19.1.1平行四边形的性质课件(一)
合集下载
平行四边形的性质说课ppt课件

19.1.1平行四边形的性质
1、平行四 平行四边 例1
边形的定义 形的性质
及记法
证明
2、平行四 边形的性质
例2
练习1 练习2
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
教学评价
总之,这节课是本着学生是学习活动的 主人,教师是学习活动的引导者、组织 者和参与者,在此过程中,教师始终关 注学生学习的情绪体验,注重对学习过 程的评价.通过归纳整理,培养学生善 于反思的良好学习习惯,为自身的发展 打下坚实基础.
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
教材分析 教法分析 学法分析 教学过程 板书设计 教学评价
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
教法分析
1、利用直观形象的图片、模型,引导学生在观察、 操作、猜测、验证与交流等数学活动中发现平行 四边形的性质.发挥学生的观察能力、联想力, 大胆猜测平行四边形的性质.
2、坚持以学生为主体,教师为指导,让学生在教 师的指导下自始至终处于积极思维,主动探究的 学习状态.
3、为了增大教学容量,提高教学效率,本节课采 用三角形和平行四边形硬纸片,彩色粉笔,多媒 体进行辅助教学.
教材分析
3、教学重点与难点
重点:平行四边形的性质的探究与应用;
难点:平行四边形性质的探究,即如何添加辅助 线将平行四边形问题转化为三角形问题来解决的 思想方法.
数学:19.1.1平行四边形的性质(第1课时)课件(人教新课标八年级下)

练习:
在 ABCD中 1)若∠A:∠B=5:4,求∠C. 2) 若∠A: ∠B: ∠C: ∠D的值可能是: A 1:2:3:4 B 1:2:1:2 C 1:1:2:2 D 1:2:2:1 3) 若∠A=2 ∠B, 求∠D
运用所学知识解决问题
例:如图所示, ABCD中,若BE 平分∠ABC,求ED(写出解题过程)
△ABC中,D、F分别是BC上 的点,BD=CF,分别过D、F 作AB的平行线交AC于点 E、G,求证:AB=ED+FG
• 1.判断:平行线间的线段相等。( ) • 2 平行四边形ABCD的周长等于20,已知 AB=6,则BC=___,CD=___. • 3 平行四边形ABCD 中, ∠A 比∠B 大 30°,则∠A =____,∠D=____. • 若A,B,C三点不共线,则以这三点为顶点的 平行四边形有___个。
第十九章 四边形
松苑中学 徐秀婷 刘晓波
说出下列图形的名称
A D
B
C
19.1 平行四边形
—— 平行四边形的性质(第1课时)
平行四边形的定义和表示方法
1定义.两组对边分别平行 的四边形叫做平行四边 形.
推理格式: ∵ AD∥BC,AB∥DC ,
A
D
B
C
∴四边形ABCD是平行四边形.
Hale Waihona Puke 如图:四边形ABCD是平行四边形, 记作: ABCD
• 5.
ABCD中, AE⊥BC,AF ⊥CD, ∠EAF=60°, BE=2,CD=1,求 ABCD的面积。
作业布置
探究1: 在平行四边形ABCD 中,你能推出相等的 边和角吗?
B
A
D
C
结论: 平行四边形的对边相等,对角相等。
《平行四边形的性质》课件

1.理解两条平行线之间的距离的概念.
2.能熟练运用平行线之间的距离的概念去解题.
课堂导入
思考 如图,a//b,在直线a上取两点A,B,然后分别
量出点A,B到直线b的距离,通过比较两个距离的长
度,我们能得到什么结论?
通过测量:AC=BD.
A
C
B
D
a
b
如果另取其他点,
结论还成立吗?
新知探究 知识点:两条平行线之间的距离
2. 如图,a//b,AB//CD,FG⊥b,CE⊥b,下列说法不
正确的是( C ).
A.AB=CD
B.EC=FG
C.AB=FG
D.a,b之间的距离就是CE的长度
a
F C
A
两条平行线之间的任何两
条平行线段都相等,两条平
b
┐ ┐
G E D
行线之间的距离相等.
B
随堂练习
1.已知直线a//b,点B,C,D是直线a上的三点,点A是
两条平行线之间的距离:两条平行线中,一条直线
上任意一点到另一条直线的距离,叫做这两条平行
线之间的距离.
如图,线段AB的长就是直
线a,b之间的距离.
A
a
B
b
三种距离之间的区别与联系
距
离
两点间
的距离
点到直线
的距离
两条平行线之间的距离
连接两点 点到直线的 两条平行线中,从一条直
区 的线段的 垂线段的长 线上任一点到另一条直线
B,C,D四点,那么由平行四边形的性质,我们能得
c
d
到什么结论?
A
D
a
分析:∵ a//b,c //d,
∴ AD //BC,AB //CD,
19.1.1 平行四边形的性质(1)课件--

D
∴
AB∥CD
AD∥BC
D E
G
C
O
H B
F
A
如图,DC∥ EF ∥ AB,DA∥ GH∥ CB, 9 AHOE 图中的平行四边形有__个,它们是_____ _____________________ CFOG ABFE BHOF DEOG _____________________。 BHGC ABCD CDEF AHGD
在数学的天地里,重要的 不是我们知道什么,而是我 们怎么知道。
活动一
图片欣赏
这些图片中,有你熟悉的图形吗?
第十九章 四边形
ห้องสมุดไป่ตู้
师生互动
取两个全等的三角形纸片,将它 们的相等的一边重合,得到一个 四边形。
你拼出了怎样的四边形?
第十九章 四边形
拼 一 拼
平行四边形的定义
A
B
1.定义: 有两组对边分别平行的四 边形叫做平行四边形。 2.记作: ABCD C 3.读作:平行四边形ABCD 4.几何语言: ∵ AB∥CD AD∥BC ∴ 四边形ABCD是平行四边形 5.定义性质: ∵四边形ABCD是平行四边形
二
探究平行四边形的性质
1.平行四边形的边具有哪些性质?说说你 的理由。
2.平行四边形的角具有哪些性质?说说你 的理由。
第十九章 四边形
根据定义画一个平行四边形,观察这个四边形, 除了 “两组对边分别平行”以外,它的边、角 之间有什么关系吗?度量一下,是不是和你的 猜想一致?还有别的方法吗?
D C
A C
D
3.在 ABCD 中,∠ADC=120°, ∠CAD=20°,则∠ABC= 120° , ∠CAB= 40°
平行四边形的ppt课件

VS
外角和定理的证明
通过平移、旋转等几何变换,将平行四边 形转化为三角形,再利用三角形外角和定 理进行证明。
谢谢
THANKS
平行四边形的性质课件
目录
CONTENTS
• 平行四边形的基本概念 • 平行四边形的特殊形式 • 平行四边形与生活中的应用 • 平行四边形的证明实例 • 平行四边形的探究与拓展
01 平行四边形的基本概念
CHAPTER
平行四边形的定义
平行四边形定义
平行四边形是两组对边分别平行的四 边形。
平行四边形的符号表示
05 平行四边形的探究与拓展
CHAPTER
平行四边形的面积计算
面积计算公式
平行四边形的面积可以通过底乘高的方式进行计算,其中底为平行四边形的底边,高为该边上的垂直 距离。
面积计算的实际应用
面积计算在日常生活和数学领域中都有广泛的应用,如几何图形面积的求解、土地面积的测量等。
平行四边形的内角和
内角和定理
采光
平行四边形的窗户设计能够更好地利用自然光线 ,提高室内采光效果。
交通标志
方向性
平行四边形形状的交通标志具有明显的方向性,能够清晰地指示 车辆前行方向。
易识别性
平行四边形的简单形状和鲜明的颜色使得交通标志易于识别,有助 于提高交通安全。
规范性
平行四边形的交通标志符合道路交通规范,能够确保交通秩序和安 全。
矩形的四个角都是直角, 对角线相等。
判定
如果一个平行四边形有一 个角是直角,那么它是矩 形。
菱形
定义
有一组邻边相等的平行四 边形是菱形。
性质
菱形的四条边都相等,对 角线互相垂直平分。
判定
19.1.1平行四边形的性质.ppt

∴ ABC≌ CDA(ASA) ∴AB=CD,BC=DA,∠B=∠D 又∵∠1=∠2,∠3=∠4 ∴∠1+∠4=∠2+∠3 即∠BAD=∠DCB
A
4 1
D
B
2
3
C
例 题 教 学 解:
在 ABCD中,已知∠A=52 ° ,求其 余三个角的度数。
A D 52°
∵四边形ABCD是平行四边形 且∠A=52°(已知)
性质2:平行四边形的对角相等。
O B D
A
C
∵四边形ABCD是平行四边形
∠A=∠C,∠B=∠D.
已知:
ABCD(如图)
求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB
证明:连结AC ∵AB∥CD,AD∥BC(平行四边形的对边平行) ∴∠1=∠2,∠3=∠4 在 ABC和 CDA中
∠1=∠2,AC=CA,∠3=∠4
画一个平行四边形,观察它的边之间还有什么关系?
A D
平行四边形的对边平行.
∵四边形ABCD是平行四边形 ∴AB ∥ CD,BC ∥ AD.
B
C
A D
平行四边形的对边相等.
∵四边形ABCD是平行四边形 ∴AB=CD,BC=AD.
B
C
性质1:平行四边形的对边平行。 性质2:平行四边形是中心对称图形。 (C) (B) A D
B
C
∴ ∠A=∠C=52°(平行四边形的对角相等) 又∵AD∥BC(平行四边形的对边平行)
∴∠A+∠B=180°(两直线平行,同旁内角互补)
∴∠B=∠D= 180 °-∠A= 180º 52°=128 ° -
变式练习:
A 如图: 在 ABCD中,∠A+∠C=200° 则:∠A= 100 ° ,∠B= 80 ° . D C B
A
4 1
D
B
2
3
C
例 题 教 学 解:
在 ABCD中,已知∠A=52 ° ,求其 余三个角的度数。
A D 52°
∵四边形ABCD是平行四边形 且∠A=52°(已知)
性质2:平行四边形的对角相等。
O B D
A
C
∵四边形ABCD是平行四边形
∠A=∠C,∠B=∠D.
已知:
ABCD(如图)
求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB
证明:连结AC ∵AB∥CD,AD∥BC(平行四边形的对边平行) ∴∠1=∠2,∠3=∠4 在 ABC和 CDA中
∠1=∠2,AC=CA,∠3=∠4
画一个平行四边形,观察它的边之间还有什么关系?
A D
平行四边形的对边平行.
∵四边形ABCD是平行四边形 ∴AB ∥ CD,BC ∥ AD.
B
C
A D
平行四边形的对边相等.
∵四边形ABCD是平行四边形 ∴AB=CD,BC=AD.
B
C
性质1:平行四边形的对边平行。 性质2:平行四边形是中心对称图形。 (C) (B) A D
B
C
∴ ∠A=∠C=52°(平行四边形的对角相等) 又∵AD∥BC(平行四边形的对边平行)
∴∠A+∠B=180°(两直线平行,同旁内角互补)
∴∠B=∠D= 180 °-∠A= 180º 52°=128 ° -
变式练习:
A 如图: 在 ABCD中,∠A+∠C=200° 则:∠A= 100 ° ,∠B= 80 ° . D C B
八年级数学《平行四边形概念及性质》课件

1、定义:有两组对边分别平行的四B 边形叫平行C四边形.
2、特征:a、属于四边形; b、有两组对边分别平行.
3.
因为 四边形ABCD是平行四边形AB CD;AD BC
4、有关名称:
A
D
(1)对边,(2)邻边;
∟
∟
(3)对角,(4)邻角;
B
C
(5)高。
返回
5.证明平行四边形的对边平行且相等
6.证明平行四边形的对角相等,邻角互 补
课堂回顾
1、定义:两组对边分别平行的四边形叫做平行四 边形.
2、性质:平行四边形的对边平行且相等。 平行四边形的对角相等。 平行四边形的邻角互补。
3、性质的运用
19.1.1 平行四边形的性质(一)
在数学的天地里, 重要的不是我们知道什么, 更重要的是我们应该,怎么知道什么。
——毕达哥拉斯
引入新课
下面的图片中,有你熟悉的哪些图形?
返回
教学目标:
1.能准确叙述平行四边形的概念和性质. 并能 用符号语言 表示.
2.能初步应用平行四边形的概念及其性质1和 性质2进行计算和证明.
自学课本
• 自学课本75页~77页内容,思考下列问题
1 .平行四边形定义,用符号语言如何表示? 2 .平行四边形的边具有哪些关系?说说你的理由。 3 .平行四边形的角具有什么关系?说说你的理由.
议探交流
请同学们根据思考题,以及自学中的疑惑,先组内 对议,再组内互议.
小组展示
A
D
一、 平行四边形的相关概念:
求 : ABCD 的面积.
A
D
解: 过A作AE⊥BC于点E
在Rt△ABE中,
B
∠B= 30°, AB=8 .
《平行四边形的性质》课件

平行四边形与三角形面积比较
平行四边形的面积始终大于其内接的三角形,且小于其外接的三角形。
真假题习题
使用真假题来检验你对平行四边形知识的掌握程度。
综合应用题
用综合应用题来加深你对平行四边形的应用能力。
总结
平行四边形是一个非常重要的几何形状,具有许多有趣且有用的性质。通过 本课件的学习,你现在已经掌握了平行四边形的各种性质和应用方法。
3
利用特殊四边形
通过证明其为矩形、菱形或等腰梯形,间接证明两组对边平行。
平行四边形的两组对边相等
平行四边形的两组对边分别相等。
平行四边形中线具有相同长度
平行四边形的中线(连接相对顶点中点的线段)具有相同的长度。
平行四边形中垂线长相等
平行四边形的垂线(从顶点向对边作垂直线)具有相同的长度。
平行四边形的高度
平行四边形的高度是从一条边到对边平行距离的垂直线段。
平行四边形内接圆和外接圆
1 内接圆
平行四边形可以有一个内接圆,圆心位于对 角线交点。
2 外接圆
平行四边形可以有一个外接圆,圆心位于四 个顶点外的某点。
平行四边形的面积公式
平行四边形的面积可以通过底边与高的乘积来计算。
平行四边形的周长公式
平行四边形的周长可以通过四条边长之和来计算。
平行四边形的对角线平分
平行四边形的对角线相交于一点,且互相平分。
边界角的性质
平行四边形的边界角互补,它们的和为180度。
平行四边形的中心对角线
平行四边形的中心对角线相等。
证明平行四边形的方法
1
利用定义
根据平行四边形的定义,证明其两组对边平行。
2
通过角度
利用内角和、对角线平分等性质,证明其两组对边。
《平行四边形的性质》PPT课件(第1课时)

(来自教材)
知3-练
证明:在▱ABCD中,因为AB∥CD,所以∠FBE=∠DCE. 因为E为BC的中点,所以BE=CE. FBE=DCE, 在△FBE和△DCE中,BE=CE , BEF=CED, 所以△FBE≌△DCE.所以BF=CD. 又因为AB=CD,所以BF=AB,即点B为AF的中 点.
(来自教材)
知3-讲
导引:根据BM平分∠ABC和AB∥CD可以判定△BCM 是等腰三角形,从而得到BC=MC=2,再结合 ▱ABCD的周长是14得到CD的长,进而得到DM的 长.具体过程如下: ∵在▱ABCD中,AB∥CD,BM是∠ABC的平分 线,∴∠CBM=∠ABM=∠CMB.∴BC=MC=2. 又∵▱ABCD的周长是14,∴AB=CD=5.∴DM= 3.
2. 数学表达式:如图, ∵四边形ABCD是平行四边形, ∴AB∥CD,AD∥BC, AB=CD,AD=BC.
(来自《点拨》)
知3-讲
例3 [中考·玉林]如图,在▱ABCD中,BM是∠ABC
的平分线,交CD于点M,且MC=2,▱ABCD的
周长是14,则DM等于( C )
A.1
B.2
C.3
D.4
(来自《点拨》)
(来自《点拨》)
总结
知3-讲
当题目中平行线和角平分线同时出现时,极有可 能出现等腰三角形,如本题中由AB∥CD和BM平分 ∠ABC就得到△BCM是等腰三角形;在平行四边形 的边的计算中,“平行四边形相邻两边之和等于平行 四边形的周长的一半”会经常用到.
(来自《点拨》)
知3-练
1 在▱ ABCD 中,已知AB=3,AD=2,求▱ ABCD的
第二十二章 四边形
平行四边形的性质
第1课时
19.1平行四边形 课件(人教版八年级下册) (1)

A B D A O B D
C 图1
C 图2
如图2,将两根细木条AC、BD的中点重叠,用 小钉绞合在一起,用橡皮筋连接木条的顶点,做成 一个四边形ABCD.转动两根木条,四边形ABCD一直 是一个平行四边形吗?
两组对边分别相等的四边形是平行四边形. 平行四边形这个判定方法,我们如何证明?
已知:如图,在四边形ABCD中,AB=DC, AD=BC,求证:四边形ABCD是平行四边形 . 证明:连结AC 在△ABC 和△CDA中 A 1 D 4 AB=CD(已知) 3 AD=BC(已知) 2 B C AC=CA(公共边) ∴△ABC ≌ △CDA (SSS) ∴∠1=∠2, ∠3=∠4 ∴AB∥DC,AD∥BC ∴四边形ABCD是平行四边形
AB∥DC DC∥EF
DE∥CF
DC=EF
DE=CF
AB∥ DC∥EF
恭喜你,认真地听完了这节课!
作业
100
教科书第100页:
习题4、5。
八年级
下册
19.1.2平行四边形的判定1
1、什么是平行四边形? 两组对边分别平行的四边形叫做平行四边形.
2、我们学习了平行四边形的哪些性质? 平行四边形的两组对边分别相等;
平行四边形的两组对角分别相等;
平行四边形的对角线互相平分。 A
O
D
B
C
平行四边形的两组对边分别相等; 平行四边形的两组对角分别相等;
你还有其他 的证明方法 吗?
解:图中互相平行的线段有: AB//DC//EF, AD//BC, DE//CF B 理由如下:
AB=DC AD=BC
如图,AB=DC=EF,AD=BC,DE=CF, 图中有哪些互相平行的线段? D A
E F
C 图1
C 图2
如图2,将两根细木条AC、BD的中点重叠,用 小钉绞合在一起,用橡皮筋连接木条的顶点,做成 一个四边形ABCD.转动两根木条,四边形ABCD一直 是一个平行四边形吗?
两组对边分别相等的四边形是平行四边形. 平行四边形这个判定方法,我们如何证明?
已知:如图,在四边形ABCD中,AB=DC, AD=BC,求证:四边形ABCD是平行四边形 . 证明:连结AC 在△ABC 和△CDA中 A 1 D 4 AB=CD(已知) 3 AD=BC(已知) 2 B C AC=CA(公共边) ∴△ABC ≌ △CDA (SSS) ∴∠1=∠2, ∠3=∠4 ∴AB∥DC,AD∥BC ∴四边形ABCD是平行四边形
AB∥DC DC∥EF
DE∥CF
DC=EF
DE=CF
AB∥ DC∥EF
恭喜你,认真地听完了这节课!
作业
100
教科书第100页:
习题4、5。
八年级
下册
19.1.2平行四边形的判定1
1、什么是平行四边形? 两组对边分别平行的四边形叫做平行四边形.
2、我们学习了平行四边形的哪些性质? 平行四边形的两组对边分别相等;
平行四边形的两组对角分别相等;
平行四边形的对角线互相平分。 A
O
D
B
C
平行四边形的两组对边分别相等; 平行四边形的两组对角分别相等;
你还有其他 的证明方法 吗?
解:图中互相平行的线段有: AB//DC//EF, AD//BC, DE//CF B 理由如下:
AB=DC AD=BC
如图,AB=DC=EF,AD=BC,DE=CF, 图中有哪些互相平行的线段? D A
E F
新人教版八年级数学下册第十九章四边形19.1平行四边形ppt课件

做一做
1、(如图)四边形ABCD是平行四 边形,则∠ADC= , ∠BCD= 。 AB= ,BC= 。 2、在 ABCD 中, ∠A=48°,BC=3cm,则∠B= ∠C= ,AD= 。
(1题图)
,
3.如图,四边形ABCD是平行四边形,则: 1)∠ADC= 58° , ∠BCD= 122° ;
2)边AB=
28
A
58°
,
32
BC = 32 D
28
.
B
C
4.如图所示,在 □ ABCD中,若BE 平分∠ABC,则ED= 4cm .
A
5cm 1
5cm
3
E 4cm D 5cm
2
9cm
B
C
如图: □ ABCD的周长是36,由钝角顶点D向 AB、BC引两条高DE、DF,且DE= 4 3
DF=5 3 ,求这个平行四边形的面积
主要方面
性质
对称性
边
角 对角线
两组对边互相平 中心 行且相等 对称 两组对角分别相 等 图形 对角线互相平分 (不是轴对称 图形)
图 形
名 文字语言 称 定 两组对边分别平行的 义 四边形
图形语言
符号语言
D A D
C ∵AB∥CD,AD∥BC
∴…是平行四边形
平 行 四 边 形
性 平行四边形的对边平 质 行;对边相等;对角相等; 对角线互相平分
B C ∵四边形ABCD是平行四边 B C
O
形 ∴AB∥CD,AD∥BC AB=CD,AD= BC ∠A=∠C,∠B=∠D OA=OC,OB=OD
A D
A
B
1、如图, ABCD中,∠B=50°, 求这个四边形的其它内角的度数;并 说明理由。
平行四边形的性质课件

04
平行四边形与其他数学知 识的联系
与三角形的关系
三角形中位线定理
平行四边形的对边平行且相等, 这与三角形中位线定理相关。
三角形面积公式
平行四边形的面积计算与三角形 面积公式有关。
与梯形的关系
梯形与平行四边形
梯形可以看作由两个平行四边形组合而成。
梯形与平行四边形的性质
梯形和平行四边形具有一些共同的性质。
两组对边分别平行的四边形是平行四边形
总结词
两组对边分别平行的四边形是平行四边形。
详细描述
这也是平行四边形的一种判定方法。如果一个四边形的两组对边分别平行,那么 这个四边形就是平行四边形。这种判定方法同样很直观,易于理解。
两组对边分别相等的四边形是平行四边形
总结词
两组对边分别相等的四边形是平行四边形。
平行四边形的对边相等
平行四边形的对边平行且相等,这是 平行四边形的一个重要性质
利用这个性质,我们可以判断一个四 边形是否为平行四边形
平行四边形的对角相等Fra bibliotek平行四边形的对角相等,这是平行四边形的另一个重要性质
利用这个性质,我们可以证明两个角是否相等,或者找到两 个角之间的数量关系
平行四边形的对角线互相平分
平行四边形的对角线互相平分,这是平行四边形的又一个 重要性质
利用这个性质,我们可以判断一个四边形是否为平行四边 形,或者找到两条线段之间的数量关系
02
平行四边形的判定方法
一组对边平行且相等的四边形是平行四边形
总结词
一组对边平行且相等的四边形是平行 四边形。
详细描述
这是平行四边形的一种判定方法。如 果一个四边形的一组对边平行且相等 ,那么这个四边形就是平行四边形。 这种判定方法很直观,易于理解。
平行四边形性质及定理PPT课件

的平衡和美感。
图案设计
02
平行四边形在图案设计中也有广泛应用,如纺织品、壁纸、地
毯等的设计。
舞台布景和道具设计
03
在舞台布景和道具设计中,平行四边形也常被用于创造视觉效
果和空间感。
THANKS FOR WATCHING
感谢您的观看
一组对边平行
总结词
如果一个四边形中有一组对边平 行,则该四边形是平行四边形。
详细描述
这是平行四边形的一个基本判定 定理。如果一个四边形的对边平 行,则这个四边形必然是平行四 边形。
一组对边相等
总结词
如果一个四边形中有一组对边相等, 则该四边形是平行四边形。
详细描述
这也是平行四边形的一个基本判定定 理。如果一个四边形的对边相等,则 这个四边形必然是平行四边形。
窗户和门的形状设计
平行四边形因其独特的对边平行和相 对边相等的特性,常被用于创造空间 感和视觉效果。
窗户和门的形状设计经常采用平行四 边形,以实现采光和通风的最佳效果。
建筑结构的稳定性
平行四边形的对角线互相平分,这使 得它在建筑结构设计中具有稳定性, 如桥梁、房屋的支撑结构等。
机械设计中的应用
机械零件的形状设计
平行四边形性质及定理ppt课件
contents
目录
• 平行四边形的基本性质 • 平行四边形的判定定理 • 特殊平行四边形 • 平行四边形在实际生活中的应用
01 平行四边形的基本性质
对边平行
总结词
平行四边形的对边是平行的。
详细描述
这是平行四边形的基本性质之一,即相对的两条边是平行的,不会相交于一点。
直角三角形斜边中线定 理,矩形的对角线相等
且互相平分。
平行四边形的性质ppt课件

平行四边形的性质
目录
• 平行四边形的定义 • 平行四边形的性质 • 平行四边形的判定 • 平行四边形的面积与周长 • 平行四边形在几何中的应用
01
平行四边形的定义
定义与性质
定义
平行四边形是一个四边形,其中 相对的两边平行。
性质
平行四边形的对边相等,对角相 等,对角线互相平分。
平行四边形的分类
对角线互相平分
平行四边形的对角线互相 平分,将平行四边形分成 两个面积相等的三角形。
对角线相等
在平行四边形中,相对的 两个角是补角,因此其对 角线长度相等。
对角线与边的关系
平行四边形的对角线可以 用来计算其面积,公式为 面积 = 对角线1 × 对角线 2 ÷ 2。
对边性质
对边平行
平行四边形的定义就是两 组对边平行,这是平行四 边形的基本性质。
了矩形,其周长计算方法与矩形相同。
05
平行四边形在几何中的 应用
在几何证明中的应用
1 2
平行四边形的对角线互相平分
利用这一性质,可以证明线段的相等关系。
平行四边形的对角相等
利用这一性质,可以证明角度的相等关系。
3
平行四边形的邻角互补
利用这一性质,可以证明角度的和为90度。
在几何作图中的应用
利用平行四边形的性 质,可以方便地作出 平行线。
对边相等
在平行四边形中,相对的 两边长度相等,即对边相 等。
对边与角的关系
平行四边形的对角线与对 边之间存在角度关系,可 以通过对角线来计算其他 角度。
对角性质
对角相等
在平行四边形中,相对的两个角大小 相等,即对角相等。
邻角互补
对角与边长关系
在平行四边形中,对角的大小与边的 长度之间存在一定的关系,可以通过 对角来计算边的长度。
目录
• 平行四边形的定义 • 平行四边形的性质 • 平行四边形的判定 • 平行四边形的面积与周长 • 平行四边形在几何中的应用
01
平行四边形的定义
定义与性质
定义
平行四边形是一个四边形,其中 相对的两边平行。
性质
平行四边形的对边相等,对角相 等,对角线互相平分。
平行四边形的分类
对角线互相平分
平行四边形的对角线互相 平分,将平行四边形分成 两个面积相等的三角形。
对角线相等
在平行四边形中,相对的 两个角是补角,因此其对 角线长度相等。
对角线与边的关系
平行四边形的对角线可以 用来计算其面积,公式为 面积 = 对角线1 × 对角线 2 ÷ 2。
对边性质
对边平行
平行四边形的定义就是两 组对边平行,这是平行四 边形的基本性质。
了矩形,其周长计算方法与矩形相同。
05
平行四边形在几何中的 应用
在几何证明中的应用
1 2
平行四边形的对角线互相平分
利用这一性质,可以证明线段的相等关系。
平行四边形的对角相等
利用这一性质,可以证明角度的相等关系。
3
平行四边形的邻角互补
利用这一性质,可以证明角度的和为90度。
在几何作图中的应用
利用平行四边形的性 质,可以方便地作出 平行线。
对边相等
在平行四边形中,相对的 两边长度相等,即对边相 等。
对边与角的关系
平行四边形的对角线与对 边之间存在角度关系,可 以通过对角线来计算其他 角度。
对角性质
对角相等
在平行四边形中,相对的两个角大小 相等,即对角相等。
邻角互补
对角与边长关系
在平行四边形中,对角的大小与边的 长度之间存在一定的关系,可以通过 对角来计算边的长度。
19.1平行四边形课件(人教版八年级下册)(4)

解: ∵四边形ABCD是平行四 边形, ∴AB=CD,AD=BC ∵AB=8m, ∴CD=8m 又AB+BC+CD+AD=36,
B
A D
C
∴AD=BC=10m
快乐之旅
7个金蛋你可以任选一个,如果出现“恭喜 你”的字样,你将直接过关;否则将有考验你 的数学问题,当然你可以自己作答,也可以求 助你的同学.
第十九章
四边形
19.1.1平行四边形的性质(1)
美丽的家园,我们要好好的利用和保护她
中国的骄傲,我们学习的榜样!
运用广泛
美观别致
随处可见
定义
知识储备
两组对边分别平行的四边形叫做平行 四边形
符号语言:①∵四边形ABCD中, AB∥CD,AD∥BC ∴四边形ABCD是平行四边形 ② ∵四边形ABCD是平行四边形
A C
B
D 如图四边形ABCD是平行四边形,
∴ AB∥CD,AD∥BC
记作: 形ABCD
ABCD 读作:平行四边 注意字母的书写顺序哦
你能从以下图形中找出平行四边形吗?
1
2
3
4
5
6
两组对边分别平行,是平行四边形的 一个主要特征。
探究:根据平行四边形的定义画
一个平行四边形,观察这个四边 形, 除了“两组对边分别平行” 以外,它的边、角之间还有其他 的关系吗?你是怎样得到的?
1.课本84页 第1、2、3题
2.选做题:习题19.1第1、2题
A
8
B
6
还能求什么
7
恭喜你,过关了!
能说出你这节课的收获和体验, 让大家与你分享吗?
1、平行四边形的性质 平行四边形的对边平行且相等; 平行四边形的对角相等,邻角互补. 2、平行四边形性质的应用 平行四边形的性质是今后证明线 段相等和角相等的又一重要依据. 3、解决平行四边形的有关问题经常连 结对角线转化为三角形。
B
A D
C
∴AD=BC=10m
快乐之旅
7个金蛋你可以任选一个,如果出现“恭喜 你”的字样,你将直接过关;否则将有考验你 的数学问题,当然你可以自己作答,也可以求 助你的同学.
第十九章
四边形
19.1.1平行四边形的性质(1)
美丽的家园,我们要好好的利用和保护她
中国的骄傲,我们学习的榜样!
运用广泛
美观别致
随处可见
定义
知识储备
两组对边分别平行的四边形叫做平行 四边形
符号语言:①∵四边形ABCD中, AB∥CD,AD∥BC ∴四边形ABCD是平行四边形 ② ∵四边形ABCD是平行四边形
A C
B
D 如图四边形ABCD是平行四边形,
∴ AB∥CD,AD∥BC
记作: 形ABCD
ABCD 读作:平行四边 注意字母的书写顺序哦
你能从以下图形中找出平行四边形吗?
1
2
3
4
5
6
两组对边分别平行,是平行四边形的 一个主要特征。
探究:根据平行四边形的定义画
一个平行四边形,观察这个四边 形, 除了“两组对边分别平行” 以外,它的边、角之间还有其他 的关系吗?你是怎样得到的?
1.课本84页 第1、2、3题
2.选做题:习题19.1第1、2题
A
8
B
6
还能求什么
7
恭喜你,过关了!
能说出你这节课的收获和体验, 让大家与你分享吗?
1、平行四边形的性质 平行四边形的对边平行且相等; 平行四边形的对角相等,邻角互补. 2、平行四边形性质的应用 平行四边形的性质是今后证明线 段相等和角相等的又一重要依据. 3、解决平行四边形的有关问题经常连 结对角线转化为三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小区的伸缩门
活动1:图片欣赏
这些图片中,有你熟悉的图形吗?
合作交流 解读探究
A D 1、定义:
有两组对边分别平行的四边形 叫做平行四边形。
2、记作:
B
ABCD
C
3、读作:平行四边形ABCD
四边形 4、两要素: 两组对边分别平行 四边形ABCD是平行四边形
5、几何语言: AB∥CD AD∥BC
6.平行四边形中相对的边称为对边,相对的角称为对角。
讨
论
1.平行四边形的边具有哪些性质?说说你 的理由。
2.平行四边形的角具有哪些性质?说说你 的理由。
猜想:
平行四边形的性质:
1.平行四边形的对边平行且相等
2.平行四边形的对角相等.
已知:
ABCD(如图)
求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB
CD 8 ( m )
又 AB BC CD AD 36
AD BC 10 ( m )
随堂练习:
1.在 ABCD 中,AD=40,CD=30, ∠B=60°,则BC= 40 ;AB= 30 ; ∠A= 120° , ∠C=120° , ∠D= 60° B
A C
D
2.在 ABCD 中,∠ADC=120°, ∠CAD=20°,则∠ABC= 120° , ∠CAB= 40°
ቤተ መጻሕፍቲ ባይዱ
小试牛刀:
A
1、如图:在 ABCD中,根据已知 你能得到哪些结论?为什么?
32cm
124° 56°
D
30cm
56°
124°
30cm 32cm
C
B
例题教学:
例2 如图,小明用一根36m长的绳子围成 了一个平行四边形的场地,其中一条边AB 长为8m,其他三条边各长多少? 解: ∵四边形ABCD是平行四边形 AB CD ; AD BC ∵ AB=8
证明:连结AC ∵AB∥CD,AD∥BC(平行四边形的对边平行) ∴∠1=∠2,∠3=∠4 在 ABC和 CDA中
∠1=∠2,AC=CA,∠3=∠4
∴ ABC≌ CDA(ASA) ∴AB=CD,BC=DA,∠B=∠D 又∵∠1=∠2,∠3=∠4 ∴∠1+∠4=∠2+∠3 即∠BAD=∠DCB
A
4 1
D
3
B
2
C
用两个全等的三角形纸片可以 拼出几种形状不同的平行四边形? 从拼图可以得到什么启示?
小结:平行四边形可以是由两个全等的三角
形组成,因此在解决平行四边形的问题时, 通常可以连结对角线转化为两个全等的三角 形进行解题。
A O
D
B
C
上图的平行四边形ABCD中有几对全等三角形?
平行四边形的性质
平行四边形的对边平行;
∵四边形ABCD是平行四边形
AB∥CD,AD∥BC
平行四边形的对边相等;
∵四边形ABCD是平行四边形
AB CD ; AD BC
平行四边形的对角相等;
∵四边形ABCD是平行四边形
A C; B D
如图,DC∥ EF ∥ AB,DA∥ GH∥ CB, 9 AHOE 图中的平行四边形有__个,它们是_____ CFOG ABFE _____________________ BHOF DEOG ____________________。 BHGC ABCD CDEF AHGD
)
感悟与收获
1、平行四边形的定义:两组对边分别平行 的四边形叫做平行四边形. 2、平行四边形的性质: 平行四边形的对边 平行且相等;平行四边形的对角相等。 作业:P91习题19.1第1、2题
3:如图,平行四边形ABCD中,AE⊥BD, CF⊥BD,垂足分别为E、F. 求证:∠BAE=∠DCF。
A D
F
E
B
C
4:如图,平行四边形ABCD中,点E、F在 对角线BD上,且AE|| CF. 求证:AE=CF
A
D
F
E B C
习题3:判断题(对的在括号内填“∨”,错的填“×”)
(1)平行四边形两组对边分别平行. ( ) (2)平行四边形的四个内角都相等. ( ) (3)平行四边形的相邻两个内角的和等于180°( (4)如果平行四边形相邻两边长分别是2cm和 3cm,那么周长是10cm. ( ) (5)在平行四边形ABCD中,如果∠A=35°, 那么∠B=55°. ( ) (6)在平行四边形ABCD中,如果∠A=35°, 那么∠B=145°. ( )
活动1:图片欣赏
这些图片中,有你熟悉的图形吗?
合作交流 解读探究
A D 1、定义:
有两组对边分别平行的四边形 叫做平行四边形。
2、记作:
B
ABCD
C
3、读作:平行四边形ABCD
四边形 4、两要素: 两组对边分别平行 四边形ABCD是平行四边形
5、几何语言: AB∥CD AD∥BC
6.平行四边形中相对的边称为对边,相对的角称为对角。
讨
论
1.平行四边形的边具有哪些性质?说说你 的理由。
2.平行四边形的角具有哪些性质?说说你 的理由。
猜想:
平行四边形的性质:
1.平行四边形的对边平行且相等
2.平行四边形的对角相等.
已知:
ABCD(如图)
求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB
CD 8 ( m )
又 AB BC CD AD 36
AD BC 10 ( m )
随堂练习:
1.在 ABCD 中,AD=40,CD=30, ∠B=60°,则BC= 40 ;AB= 30 ; ∠A= 120° , ∠C=120° , ∠D= 60° B
A C
D
2.在 ABCD 中,∠ADC=120°, ∠CAD=20°,则∠ABC= 120° , ∠CAB= 40°
ቤተ መጻሕፍቲ ባይዱ
小试牛刀:
A
1、如图:在 ABCD中,根据已知 你能得到哪些结论?为什么?
32cm
124° 56°
D
30cm
56°
124°
30cm 32cm
C
B
例题教学:
例2 如图,小明用一根36m长的绳子围成 了一个平行四边形的场地,其中一条边AB 长为8m,其他三条边各长多少? 解: ∵四边形ABCD是平行四边形 AB CD ; AD BC ∵ AB=8
证明:连结AC ∵AB∥CD,AD∥BC(平行四边形的对边平行) ∴∠1=∠2,∠3=∠4 在 ABC和 CDA中
∠1=∠2,AC=CA,∠3=∠4
∴ ABC≌ CDA(ASA) ∴AB=CD,BC=DA,∠B=∠D 又∵∠1=∠2,∠3=∠4 ∴∠1+∠4=∠2+∠3 即∠BAD=∠DCB
A
4 1
D
3
B
2
C
用两个全等的三角形纸片可以 拼出几种形状不同的平行四边形? 从拼图可以得到什么启示?
小结:平行四边形可以是由两个全等的三角
形组成,因此在解决平行四边形的问题时, 通常可以连结对角线转化为两个全等的三角 形进行解题。
A O
D
B
C
上图的平行四边形ABCD中有几对全等三角形?
平行四边形的性质
平行四边形的对边平行;
∵四边形ABCD是平行四边形
AB∥CD,AD∥BC
平行四边形的对边相等;
∵四边形ABCD是平行四边形
AB CD ; AD BC
平行四边形的对角相等;
∵四边形ABCD是平行四边形
A C; B D
如图,DC∥ EF ∥ AB,DA∥ GH∥ CB, 9 AHOE 图中的平行四边形有__个,它们是_____ CFOG ABFE _____________________ BHOF DEOG ____________________。 BHGC ABCD CDEF AHGD
)
感悟与收获
1、平行四边形的定义:两组对边分别平行 的四边形叫做平行四边形. 2、平行四边形的性质: 平行四边形的对边 平行且相等;平行四边形的对角相等。 作业:P91习题19.1第1、2题
3:如图,平行四边形ABCD中,AE⊥BD, CF⊥BD,垂足分别为E、F. 求证:∠BAE=∠DCF。
A D
F
E
B
C
4:如图,平行四边形ABCD中,点E、F在 对角线BD上,且AE|| CF. 求证:AE=CF
A
D
F
E B C
习题3:判断题(对的在括号内填“∨”,错的填“×”)
(1)平行四边形两组对边分别平行. ( ) (2)平行四边形的四个内角都相等. ( ) (3)平行四边形的相邻两个内角的和等于180°( (4)如果平行四边形相邻两边长分别是2cm和 3cm,那么周长是10cm. ( ) (5)在平行四边形ABCD中,如果∠A=35°, 那么∠B=55°. ( ) (6)在平行四边形ABCD中,如果∠A=35°, 那么∠B=145°. ( )