§2.7 变质量物体的运动
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 ( Mt t 2 ) g ds (2Mt t 2 ) g (2Mt 2t 2 ) g 2 v dt M t 2( M t ) 2 ( M t ) (2Mt 2t 2 ) g M 2 g M 2 g ( M t )tg Mg ( M t ) M 2 g 2 ( M t ) 2 ( M t ) 1 1M M 2 / 2 gt g g 2 2 M t
将Δm ,m ,视为一质点组,外力矢量和为F,
则由动量定理得:(m m)(v v ) mv mu Ft mv mv mu mv Ft
dv dm m (u v ) F dt dt d (mv ) dm ——米歇尔斯基方程 uF dt dt 3.特例: 1)若u=0,即并入前或放出后的Δm绝对静止,则
§2.7 变质量物体的运动 一、变质量物体的运动方程 1.当物体m(主体物)在运动中,随时间t增长不断地有 质量放出或并入, 称为变质量物体的运动。 一般有m=m(t), 如:喷气式飞机, 火箭,下落的雨滴. 2.运动方程 t时刻,主体物m,v(绝对速度),放出或并入微元质 量为Δm,u
t+Δt时刻,Δm与m合并,Δm +m的速度为v+Δv
d (mv ) F dt dv F 2)若u=v,则 m dt dv dm m 3)对火箭: F (u v ) F Fr dt dt
t 0, mv 0
dm dm dm Fr 源自 (u v ) vr vr | |i dt dt dt
dm 解: dt
积分得, m(t ) M t
u 0, F mg (M t ) g
v t dmv 1 2 ( M t ) g d [( M t )v] ( M t ) gdt (Mt t ) g 0 0 dt 2
1 2 积分得: ( M t )v ( Mt t ) g C1 2 1 2 ( Mt t ) 2 因为:t=0,v=0故 C1 0 v g ( M t )
—反推力,与运动方向相同
4.注意: 1) 2) 变质量是指主体物m=m(t),质点组总质量不 变. 并入dm>0,分出dm<0
3) u是Δm并入前或分出后的瞬时速度,F为作用 于m,Δm上的外力矢量和。
例:雨点开始下落时的质量为M,在下落过程中,单位时 间内凝结上的水蒸气λ,略去空气的阻力,求雨点在t秒 后下落的距离.
1 2 1M M 2g s gt gt ln(M t ) C 2 4 2 2
M g t 0, s 0 C ln M 2 2 2 1 1 2 M M t s g[ t t 2 ln(1 ) 2 2 M
2