门礼”(寓意“接风洗尘” 是国际民航中高级别的礼仪).如图① 在一次“水门礼”的预演中 两辆消防车面向飞机喷射水柱 喷射的两条水柱近似看作形状相同的地物线的一部分.如图① 当两辆消防车喷水口A B 的水平距离为80米时 两条水柱在物线的顶点H 处相遇 此时相遇点H 距地面20米 喷水口A B 距地面均为4米.若两辆消防车同时后退10米 两条水柱的形状及喷水口A ' B '到地面的距离均保持不变,则此时两条水柱相遇点H '距地面__________米.43.(2023·福建·统考中考真题)已知抛物线22(0)y ax ax b a =-+>经过()()1223,,1,A n y B n y +-两点 若,A B 分别位于抛物线对称轴的两侧 且12y y <,则n 的取值范围是___________.44.(2023·内蒙古赤峰·统考中考真题)如图,抛物线265y x x =-+与x 轴交于点A B 与y 轴交于点C 点()2,D m 在抛物线上 点E 在直线BC 上 若2DEB DCB ∠=∠,则点E 的坐标是____________.45.(2023·湖北武汉·统考中考真题)抛物线2y ax bx c =++(,,a b c 是常数 0c <)经过(1,1),(,0),(,0)m n 三点 且3n ≥.下列四个结论:①0b <①244ac b a -<①当3n =时 若点(2,)t 在该抛物线上,则1t >①若关于x 的一元二次方程2ax bx c x ++=有两个相等的实数根,则103m <≤. 其中正确的是________(填写序号).46.(2023·四川宜宾·统考中考真题)如图,抛物线2y ax bx c =++经过点()30A -,顶点为()1,M m - 且抛物线与y 轴的交点B 在()02-,和()03-,之间(不含端点),则下列结论:①当31x -≤≤时 0y ≤①当ABM 33 3a = ①当ABM 为直角三角形时 在AOB 内存在唯一点P 使得PA PO PB ++的值最小 最小值的平方为1893+其中正确的结论是___________.(填写所有正确结论的序号)四 解答题47.(2023·浙江宁波·统考中考真题)如图,已知二次函数2y x bx c =++图象经过点(1,2)A -和(0,5)B -.(1)求该二次函数的表达式及图象的顶点坐标.y≤-时请根据图象直接写出x的取值范围.(2)当248.(2023·浙江温州·统考中考真题)一次足球训练中小明从球门正前方8m的A处射门球射向球门的路线呈抛物线.当球飞行的水平距离为6m时球达到最高点此时球离地面3m.已知球门高OB为2.44m 现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析若射门路线的形状最大高度均保持不变,则当时他应该带球向正后方移动多少米射门才能让足球经过点O正上方2.25m处?49.(2023·湖北武汉·统考中考真题)某课外科技活动小组研制了一种航模飞机.通过实验 收集了飞机相对于出发点的飞行水平距离x (单位:m )以 飞行高度y (单位:m )随飞行时间t (单位:s )变化的数据如下表. 飞行时间/s t 0 2 4 6 8 …飞行水平距离/m x 0 10 20 30 40 …飞行高度/m y 0 22 40 54 64 …探究发现:x 与t y 与t 之间的数量关系可以用我们已学过的函数来描述.直接写出x 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围).问题解决:如图,活动小组在水平安全线上A 处设置一个高度可以变化的发射平台试飞该航模飞机.根据上面的探究发现解决下列问题.(1)若发射平台相对于安全线的高度为0m 求飞机落到安全线时飞行的水平距离(2)在安全线上设置回收区域,125m,5m ==MN AM MN .若飞机落到MN 内(不包括端点,M N ) 求发射平台相对于安全线的高度的变化范围.50.(2023·河北·统考中考真题)嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题 请解答这道题.如图,在平面直角坐标系中 一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出 并运动路线为抛物线21:(3)2C y a x =-+的一部分 淇淇恰在点(0)B c ,处接住 然后跳起将沙包回传 其运动路线为抛物线221:188n C y x x c =-+++的一部分.(1)写出1C 的最高点坐标 并求a c 的值(2)若嘉嘉在x 轴上方1m 的高度上 且到点A 水平距离不超过1m 的范围内可以接到沙包 求符合条件的n 的整数值.51.(2023·河南·统考中考真题)小林同学不仅是一名羽毛球运动爱好者 还喜欢运用数学知识对羽毛球比赛进行技术分析 下面是他对击球线路的分析.如图,在平面直角坐标系中 点A C 在x 轴上 球网AB 与y 轴的水平距离3m OA = 2m CA = 击球点P 在y 轴上.若选择扣球 羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+ 若选择吊球 羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现 上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近 请通过计算判断应选择哪种击球方式.52.(2023·内蒙古赤峰·统考中考真题)乒乓球被誉为中国国球.2023年的世界乒乓球标赛中中国队包揽了五个项目的冠军成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图一位运动员从球台边缘正上方以击球高度OA为28.75cm的高度将乒乓球向正前方击打到对面球台乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y(单位:cm)乒乓球运行的水平距离记为x(单位:cm).测得如下数据:(1)在平面直角坐标系xOy中描出表格中各组数值所对应的点(),x y并画出表示乒乓球运行轨迹形状的大致图象(2)①当乒乓球到达最高点时与球台之间的距离是__________cm当乒乓球落在对面球台上时到起始点的水平距离是__________cm①求满足条件的抛物线解析式(3)技术分析:如果只上下调整击球高度OA乒乓球的运行轨迹形状不变那么为了确保乒乓球既能过网又能落在对面球台上需要计算出OA的取值范围以利于有针对性的训练.如图①.乒乓球台长OB为274cm 球网高CD 为15.25cm .现在已经计算出乒乓球恰好过网的击球离度OA 的值约为1.27cm .请你计算出乒乓球恰好落在对面球台边缘点B 处时 击球高度OA 的值(乒乓球大小忽略不计).53.(2023·浙江台州·统考中考真题)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲 乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水 此时水面高度为30cm 开始放水后每隔10min 观察一次甲容器中的水面高度 获得的数据如下表: 流水时间t /min 0 10 20 30 40水面高度h /cm (观察值) 30 29 28.1 27 25.8任务1 分别计算表中每隔10min 水面高度观察值的变化量.【建立模型】小组讨论发现:“0=t 30h =”是初始状态下的准确数据 水面高度值的变化不均匀 但可以用一次函数近似地刻画水面高度h 与流水时间t 的关系.任务2 利用0=t 时 30h = 10t =时 29h =这两组数据求水面高度h 与流水时间t 的函数解析式.【反思优化】经检验 发现有两组表中观察值不满足任务2中求出的函数解析式 存在偏差.小组决定优化函数解析式 减少偏差.通过查阅资料后知道:t 为表中数据时 根据解析式求出所对应的函数值 计算这些函数值与对应h 的观察值之差的平方和......记为w w 越小 偏差越小. 任务3 (1)计算任务2得到的函数解析式的w 值.(2)请确定经过()0,30的一次函数解析式 使得w 的值最小.【设计刻度】得到优化的函数解析式后 综合实践小组决定在甲容器外壁设计刻度 通过刻度直接读取时间. 任务4 请你简要写出时间刻度的设计方案.54.(2023·黑龙江·统考中考真题)如图,抛物线23y ax bx =++与x 轴交于()()3,0,1,0A B -两点 交y 轴于点C .(1)求抛物线的解析式.(2)拋物线上是否存在一点P 使得12PBC ABC S S = 若存在 请直接写出点P 的坐标若不存在 请说明理由.55.(2023·广东深圳·统考中考真题)蔬菜大棚是一种具有出色的保温性能的框架覆膜结构 它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架 上面覆上一层或多层保温塑料膜 这样就形成了一个温室空间.如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成 其中3m AB = 4m BC = 取BC 中点O 过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E 若以O 点为原点 BC 所在直线为x 轴 OE 为y 轴建立如图所示平面直角坐标系.请回答下列问题:(1)如图,抛物线AED 的顶点()0,4E 求抛物线的解析式(2)如图,为了保证蔬菜大棚的通风性 该大棚要安装两个正方形孔的排气装置LFGT SMNR 若0.75m FL NR == 求两个正方形装置的间距GM 的长(3)如图,在某一时刻 太阳光线透过A 点恰好照射到C 点 此时大棚截面的阴影为BK 求BK 的长.参考答案一 单选题1.(2023·甘肃兰州·统考中考真题)已知二次函数()2323y x =--- 下列说法正确的是( ) A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-3 【答案】C【分析】根据二次函数的图象及性质进行判断即可.【详解】二次函数()2323y x =---的对称轴为2x = 顶点坐标为()2,3-①30-<①二次函数图象开口向下 函数有最大值 为=3y -①A B D 选项错误 C 选项正确故选:C.【点睛】本题考查二次函数的图象及性质 熟练掌握二次函数图象和性质是解题的关键.2.(2023·广西·统考中考真题)将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线是( )A .2(3)4y x =-+B .2(3)4y x =++C .2(3)4y x =+-D .2(3)4y x =--【答案】A【分析】根据“左加右减 上加下减”的法则进行解答即可.【详解】解:将抛物线2y x 向右平移3个单位 再向上平移4个单位 得到的抛物线的函数表达式为:2(3)4y x =-+. 故选:A .【点睛】本题考查了二次函数图象的平移 熟知二次函数图象平移的法则是解答此题的关键.3.(2023·湖南·统考中考真题)如图所示 直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴,则下列说法正确的是( )A .b 恒大于0B .a b 同号C .a b 异号D .以上说法都不对【答案】C 【分析】先写出抛物线的对称轴方程 再列不等式 再分a<0 >0a 两种情况讨论即可.【详解】解:①直线l 为二次函数2(0)y ax bx c a =++≠的图像的对称轴①对称轴为直线>02b x a=-当a<0时,则>0b当>0a 时,则0b <①a b 异号故选:C .【点睛】本题考查的是二次函数的性质 熟练的利用对称轴在y 轴的右侧列不等式是解本题的关键.4.(2023·辽宁大连·统考中考真题)已知抛物线221y x x =--,则当03x ≤≤时 函数的最大值为( ) A .2-B .1-C .0D .2【答案】D 【分析】把抛物线221y x x =--化为顶点式 得到对称轴为1x = 当1x =时 函数的最小值为2- 再分别求出0x =和3x =时的函数值 即可得到答案.【详解】解:①()222112y x x x =--=--①对称轴为1x = 当1x =时 函数的最小值为2-当0x =时 2211y x x =--=- 当3x =时 232312y =-⨯-=①当03x ≤≤时 函数的最大值为2故选:D.【点睛】此题考查了二次函数的最值 熟练掌握二次函数的性质是解题的关键.5.(2023·四川成都·统考中考真题)如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点 下列说法正确的是( )A .抛物线的对称轴为直线1x =B .抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C .A B 两点之间的距离为5D .当1x <-时 y 的值随x 值的增大而增大【答案】C 【分析】待定系数法求得二次函数解析式 进而逐项分析判断即可求解.【详解】解:①二次函数26y ax x =+-的图象与x 轴交于(3,0)A - B 两点①0936a =--①1a =①二次函数解析式为26y x x =+-212524x ⎛⎫=+- ⎪⎝⎭ 对称轴为直线12x =- 顶点坐标为125,24⎛⎫-- ⎪⎝⎭ 故A B 选项不正确 不符合题意①10a => 抛物线开口向上 当1x <-时 y 的值随x 值的增大而减小 故D 选项不正确 不符合题意 当0y =时 260x x +-=即123,2x x =-=①()2,0B①5AB = 故C 选项正确 符合题意故选:C .【点睛】本题考查了二次函数的性质 待定系数法求二次函数解析式 抛物线与坐标轴的交点 熟练掌握二次函数的性质是解题的关键.6.(2023·河南·统考中考真题)二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【分析】根据二次函数图象的开口方向 对称轴判断出a b 的正负情况 再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0 由对称轴b x 02a=-> 得0b >. ①一次函数y x b =+的图象经过第一 二 三象限 不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质 解答本题的关键是求出a b 的正负情况 要掌握它们的性质才能灵活解题 此题难度不大.7.(2023·内蒙古通辽·统考中考真题)如图,抛物线()20y ax bx c a =++≠与x 轴交于点()()1020x ,,, 其中101x << 下列四个结论:①0abc < ①0a b c ++> ①230b c +< ①不等式22c ax bx c x c ++<-+的解集为02x <<.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【分析】根据函数图象可得出a b c 的符号即可判断① 当1x =时 0y <即可判断① 根据对称轴为12b x a=-> 0a >可判断① 21y ax bx c =++ 22c y x c =-+数形结合即可判断①. 【详解】解:①抛物线开口向上 对称轴在y 轴右边 与y 轴交于正半轴①000a b c ><>,,①0abc < 故①正确.①当1x =时 0y <①0a b c ++< 故①错误.①抛物线2y ax bx c =++与x 轴交于两点()()1020x ,,,其中101x << ①2021222b a ++<-< ①3122b a <-< 当322b a -<时 3b a >- 当2x =时 420y a bc =++=122b ac ∴=-- 1232a c a ∴-->- ①20a c ->①()234342220b c a c c a c a c +=--+=-+=--< 故①正确设21y ax bx c =++ 22c y x c =-+ 如图:由图得 12y y <时 02x << 故①正确.综上 正确的有①①① 共3个故选:C .【点睛】本题考查了二次函数的图象及性质 根据二次函数的图象及性质巧妙借助数学结合思想解决问题是解题的关键.8.(2023·四川自贡·统考中考真题)经过23,()41,),(A b m B b c m -+-两点的抛物线22122y x bx b c =-+-+(x 为自变量)与x 轴有交点,则线段AB 长为( )A .10B .12C .13D .15【答案】B【分析】根据题意 求得对称轴 进而得出1c b =- 求得抛物线解析式 根据抛物线与x 轴有交点得出240b ac ∆=-≥ 进而得出2b =,则1c = 求得,A B 的横坐标 即可求解. 【详解】解:①抛物线22122y x bx b c =-+-+的对称轴为直线1222b b x b a =-=-=⎛⎫⨯- ⎪⎝⎭①抛物线经过23,()41,),(A b m B b c m -+-两点 ①23412b bc b -++-= 即1c b =- ①22221122222y x bx b c x bx b b =-+-+=-+-+- ①抛物线与x 轴有交点①240b ac ∆=-≥ 即()22142202b b b ⎛⎫-⨯-⨯-+-≥ ⎪⎝⎭即2440b b -+≤ 即()220b -≤①2b = 1211c b =-=-=①23264,418118b b c -=-=-+-=+-=①()()41238412AB b c b =+---=--=故选:B .【点睛】本题考查了二次函数的对称性 与x 轴交点问题 熟练掌握二次函数的性质是解题的关键. 9.(2023·四川达州·统考中考真题)如图,拋物线2y ax bx c =++(,,a b c 为常数)关于直线1x =对称.下列五个结论:①0abc > ①20a b += ①420a b c ++> ①2am bm a b +>+ ①30a c +>.其中正确的有( )A .4个B .3个C .2个D .1个【答案】B 【分析】由抛物线的开口方向 与y 轴交点以及对称轴的位置可判断a b c 的符号 由此可判断①正确 由抛物线的对称轴为1x = 得到12b a-= 即可判断① 可知2x =时和0x =时的y 值相等可判断①正确 由图知1x =时二次函数有最小值 可判断①错误 由抛物线的对称轴为1x =可得2b a =- 因此22y ax ax c =-+ 根据图像可判断①正确.【详解】①①抛物线的开口向上0.a ∴>①抛物线与y 轴交点在y 轴的负半轴上0.c ∴< 由02b a->得 0b < 0abc ∴>故①正确 ①抛物线的对称轴为1x = ∴12b a-= ∴2b a =-∴20a b += 故①正确①由抛物线的对称轴为1x = 可知2x =时和0x =时的y 值相等.由图知0x =时 0y <①2x =时 0y <.即420a b c ++<.故①错误①由图知1x =时二次函数有最小值2a b c am bm c ∴++≤++2a b am bm ∴+≤+(a b m ax b +≤+)故①错误①由抛物线的对称轴为1x =可得12b a-= 2b a ∴=-①22y ax ax c =-+当=1x -时 23y a a c a c =++=+.由图知=1x -时0,y >30.a c ∴+>故①正确.综上所述:正确的是①①① 有3个故选:B .【点睛】本题主要考查了二次函数的图像与系数的关系 二次函数的对称轴及顶点位置.熟练掌握二次函数图像的性质及数形结合是解题的关键.10.(2023·四川泸州·统考中考真题)已知二次函数223y ax ax =-+(其中x 是自变量) 当03x <<时对应的函数值y 均为正数,则a 的取值范围为( )A .01a <<B .1a <-或3a >C .30a -<<或0<<3aD .10a -≤<或0<<3a 【答案】D【分析】首先根据题意求出对称轴212a x a -=-= 然后分两种情况:0a >和a<0 分别根据二次函数的性质求解即可.【详解】①二次函数223y ax ax =-+①对称轴212a x a-=-= 当0a >时①当03x <<时对应的函数值y 均为正数①此时抛物线与x 轴没有交点①()22430a a ∆=--⨯<①解得0<<3a当a<0时①当03x <<时对应的函数值y 均为正数①当3x =时 9630y a a =-+≥①解得1a ≥-①10a -≤<①综上所述当03x <<时对应的函数值y 均为正数,则a 的取值范围为10a -≤<或0<<3a .故选:D .【点睛】此题考查了二次函数的图象和性质 解题的关键是分两种情况讨论.11.(2023·四川凉山·统考中考真题)已知抛物线()20y ax bx c a =++≠的部分图象如图所示,则下列结论中正确的是( )A .<0abcB .420a b c -+<C .30a c +=D .20am bm a ++≤(m 为实数)【答案】C 【分析】根据开口方向 与y 轴交于负半轴和对称轴为直线1x =可得00a c ><, 20b a =-< 由此即可判断A 根据对称性可得当2x =-时 0y > 当=1x -时 0y = 由此即可判断B C 根据抛物线开口向上 对称轴为直线1x = 可得抛物线的最小值为a c -+ 由此即可判断D .【详解】解:①抛物线开口向上 与y 轴交于负半轴①00a c ><,①抛物线对称轴为直线1x = ①12b a-= ①20b a =-<。

4.1 二次函数的图像及练习

4.1 二次函数的图像及练习

4.1 二次函数的图像1、函数y=x2与函数y=ax2(a≠0)的图像间的关系1.在初中已学习过二次函数,那么二次函数是如何定义的?它的定义域是什么?【提示】函数y=ax2+bx+c(a≠0)叫做二次函数,它的定义域为R.2.由y=x2的图像如何得到y=2x2和y=-x2的图像?【提示】把y=x2图像上各点的纵坐标变为原来的2倍即可得到y=2x2的图像;把y=x2图像上各点的纵坐标变为原来的相反数,即可得到y=-x2的图像.二次函数y=ax2(a≠0)的图像可由y=x2的图像各点的纵坐标变为原来的a倍得到.此时,a决定了图像的开口方向和在同一直角坐标系中的开口大小.2、函数y=ax2(a≠0)与函数y=a(x+h)2+k(a≠0)的变换1.函数y=x2的图像与函数y=(x-1)2的图像有怎样的关系?如何由y=x2的图像得到y=(x-1)2的图像?【提示】它们的形状相同,位置不同.把y=x2的图像向右平移1个单位就可得到y=(x -1)2的图像.2.如何由y=x2的图像得到y=x2-1的图像?【提示】把y=x2的图像向下平移1个单位.3.如何由y=x2的图像得到y=x2-2x-1的图像?【提示】y=x2-2x-1=(x-1)2-2,故只需把y=x2的图像先向右平移1个单位,再向下平移2个单位.1.二次函数y=a(x+h)2+k的图像可由y=ax2向左平移h个单位长度(h>0),再向上平移k 个单位长度(k>0)得到.2.二次函数y=a(x+h)2+k的图像可由y=ax2向右平移|h|个单位长度(h<0),再向下平移|k|个单位长度(k<0)得到.在二次函数y=a(x+h)2+k(a≠0)中,a决定了二次函数图像的开口大小及方向.3.将二次函数y=ax2+bx+c(a≠0)通过配方化为y=a(x+h)2+k(a≠0)的形式,然后通过函数y=ax2(a≠0)的图像左右、上下平移得到函数y=ax2+bx+c(a≠0)的图像3、二次函数图像的画法画出函数y=2x2-4x-6的草图.【思路探究】选取二次函数上的特殊点及特殊的直线确定函数的草图.【自主解答】y=2x2-4x-6=2(x2-2x)-6=2(x2-2x+1-1)-6=2[(x-1)2-1]-6=2(x-1)2-8.函数图像的开口向上,顶点坐标为(1,-8),对称轴为直线x=1.令y=0得2x2-4x-6=0,即x2-2x-3=0,∴x=-1或x=3,故函数图像与x轴的交点坐标为(-1,0),(3,0).画法步骤:(1)描点画线:在平面直角坐标系中,描出点(1,-8),(-1,0),(3,0),画出直线x=1;(2)连线:用光滑的曲线连点(1,-8),(-1,0),(3,0),在连线的过程中,要保持关于直线x =1对称,即得函数y=2x2-4x-6的草图,如图所示.画二次函数的图像重点体现图像的特征“三点一线一开口”:1.“三点”中有一个点是顶点,另两个点是关于对称轴对称的两个点,常取与x轴的交点;2.“一线”是指对称轴这条直线;3.“一开口”是指抛物线的开口方向.练习:画出函数y=x2-4x-12的图像.【解】y=x2-4x-12=(x-2)2-16.函数图像开口向上,对称轴为x=2,顶点坐标为(2,-16).令y=0,即x2-4x-12=0得x=-2或x=6.故图像与x轴的交点坐标为(-2,0),(6,0).图像如图所示:4、二次函数图像的变换在同一坐标系中作出下列函数的图像,并分析如何把y =x 2的图像变换成y =2x 2-4x 的图像.(1)y =x 2;(2)y =x 2-2;(3)y =2x 2-4x .【思路探究】 解答本题可就每个函数列表、描点、连线,作出相应图像,然后利用图像以及二次函数的平移变换规律分析y =x 2与y =2x 2-4x 的图像之间的关系.【自主解答】 (1)列表:x -3 -2 -1 0 1 2 3 y =x 2 9 4 1 0 1 4 9 y =x 2-2 7 2 -1 -2 -1 2 7 y =2x 2-4x30166-26描点、连线即得相应函数的图像,如图所示.(2)y =2x 2-4x =2(x 2-2x ) =2(x 2-2x +1-1) =2(x -1)2-2.由y =x 2到y =2x 2-4x 的变化过程如下:法一 先把y =x 2的图像横坐标不变,纵坐标变为原来的2倍得到y =2x 2的图像,然后把y =2x 2的图像向下平移2个单位长度得到y =2x 2-2的图像,最后把y =2x 2-2的图像向右平移1个单位长度得到y =2(x -1)2-2,即y =2x 2-4x 的图像.法二 先把y =x 2的图像向右平移1个单位长度得到y =(x -1)2的图像,然后把y =(x -1)2的图像横坐标不变,纵坐标变为原来的2倍得到y =2(x -1)2的图像,最后把y =2(x -1)2的图像向下平移2个单位长度便可得到y =2(x -1)2-2,即y =2x 2-4x 的图像.所有二次函数的图像均可以由函数y =x 2的图像经过变换得到,变换前,先将二次函数的解析式化为顶点式,再确定变换的步骤.常用的变换步骤如下:y =x 2――→横不变纵变为原来的a 倍y =ax 2――→k >0,上移k <0,下移y =ax 2+k ――→h >0,左移h <0,右移y =a (x +h )2+k ,其中a 决定开口方向及开口大小(或纵坐标的拉伸);h 决定左、右平移,k 决定上、下平移.(1)由y =-2x 2的图像,如何得到y =-2(x +1)2-3的图像?(2)把y =2x 2的图像,向右平移3个单位长度,再向上平移4个单位长度,能得到哪个函数的图像?(3)将函数y =4x 2+2x +1写成y =a (x +h )2+k 的形式,并说明它的图像是由y =4x 2的图像经过怎样的变换得到的?【解】 (1)把y =-2x 2的图像向左平移1个单位长度,再向下平移3个单位长度就得到y =-2(x +1)2-3的图像.(2)把y =2x 2的图像,向右平移3个单位长度,再向上平移4个单位长度,就得到函数y =2(x -3)2+4,即y =2x 2-12x +22的图像.(3)y =4x 2+2x +1 =4(x 2+12x )+1=4(x 2+12x +116-116)+1=4[(x +14)2-116]+1=4(x +14)2+34.把y =4x 2的图像向左平移14个单位长度,再向上平移34个单位长度,就可得到函数y =4x 2+2x +1的图像.5、求二次函数的解析式根据下列条件,求二次函数y =f (x )的解析式. (1)图像过点(2,0),(4,0),(0,3); (2)图像顶点为(1,2)并且过点(0,4); (3)过点(1,1),(0,2),(3,5).【思路探究】 设二次函数的解析式→列出含参数的方程(组)→解方程(组)→写出解析式 【自主解答】 (1)设二次函数解析式为y =a (x -2)·(x -4). 整理得y =ax 2-6ax +8a ,∴8a =3,∴a =38. ∴解析式为y =38(x -2)(x -4);(2)设二次函数解析式为y =a (x -1)2+2. 整理得y =ax 2-2ax +a +2, ∴a +2=4,∴a =2. ∴解析式为y =2(x -1)2+2; (3)设函数解析式为y =ax 2+bx +c ,由题设知⎩⎪⎨⎪⎧ a +b +c =1,c =2,9a +3b +c =5,⇒⎩⎪⎨⎪⎧a =1,b =-2,c =2.∴函数解析式为y =x 2-2x +2.求二次函数解析式的方法,应根据已知条件的特点,选择解析式的形式,利用待定系数法求解.1.若已知条件是图像上的三个点,则设所求二次函数为一般式y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)的形式.2.若已知二次函数图像的顶点坐标或对称轴方程与最大(小)值,则设所求二次函数为顶点式y =a (x -h )2+k (其中顶点为(h ,k ),a 为常数,a ≠0).3.若已知二次函数图像与x 轴的两个交点的坐标为(x 1,0),(x 2,0),则设所求二次函数为两根式y =a (x -x 1)(x -x 2)(a 为常数,且a ≠0).二次函数的顶点坐标是(2,3),且经过点(3,1),求这个二次函数的解析式.【解】 法一 设所求二次函数为y =ax 2+bx +c .由已知函数图像经过点(2,3)和点(3,1),函数图像的对称轴是-b2a=2. 得方程组⎩⎨⎧9a +3b +c =1,4a +2b +c =3,-b 2a =2.解这个方程组,得a =-2,b =8,c =-5. ∴二次函数解析式为y =-2x 2+8x -5.法二 二次函数的顶点式是y =a (x -h )2+k ,而顶点坐标是(2,3), 故有y =a (x -2)2+3,这样只需确定a 的值.因为图像经过点(3,1),所以x =3,y =1满足关系式y =a (x -2)2+3, 从而有1=a (3-2)2+3,解得a =-2. ∴函数解析式为y =-2(x -2)2+3,即y =-2x 2+8x -5.6、数形结合思想在二次函数问题中的应用若方程x 2-2x -3=a 有两个不相等的实数解,求实数a 的取值范围.【思路点拨】 令f (x )=x 2-2x -3,g (x )=a ,将方程有两个不相等的实数解转化为两个函数的图像有两个不同的交点.【规范解答】 令f (x )=x 2-2x -3,g (x )=a .2分 作出f (x )的图像如图所示.∵f(x)与g(x)图像的交点个数即为方程x2-2x-3=a解的个数.由图可知①当a<-4时,f(x)与g(x)无交点,即方程x2-2x-3=a无实根;6分②当a=-4时,f(x)与g(x)有一个公共点,即方程x2-2x-3=a有一个实根;8分③当a>-4时,f(x)与g(x)有两个公共点,即方程x2-2x-3=a有两个实根.10分综上所述,当方程x2-2x-3=a有两个实数解时,实数a的取值范围是(-4,+∞).12分1.所谓数形结合就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.2.巧妙运用数形结合的思想方法解决一些抽象的数学问题,可以起到事半功倍的效果,数形结合的重点是“以形助数”.小结:1.y=ax2(a≠0)的图像与y=ax2+bx+c(a≠0)的图像之间进行变换时应先将y=ax2+bx+c进行配方,平移时应注意平移的方向及单位长度.2.求二次函数的解析式一般采用待定系数法,当抛物线过三点时,可选用一般式;当已知条件与顶点坐标和对称轴有关时,可选用顶点式;当已知条件与x轴的交点坐标有关时,可选用两根式.3.在利用数形结合的思想解决与二次函数的图像有关的问题时,只需要画出二次函数的大致图像(画出开口方向、对称轴、与坐标轴的交点、特殊点)即可.一、选择题1.二次函数y=x2的图像上各点的纵坐标变为原来的2倍,得到的新图像的二次函数是()A.y=x2+2B.y=2x2C.y=12x2D.y=x2-22.将二次函数的图像向下、向右各平移2个单位得到图像的解析式为y=-x2,则原二次函数的解析式是()A.y=-(x-2)2+2 B.y=-(x+2)2+2C.y=-(x+2)2-2 D.y=-(x-2)2-23.已知抛物线与x轴交于点(-1,0),(1,0),并且与y轴交于点(0,1),则抛物线的解析式为()A.y=-x2+1 B.y=x2+1C.y=-x2-1 D.y=x2-14.如果二次函数y=ax2+bx+1图像的对称轴是x=1,并且通过点A(-1,7),则a,b的值分别是()A.2,4 B.2,-4C.-2,4 D.-2,-45.(2013·东城区高一检测)设abc>0,二次函数f(x)=ax2+bx+c的图像可能是()二、填空题6.将函数y=2(x+1)2-2向________平移________个单位,再向________平移________个单位可得到函数y=2x2的图像.7.把函数y=-x2上各点的纵坐标变为原来的3倍,再向右平移1个单位,然后再向上平移k(k>0)个单位,所得函数仍过原点,则k=__________.三、解答题9.对于二次函数y=-x2+4x+3,(1)指出图像的开口方向、对称轴、顶点坐标;(2)说明其图像是由y=-x2的图像经过怎样的平移得来.10.将二次函数y=ax2+bx+c的图像向左平移2个单位,再向上平移3个单位,便得到函数y=x2-2x+1的图像,求a,b与c.11.已知二次函数当x=4时有最小值-3,且它的图像与x轴两交点间的距离为6,求这个二次函数的解析式.1、【解析】将二次函数y=x2的图像上各点的纵坐标变为原来的2倍,得到的新图像对应的解析式为y=2x2.【答案】 B2、【解析】将函数y=-x2的图像进行逆变换,即将y=-x2的图像向左平移2个单位,可得y=-(x+2)2的图像,然后再将其向上平移2个单位可得y =-(x+2)2+2的图像,即原函数的图像.【答案】 B3、【解析】由题意知抛物线的对称轴是y轴且开口向下,顶点为(0,1),故抛物线方程为y=-x2+1.【答案】 A4、【解析】∵对称轴为x=1,∴-b2a=1①∵通过点A(-1,7),∴a-b+1=7②联立①②解得a=2,b=-4.【答案】 B5、【解析】 若a >0,b <0,c <0,则对称轴x =-b2a >0,函数f (x )的图像与y 轴的交点(0,c )在x 轴下方.【答案】 D6、【答案】 右 1 上 27、【解析】 依题意y =-3(x -1)2+k ,∵该函数仍过原点,∴-3×(0-1)2+k =0,∴k =3.8.设函数f (x )=x 2+bx +c ,若f (-4)=f (0),f (-2)=-2,则f (x )=________. 8、【解析】 ∵f (-4)=f (0),f (-2)=-2,∴⎩⎨⎧(-4)2-4b +c =c ,(-2)2-2b +c =-2.解得b =4,c =2. ∴f (x )=x 2+4x +2.9、【解】 (1)∵y =-(x -2)2+7,∴开口向下;对称轴为x =2;顶点坐标为(2,7);(2)先将y =-x 2的图像向右平移2个单位,然后再向上平移7个单位,即可得到y =-x 2+4x +3的图像.10、【解】 ∵函数y =x 2-2x +1可变形为y =(x -1)2, ∴抛物线y =x 2-2x +1的顶点坐标为(1,0).根据题意把此抛物线反向平移,得到抛物线y =ax 2+bx +c 的图像,即把抛物线y =x 2-2x +1向下平移3个单位,再向右平移2个单位就可得到抛物线y =ax 2+bx +c ,此时顶点(1,0)平移至(3,-3)处.∴抛物线y =ax 2+bx +c 的顶点是(3,-3).即y =(x -3)2-3=x 2-6x +6,对照y =ax 2+bx +c ,得a =1,b =-6,c =6.11、【解】 法一 设二次函数解析式为y =ax 2+bx +c (a ≠0),由已知条件,可得抛物线的顶点为(4,-3),且过(1,0)与(7,0)两点,将三个点的坐标代入,得⎩⎨⎧-3=16a +4b +c ,0=a +b +c ,0=49a +7b +c ,解得⎩⎪⎨⎪⎧a =13,b =-83,c =73.∴所求二次函数解析式为y =13x 2-83x +73.法二 ∵抛物线与x 轴的两个交点坐标是(1,0)与(7,0),∴设二次函数的解析式为y =a (x -1)·(x -7),把顶点(4,-3)代入,得-3=a (4-1)(4-7),解得a =13.∴二次函数解析式为y =13(x -1)(x -7), 即y =13x 2-83x +73.法三 ∵抛物线的顶点为(4,-3),且过点(1,0), ∴设二次函数解析式为y =a (x -4)2-3. 将(1,0)代入,得0=a (1-4)2-3, 解得a =13.∴二次函数的解析式为y =13(x -4)2-3, 即y =13x 2-83x +73.。

二次函数的图像与性质经典练习题(11套)附带详细答案

二次函数的图像与性质经典练习题(11套)附带详细答案

练习一1.二次函数的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。

2.关于,,的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同 3.两条抛物线与在同一坐标系内,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .开口方向相反 D .都有最小值 4.在抛物线上,当y <0时,x 的取值范围应为( ) A .x >0 B .x <0 C .x ≠0 D .x ≥0 5.对于抛物线与下列命题中错误的是( ) A .两条抛物线关于轴对称 B .两条抛物线关于原点对称 C .两条抛物线各自关于轴对称 D .两条抛物线没有公共点 6.抛物线y=-b +3的对称轴是___,顶点是___。

7.抛物线y=--4的开口向___,顶点坐标___,对称轴___,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。

8.抛物线的顶点坐标是( )A .(1,3)B .(1,3)C .(1,3)D .(1,3)9.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为( ) A .y=3-2 B .y=3+22y ax =213y x =2y x =23y x =2y x =2y x =-2y x =-2y x =2y x =-x y 2x 21(2)2x +22(1)3y x =+-------2(1)x -2(1)x +C .y=3-2D .y=-3-210.二次函数的图像向左平移2个单位,向下平移3个单位,所得新函数表达式为( )A .y=a +3B .y=a -3C .y=a +3D .y=a -3 11.抛物线的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)12.对抛物线y=-3与y=-+4的说法不正确的是( ) A .抛物线的形状相同 B .抛物线的顶点相同 C .抛物线对称轴相同 D .抛物线的开口方向相反13.函数y=a +c 与y=ax +c(a ≠0)在同一坐标系内的图像是图中的( )14.化为y=为a 的形式是____,图像的开口向____,顶点是____,对称轴是____。

二次函数图像题-专题练习

二次函数图像题-专题练习

类型一二次函数系数与图像的关系1、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a >0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的序号数是()2、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(),下列2A.1B.2C.3D.4(1题图)(2题图)(3题图)(4题图)3.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正确结论是()4已知二次函数y=ax2+bx+c的图象如图所示,给出以下结论:①a+b+c<0;②b2﹣4ac>0;③b>0;④4a﹣2b+c<0;⑤c﹣a>1,其中正确的结论有_________.类型二:二次函数与一次函数、反比例函数在同一图像问题1、在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()2 二次函数y=ax2+bx+c的图像如图所示,反比列函数与正比列函数在同一坐标系内的大致图像是()3.已知二次函数y=(x-a)(x-b)(其中a>b)的图象如下面右图所示,则函数y=ax+b的图象可能正确的是ayx=y bx=xA B第3题图类型三:用图像解决二次函数与一元二次方程关系的有关问题二次函数y=ax 2+bx+c 的图像如图 根据图像解答下列问题:(1) 写出方程02=++c bx ax 的两根 (2)写出不等式02>++c bx ax 的解集 (2) 写出y 随x 的增大而增大的自变量x 的取值范围(3) 如方程k c bx ax =++2有两个不相等的实数根,求k 的取值范围(5)如方程无实数根,求k 的取值范围自我检测:1.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①b <0;②4a+2b+c <0;③a ﹣b+c >0;④(a+c )2<b 2.其中正确的结论是( )2.如图,二次函数y=ax 2+bx+c (a≠0)的图象的顶点在第一象限且过点(0,1) 和(﹣1,0)下列结论:①ab <0,②b 2>4a ,③0<a+b+c <2,④0<b <1,⑤当x >﹣1时,y >0,其中正确结论是( )(1题图) (2题图) (4题图)4.如图是二次函数y=ax 2+bx+c (a ≠0)的图象的一部分,给出下列命题:①abc <0②b >2a ;③a+b+c=0④ax 2+bx+c=0的两根分别为﹣3和1;⑤8a+c >0.其中正确的命题是 _______________5.二次函数y=ax 2+bx+c 的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc <0;④4ac ﹣b 2<0;⑤当x ≠2时,总有4a+2b >ax 2+bx 其中正确的有 _________ (填写正确结论的序号).(5题图) (6题图) (7题图)6 如图所示,二次函数y=ax 2+bx+c (a ≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1,下列结论:①abc >0;②4a ﹣2b+c <0;③2a ﹣b >0;④b 2+8a >4ac ,正确的结论是 _________ .7.如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (x 1,0),﹣3<x 1<﹣2,对称轴为x=﹣1.给出四个结论:①abc >0;②2a+b=0;③b 2>4ac ;④a ﹣b >m (ma+b )(m ≠﹣1的实数);⑤3b+2c >0.其中正确的结论有( )8设a、b为常数,并且b<0,抛物线的图象为图中的四个图象之一.则a=_________.课后延伸:1.(2013•鄂州)小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你认为其中正确信息有()2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a>0,b>0;②c <0,△<0;③c﹣4b>0;④4a﹣2b+c=16a+4b+c.其中正确结论的是()3已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列四个结论:①abc>0;②3a+b>0;③>﹣3;④2c>3b,其中结论正确的为()4.(2013•德州)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()(4题图)(5题图)(6题图)5.如图,开口向下的抛物线y=ax2+hx+c交y轴的正半轴于点A,对称轴是直线x=1,则abc>0;(3)8a+c>0;(4)6a+3b+c>0,其中正确的结论的个数是()7.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a﹣b+c<0;③2a+c >0;④2a﹣b+1>0.其中正确结论的是().。

二次函数的性质与图像题目

二次函数的性质与图像题目

二次函数的性质与图像题目1. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。

若f(x)的图像开口向上,则a的值应该是()A. a > 0B. a < 0C. a = 0D. 无法确定2. 二次函数f(x) = ax^2 + bx + c的图像与x轴相交的点,称为函数的()A. 顶点B. 零点C. 焦点D. 交点3. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。

若f(x)的图像开口向下,则a的值应该是()A. a > 0B. a < 0C. a = 0D. 无法确定4. 二次函数f(x) = ax^2 + bx + c的图像与y轴相交的点,称为函数的()A. 顶点B. 零点C. 焦点D. 交点5. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。

若f(x)的图像对称轴是x = 1,则b的值应该是()A. 1B. -1C. 0D. 无法确定6. 二次函数f(x) = ax^2 + bx + c的图像,当a > 0时,开口向上,当a < 0时,开口向下,当a = 0时,函数是()A. 一次函数B. 常数函数C. 指数函数D. 对数函数7. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。

若f(x)的图像顶点在点(1, -2),则c的值应该是()A. -2B. 2C. 0D. 无法确定8. 二次函数f(x) = ax^2 + bx + c的图像,当a > 0时,函数在x轴下方的部分随着x的增加而()A. 增加B. 减少C. 保持不变D. 无法确定9. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。

若f(x)的图像顶点在点(-1, 2),则b的值应该是()A. 2B. -2C. 0D. 无法确定10. 二次函数f(x) = ax^2 + bx + c的图像,当a > 0时,函数在x轴上方的部分随着x的增加而()A. 增加B. 减少C. 保持不变D. 无法确定11. 已知二次函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a ≠ 0。

二次函数图像和性质习题精选

二次函数图像和性质习题精选

二次函数图像和性质习题精选一.选择题(共30小题)1.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()2.函数y=ax2+1与y=(a≠0)在同一平面直角坐标系中的图象可能是()3.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()4.已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()5.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x 与y的部分对应值如下表:下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax 2+(b ﹣1)x+c=0的一个根;(4)当﹣1<x <3时,ax 2+(b ﹣1)x+c >0.其中正确的个数为( )6.二次函数y=ax 2+bx+c (a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( ) B . 对称轴是直线x=C . 当x <,y 随x 的增大而减小D .7.如图,平面直角坐标系中,点M 是直线y=2与x 轴之间的一个动点,且点M 是抛物线y=x 2+bx+c 的顶点,则方程x 2+bx+c=1的解的个数是( ) 8.已知二次函数y=a (x ﹣h )2+k(a >0),其图象过点A (0,2),B (8,3),则h 的值可以是( )9.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:则该函数图象的顶点坐标为()10.已知二次函数y=ax2+bx+c (a≠0)的图象如图所示,下列说法错误的是()11.如图,二次函数的图象经过(﹣2,﹣1),(1,1)两点,则下列关于此二次函数的说法正确的是()12.设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()13.如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是()14.已知二次函数y=ax2+bx+c (a≠0)的图象如图所示,给出以下结论:①a>0;②该函数的图象关于直线x=1对称;③当x=﹣1或x=3时,函数y的值都等于0.其中正确结论的个数是()15.二次函数y=ax2+bx+c (a≠0)的图象如图所示,下列结论正确的是()16.如图,抛物线y=ax2+bx+c (a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c 的值为()17.下列图中阴影部分的面积相等的是()18.已知抛物线y=ax2+bx+c(a <0)的部分图象如图所示,当y >0时,x的取值范围是()19.已知:二次函数y=x2﹣4x ﹣a,下列说法错误的是()20.下列表格给出的是二次函数y=ax2+bx+c(a≠0)的几组对应值,那么方程ax2+bx+c=0的一个近似解可以是( A )21.已知二次函数y=ax2+bx+c 的y与x的部分对应值如下表:则下列判断中正确的是()22.已知二次函数y1=ax2+bx+c (a≠0)与一次函数y2=kx+m (k≠0)的图象相交于点A(﹣2,4),B(8,2)(如图所示),则能使y1<y2成立的x的取值范围是()23.在﹣3≤x≤0范围内,二次函数(a≠0)的图象如图所示.在这个范围内,有结论:①y 1有最大值1、没有最小值; ②y 1有最大值1、最小值﹣3; ③函数值y 1随x 的增大而增大; ④方程ax 2+bx+c=2无解; ⑤若y 2=2x+4,则y 1≤y 2. 其中正确的个数是( )24.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:根据上表判断下列四种说法:①抛物线的对称轴是x=1;②x>1时,y的值随着x的增大而减小:③抛物线有最高点:④抛物线的顶点、与x轴的两个交点三点为顶点的三角形的面积为36.其中正确说法的个数有()25.如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB 与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()26.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()27.已知二次函数y=x2+2(a ﹣1)x+2.如果x≤4时,y随x增大而减小,则常数a的取值范围是()28.如图,平行于y轴的直线l 被抛物线y=0.5x2+1,y=0.5x2﹣1所截,当直线l向右平移3个单位时,直线l被两条抛物线所截得的线段扫过的图形面积为)平方单位.(29.已知直线经过点A(0,2),B(2,0),点C在抛物线y=x2的图象上,则使得S△ABC=2的点有()个.30.如图,已知抛物线,直线y2=3x+3,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>0时,y1>y2;②使得M 大于3的x值不存在;③当x<0时,x值越大,M值越小;④使得M=1的x值是或.其中正确的是()。

(完整版)二次函数的图像与性质练习题及答案

(完整版)二次函数的图像与性质练习题及答案

二次函数的图像和性质练习题一、选择题1.下列函数是二次函数的有( )12)5(;)4();3()3(;2)2(;1)1(222+=++=-==-=x y c bx ax y x x y xy x y (6) y=2(x+3)2-2x 2A 、1个;B 、2个;C 、3个;D 、4个 2.关于213y x =,2y x =,23y x =的图像,下列说法中不正确的是( ) A .顶点相同 B .对称轴相同 C .图像形状相同 D .最低点相同 3.抛物线()12212++=x y 的顶点坐标是( ) A .(2,1) B .(-2,1) C .(2,-1) D .(-2,-1)4.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( )A . 0或2B . 0C . 2D .无法确定 5.已知二次函数213x y -=、2231x y -=、2323x y =,它们的图像开口由小到大的顺序是( )A 、321y y y <<B 、123y y y <<C 、231y y y <<D 、132y y y <<6.两条抛物线2y x =与2y x =-在同一坐标系内,下列说法中不正确的是( )A .顶点相同B .对称轴相同C .开口方向相反D .都有最小值7.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①0abc >;②a+b+c>0③a-b+c<0;A .1个B .2个C .3个D .4个8.已知抛物线的顶点为(-1,-2),且通过(1,10),则这条抛物线的表达式为( )A .y=32(1)x --2 B .y=32(1)x ++2 C .y=32(1)x +-2 D .y=-32)1(-x +29.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A .23(1)2y x =-- B.23(1)2y x =+- C.23(1)2y x =++ D.23(1)2y x =-+10.抛物线244y x x =--的顶点坐标是( )A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)11.与抛物线y=-12x 2+3x -5的形状、开口方向都相同,只有位置不同的抛物线是( )A. y = x 2+3x -5B. y=-12x 2xC. y =12x 2+3x -5D. y=12x 212.对抛物线y=22(2)x --3与y=-22(2)x -+4的说法不正确的是( )A .抛物线的形状相同B .抛物线的顶点相同C .抛物线对称轴相同D .抛物线的开口方向相反13.对于抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,14.抛物线y=222x mx m -++的顶点在第三象限,试确定m 的取值范围是( )A .m <-1或m >2B .m <0或m >-1C .-1<m <0D .m <-1 15.在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能..是( )16.函数y=12-2x +2x -5的图像的对称轴是( ) A .直线x=2 B .直线a=-2 C .直线y=2 D .直线x=4 17.二次函数y=221x x --+图像的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 18.如果抛物线y=26x x c ++的顶点在x 轴上,那么c 的值为( )A .0B .6C .3D .9ABCD19.已知二次函数2y ax bx c =++,如果a >0,b <0,c <0,那么这个函数图像的顶点必在( )A .第一象限B .第二象限C .第三象限D .第四象限 20.已知正比例函数kx y =的图像如右图所示,则二次函数222k x kx y +-= 21.如图所示,满足a >0,b <0的函数y=2ax bx +的图像是( )22.若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 1<y 2D 、y 1<y 3<y 2二、填空题:23.二次函数2y ax =(0<a )的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。

二次函数的图像和性质练习(含答案)

二次函数的图像和性质练习(含答案)

二次函数的图像和性质一、选择题(每题3分)1.下列四个函数中,一定是二次函数的是( )A .21y x x=+ B .y=ax 2+bx+c C .y=x 2﹣(x+7)2 D .y=(x+1)(2x ﹣1)【答案】D【解析】试题分析:因为形如y=ax 2+bx+c (0a ≠)的函数叫二次函数,所以选项A 、B 、C 错误,D 正确,故选:D .考点:二次函数的概念.2.若函数y=-2(x-1)2+(a-1)x 2为二次函数,则a 的取值范围为( ) A.a≠0 B.a≠1 C.a≠2 D.a≠3【答案】D .【解析】试题分析:根据二次函数的定义化成一般式为()2342y a x x =-+-, 则30a -≠3a ≠故选D .考点:二次函数的定义.3.下列函数中,不是二次函数的是( )A .y =1-x 2B .y =2(x -1)2+4C .y =(x -1)(x +4)D .y =(x -2)2-x 2【答案】D .【解析】试题分析:选项A ,y=1-x 2=-x 2+1,是二次函数,选项A 正确;选项B ,y=2(x-1)2+4=2x 2-4x+6,是二次函数,选项B 正确;选项C ,y=(x-1)(x+4)=x 2+x-2,是二次函数,选项C 正确;选项 D ,y=(x-2)2-x 2=-4x+4,是一次函数,选项D 错误.故答案选D .考点:二次函数的定义.二、填空题(每题3分)4.若函数y =(m -3)是二次函数,则m =______. 【答案】5.【解析】试题分析:已知函数y =(m -3)是二次函数,可得且m -3≠0,解得m=-5. 考点:二次函数的定义.5..一个圆柱的高等于底面半径,写出它的表面积S 与底面半径r 的函数关系式为_________.【答案】S=4π2r【解析】试题分析:根据题意可得h=2r ,则S=2πrh=4π2r .考点:二次函数的实际应用(时间:15分钟,满分25分)班级:___________姓名:___________得分:___________一、选择题(每题3分)1.下列函数中,不属于二次函数的是( )A .y=(x ﹣2)2B .y=﹣2(x+1)(x ﹣1)C .y=1﹣x ﹣x 2D .y=211x 【答案】D【解析】试题分析:整理一般形式后根据二次函数的定义判定即可:A 、整理为y=x 2﹣4x+4,是二次函数,不合题意;B 、整理为y=﹣2x 2+2,是二次函数,不合题意;C 、整理为y=﹣x 2﹣x+1,是二次函数,不合题意;D 、不是整式方程,符合题意.故选:D .考点:二次函数的定义2.下列函数中属于二次函数的是( )A .12-=x yB .12-=ax yC .222)1(2x x y --=D .)2)(1(π+-=x x y【答案】D .【解析】试题分析:A .12-=x y 是一次函数,故本选项错误;B .当0a =时,12-=ax y 不是二次函数,故本选项错误;C .222)1(2x x y --==42x -+是一次函数,故本选项错误;D )2)(1(π+-=x x y 是二次函数,故本选项正确.故选D .考点:二次函数的定义.3.若函数222(1)(1)y x a x =--+-为二次函数,则a 的取值范围为( )A .0a ≠B .1a ≠C .2a ≠D .3a ≠【答案】D .【解析】试题分析:由原函数解析式得到:222(1)(1)y x a x =--+-=2(3)42a x x -+-.∵函数 222(1)(1)y x a x =--+-为二次函数,∴30a -≠,解得3a ≠.故选D .考点:二次函数的定义.二、填空题(每题3分)4.在边长为16cm 的正方形铁皮上剪去一个圆,则剩下的铁皮的面积S (cm 2)与圆的半径r (cm )之间的函数表达式为 (不要求写自变量的取值范围).【答案】2256r S π-=【解析】试题分析:剩下的面积为:正方形的面积-圆的面积=162-πr 2=256-πr 2故答案为:2256r S π-=考点:函数的表达式.5..用长为8米的铝合金制成如图所示的窗框,若设窗框的宽为x 米,窗户的透光面积为S 平方米, 则S 关于x 的函数关系式 .【答案】S=x x 4232+-【解析】试题分析:设窗框的宽为x 米,则长为238x -米 ∴S=x x x x 4232382+-=⨯- 考点:实际问题抽象二次函数三、计算题(每题10分)6.已知,若函数2(1)3m y m x =-+是关于x 的一次函数.(1)求m 的值,并写出解析式;(2)若函数是关于x 的二次函数,求m 的值,.【答案】(1)1m =-;(2)m =.【解析】试题分析:(1)先根据一次函数的定义求出m 的值;(2)由22m =可得出m =试题解析:(1)∵函数2(1)3m y m x =-+是一次函数,∴21m =,解得1m =或1m =-,又∵10m -≠,∴1m ≠,∴1m =-,∴函数为:23y x =-+;m=可得出m=(2)由22考点:1.一次函数的定义;2.二次函数的定义.。

二次函数图像和性质习题大全

二次函数图像和性质习题大全

如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(-1,0)及点B.小题1.求二次函数与一次函数的解析式.小题2.根据图象,写出满足(x+2)2+m>kx+b的x的取值范围.已知二次函数y=x2+2x-3.小题1.求该函数图象的顶点坐标.小题2.当0≤x≤3时,求函数值y的最小值.已知抛物线经过点(1,-2).小题1.求的值.小题2.若点A(m,y1)、A(n,y2) (m<n<3)都在该抛物线上,试比较y1与y2的大小.已知二次函数的图象经过点(2,-2).小题1.求这个二次函数的表达式.小题2.当为何值时,y的值最大(或最小)?小题3.求此函数图象与轴的交点个数.二次函数的图象的对称轴是,它有最小值-7,且它的图象形状与函数的形状完全相同,求此函数表达式.已知直线上有两点A,B,它们的横坐标分别是3,-1,若二次函数的图象经过A,B两点,请求出一次函数的解析式.已知二次函数.小题1.当k为何值时,对称轴为y轴?小题2.当k为何值时,抛物线的顶点在轴上?将抛物线向左平移后所得新抛物线的顶点的横坐标为-2,且新抛物线经过(1,3),求新抛物线的解析式.写出下列抛物线的对称轴和顶点坐标.小题1..2 小题2..二次函数的图象如图所示,已知,OA=OC,试求该抛物线对应的函数表达式.已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).小题1.求抛物线的解析式和顶点坐标.小题2.请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.若二次函数y=ax2+bx+c图象的顶点在第二象限,且经过点A(1,0)、B(0,1),求实数a 的取值范围.根据下列条件求m的取值范围.小题1.已知函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大.小题2.函数y=(2m-1)x2有最小值.小题3.抛物线y=(m+2)x2与抛物线y=-x2的形状相同.已知抛物线y=a(x-h)2向右平移3个单位后,得到抛物线y=2(x+1)2,求a,h的值.已知函数y=(k+2)是关于x的二次函数.小题1.求k的值.小题2.当k为何值时,抛物线有最低点?此时,当x为何值时,y随x的增大而增大?二次函数y=ax2+bx+c的图象如图所示,A,B,C三点为抛物线与坐标轴的交点,且OA=OC=1.试判断a与b的符号,并求a-b的值.解答下列问题:小题1.用配方法把二次函数y=x2-4x+3变成y=(x-h)2+k的形式.小题2.在直角坐标系中画出y=x2-4x+3的图象.小题3.若A(x1,y1),B(x2,y2)是函数y=x2-4x+3图象上的两点,且x1<x2<1,请比较y1,y2的大小关系.(直接写出结果)不画图象,说出抛物线y=x2与y=(1-)x2的开口方向、对称轴、顶点坐标、最值,及当x<0时y随x的变化情况.已知顶点为P的抛物线a:y=(x+2)2上有一点A(1,3).小题1.试写出抛物线a的顶点坐标和对称轴.小题2.将抛物线a沿着水平方向怎样平移才能得到抛物线b(要求抛物线b也经过A点)?小题3.在(2)中,抛物线b的顶点为B,抛物线a上的A点与抛物线b上的C点对应,求四边形APBC的面积.如图,点P是抛物线y=x2上第一象限内的一个点,点A的坐标是(3,0).小题1.令点P的坐标为(x,y),求△POA的面积S(用含y的式子表示).小题2.S是y的什么函数?小题3.S是x的什么函数?4小题4.当S=6时,求点P的坐标.小题5.当PO=PA时,试求点P的坐标.已知将二次函数y=ax2+c的图象向下平移2个单位后,得到二次函数y=-3x2+2的图象.求a,c的值.已知抛物线y=2x2+n与直线y=2x-1相交于点(m,3).小题1.求m和n的值.小题2.写出抛物线y=2x2+n的顶点坐标和对称轴.小题3.当x取何值时,二次函数y=2x2+n中y随x的增大而减小?已知二次函数y=x2-2kx+k2+k-2.小题1.当实数k为何值时,图象经过原点?小题2.当实数k在何取值范围时,函数图象的顶点在第四象限?已知二次函数y=a(x+b)2的图象的对称轴为直线x=3,且该函数图象过点(1,4),求a,b 的值.已知抛物线y=x2+2m-m2,根据下列条件分别求m的值.小题1.抛物线过原点.小题2.函数的最小值是-3.如图,已知二次函数y=a(x-h)2+的图象经过原点O(0,0),A(2,0).小题1.写出该函数图象的对称轴.小题2.若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?如果把抛物线y=mx2+n向下平移3个单位后,得到抛物线y=-x2+2,试求m,n的值.已知抛物线y=ax2与直线x=-1,x=-2,y=-1,y=-2围成的正方形有交点,求a的取值范围.若二次函数y=ax2+2的图象经过点(-2,10),求a的值和这个函数的最值.把二次函数y=a(x-h)2+k的图象先向左平移2个单位长度,再向上平移4个单位长度,得到二次函数y=-(x+1)2-1的图象.小题1.试确定a,h,k的值.小题2.指出二次函数y=a(x-h)2+k图象的开口方向、对称轴和顶点坐标.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=-x2+6x上一点,且在x轴上方,求△BCD面积的最大值.如图,抛物线向右平移1个单位长度得到的抛物线y2,回答下列问题:小题1.抛物线y2的解析式是____,顶点坐标为____.小题2.阴影部分的面积S=____.小题3.若再将抛物线y2绕原点O旋转180°得到抛物线y3,则抛物线y3的解析式为____,开口方向____,顶点坐标为____.已知函数(m为常数).小题1.该函数的图象与轴公共点的个数是小题2.求证:不论m为何值,该函数的图象的顶点都在函数的图象上.小题3.当-2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.已知点在抛物线的图象上,设点A关于抛物线对称轴对称的点为B.小题1.求点B的坐标.小题2.求∠AOB度数.当时,二次函数有最大值4,求实数m的值.把函数的图象向右平移4个单位.1小题1.请直接写出平移后所得的抛物线的函数解析式.小题2.若平移后抛物线的顶点为C,并与直线分别交于A,B两点(点A在点B的左侧),求△ABC的面积.。

二次函数图像和性质习题精选(含答案及解析)

二次函数图像和性质习题精选(含答案及解析)

二次函数图像和性质习题精选一.选择题(共30小题)1.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.2.函数y=ax2+1与y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.3.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.4.已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.5.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个6.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=D.当﹣1<x<2时,y>0C.当x<,y随x的增大而减小7.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=x2+bx+c的顶点,则方程x2+bx+c=1的解的个数是()A.0或2 B.0或1 C.1或2 D.0,1或28.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6B.5C.4D.39.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大11.如图,二次函数的图象经过(﹣2,﹣1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0 B.当x=0时,y的值大于1C.当x=﹣1时,y的值大于1 D.当x=﹣3时,y的值小于012.设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A.c=3 B.c≥3 C.1≤c≤3 D.c≤313.如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是()A.h=m B.k=n C.k>n D.h>0,k>014.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a>0;②该函数的图象关于直线x=1对称;③当x=﹣1或x=3时,函数y的值都等于0.其中正确结论的个数是()A.3B.2C.1D.015.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a c<0B.当x=1时,y>0C.方程ax2+bx+c=0(a≠0)有两个大于1的实数根D.存在一个大于1的实数x0,使得当x<x0时,y随x的增大而减小;当x>x0时,y随x的增大而增大16.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1 C.1D.217.下列图中阴影部分的面积相等的是()A.①②B.②③C.③④D.①④18.已知抛物线y=ax2+bx+c(a<0)的部分图象如图所示,当y>0时,x的取值范围是()A.﹣2<x<2 B.﹣4<x<2 C.x<﹣2或x>2 D.x<﹣4或x>219.已知:二次函数y=x2﹣4x﹣a,下列说法错误的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2﹣4x+a<0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=320.下列表格给出的是二次函数y=ax2+bx+c(a≠0)的几组对应值,那么方程ax2+bx+c=0的一个近似解可以是()x 3.3 3.4 3.5 3.6y ﹣0.06 ﹣0.02 0.03 0.09A.3.25 B.3.35 C.3.45 D.3.5521.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=3时,y<0 D.方程ax2+bx+c=0有两个相等实数根A.x>2 B.x<﹣2 C.x>0 D.﹣2<x<823.在﹣3≤x≤0范围内,二次函数(a≠0)的图象如图所示.在这个范围内,有结论:①y1有最大值1、没有最小值;②y1有最大值1、最小值﹣3;③函数值y1随x的增大而增大;④方程ax2+bx+c=2无解;⑤若y2=2x+4,则y1≤y2.其中正确的个数是()A.2B.3C.4D.524.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …﹣2 ﹣1 1 3 4 …y …0 4 6 4 0 …根据上表判断下列四种说法:①抛物线的对称轴是x=1;②x>1时,y的值随着x的增大而减小:③抛物线有最高点:④抛物线的顶点、与x轴的两个交点三点为顶点的三角形的面积为36.其中正确说法的个数有()A.1B.2C.3D.425.如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A.(2,3)B.(3,2)C.(3,3)D.(4,3)26.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;A.①②④B.①②⑤C.①③⑤D.②④⑤27.已知二次函数y=x2+2(a﹣1)x+2.如果x≤4时,y随x增大而减小,则常数a的取值范围是()A.a≥﹣5 B.a≤﹣5 C.a≥﹣3 D.a≤﹣328.如图,平行于y轴的直线l被抛物线y=0.5x2+1,y=0.5x2﹣1所截,当直线l向右平移3个单位时,直线l被两条抛物线所截得的线段扫过的图形面积为()平方单位.A.3B.4C.6D.无法可求29.已知直线经过点A(0,2),B(2,0),点C在抛物线y=x2的图象上,则使得S△ABC=2的点有()个.A.4B.3C.2D.130.如图,已知抛物线,直线y2=3x+3,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>0时,y1>y2;②使得M大于3的x值不存在;③当x<0时,x值越大,M值越小;④使得M=1的x 值是或.其中正确的是()A.①③B.②④C.①④D.②③二次函数图像和性质习题精选(含答案)参考答案与试题解析一.选择题(共30小题)1.(2014•宁夏)已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.考点:二次函数的图象;正比例函数的图象.专题:数形结合.分析:本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象相比较看是否一致.(也可以先固定二次函数y=ax2图象中a 的正负,再与一次函数比较.)解答:解:A、函数y=ax中,a>0,y=ax2中,a>0,但当x=1时,两函数图象有交点(1,a),故A错误;B、函数y=ax中,a<0,y=ax2中,a>0,故B错误;C、函数y=ax中,a<0,y=ax2中,a<0,但当x=1时,两函数图象有交点(1,a),故C正确;D、函数y=ax中,a>0,y=ax2中,a<0,故D错误.故选:C.点评:函数中数形结合思想就是:由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.2.(2014•北海)函数y=ax2+1与y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.考点:二次函数的图象;反比例函数的图象.分析:分a>0和a<0两种情况讨论二次函数和反比例函数图象所在的象限,然后选择答案即可.解答:解:a>0时,y=ax2+1开口向上,顶点坐标为(0,1),y=位于第一、三象限,没有选项图象符合,a<0时,y=ax2+1开口向下,顶点坐标为(0,1),y=位于第二、四象限,B选项图象符合.故选:B.点评:本题考查了二次函数图象与反比例函数图象,熟练掌握系数与函数图象的关系是解题的关键.3.(2014•遵义)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.解答:解:A、由二次函数的图象可知a<0,此时直线y=ax+b经过二、四象限,故A可排除;B、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、四象限,故B可排除;C、二次函数的图象可知a>0,此时直线y=ax+b经过一、三,故C可排除;正确的只有D.故选:D.点评:此题主要考查了一次函数图象与二次函数图象,应该识记一次函数y=kx+b 在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.4.(2014•南昌)已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数k<﹣1,再与二次函数的图象的开口方向和对称轴的位置相比较看是否一致,最终得到答案.解答:解:∵函数y=的图象经过二、四象限,∴k<0,由图知当x=﹣1时,y=﹣k>1,∴k<﹣1,∴抛物线y=2kx2﹣4x+k2开口向下,对称为x=﹣=,﹣1<<0,∴对称轴在﹣1与0之间,故选:D.点评:此题主要考查了二次函数与反比例函数的图象与系数的综合应用,正确判断抛物线开口方向和对称轴位置5.(2014•泰安)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个考点:二次函数的性质;二次函数图象与系数的关系;抛物线与x轴的交点;二次函数与不等式(组).专题:图表型.分析:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.解答:解:(1)由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;(2)∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x>1.5时,y的值随x值的增大而减小,故(2)错误;(3)∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;(4)∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+(b﹣1)x+c>0,故(4)正确.故选:B.点评:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.6.(2014•广东)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.D.当﹣1<x<2时,y>0当x<,y随x的增大而减小考点:二次函数的性质.专题:数形结合.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.7.(2014•盘锦)如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=x2+bx+c 的顶点,则方程x2+bx+c=1的解的个数是()A.0或2 B.0或1 C.1或2 D.0,1或2考点:二次函数的性质.专题:数形结合;分类讨论;方程思想.分析:分三种情况:点M的纵坐标小于1;点M的纵坐标等于1;点M的纵坐标大于1;进行讨论即可得到方程x2+bx+c=1的解的个数.解答:解:分三种情况:点M的纵坐标小于1,方程x2+bx+c=1的解是2个不相等的实数根;点M的纵坐标等于1,方程x2+bx+c=1的解是2个相等的实数根;点M的纵坐标大于1,方程x2+bx+c=1的解的个数是0.故方程x2+bx+c=1的解的个数是0或1或2.故选:D.点评:考查了二次函数的性质,本题涉及分类思想和方程思想的应用.8.(2014•淄博)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6B.5C.4D.3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B到对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.9.(2013•徐州)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x …﹣3 ﹣2 ﹣1 0 1 …y …﹣3 ﹣2 ﹣3 ﹣6 ﹣11 …则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)考点:二次函数的性质.专题:压轴题.分析:根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.解答:解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选B.点评:本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.10.(2013•南宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大考点:二次函数的性质.分析:根据对称轴及抛物线与x轴交点情况,结合二次函数的性质,即可对所得结论进行判断.解答:解:A、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确,故本选项不符合题意;B、观察图象,可知抛物线的顶点坐标为(1,﹣4),又抛物线开口向上,所以函数y=ax2+bx+c(a≠0)的最小值是﹣4,正确,故本选项不符合题意;C、由图象可知抛物线与x轴的一个交点为(﹣1,0),而对称轴为直线x=1,所以抛物线与x轴的另外一个交点为(3,0),则﹣1和3是方程ax2+bx+c=0(a≠0)的两个根,正确,故本选项不符合题意;D、由抛物线的对称轴为x=1,所以当x<1时,y随x的增大而减小,错误,故本选项符合题意.故选D.点评:此题考查了二次函数的性质和图象,解题的关键是利用数形结合思想解题.11.(2012•济南)如图,二次函数的图象经过(﹣2,﹣1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0 B.当x=0时,y的值大于1C.当x=﹣1时,y的值大于1 D.当x=﹣3时,y的值小于0考点:二次函数的图象;二次函数的性质.专题:压轴题.分析:根据图象的对称轴的位置、增减性及开口方向直接回答.解答:解:A、由图象知,点(1,1)在图象的对称轴的左边,所以y的最大值大于1,不小于0;故本选项错误;B、由图象知,当x=0时,y的值就是函数图象与y轴的交点,而图象与y轴的交点在(1,1)点的左边,故y<1;故本选项错误;C、对称轴在(1,1)的右边,在对称轴的左边y随x的增大而增大,∵﹣1<1,∴x=﹣1时,y的值小于x=1时,y的值1,即当x=﹣1时,y的值小于1;故本选项错误;D、当x=﹣3时,函数图象上的点在点(﹣2,﹣1)的左边,所以y的值小于0;故本选项正确.故选D.点评:本题主要考查了二次函数图象上点的坐标特征.解答此题时,需熟悉二次函数图象的开口方向、对称轴、与x轴的交点等知识.12.(2012•德阳)设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A.c=3 B.c≥3 C.1≤c≤3 D.c≤3考点:二次函数的性质.专题:压轴题.分析:因为当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,所以函数图象过(1,0)点,即1+b+c=0①,由题意可知当x=3时,y=9+3b+c≤0②,所以①②联立即可求出c的取值范围.解答:解:∵当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴函数图象过(1,0)点,即1+b+c=0①,∵当1≤x≤3时,总有y≤0,∴当x=3时,y=9+3b+c≤0②,①②联立解得:c≥3,故选B.点评:本题考查了二次函数的增减性,解题的关键是由给出的条件得到抛物线过(1,0),再代入函数的解析式得到一次项系数和常数项的关系.13.(2009•新疆)如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是()A.h=m B.k=n C.k>n D.h>0,k>0考点:二次函数的图象.专题:压轴题.分析:借助图象找出顶点的位置,判断顶点横坐标、纵坐标大小关系.解答:解:根据二次函数解析式确定抛物线的顶点坐标分别为(h,k),(m,n),因为点(h,k)在点(m,n)的上方,所以k=n不正确.故选:B.点评:本题是抛物线的顶点式定义在图形中的应用.14.(2009•丽水)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a>0;②该函数的图象关于直线x=1对称;③当x=﹣1或x=3时,函数y的值都等于0.其中正确结论的个数是()A.3B.2C.1D.0考点:二次函数的性质.分析:根据抛物线的性质解题.解答:解:①抛物线开口向下,a<0,所以①错误;②抛物线是关于对称轴对称的轴对称图形,所以②该函数的图象关于直线x=1对称,正确;③当x=﹣1或x=3时,函数y的值都等于0,也正确.故选B.点评:本题考查了抛物线的开口方向,轴对称性和与x轴的交点等知识.15.(2009•南昌)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a c<0B.当x=1时,y>0C.方程ax2+bx+c=0(a≠0)有两个大于1的实数根D.存在一个大于1的实数x0,使得当x<x0时,y随x的增大而减小;当x>x0时,y随x的增大而增大考点:二次函数的性质.专题:压轴题.分析:根据抛物线的形状与抛物线表达式系数的关系,逐一判断.解答:解:A、抛物线开口向上,a>0,抛物线与y轴交于正半轴,c>0,所以ac>0,错误;B、由图象可知,当x=1时,y<0,错误;C、方程ax2+bx+c=0(a≠0)有一个根小于1,一个根大于1,错误;D、存在一个大于1的实数x0,使得当x<x0时,y随x的增大而减小;当x>x0时,y随x的增大而增大,正确.故选D.点评:本题考查抛物线的形状与抛物线表达式系数的关系,涉及的知识面比较广.16.(2008•仙桃)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1 C.1D.2考点:二次函数的图象.专题:压轴题.分析:由“对称轴是直线x=1,且经过点P(3,0)”可知抛物线与x轴的另一个交点是(﹣1,0),代入抛物线方程即可解得.解答:解:因为对称轴x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选A.点评:巧妙利用了抛物线的对称性.17.(2007•烟台)下列图中阴影部分的面积相等的是()A.①②B.②③C.③④D.①④考点:二次函数的图象;一次函数的图象;反比例函数的图象.专题:压轴题.分析:根据坐标系的点的坐标特点,分别求出三角形的底和高,计算面积,再比较.解答:解:①与坐标轴的两个交点为(0,2)(2,0),阴影部分的面积为2×2÷2=2;②当x=1时,y=3,阴影部分的面积为1×3÷2=1.5;③与x轴的两个交点的横坐标为﹣1,1,两点间的距离为:1﹣(﹣1)=2,与y轴的交点为(0,﹣1).阴影部分的面积为2×1÷2=1;④当x=1时,y=4,阴影部分的面积为1×4÷2=2.①④面积相等.故选D.点评:解决本题的关键是根据各函数的特点得到相应的三角形的边以及边上的高.18.(2007•达州)已知抛物线y=ax2+bx+c(a<0)的部分图象如图所示,当y>0时,x的取值范围是()A.﹣2<x<2 B.﹣4<x<2 C.x<﹣2或x>2 D.x<﹣4或x>2考点:二次函数的图象.专题:压轴题.分析:先根据对称轴和抛物线与x轴的交点求出另一交点;再根据开口方向,结合图形,求出y>0时,x的取值范围.解答:解:因为抛物线过点(2,0),对称轴是x=﹣1,根据抛物线的对称性可知,抛物线必过另一点(﹣4,0),因为抛物线开口向下,y>0时,图象在x轴的上方,此时,﹣4<x<2.故选B.点评:解答本题,利用二次函数的对称性,关键是判断图象与x轴的交点,根据开口方向,形数结合,得出结论.19.(2007•泰州)已知:二次函数y=x2﹣4x﹣a,下列说法错误的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2﹣4x+a<0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=3考点:二次函数的性质;二次函数图象与几何变换;抛物线与x轴的交点;二次函数与不等式(组).专题:压轴题.分析:A、当x<1时,在对称轴右侧,由此可以确定函数的单调性;B、若图象与x轴有交点,即△=16+4a≥0,利用此即可判断是否正确;C、当a=3时,不等式x2﹣4x+a<0的解集可以求出,然后就可以判断是否正确;D、根据平移规律可以求出a的值,然后判断是否正确.解答:解:二次函数为y=x2﹣4x﹣a,对称轴为x=2,图象开口向上.则:A、当x<1时,y随x的增大而减小,故选项正确;B、若图象与x轴有交点,即△=16+4a≥0则a≥﹣4,故选项错误;C、当a=3时,不等式x2﹣4x+a<0的解集是1<x<3,故选项正确;D、原式可化为y=(x﹣2)2﹣4﹣a,将图象向上平移1个单位,再向左平移3个单位后所得函数解析式是y=(x+1)2﹣3﹣a.函数过点(1,﹣2),代入解析式得到:a=3.故选项正确.故选B.点评:此题主要考查了二次函数的性质与一元二次方程之间的关系,以及图象的平移规律.这些性质和规律要求掌握.20.(2009•塘沽区一模)下列表格给出的是二次函数y=ax2+bx+c(a≠0)的几组对应值,那么方程ax2+bx+c=0的一个近似解可以是()x 3.3 3.4 3.5 3.6y ﹣0.06 ﹣0.02 0.03 0.09A.3.25 B.3.35 C.3.45 D.3.55考点:图象法求一元二次方程的近似根.分析:把三点代入解方程式,则代入y等于0时,x的值是多少即可.解答:解:代入各点坐标解得y=0.5x2﹣2.95x+4.23解得x=3.47左右则C最符合,故选C.点评:本题考查了一元二次方程的近似根,代入求近似值,再进行对比则最接近的即可.21.(2010•徐汇区一模)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=3时,y<0 D.方程ax2+bx+c=0有两个相等实数根考点:图象法求一元二次方程的近似根.专题:计算题.分析:结合图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是x=1,顶点坐标为(1,3),借助(0,1)两点可求出二次函数解析式,从而得出抛物线的性质.解答:解:∵由图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是x=1,顶点坐标为(1,3),∴二次函数解析式为:y=a(x﹣1)2+3,再将(0,1)点代入得:1=a(﹣1)2+3,解得:a=﹣2,∴y=﹣2(x﹣1)2+3,∵a<0∴A,抛物线开口向上错误,故:A错误;∵y=﹣2(x﹣1)2+3=﹣2x2+4x+1,与y轴交点坐标为(0,1),故与y轴交于正半轴,故:B错误;∵x=3时,y=﹣5<0,故:C正确;∵方程ax2+bx+c=0,△=16+4×2×1=22>0,此方程有两个不相等的实数根,故:D.方程有两个相等实数根错误;故选:C.点评:此题主要考查了二次函数解析式的求法,以及由解析式求函数与坐标轴的交点以及一元二次方程根的判别式的应用.22.(2013•沙湾区模拟)已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2)(如图所示),则能使y1<y2成立的x的取值范围是()A.x>2 B.x<﹣2 C.x>0 D.﹣2<x<8考点:二次函数的性质.分析:根据两函数交点坐标得出,能使y1<y2成立的x的取值范围即是图象y2在图象y1上面是x的取值范围,即可得出答案.解答:解:∵二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2),∵结合图象,∴能使y1<y2成立的x的取值范围是:﹣2<x<8,故选:D.点评:此题主要考查了利用函数图象判定两函数的大小关系,此题型是中考中考查重点也是难点,同学们应熟练掌握.23.(2012•北辰区一模)在﹣3≤x≤0范围内,二次函数(a≠0)的图象如图所示.在这个范围内,有结论:①y1有最大值1、没有最小值;②y1有最大值1、最小值﹣3;③函数值y1随x的增大而增大;④方程ax2+bx+c=2无解;⑤若y2=2x+4,则y1≤y2.其中正确的个数是()A.2B.3C.4D.5考点:二次函数的性质;二次函数的图象.专题:数形结合.分析:根据二次函数的性质,结合图象可判断①②③;根据二次函数与一元二次方程的关系可判断④;求出y2=2x+4与两坐标轴的交点画出直线y=2x+4,求出抛物线的解析式,根据y2﹣y1的符号即可判断出⑤.解答:解:由图象可知,在﹣3≤x≤0范围内,y1有最大值1、最小值﹣3,故①错误,②正确;由图象可知,当﹣3≤x<﹣1时,y1随x的增大而增大,当﹣1<x<0时,y1随x的增大而减小,故③错误;由于y1的最大值是1,所以y1=ax2+bx+c与y=2没有交点,即方程ax2+bx+c=2无解,故④正确;如图所示,由于y2=2x+4经过点(0,4),(﹣2,0),由图可知,二次函数(a≠0)中,当x=1时,y=﹣1;x=﹣2时,y=0,所以,解得,故此二次函数的解析式为y1=﹣x2﹣2x,所以y2﹣y1=2x+4+x2+2x=(x+2)2,因为=(x+2)2≥0,所以y1≤y2,故⑤正确.故选B.点评:本题考查的是二次函数的性质,能利用数形结合求出不等式的解集是解答此题的关键.24.(2011•苏州模拟)抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …﹣2 ﹣1 1 34…y …0 4 6 4 0 …根据上表判断下列四种说法:①抛物线的对称轴是x=1;②x>1时,y的值随着x的增大而减小:③抛物线有最高点:④抛物线的顶点、与x轴的两个交点三点为顶点的三角形的面积为36.其中正确说法的个数有()A.1B.2C.3D.4考点:二次函数的性质.专题:计算题.分析:根据抛物线的对称性,抛物线的顶点坐标为(1,6),且函数值6为最大值,由此判断.解答:解:观察表格可知,抛物线的顶点坐标为(1,6),且抛物线开口向下,故①②③正确;∵抛物线与x轴的两个交点为(﹣2,0),(4,0),顶点坐标为(1,6),∴抛物线的顶点、与x轴的两个交点三点为顶点的三角形的面积为×(4+2)×6=18,故④错误.其中正确说法是①②③.故选C.点评:本题考查了二次函数的性质.关键是由表格观察出抛物线的顶点坐标,开口方向及与x轴交点坐标.25.(2010•河北)如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A.(2,3)B.(3,2)C.(3,3)D.(4,3)考点:二次函数的性质.专题:综合题;压轴题.分析:已知抛物线的对称轴为x=2,知道A的坐标为(0,3),由函数的对称性知B点坐标.解答:解:由题意可知抛物线的y=x2+bx+c的对称轴为x=2,∵点A的坐标为(0,3),且AB与x轴平行,可知A、B两点为对称点,∴B点坐标为(4,3)故选D.点评:本题主要考查二次函数的对称性.26.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤考点:二次函数的性质.专题:压轴题.分析:根据二次函数图象反映出的数量关系,逐一判断正确性.解答:解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选B.点评:主要考查了二次函数的性质,会根据图象获取所需要的信息.掌握函数性质灵活运用.27.已知二次函数y=x2+2(a﹣1)x+2.如果x≤4时,y随x增大而减小,则常数a的取值范围是()A.a≥﹣5 B.a≤﹣5 C.a≥﹣3 D.a≤﹣3考点:二次函数的性质.分析:抛物线开口向上,由x≤4时,y随x增大而减小,可知对称轴x=1﹣a≥4,解不等式即可.解答:解:∵二次函数对称轴为直线x=1﹣a,开口向上,∴当x≤1﹣a时,y随x增大而减小,∴1﹣a≥4,解得a≤﹣3.故选D.点评:本题考查了二次函数的增减性.抛物线开口向上时,在对称轴左边,y随x的增大而减小,右边y随x的增大而增大;抛物线开口向下时,在对称轴左边,y随x的增大而增大,右边y随x的增大而减小.28.如图,平行于y轴的直线l被抛物线y=0.5x2+1,y=0.5x2﹣1所截,当直线l向右平移3个单位时,直线l被两条抛物线所截得的线段扫过的图形面积为()平方单位.A.3B.4C.6D.无法可求考点:二次函数的性质.分析:由于抛物线y=0.5x2+1是y=0.5x2﹣1向上平移2个单位长度得到的,平行于y轴的直线l与2个函数图象的交点纵坐标是个定值2,通过截补法可知阴影部分的面积是6个单位长度.解答:解:抛物线y=0.5x2+1是y=0.5x2﹣1向上平移2个单位长度得到的,即|y1﹣y2|=2.当直线l向右平移3个单位时,阴影部分的面积是:2×3=6.故选C.点评:主要考查了函数图象动态变化中的不变量,本题的关键点是能看出阴影部分的面积通过截补法是个平行四边形.29.已知直线经过点A(0,2),B(2,0),点C在抛物线y=x2的图象上,则使得S△ABC=2的点有()个.A.4B.3C.2D.1考点:二次函数的性质.专题:计算题;压轴题.分析:解:通过计算发现,当O与C重合时,S△ABC=2,据此据此推断出以AB为底边的三角形的高,从图上找到点C1、C2,再作CC3∥AB,使得C3与C到AB的距离相等,若求出C的坐标,则存在C3点,使得以AB为底的三角形面积为2.解答:解:∵S△ABC=×2×2=2,可见,当O与C重合时,S△ABC=2,作CD⊥AB,∵AO=BO=2,。

二次函数的图像和性质基础练习题

二次函数的图像和性质基础练习题

二次函数的图像和性质基础练习题班级:_________姓名:___________得分:__________一、选择题:1、下列函数是二次函数的有2y?1?x2;y?2;y?x;y?ax2?bx?c;y?2x?1 y=22-2x2xA、1个;B、2个;C、3个;D、4个. y=2+2的对称轴是直线A.x=-1 B.x=1C.y=-1 D.y=1. 抛物线y??x?2?2?1的顶点坐标是A. B.C.D.. 函数y=-x-4x+3图象顶点坐标是A.B.C. D.2125.已知二次函数y?mx2?x?m的图象经过原点,则m的值为图A. 0或B. 0 C. D.无法确定26.函数y=2x-3x+4经过的象限是A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限7.已知二次函数y?ax2?bx?c的图象如图5所示,有下列结论:①abc?0;②a+b+c>0③a-b+c D.4个138、已知二次函数y1??3x2、y2??x2、y3?x2,它们的图像开口由小到大的顺序是32A、y1?y2?y3B、y3?y2?y1C、y1?y3?yD、y2?y3?y112x+3x-5的形状、开口方向都相同,只有位置不同的抛物线是111y = x2+3x-5 y=-x2y =x2+3x-5 y=x222210.正比例函数y=kx的图象经过二、四象限,则抛物线y=kx2-2x+k2的大致图象是B.2个 C.3个9、与抛物线y=-11.把二次函数y?x2?2x?1配方成顶点式为A.y?B. y?2? C.y?2?1 D.y?2?2112.对于抛物线y??2?3,下列说法正确的是33) A.开口向下,顶点坐标 C.开口向下,顶点坐标 B.开口向上,顶点坐标 D.开口向上,顶点坐标2y?3 y?32?y?32?2?2y?32?215.在同一直角坐标系中,函数y?mx?m和y??mx2?2x?2的图象可能是..A.B.C.D.二、填空题:11、抛物线y?2?4可以通过将抛物线y=向平移____个单位、3再向平移个单位得到。

专题01 二次函数的图象与性质重难点题型专训(原卷版)

专题01 二次函数的图象与性质重难点题型专训(原卷版)

【题型目录】题型一a< a>0向上向下增减性在对称轴的左侧,即当时,y 随x 的增大而减小;在对称轴的右侧,即当时,y 随x 的增大而增大.简记:左减右增在对称轴的左侧,即当时,y 随x 的增大而增大;在对称轴的右侧,即当时,y 随x 的增大而减小.简记:左增右减最大(小)值抛物线有最低点,当时,y 有最小值,抛物线有最高点,当时,y 有最大值, 知识点三:二次函数的图象与a ,b ,c 的关系学生对二次函数中字母系数a 、b 、c 及其关系式的符号判断常有些不知所措,这里介绍几个口诀来帮助同学们解惑.1.基础四看“基础四看”是指看开口,看对称轴,看与y 轴的交点位置,看与x 轴的交点个数.“四看”是对二次函数y =ax 2+bx +c (a ≠0)的图象最初步的认识,而且这些判断都可以通过图象直接得到,同时还可以在此基础上进行一些简单的组合应用.2.组合二看 (1)三全看点在a 、b 、c 间的加减组合式中,最常见的如“a +b +c",“a -b +c”,“4a +2b +c”,“4a -2b +c”等类型的式子,这类式子a 、b 、c 三个字母都在,并且c 的系数通常为1,这时只要取x 为b 前的系数代入二次函数y =ax 2+bx +c 就可以得到所需的形式,从而由其对应的y 的值时进行判断即可. (2)有缺看轴当a 、b 、c 三个字母只出现两个间的组合时,这时对同学们来讲难度是较大的,如何解决呢?其实我们只要想一想为什么会少一个字母,这个问题就可以较好的解决.少一个字母的原因就是因为有对称轴为我们提供了a 、b 之间的转换关系,如果少的是字母c ,则直接用对称轴提供的信息即可解决;如果少的是字母a 或b ,则可利用对称轴提供的a 、b 间转换信息,把a (或b )用b (或a )代换即可.3.取值计算当解题感到无从下手时,可以尝试取值法,只要根据函数图象的特点及所给出的数据(或范围),取相应点坐标代入函数的解析式中,求出其字母系数,即可进行相关判断.2b x a <-2b x a>-2b x a<-2b x a>-2b x a =-244ac b y a -=最小值2bx a=-244ac b y a-=最大值二次函数的图象与系数之间的关系,解题的关键是弄清楚图象的开口方向、对称轴的位置、与坐标轴的交点及其图象中特殊点的位置,确定出,,a b c 与0的大小关系及含有,,a b c 的代数式的值的大小关系. (1)a 决定开口方向:当0a >时抛物线开口向上;当0a <时抛物线开口向下.(2),a b 共同决定抛物线的对称轴位置:当,a b 同号时,对称轴在y 轴左侧;当,a b 异号时,对称轴在y 轴右侧(可以简称为“左同右异”);当0b =时,对称轴为y 轴.(3)c 决定与y 轴交点的纵坐标:当0c >时,图象与y 轴交于正半轴;当0c =时,图象过原点;当0c <时,图象与y 轴交于负半轴.(4) 24b ac -的值决定了抛物线与x 轴交点的个数:当240b ac ->时,抛物线与x 轴有两个交点;当240b ac -=时,抛物线与x 轴有一个交点;当240b ac -<时,抛物线与x 轴没有交点.(5) a b c ++的符号由1x =时,y 的值确定:若0y >,则0a b c ++>;若0y <,则0a b c ++<. (6) a b c -+的符号由1x =-时,y 的值确定:若0y >,则0a b c -+>;若0y <,则0a b c -+<.知识点四:二次函数图象的平移由二次函数的性质可知,抛物线2()y a x h k =-+(0a ¹)的图象是由抛物线2y ax =(0a ¹)的图象平移得到的.在平移时,a 不变(图象的形状、大小不变),只是顶点坐标中的h 或k 发生变化(图象的位置发生变化)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B.最小值-3
D.最小值1
面积为y.则当y
最 二次函数及其图像练习题
1. 二次函数y=2 (x-3)之+5的图象的开口方向、对称轴和顶点坐标分别为()
A. 开口向上,对称轴x=3,顶点坐标为(3, 5)
B. 开口向下,对称轴x=3,顶点坐标为(3, 5)
C. 开口向上,对称轴炉-3,顶点坐标为(-3, 5)
D. 开口向上,对称轴x=-3,顶点坐标为(-3, -5)
2. 与y 二2 (x-1T+3形状相同的抛物线解析式为( )
A. y=l + -x 2
B. y=(2x+l)2 2
C. y=(x-l)2
D. y=2x 2
3. 把 y 二-X 2-4X +2 化成 y=a(x+m)2+n 的形式是( )
A. y=- (x-2)吭2
B. y=- (x-2) 2+6
C. y=-(x+2)2-2
D. y 二-(x+2)々6
4. 如图所示,抛物线的顶点P 的坐标是(1, -3),则此抛物线对应的二次函数有 ()
A.最大值1 C.最大值-3 5. 函数y.二x?+px+q 的图象是(3, 2)为顶点的抛物线,则这个函数的解析式是()
A. y=x 2+6x+l 1
B. y=x 2-6x-ll
C. y=x 2-6x+l 1
D. y=x 2-6x+7
6. 如图所示,把■段长l.6m 的铁丝围长方形ABCD,设宽为x, 大时,x 所取的值是()
A. 0. 5
B. 0. 4
C. 0. 3
D. 0.6
7. 一次函数y 二x'+4x+a 的最小值是2,则a 的值是()
A. 4
B. 5
C. 6
D. 7 D A B
8.二次函数y=x2+2x-5取最小值时,自变量x的值是()
A. 2
B. -2
C. 1
D.-1
9.抛物线y-2(x-l)2的对称轴是,顶点坐标是,图象开口向
10.函数y=2x2-8x+l,当户时,函数有最值,是
11.写出一个开口向上,顶点坐标是(2, -3)的函数解析式・
12.如图,杠高2. 2米,两立柱之间的距离为1.6米,将一根绳子的两端拴于立
柱与铁杠结合处,绳子自然下垂呈抛物线状.
(1)如图(1)所示,一身高为0.7米的小孩站在离立柱0.4米处,其头部刚好
触上绳子,求绳子最低点到地面的距离;
(2)如图(2)所示,为供孩子们打秋千,把绳子剪断后,中间系一块K 0.4米
的木板.除掉系木板用的绳子后,两边的绳予恰好各为2米,木板与地面平行,求
这时木板到地面的距
⑴⑵
5
.中考演练
1. (08南昌)将抛物线y = -3J 向上平移一个单位后,得到的抛物线解析式 是. f y
2. (07四川)如图1所示的抛物线是二次函数
y = ax 2 -3x + a 2的图象,那么。

的值是 ______ ・ ---- _^L
3. (08贵阳)二次函数),= (x-顶+2的最小值是( ) °|
图1
A. -2
B. 2
C. -1
D. 1 ㊂
4. (08沈阳)二次函数),= 2(x-1尸+3的图象的顶点坐标是( )
A. (1,3)
B. ( —1,3)
C. (1,—3)
D. ( — 1,—3)
二次函数y = ax 2 +bx + c 的图象如图所示, A. tz>0, b <0, c > 0 B. ovO, &<0, c>0
C. a <0, b> 0, c <0
D. 。

< 0, Z?〉0, c 〉0
6. 如图,直线y = x^m 和抛物线y = x 2 +bx^c 都经过点A (L 0), B (
3, 2) (1) 求m 的值和抛物线的解析式;
(2) 求不等式x 2 +bx-\-c> x + m 的解集.
(直接写出答案)
7. 抛物线),= (]-2)2的顶点坐标是.
8. 请写出一个开口向上,对称轴为直线x = 2,且与y 轴的交点坐标为
(0, 3)的
抛物线的解析式.
则下列结论正确的是
( y
9.(07江西)己知二次函数y = -^+2x + m的部分图象如右图所示,则关于x的一
元二次方程_ / + 2尤+ m = 0的解为
10.函数=ax2与),=以+力(。

>0,/?>0)在同一坐标系中的大致图象是(
A B C D
2/3 4 x
11. (06资阳)己知函数y=x-2x-2的图象如图1所示,根据其中提供的信息,可
求得使y 》l 成立的x 的取值范围是( )
A. TWxW3
B. -3WxWl
C. xN-3
D. xWT 或 xN3
12. (06浙江)二次函数y = ax 2
+ bx + c ( a ^0 )的图象如图所示,则下列结论:
@67 >0;②c>0;③/顶-4。

>0,其中正确的个数是( )
A. 0个 B ・1个 C. 2个 D. 3个
13. 已知二次函数),=破2_4工+ 3的图象经过点(T, 8). (1) 求此二次函数的解析式;
(2) 当函数值y<0H 、j, x 的取值范围是什么?
(房
R ]题)
x'-2x-2 (第/12题)。

相关文档
最新文档