2020-2021学年最新高考总复习数学(文)百校联盟高考押题卷及答案解析一
2020-2021学年江西省高考原创押题卷(1)数学(文)试卷及答案解析
高考原创押题卷(一)数学(文科)时间:120分钟 满分:150分第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={(x ,y)|y 2<x},B ={(x ,y)|xy =-2,x ∈Z ,y ∈Z},则A ∩B =( ) A .∅ B .{(2,-1)}C .{(-1,2),(-2,1)}D .{(1,-2),(-1,2),(-2,1)} 2.若2+ai 1+i=x +yi ()a ,x ,y 均为实数,则x -y =( )A .0B .1C .2D .a3.若sin x =2sin ⎝ ⎛⎭⎪⎫x +π2,则cos xcos ⎝ ⎛⎭⎪⎫x +π2= ( )A.25 B .-25 C.23 D .-234.某市国庆节7天假期的楼房认购量(单位:套)与成交量(单位:套)的折线图如图11所示,小明同学根据折线图对这7天的认购量与成交量作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.上述判断中错误的个数为( )图11A .1B .2C .3D .45.已知梯形ABCD 中,∠ABC =∠BAD =π2,AB =BC =1,AD =2,若P 是DC 的中点,则|PA →+2PB →|=( )A.822B .2 5C .4D .5 6.某几何体的三视图如图12所示,若该几何体的体积为2π3,则a 的值为( )图12A .1B .2C .2 2 D.327.执行如图13所示的程序框图,若输出的i =3,则输入的a(a>0)的取值范围是( )图13A.[)9,+∞B.[]8,9C.[)8,144D.[)9,1448.狄利克雷函数是高等数学中的一个典型函数,若f ()x =⎩⎨⎧1,x ∈Q ,0,x ∈∁RQ ,则称f ()x 为狄利克雷函数.对于狄利克雷函数f(x),给出下列命题:①f 的值域是{}0,1;②f(x)是偶函数; ③f ()x 是周期函数;④对任意a ,b ∈(-∞,0),都有{x|f(x)>a}={x|f(x)>b}成立.其中所有真命题的序号是( )A .①④B .②③C .①②③D .②③④9.已知△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若b c =cos A 1+cos C ,则sin ⎝ ⎛⎭⎪⎫2A +π6的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,12B.⎝ ⎛⎦⎥⎤-12,1C.⎝ ⎛⎦⎥⎤12,1D.⎣⎢⎡⎭⎪⎫-1,1210.如图14所示,点O 为正方体ABCD A ′B ′C ′D ′的中心,点E 为棱B ′B 的中点,若AB =1,则下列叙述正确的是( )图14A .直线AC 与直线EC ′所成的角为45°B .点E 到平面OCD ′的距离为12C .四面体O EA ′B ′在平面ABCD 上的射影是面积为16的三角形D .过点O ,E ,C 的平面截正方体所得截面的面积为6211.已知椭圆D :x 2a 2+y2b 2=1(a>b>0)的长轴端点与焦点分别为双曲线E 的焦点与实轴端点,若椭圆D 与双曲线E 的一个交点在直线y =2x 上,则椭圆D 的离心率为( )A.2-1B.3- 2C.5-12 D.3-22212.若函数f(x)的图像与函数y =(x -2)e2-x的图像关于点(1,0)对称,且方程f(x)=mx2只有一个实根,则实数m 的取值范围为( )A.[)0,eB.()-∞,eC.{}eD.()-∞,0∪{}e第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,共20分. 13.已知函数f ()x =ax x -1,若f ()x +f ⎝ ⎛⎭⎪⎫1x =3,则f ()x +f ()2-x =________. 14.已知不等式组⎩⎨⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0表示的平面区域为D ,若存在x ∈D ,使得y =x +mx|x|,则实数m 的取值范围是________.15.已知圆E :x 2+y 2-2x =0,A 为直线l :x +y +m =0上任意一点,过点A 可作两条直线与圆E 分别切于点B ,C ,若△ABC 为正三角形,则实数m 的取值范围是________. 16.已知函数f ()x =sin 4ωx -cos 4ωx ()ω>0的值域为A ,对任意a ∈R ,存在x 1,x 2∈R ()x 1<x 2,使得{y|y =f ()x ,a ≤x ≤a +2}==A.若x 2-x 1的最小值为g ()ω,则g ()ω的值域为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知S n =na 1+(n -1)a 2+…+2a n -1+a n .(1)若{}a n是等差数列,且S1=5,S2=18,求a n;(2)若{}a n是等比数列,且S1=3,S2=15,求S n.18.(本小题满分12分)2016年上半年数据显示,某市空气质量在其所在省中排名倒数第三,PM10(可吸入颗粒物)和PM2.5(细颗粒物)分别排在倒数第一和倒数第四,这引起有关部门高度重视,该市采取一系列“组合拳”治理大气污染,计划到2016年底,全年优、良天数达到190天.下表是2016年9月1日到9月15日该市的空气质量指数(AQI),其中空气质量指数划分为0~50,51~100,101~150,151~200,201~300和大于300六档,对应空气质量依次为优、良、轻度污染、中度污染、重度污染、严重污染.(2)从这15天中连续取2天,求这2天空气质量均为优、良的概率;(3)已知2016年前8个月(每个月按30天计算)该市空气质量为优、良的天数约占55%,用9月份这15天空气质量优、良的频率作为2016年后4个月空气质量优、良的概率(不考虑其他因素),估计该市到2016年底,能否完成全年优、良天数达到190天的目标.19.(本小题满分12分)如图15所示,PA与四边形ABCD所在平面垂直,且PA=BC=CD =BD,AB=AD,PD⊥DC.(1)求证:AB⊥BC;(2)若PA=3,E为PC的中点,求三棱锥E ABD的体积.图1520.(本小题满分12分)已知抛物线E:x2=4y的焦点为F,过点F的直线l交抛物线于A,B两点.(1)若原点为O,求△OAB面积的最小值;(2)过A,B作抛物线E的切线,分别为l1,l2,若l1与l2交于点P,当l变动时,求点P 的轨迹方程.21.(本小题满分12分)已知函数f()x=ln x+ax+1.x(1)若对任意x>0,f ()x <0恒成立,求实数a 的取值范围; (2)若函数f ()x 有两个不同的零点x 1,x 2(x 1<x 2),证明:x 21+x 22>2.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修44:坐标系与参数方程将圆x 2+y 2-2x =0向左平移一个单位后,再把所得曲线上每一点的横坐标变为原来的3倍(纵坐标不变)得到曲线C. (1)写出曲线C 的参数方程;(2)以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=322,若A ,B 分别为曲线C 及直线l 上的动点,求||AB 的最小值.23.(本小题满分10分)选修45:不等式选讲 已知f ()x =11+x. (1)解不等式f ()||x >||f ()2x ;(2)若0<x 1<1,x 2=f ()x 1,x 3=f ()x 2,求证:13||x 2-x 1<||x 3-x 2<12||x 2-x 1.参考答案·数学(文科)高考原创押题卷(一)1.B 2.C3.B 由sin x =2sin ⎝ ⎛⎭⎪⎫x +π2=2cos x ,得tan x =2,所以cos xcos ⎝ ⎛⎭⎪⎫x +π2=-cos xsin x =-cos xsin x sin 2x +cos 2x =-tan x tan 2x +1=-25,故选B. 4.D 日成交量的中位数是26,①错误;日平均成交量为13+8+32+16+26+38+1667≈43,日成交量超过日平均成交量的只有10月7日1天,②错误;认购量与日期不是正相关,③错误;10月7日认购量的增幅为276-112112×100%≈146.4%,10月7日成交量的增幅为166-3838×100%≈336.8%,④错误.故选D.5.A 以A 为坐标原点,分别以AD ,AB 所在直线为x 轴、y 轴建立平面直角坐标系(图略),则A(0,0),D(2,0),B(0,1),C(1,1),P ⎝ ⎛⎭⎪⎫32,12,所以PA →=⎝ ⎛⎭⎪⎫-32,-12,PB →=⎝ ⎛⎭⎪⎫-32,12,PA →+2PB →=⎝ ⎛⎭⎪⎫-92,12,所以||PA →+2PB→=814+14=822,故选A. 6.B 由三视图可知该几何体是一个圆柱内挖去两个与圆柱同底的半球后剩余的部分,所以该几何体的体积V =V 圆柱-2V 半球=π×⎝ ⎛⎭⎪⎫a 22×a -2×12×4π3×⎝ ⎛⎭⎪⎫a 23=2π3,整理得a 3=8,所以a =2,故选B.7.D 第1次循环,得M =144+a ,N =2a ,i =2,此时M>N ,故144+a>2a ,所以a<144.第2次循环,得M =144+2a ,N =2a 2,i =3,此时M ≤N ,退出循环,故144+2a ≤2a 2,即a 2-a -72≥0,解得a ≥9或a ≤-8(舍去).综上得9≤a<144,故选D.8.D 当x ∈Q 时,f =f ()1=1,当x ∈∁RQ 时,f =f ()0=1,所以①是假命题;当x ∈Q 时,f ()-x =f ()x =1,当x ∈∁RQ 时,f ()-x =f ()x =0,所以②是真命题;当x ∈Q ,T ∈Q(T ≠0)时,f(x +T)=f(x)=1,当x ∈∁RQ ,T ∈Q(T ≠0)时,f(x +T)=f ()x =0,所以③是真命题;对任意a ,b ∈(-∞,0),{x|f(x)>a}={x|f(x)>b}=R ,所以④是真命题.故选D.9.B 由b c =cos A 1+cos C ⇒sin B sin C =cos A1+cos C ⇒sin B -cos Asin C +sin Bcos C =0⇒sin(A +C)-cos Asin C +sin Bcos C =0⇒cos C(sin A +sin B)=0,因为sin A>0,sin B>0,所以cos C =0,所以C =π2,故0<A<π2,π6<2A +π6<7π6,-12<sin2A +π6≤1,故选B.10.D 直线AC 与直线EC ′ 所成的角为∠A ′C ′E ,易知∠A ′C ′E ≠45°,故选项A 错误;点E 到平面OCD ′的距离就是点E 到平面A ′BCD ′的距离,即点E 到直线A ′B 的距离,即为24,故选项B 错误;取AC 的中点F ,则四面体O EA ′B ′在平面ABCD 上的射影是△FAB ,其面积为14,故选项C 错误;取DD ′的中点G ,则过点O ,E ,C 的平面截正方体所得截面为菱形A ′ECG ,其面积为62,故选项D 正确.11.B 依题意,双曲线E 的标准方程为x 2a 2-b 2-y2b 2=1,因为椭圆D 与双曲线E 的一个交点在直线y =2x 上,所以可设其坐标为()t ,2t ()t ≠0,则t 2a 2+4t 2b 2=1,t 2a 2-b 2-4t2b 2=1,消去t 2得1a 2-b 2-1a 2=8b 2,设椭圆D 的一个焦点为(c ,0),则a 2-b 2=c 2,所以1c 2-1a 2=8a 2-c 2,又e =c a ,所以1a 2e 2-1a 2=8a 2-a 2e 2,整理得()1-e 22=8e 2,由0<e<1得1-e 2=22e ,解得e =3-2,故选B. 12.A 因为y =()x -2e2-x的图像与y =xe x的图像关于点()1,0对称,所以问题可转化为f ()x =xe x的图像与y =mx 2的图像只有一个公共点,即f(x)=e x的图像与直线y =mx 无公共点.当直线y =mx 与f(x)=e x的图像相切时,设切点为()t ,e t,则f ′()t =e t,所以切线的斜率m =e t=e t-0t -0,整理得m =e.结合图像可得实数m 的取值范围为[)0,e ,故选A.13.6 因为f ()x +f ⎝ ⎛⎭⎪⎫1x =axx -1+a x1x-1=ax x -1+a1-x =a ()x -1x -1=a ,所以a =3,f ()x =3x x -1,故f ()x +f ()2-x =3x x -1+6-3x 1-x =6x -6x -1=6.14.[)-2,2 不等式组⎩⎨⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0表示的平面区域D 为图中阴影部分,A ()0,2,B(-2,-2),C ()2,0,E(0,-1).当x>0时,y =x +mx||x =x +m, 把A(0,2)的坐标代入y =x +m ,得m =2,把C ()2,0的坐标代入y=x +m ,得m =-2,所以-2≤m<2;当x<0时,y =x +mx||x =x -m, 把A ()0,2的坐标代入y =x -m ,得m =-2,把E(0,-1)的坐标代入y =x -m ,得m =1,所以-2<m<1.综上可得实数m 的取值范围是 圆E :x 2+y 2-2x =0的标准方程为()x -12+y 2=1,故圆心为E ()1,0,半径r =1.因为过点A 可作两条直线与圆E 相切,所以直线l 与圆E 相离,所以圆心到直线l 的距离d>r ,即||1+m 2>1,即m>2-1或m<-2-1.若△ABC为正三角形,则|AE|=2r =2,故d ≤2,即||1+m 2≤2,即-22-1≤m ≤22-1.综上可得实数m 的取值范围是 f ()x =sin 4ωx -cos 4ωx =(sin 2ωx +cos 2ωx)(sin 2ωx -cos 2ωx)=sin 2ωx -cos 2ωx =-cos 2ωx ,其最小正周期T =2π2ω=πω.若对任意a ∈R ,{y|y =f(x),a ≤x ≤a +2}=A ,则T ≤(a +2)-a =2,即πω≤2,所以ω≥π2.由=A ,可得x 1,x 2分别是f ()x 的极小值点与极大值点,所以x 2-x 1的最小值g ()ω=T 2=π2ω,由ω≥π2,可得g ()ω的值域为(]0,1.17.解:(1)设数列{}a n 的公差为d ,则S 1=a 1=5,S 2=2a 1+a 2=10+a 2=18,所以a 2=8,d =a 2-a 1=3,a n =5+3()n -1=3n +2.4分(2)设数列{}a n 的公比为q ,则S 1=a 1=3,S 2=2a 1+a 2=6+a 2=15, 所以a 2=9,q =a 2a 1=3,a n =3×3n -1=3n,8分所以S n =n ×3+()n -1×32+…+2×3n -1+3n①, 3S n =n ×32+()n -1×33+…+2×3n+3n +1②,②-①,得2S n =-3n +(32+33+…+3n )+3n +1=-3n +32(1-3n -1)1-3+3n +1=-3n -92+3n +12+3n +1=3n +2-6n -92,所以S n =3n +2-6n -94.12分 18.解:(1)这15天中PM2.5的最大值为112,PM10的最大值为199.2分(2)从这15天中连续取2天的取法有(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10),(10,11),(11,12),(12,13),(13,14),(14,15),共14种.5分这2天空气质量均为优、良的取法有(1,2),(7,8), (10,11),(11,12),(12,13),共5种.所以从这15天中连续取2天,这2天空气质量均为优、良的概率为514.8分(3)由前8个月空气质量优、良的天数约占55%,可得空气质量优、良的天数为55%×240=132,10分9月份这15天空气优、良的天数有8天,空气质量优、良的频率为815,2016年后4个月该市空气质量优、良的天数约为120×815=64,132+64=196>190,所以估计该市到2016年底,能完成全年优、良天数达到190天的目标.12分19.解:(1)证明:由PA⊥平面ABCD,AB=AD,可得PB=PD,又BC=CD,所以△PBC≌△PDC,所以∠PBC=∠PDC,因为PD⊥DC,所以PB⊥BC,3分因为PA⊥平面ABCD,BC⊂平面ABCD,所以PA⊥BC,又PA∩PB=P,所以BC⊥平面PAB,因为AB⊂平面PAB,所以AB⊥BC.5分(2)由BC=CD=BD,AB⊥BC,可得∠ABD=30°,由AB=AD,BD=PA=3,可得AB=1,7分所以△ABD 的面积S =12×1×1×sin 120°=34.9分因为E 为PC 的中点,所以三棱锥E ABD 的高h =12PA =32,故三棱锥E ABD 的体积V =13×34×32=18.12分20.解:(1)由题意可知,F(0,1),且直线AB 的斜率存在,设直线AB 的方程为y =kx +1,联立⎩⎨⎧y =kx +1,x 2=4y⇒x 2-4kx -4=0.2分设A ⎝ ⎛⎭⎪⎫x 1,x 214,B ⎝⎛⎭⎪⎫x 2,x 224,则x 1+x 2=4k ,x 1x 2=-4,4分所以S △AOB =12||OF ||x 1-x 2=12||x 1-x 2=12(x 1+x 2)2-4x 1x 2=1216k 2+16≥2,当k =0时,△OAB 的面积最小,最小值为2.6分(2)由x 2=4y ,得y =x 24,y ′=x 2,所以l 1的方程为y -x 214= x 12()x -x 1,即y = x 1x 2-x 214.①同理可得l 2的方程为y = x 2x 2-x 224.②9分联立①②,得x =x 1+x 22=2k ,y =x 2x 2-x 224=x 2(x 1+x 2)4-x 224=x 1x 24=-1,所以点P 的坐标为()2k ,-1,因为k ∈R ,所以点P 的轨迹方程为y =-1.12分21.解:(1)由f ()x =ln x +ax +1x =ln x x +a +1x ,得f ′()x =1-ln x x 2-1x 2=-ln xx 2,2分 所以f ()x 在()0,1上单调递增,在()1,+∞上单调递减,所以f ()x ≤f ()1=a +1,所以a +1<0,所以实数a 的取值范围是()-∞,-1.4分(2)证明:由(1)知f ()x 在()0,1上单调递增,在()1,+∞上单调递减,由函数f ()x 有两个不同的零点x 1,x 2(x 1<x 2),可知x 1∈()0,1,x 2∈()1,+∞. ①若x 2∈()1,2,则2-x 2∈()0,1,设g ()x =f ()x -f ()2-x =ln x x +1x -ln ()2-x 2-x -12-x ,则当x ∈()0,1时,g ′()x =-ln xx 2-ln (2-x )(2-x )2>-ln x x 2-ln ()2-x x 2=-ln ()2x -x 2x2=-ln ⎣⎢⎡⎦⎥⎤-()x -12+1x2>0,所以g ()x 在()0,1上是增函数,故g ()x <g ()1=0,即f ()x <f ()2-x ,所以f ()2-x 1>f ()x 1=f ()x 2,而2-x 1∈()1,2,x 2∈()1,2,根据f ()x 在()1,+∞上单调递减可得2-x 1<x 2,即x 1+x 2>2.9分②若x 2∈[)2,+∞,则由x 1>0可知x 1+x 2>2也成立.10分因为x 21+x 22>2x 1x 2,所以2()x 21+x 22>()x 1+x 22>4,故x 21+x 22>2.12分22.解:(1)圆x 2+y 2-2x =0的标准方程为(x -1)2+y 2=1,向左平移一个单位后,所得曲线的方程为x 2+y 2=1,2分把曲线x 2+y 2=1上每一点的横坐标变为原来的3倍(纵坐标不变),得到曲线C 的方程为x 23+y 2=1, 故曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).5分(2)由ρsin ⎝⎛⎭⎪⎫θ+π4=322,得ρcos θ+ρsin θ=3,由x =ρcos θ,y =ρsin θ,可得直线l 的直角坐标方程为x +y -3=0,7分所以曲线C 上的点到直线l 的距离d =||3cos α+sin α-32=⎪⎪⎪⎪⎪⎪2sin ⎝⎛⎭⎪⎫α+π3-32≥12=22,所以||AB ≥22,即当α=π6时,||AB 取得最小值22. 10分 23.解:(1)f ()||x >||f ()2x ,即11+||x >1||1+2x ,即⎩⎨⎧x ≠-12,||1+2x >1+||x .2分当x ≥0时,解不等式||1+2x >1+||x 得x>0;当-12<x<0时,解不等式||1+2x >1+||x 得x ∈∅;当x<-12时,解不等式||1+2x >1+||x 得x<-2.综上可知,不等式f ()||x >||f ()2x 的解集为(-∞,-2)∪()0,+∞.5分 (2)证明:因为0<x 1<1,所以 x 2=f ()x 1=11+x 1>12.因为()1+x 1()1+x 2=()1+x 1⎝ ⎛⎭⎪⎫1+11+x 1=2+x 1,且2<2+x 1<3,所以2<()1+x 1()1+x 2<3,13<1()1+x 1()1+x 2<12,所以13|x 2-x 1|<|x 2-x 1|(1+x 1)(1+x 2)<12|x 2-x 1|.8分又||x 3-x 2=11+x 2-11+x 1=||x 2-x 1()1+x 1()1+x 2,所以13||x 2-x 1<||x 3-x 2<12||x 2-x 1.10分。
2020最新高考文科数学押题卷(带答案)(2021年整理精品文档)
(完整版)2020最新高考文科数学押题卷(带答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2020最新高考文科数学押题卷(带答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2020最新高考文科数学押题卷(带答案)的全部内容。
赢在微点★倾情奉献文科数学押题卷(二)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x≤2},B={0,1,2,3},则A∩B=()A.{0,1} B.{0,1,2} C.{1,2} D.{0,1,2,3}2.已知复数z=错误!,则z的虚部为()A.-错误!B.错误!C.-错误!i D.错误!i3.某商家今年上半年各月的人均销售额(单位:千元)与利润率统计表如下:月份123456人均销售额658347利润率(%)12。
610.418.5 3.08.116。
3根据表中数据,下列说法正确的是( )A.利润率与人均销售额成正相关关系 B.利润率与人均销售额成负相关关系C.利润率与人均销售额成正比例函数关系 D.利润率与人均销售额成反比例函数关系4.已知a=错误!错误!,b=错误!错误!,c=π错误!,则下列不等式正确的是( )A.a>b>c B.b>a>c C.c〉a〉b D.c〉b>a 5.已知某空间几何体的三视图如图所示,其中正视图和侧视图是边长为错误!的正三角形,则该几何体的体积为()A.π B.错误! C.错误! D.错误!6.已知△ABC的内角A,B,C的对边分别为a,b,c,若cos A=-35,cos B=错误!,a=20,则c=()A.10 B.7 C.6 D.5 7.函数f(x)=ln|x|·sin x的图象大致为( )A B C D8.执行如图所示的程序框图,则输出的k值为()A.4 B.6 C.8 D.109.已知F1,F2为椭圆C:错误!+错误!=1(a>b〉0)的左、右焦点,B为C的短轴的一个端点,直线BF1与C的另一个交点为A,若△BAF2为等腰三角形,则错误!=()A.错误!B.错误!C.错误! D.310.数学中有很多公式都是数学家欧拉(Leonhard Euler)发现的,它们都叫欧拉公式,分散在各个数学分支之中,任意一个凸多面体的顶点数V、棱数E、面数F之间,都满足关系式V-E+F=2,这个等式就是立体几何中的“欧拉公式”。
2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析
三校联考高考数学模拟试卷(文科)(解析版)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()A.2 B.C.1 D.34.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=5.执行如图所示的程序框图,则输出的S的值为()A.7 B.8 C.9 D.106.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A .在[,]上是增函数B .其图象关于直线x=﹣对称C .函数g (x )是奇函数D .当x ∈[0,]时,函数g (x )的值域是[﹣1,2]7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .8.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A .B .C .D .9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]10.已知双曲线C :﹣=1的左、右焦点分别是F 1,F 2,正三角形△AF 1F 2的顶点A在y 轴上,边AF 1与双曲线左支交于点B ,且=4,则双曲线C 的离心率的值是( )A .+1 B .C .+1 D .11.已知一个平放的棱长为4的三棱锥内有一小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( ) A .π B .π C .π D .π12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015 B .2016C .4030D .4032二、填空题:本大题共4小题,每小题5分. 13.设i 为虚数单位,则复数= .14.已知函数f (x )=2x 2﹣xf ′(2),则函数f (x )的图象在点(2,f (2))处的切线方程是 . 15.若x ,y 满足若z=x+my 的最大值为,则实数m= .16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列; (2)若b n =log 2a n +3,求数列{}的前n 项和T n .18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 19.如图所示,在四棱锥P ﹣ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A ﹣PBC 的体积.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.21.设函数f (x )=x 2﹣(a+b )x+ablnx (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y=f (x )在点(e ,f (e ))处的切线方程为y=﹣e 2. (1)求b ;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【分析】根据题意先求出集合M和集合N,再求M∪N.【解答】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】分别判断出p,q的真假,从而判断出复合命题的真假.【解答】解:命题p:∃x∈N,x3<x2,是假命题;命题q:∀a∈(0,1)∪(1,+∞),令x﹣1=1,解得:x=2,此时f(2)=0,(x﹣1)的图象过点(2,0),是真命题;故函数f(x)=loga故¬p∧q真是真命题;故选:C.【点评】本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()【分析】根据向量的数量积的运算和向量的模计算即可.【解答】解:∵|+2|=2,∴+4+4=||2+4||||cos+4||2=||2+2||+4=12,解得||=2,故选:A.【点评】本题考查了向量的数量积的运算和向量的模的计算,属于基础题.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.执行如图所示的程序框图,则输出的S的值为()【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A.在[,]上是增函数B.其图象关于直线x=﹣对称C.函数g(x)是奇函数D.当x∈[0,]时,函数g(x)的值域是[﹣1,2]【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象性质,得出结论.【解答】解:把函数f(x)=2sin(2x+)的图象沿x轴向左平移个单位,得到函数g(x)=2sin[2(x+)+]=2cos2x的图象,显然,函数g(x)是偶函数,故排除C.当x∈[,],2x∈[,π],函数g(x)为减函数,故排除A.当x=﹣时,g (x )=0,故g (x )的图象不关于直线x=﹣对称,故排除B .当x ∈[0,]时,2x ∈[0,],cos2x ∈[﹣,1],函数g (x )的值域是[﹣1,2],故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,余弦函数的图象性质,属于基础题.7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .【分析】由题意得(1+2d )2=1+12d ,求出公差d 的值,得到数列{a n }的通项公式,前n 项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d . 得d=2或d=0(舍去), ∴a n =2n ﹣1, ∴S n ==n 2, ∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A .【点评】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]【分析】由题意,方程f (x )=ax 恰有两个不同实数根,等价于y=f (x )与y=ax 有2个交点,又a 表示直线y=ax 的斜率,求出a 的取值范围. 【解答】解:∵方程f (x )=ax 恰有两个不同实数根, ∴y=f (x )与y=ax 有2个交点, 又∵a 表示直线y=ax 的斜率, ∴y ′=,设切点为(x 0,y 0),k=,∴切线方程为y ﹣y 0=(x ﹣x 0),而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值范围是[,). 故选:B .【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.10.已知双曲线C:﹣=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且=4,则双曲线C的离心率的值是()A.+1 B.C.+1 D.【分析】不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=,再由双曲线的定义和离心率公式计算即可得到所求值.【解答】解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.由,可得|BF1|=1,在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2﹣2|BF1||F1F2|cos∠BF1F2=1+16﹣2×1×4×=13,|BF2|=,由双曲线的定义可得2a=|BF2|﹣|BF1|=﹣1,解得a=,则e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4, ∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a ,则=, ∴a=2,设小球的半径为r ,则4×r=,∴r=,∴球的表面积S=4=.故选:C .【点评】本题考查球的表面积,考查体积的计算,考查学生分析解决问题的能力,正确求出半径是关键.12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015B .2016C .4030D .4032【分析】特殊值法:令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032.根据条件x >0时,有f (x )<2016,得出函数的单调性,根据单调性求出函数的最值.【解答】解:∵对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,∴令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032. 设x 1<x 2,x 1,x 2∈[﹣2016,2016],则x 2﹣x 1>0,f (x 2﹣x 1)=f (x 2)+f (﹣x 1)﹣2016,∴f(x2)+f(﹣x1)﹣2016<2016.又∵f(﹣x1)=4032﹣f(x1),∴f(x2)<f(x1),即函数f(x)是递减的,∴f(x)max=f(﹣2016),f(x)min=f(2016).又∵f(2016)+f(﹣2016)=4032,∴M+N的值为4032.故选D.【点评】考查了抽象函数中特殊值的求解方法,得出函数的性质.二、填空题:本大题共4小题,每小题5分.13.设i为虚数单位,则复数= i .【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故答案为:i.【点评】本题考查了复数代数形式的乘除运算,是基础题.14.已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是4x﹣y﹣8=0 .【分析】求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(2,f(2))处的切线方程.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.15.若x,y满足若z=x+my的最大值为,则实数m= 2 .【分析】画出满足约束条件的可行域,求出目标函数的最大值,从而建立关于m的等式,即可得出答案.【解答】解:由z=x+my得y=x,作出不等式组对应的平面区域如图:∵z=x+my的最大值为,∴此时z=x+my=,此时目标函数过定点C(,0),作出x+my=的图象,由图象知当直线x+my=,经过但A时,直线AC的斜率k=>﹣1,即m>1,由平移可知当直线y=x,经过点A时,目标函数取得最大值,此时满足条件,由,解得,即A(,),同时,A也在直线x+my=上,代入得+m=,解得m=2,故答案为:2.【点评】本题主要考查线性规划的应用,根据目标函数的几何意义确定取得最大值的最优解是解决本题的关键.16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为.【分析】先利用余弦定理求得A ,进而通过正弦定理表示出c ,代入面积公式求得S+cosBcosC 的表达式,利用两角和与差的余弦函数公式化简求得其最大值.【解答】解:∵a 2=b 2+c 2+bc , ∴cosA==﹣,∴A=,由正弦定理 c=a ==2sinC , ∴S===sinBsinC ∴S+cosBcosC=sinBsinC+cosBcosC=cos (B ﹣C )≤,故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用.求得面积的表达式是解决问题的关键,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列;(2)若b n =log 2a n +3,求数列{}的前n 项和T n .【分析】(1)由题意得2a n =S n +,易求,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n﹣1﹣,两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),由递推式可得结论;(2)由(1)可求=2n ﹣2,从而可得b n ,进而有=,利用裂项相消法可得T n ;【解答】解:(1)证明:由S n ,a n ,成等差数列,知2a n =S n +, 当n=1时,有,∴,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n ﹣1﹣, 两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),即a n =2a n ﹣1, 由于{a n }为正项数列,∴a n ﹣1≠0,于是有=2(n ≥2),∴数列{a n }从第二项起,每一项与它前一项之比都是同一个常数2, ∴数列{a n }是以为首项,以2为公比的等比数列. (2)解:由(1)知==2n ﹣2,∴b n =log 2a n +3==n+1,∴==,∴T n =()+()+…+()==.【点评】本题考查等差数列、等比数列的概念、数列的求和,裂项相消法是高考考查的重点内容,应熟练掌握.18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a,b,c的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.【分析】(Ⅰ)根据茎叶图能求出甲部门数据的中位数和乙部门数据的中位数,再求出甲部门的成绩在70~80的频率为0.5,由此能求出a,b,c.(Ⅱ)利用列举法求出从“甲、乙两组数据中各任取一个”的所有可能情况和其中所取“两数之差的绝对值大于20”的情况,由此能求出所取两数之差的绝对值大于20的概率.【解答】解:(Ⅰ)根据茎叶图得甲部门数据的中位数是78.5,乙部门数据的中位数是78.5;∵甲部门的成绩在70~80的频率为0.5,∴a=0.05,在80~90的频率为0.2,∴b=0.02在60~70的频率为0.1,∴c=0.01.(Ⅱ)从“甲、乙两组数据中各任取一个”的所有可能情况是:(63,67),(63,68),(63,69),(63,73),(63,75),…,(96,86),(96,94),(96,97)共有100种;其中所取“两数之差的绝对值大于20”的情况是:(63,85),(63,86),(63,94),(63,97),(72,94),(72,97),(74,97),(76,97),(91,67),(91,68),(91,69),(96,67),(96,68),(96,69),(96,73),(96,75)共有16种,故所求的概率为.【点评】本题考查概率的求法,考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图所示,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求三棱锥A﹣PBC的体积.【分析】(1)(法一)取PB的中点F,连接EF,CF,由已知得EF∥AB,且,从而四边形CDEF是平行四边形,由此能证明DE∥平面PBC.(1)(法二):取AB的中点F,连接DF,EF,由已知得四边形BCDF为平行四边形,从而DF∥BC,由此能证明DE∥平面PBC.(2)取AD的中点O,连接PO,由已知得PO⊥平面ABCD,由此能求出三棱锥A﹣PBC 的体积.【解答】(1)证明:(方法一):取PB的中点F,连接EF,CF.∵点E,F分别是PA,PB的中点∴EF∥AB,且又CD∥AB,且∴EF∥CD,且EF=CD∴四边形CDEF是平行四边形,∴DE∥CF.又DE⊄平面PBC,CF⊂平面PBC∴DE∥平面PBC.(1)证明:(方法二):取AB的中点F,连接DF,EF.在直角梯形ABCD中,CD∥AB,且AB=4,CD=2,所以BF∥CD,且BF=CD.所以四边形BCDF为平行四边形,所以DF∥BC.在△PAB中,PE=EA,AF=FB,所以EF∥PB.又DF∩EF=F,PB∩BC=B,所以平面DEF∥平面PBC.因为DE⊂平面DEF,所以DE∥平面PBC.(2)解:取AD的中点O,连接PO.在△PAD中,PA=PD=AD=2,所以PO⊥AD,PO=又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO就是三棱锥P﹣ABC的高.在直角梯形ABCD中,CD∥AB,且AB=4,AD=2,AB⊥AD,所以.故.【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.【分析】(1)通过|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.列出方程,求出a 、b ,即可求椭圆E 的方程;(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,然后联立直线方程与椭圆方程,设A (x 1,y 1),B (x 2,y 2),结合x 1x 2+y 1y 2=0,即可求圆的方程.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,﹣y 1),利用⊥,求出半径,得到结果.【解答】解:(1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c=2a ,得a=2c .①又由,得②且a 2=b 2+c 2,综合解得c=1,a=2,b=.∴椭圆E 的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,r 2=,①消去y ,整理得(3+4k 2)x 2+8kmx+4(m 2﹣3)=0,设A (x 1,y 1),B (x 2,y 2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.【点评】考查椭圆的方程和基本性质,与向量相结合的综合问题.考查分析问题解决问题的能力.21.设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【分析】(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.【解答】解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.【点评】本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆即可证得结论;(2)由(1)知,BDBE=BABF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BEBD﹣AEAC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,(1分)又EF⊥AB,∠AFE=90°,(1分)则A,D,E,F四点共圆(2分)∴∠DEA=∠DFA(1分)(2)由(1)知,BDBE=BABF,(1分)又△ABC∽△AEF∴,即ABAF=AEAC(2分)∴BEBD﹣AEAC=BABF﹣ABAF=AB(BF﹣AF)=AB2(2分)【点评】本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.【分析】(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.(Ⅱ)由题意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,∵曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,,,,,.【点评】本题考查了直角坐标与极坐标的互化、圆的对称性、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.【分析】(Ⅰ)问题等价于|m+1|+|m﹣2|≥5,通过讨论m的范围,求出不等式的解集即可;(Ⅱ)根据绝对值的性质证明即可.【解答】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等价于|m+1|+|m﹣2|≥5,可化为,解得m≤﹣2;或,无解;或,解得m≥3;综上不等式解集为(﹣∞,﹣2]∪[3,+∞)…(5分)(Ⅱ)证明:当x≠0时,,|x|>0,,…(10分)【点评】本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.。
2020-2021学年最新高考总复习数学(文)百校联盟高考模拟训练试题及答案解析
最新百校联盟高考数学模拟试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i是虚数单位,复数(a∈R)的实部与虚部相等,则a=()A.﹣1 B.0 C.1 D.22.某高中计划从全校学生中按年级采用分层抽样方法抽取20名学生进行心理测试,其中高三有学生900人,已知高一与高二共抽取了14人,则全校学生的人数为()A.2400 B.2700 C.3000 D.36003.已知集合A={y|y=2x﹣1,x∈R},B={x|y=lg(x﹣2)},则下列结论正确的是()A.﹣1∈A B.3∉B C.A∪B=B D.A∩B=B4.已知f(x)=为奇函数,则a的值为()A.﹣2 B.﹣ C.D.25.等差数列{an }的通项为an=2n﹣1,其前n项和为Sn,若Sm是am,am+1的等差中项,则m的值为()A.1 B.2 C.4 D.86.已知双曲线﹣=1(a>0,b>0)的右焦点为F(c,0),过F且垂直于x轴的直线在第一象限内与双曲线、双曲线的渐近线的交点依次为A,B,若A为BF的中点,则双曲线的离心率为()A.B.C.2 D.37.如果执行如图所示的程序框图,那么输出的a=()A.2 B.C.﹣1 D.以上都不正确8.在正方体ABCD﹣A1B1C1D1中,E为线段B1C的中点,若三棱锥E﹣ADD1的外接球的体积为36π,则正方体的棱长为()A.2 B.2 C.3 D.49.已知变量x,y满足约束条件Ω:,若Ω表示的区域面积为4,则z=3x﹣y的最大值为()A.﹣5 B.3 C.5 D.710.已知函数数f (x )=sin (ωx ﹣)+,x ∈R ,且f (α)=﹣,f (β)=,若|α﹣β|的最小值为,则函数的单调递增区为( ) A .[﹣+2k π,π+2k π],k ∈Z B .[﹣+3k π,π+3k π],k ∈Z C .[π+2k π,π+2k π],k ∈Z D .[π+3k π,π+3k π],k ∈Z11.如图所示为某几何体的三视图,其体积为48π,则该几何体的表面积为( )A .24πB .36πC .60πD .78π12.已知函数f (x )=x 3﹣bx 2﹣4,x ∈R ,则下列命题正确的是( )A .当b >0时,∃x 0<0,使得f (x 0)=0B .当b <0时,∀x <0,都有f (x )<0C .f (x )有三个零点的充要条件是b <﹣3D .f (x )在区间(0.+∞)上有最小值的充要条件是b <0二、填空题:本题共4小题,每小题5分13.已知x 与y 之间的一组数据:x 0 1 2 3y m 3 5.5 7已求得关于y 与x 的线性回归方程=2.1x+0.85,则m 的值为 .14.已知向量=(x ,1)在=(1,)方向上的投影为,则x= .15.已知抛物线C :y 2=6x ,过抛物线的焦点F 的直线l 交抛物线于点A ,交抛物线的准线于点B ,若=3,则点A 到原点的距离为 .16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a=2,bcosC ﹣ccosB=4,≤C≤,则tanA 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤17.已知数列{a n }满足a n+1=2a n +n ﹣1,且a 1=1.(Ⅰ)求证:{a n +n}为等比数列;(Ⅱ)求数列{a n }的前n 项和S n .18.如图,在底面是菱形的四棱柱ABCD ﹣A 1B 1C 1D 1中,∠ABC=60°,AA 1=AC=2,A 1B=A 1D=2,点E 在A 1D 上.(1)证明:AA 1⊥面ABCD .(2)当为何值时,A 1B ∥平面EAC ,并求出此时直线A 1B 与平面EAC 之间的距离.19.随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如表:年龄(单位:岁)[15,25) [25,35) [35,45) [45,55) [55,65) [65,75) 频数 5 10 15 10 5 5赞成人数 3 10 12 7 2 1(Ⅰ)若以“年龄45岁为分界点”.由以上统计数据完成下面的2×2列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关:年龄不低于45岁的人数 年龄低于45岁的人数 合计赞成不赞成合计(Ⅱ)若从年龄在[55,65)的被调查人中随机选取2人进行追踪调查,求2人中至少有1人不赞成“使用微信交流”的概率参考数据如下:P (K 2≥k ) 0.050 0.0100.001 k 3.841 6.635 10.828参考公式:K 2=,(n=a+b+c+d ).20.已知曲线E 上的点M (x ,y )到点F (2,0)的距离与到定直线x=的距离之比为. (I )求曲线E 的轨迹方程;(Ⅱ)若点F 关于原点的对称点为F ′,则是否存在经过点F 的直线l 交曲线E 于A 、B 两点,且三角形F ′AB 的面积为,若存在,求出直线l 的方程;若不存在,请说明理由.21.已知函数g (x )=alnx+x 2+(1﹣b )x .(Ⅰ)若g (x )在点(1,g (1))处的切线方程为8x ﹣2y ﹣3=0,求a ,b 的值; (Ⅱ)若b=a+1,x 1,x 2是函数g (x )的两个极值点,求证:g (x 1)+g (x 2)+4<0.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.如图,等边三角形ABC 内接于圆O ,以B 、C 为切点的圆O 的两条切线交于点D ,AD 交圆O 于点E .(Ⅰ)证明:四边形ABDC 为菱形;(Ⅱ)若DE=2,求等边三角形ABC 的面积.[选修4-4:坐标系与参数方程].23.已知直线l 的参数方程为(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(I )求曲线C 的直角坐标方程与直线l 的极坐标方程;(Ⅱ)若直线θ=与曲线C 交于点A (不同于原点),与直线l 交于点B ,求|AB|的值.[选修4-5:不等式选讲].24.设函数f (x )=|x+2|+|x ﹣2|,x ∈R .(Ⅰ)求不等式f (x )≤6的解集;(Ⅱ)若关于x 的方程f (x )=a|x ﹣1|恰有两个不同的实数根,求a 的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
2020年百校联考高考百日冲刺数学试卷(文科)(一)(全国Ⅰ卷)(有答案解析)
2020年百校联考高考百日冲刺数学试卷(文科)(一)(全国Ⅰ卷)一、选择题(本大题共12小题,共60.0分)1.已知集合,,则A. B. C. D.2.设复数,则复数z的虚部为A. B. C. D.3.为了调查某地区不同年龄、不同等级的教师的工资情况,研究人员在A学校进行抽样调查,则比较合适的抽样方法为A. 简单随机抽样B. 系统抽样C. 分层抽样D. 不能确定4.若双曲线的离心率为,则双曲线C的渐近线方程为A. B. C. D.5.执行如图所示的程序框图,若判断框中的条件为,则输出A的值为A.B. 2C.D.6.九章算术卷第五商功中有如下问题:“今有冥谷上广二丈,袤七丈,下广八尺,袤四丈,深六丈五尺,问积几何”译文为:“今有上下底面皆为长方形的墓坑,上底宽2丈,长7丈;下底宽8尺,长4丈,深6丈5尺,问它的容积量是多少?”则该几何体的容积为注:1丈尺.A. 45000立方尺B. 52000立方尺C. 63000立方尺D. 72000立方尺7.记单调递减的等比数列的前n项和为,且,若,则数列的公比为A. B. C. D.8.图中小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为A.B.C.D.9.设函数,则函数的图象大致为A. B.C. D.10.设抛物线C:的焦点F到其准线l的距离为2,点A,B在抛物线C上,且A,B,F三点共线,作,垂足为E,若直线EF的斜率为4,则A. B. C. D.11.记等差数列的前n项和为,且,若,,成等比数列,则A. 13B. 15C. 17D. 1912.已知,则a,b,c的大小关系为A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知向量,若,则实数的值为______.14.已知首项为1的数列满足,则数列的通项公式为______.15.已知函数,则函数在上的取值范围为______.16.已知函数,若直线l与曲线交于M,N,P三点,且,则点N的坐标为______.三、解答题(本大题共7小题,共82.0分)17.在中,,,,M是线段AC上的一点,且.Ⅰ求AM的长度;Ⅱ求的面积.18.如图,在四棱锥中,,,.在线段AB上作出一点E,使得平面PDE,并说明理由;若,,求点B到平面PAD的距离.19.为了响应绿色出行,某市推出了一款新能源租赁汽车,并对该市市民对这款新能源租赁汽车的使用态度进行调查,具体数据如表1所示:愿意使用新能源租赁汽车不愿意使用新能源租赁汽车总计男性8001000女性600总计1200相关研究人员还调查了某一辆新能源租赁汽车一个月内的使用时间情况,统计如表2所示:时间分钟频数150********根据上述事实,研究人员针对租赁的价格作出如下调整,该价格分为两部分:根据行驶里程数按1元公里计费;行驶时间不超过45分钟,按元分计费;超过45分钟,超出部分按元分计费.是否有的把握认为该市市民对这款新能源租赁汽车的使用态度与性别有关;根据表中的数据求该辆汽车一个月内的平均使用时间;若小明的住宅距离公司20公里,且每天驾驶新能源租赁汽车到公司的时间在分钟之间,若小明利用滴滴打车到达公司需要27元,讨论:小明使用滴滴打车上班还是驾驶新能源租赁汽车上班更加合算.附:k20.已知中,,,,点Q在线段上,且Ⅰ求点Q的轨迹E的方程;Ⅱ若点M,N在曲线E上,且M,N,三点共线,求面积的最大值.21.已知函数.求曲线在处的切线方程;已知函数存在极大值和极小值,且极大值和极小值分别为M,N,若,,求的最大值.22.在平面直角坐标系xOy中,曲线C的参数方程为为参数,点M是曲线C上的任意一点,将点M绕原点O逆时针旋转得到点以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.Ⅰ求点N的轨迹的极坐标方程;Ⅱ若曲线与曲线C,分别交于点A,B,点,求的面积.23.已知函数.Ⅰ求不等式的解集;Ⅱ若关于x的不等式在R上恒成立,求实数m的取值范围.-------- 答案与解析 --------1.答案:D解析:解:依题意,,,故.故选:D.可以求出集合A,B,然后进行交集的运算即可.考查描述法、区间表示集合的定义,函数的定义域,不等式的解法以及交集的运算.2.答案:C解析:解:,复数z的虚部为.故选:C.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.答案:C解析:解:A学校不同年龄、不同等级的教师的工资情况相差较大,研究人员在A学校进行抽样调查时,则比较合适的抽样方法是按照年龄或等级,采取分层抽样的方法,故选:C.由题意利用分层抽样的定义和方法,得出结论.本题主要考查分层抽样的定义和方法,属于基础题.4.答案:C解析:解:双曲线的离心率为,可得,即,解得,双曲线C的渐近线方程为:.故选:C.利用双曲线的离心率求出a,b关系,即可区间双曲线的渐近线方程.本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.5.答案:B解析:解:由题意,模拟程序的运行,可得,满足条件,执行循环体,,满足条件,执行循环体,,满足条件,执行循环体,,观察规律可知A的取值周期为3,且,可得时,满足条件,执行循环体,,此时,不满足条件,退出循环,输出A的值为2.故选:B.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量A的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.答案:B解析:解:进行分割如图所示,故立方尺.故选:B.利用分割几何体为锥体,棱柱,然后求解几何体的体积即可.本题考查几何体的体积的求法,考查转化思想以及计算能力,是中档题.7.答案:C解析:解:设单调递减的等比数列的公比为,,,,解得:,或舍去.则数列的公比为.故选:C.设单调递减的等比数列的公比为,由,,可得:,解得:q.本题考查了等比数列的通项公式、求和公式及其单调性,考查了推理能力与计算能力,属于基础题.8.答案:C解析:解:由三视图还原原几何体如图,该几何体为组合体,上面部分为两个四分之一圆锥,底面半径为2,高为2,中间部分为棱长是4的正方体,下面部分为直三棱柱.则其表面积:.故选:C.由三视图还原原几何体,该几何体为组合体,上面部分为两个四分之一圆锥,底面半径为2,高为2,中间部分为棱长是4的正方体,下面部分为直三棱柱,则其表面积可求.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.9.答案:B解析:解:函数的定义域为R,,则函数为偶函数,可排除选项C;当时,,可排除选项D;又,可排除A.故选:B.根据函数解析式判断奇偶性,结合极限和特殊值进行排除选项,即可得解.本题考查根据函数解析式选择合适的函数图象,关键在于熟练掌握函数性质,结合特殊值与极限求解,此类问题常用排除法解决.10.答案:C解析:解:由抛物线的性质可得:焦点F到其准线l的距离为2,可得,所以抛物线的方程为:所以可得焦点,准线方程为,设,,由题意可得,可得,所以,将代入抛物线中,,,及,所以,所以直线AB的方程为:,与抛物线联立可得,所以,所以,所以,故选:C.由抛物线的性质,焦点到准线的距离为p,由题意可得p的值,可求出抛物线的方程,设A,B的坐标,由题意可得E的坐标,求出直线EF的斜率,由题意可得E的坐标,将E的纵坐标代入抛物线求出B的坐标,进而求出直线AB的斜率及方程,代入抛物线的方程求出A的横坐标,由抛物线的性质可得的值.本题考查抛物线的性质,及直线与抛物线的综合,属于中档题.11.答案:C解析:解:等差数列的公差设为d,前n项和为,由,可得,即,由,可得,即,解得,,则,,若,,成等比数列,则,即为,可得,则.故选:C.等差数列的公差设为d,运用等差数列的通项公式和求和公式,解方程可得首项和公差,再由等比数列的中项性质,解方程可得m,进而得到所求值.本题考查等差数列的通项公式和求和公式的运用,同时考查等比数列的中项性质,考查方程思想和运算能力,属于基础题.12.答案:A解析:解:由于,根据三角函数的值,则,由于,所以,根据近似值的运算,整理得.故.故选:A.直接利用三角函数的值和正弦函数的图象的应用求出结果.本题考查的知识要点:三角函数的值的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.13.答案:解析:解:根据题意,向量,则,若,则,则;故答案为:.根据题意,由向量的坐标公式可得,由向量垂直与数量积的关系可得,解可得的值,即可得答案.本题考查向量数量积的计算,涉及向量的坐标计算,属于基础题.14.答案:解析:解:,,又,数列是首项为,公比为5的等比数列,,,故答案为:.由可得,所以构造出等比数列,再利用等比数列的通项公式即可求出.本题主要考查了数列的递推式,以及构造等比数列求数列的通项,是中档题.15.答案:解析:解:,当时,,,则当时,函数取得最大值,最大值为,当时,函数取得最小值,最小值为,即的取值范围是,故答案为:.利用三角函数的倍角公式,以及辅助角公式进行化简,求出角的范围,结合三角函数的单调性和最值关系求出最大值和最小值即可.本题主要考查三角函数的图象和性质,利用辅助角公式进行化简,求出角的范围,结合三角函数的单调性和最值关系是解决本题的关键.难度不大.16.答案:解析:解:函数,若直线l与曲线交于M,N,P三点,且,所以N是MP的中点,因为函数,可得,,令,解得,此时,所以函数的对称中心的坐标.所以,故答案为:.利用已知条件说明N是函数的对称中心的坐标,通过平方转化求解即可.本题考查函数的导数的应用,函数的极值以及函数的对称中心的关系,是基本知识的考查.17.答案:解:Ⅰ;,;由正弦定理,,即,解得;由余弦定理,,即,解得;Ⅱ,,在中,由余弦定理,有,.解析:Ⅰ先求出的正弦值和余弦值,利用正弦定理求出BM的长,利用余弦定理求出AM 的长;Ⅱ利用正弦定理求出的值,利用余弦定理求出CM的值,最后使用公式求出的面积.本题考查了利用正弦定理和余弦定理解三角形,已知条件较多,难度不大,但是计算量较大,属中档题.18.答案:解:取AB的中点E,连接PE,DE,,,又,,则四边形DCBE为平行四边形,可得.平面PDE,平面PDE,则平面PDE;,,且,平面PCD,又平面ABCD,平面平面ABCD,平面平面,在平面PCD内过P作,可得平面ABCD,在与中,,,又由题意,,,由已知求得..连接BD,则,又求得,设B到平面PAD的距离为h,则由,得,即.解析:取AB的中点E,连接PE,DE,可证四边形DCBE为平行四边形,得,由直线与平面平行的判定可得平面PDE;由已知证明平面PCD,可得平面平面ABCD,在平面PCD内过P作,得平面ABCD,求解三角形求得,再由等体积法求点B到平面PAD的距离.本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用等体积法求点到面的距离,是中档题.19.答案:解:补充完整的列联表如下所示,愿意使用新能源租赁汽车不愿意使用新能源租赁汽车合计男性 800 200 1000女性 400 600 1000合计 1200 800 2000,故有的把握认为该市市民对这款新能源租赁汽车的使用态度与性别有关.表2中的数据整理如下,时间分钟频数 150 200 100 50频率所求的平均使用时间为分钟.设小明驾驶新能源租赁汽车到达公司需要y元,上班所用的时间为t分钟,当时,;当时,.故,当时,;当时,,令,解得,综上所述:当时,使用驾驶新能源租赁汽车上班更加合算;当时,使用滴滴打车上班更加合算;当时,两种方案情况相同.解析:先根据现有数据补充完整列联表,再利用的公式计算出其观测值,并与附表中的临界值进行对比即可作出判断;根据表格2中的频数分布,计算出每一组的频率,再利用平均数的计算方法求解即可;设小明驾驶新能源租赁汽车到达公司需要y元,上班所用的时间为t分钟,写出y关于t的分段函数,并求出每段中对应的y的取值范围,便于知道滴滴打车花费的27元在租赁新能源汽车花费中对应的上班时间,然后,解得,最后分类说明哪种方式上班更合算即可.本题考查独立性检验,根据频数分布表计算平均数,利用函数模型来解决优化问题等,解题的关键是熟练掌握相关计算公式,考查学生对数据的分析能力、逻辑推理能力和运算能力,属于中档题.20.答案:解:Ⅰ设,,,点Q在线段上,且,点Q为焦点在x轴上,长轴长,焦距的椭圆上的点,且,点Q的轨迹E的方程为;Ⅱ设直线MN的方程为,联立可得,设,,则,.,点到直线MN的距离,,令,则在上单调递减,故当也即时,面积的最大值为3.解析:Ⅰ先设点Q的坐标,再由椭圆的定义求得其轨迹方程;Ⅱ先设出直线MN的方程与椭圆方程联立求得,,进而求得与点到直线MN的距离d,找出面积的表达式,最后解决其最值问题.本题主要考查椭圆的定义及圆锥曲线中的最值问题,属于中档题.21.答案:解:依题意,函数的定义域为,,故,而,故所求切线方程为,即;依题意,,故,显然,令,解得或,因为极大值,故,此时,函数,所以,令,得,当a变化时,,,变化情况如下表:a2e增极大值减所以函数的最大值为.解析:根据导函数求出切线斜率,利用点斜式写出直线方程化简得解;根据导函数讨论单调性求出极大值,讨论的单调性即可求得最值.本题考查导数的几何意义,求解切线方程,利用导函数讨论函数单调性,求解极值和最值问题,属于中档题.22.答案:解:Ⅰ依题意,曲线C的普通方程为,即,整理可得:,故曲线C的极坐标方程为,设,则,则有,故点N的轨迹的极坐标方程为.Ⅱ曲线的极坐标方程为,D到曲线的距离为,曲线与曲线C交点,曲线与曲线交点,,故的面积.解析:Ⅰ直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.Ⅱ利用直线和圆的位置关系的应用和极径的应用及三角形的面积公式的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线和圆的位置关系的应用,极径的应用,三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.23.答案:解:Ⅰ依题意,,当时,原式化为,解得,故,当时,原式化为,解得,故无解,当时,原式化为,解得,故,综上所述,不等式的解集为.Ⅱ依题意,,则,即,即,则只需,解得,实数m的取值范围是.解析:Ⅰ依题意,,运用零点分区间和绝对值的定义,去绝对值,解不等式,求并集,可得所求解集;Ⅱ依题意可得,即,再由二次函数的性质,结合判别式小于等于0,解不等式可得所求范围.本题考查绝对值不等式的解法,注意运用分类讨论思想,考查不等式恒成立问题解法,注意运用绝对值不等式的解法和二次函数的性质,考查运算能力和推理能力,属于中档题.。
2020-2021学年高考押题金卷(全国卷ⅰ)数学(文)试卷及答案解析
三.解答题:解答应写出文字说明,证明过程或演算步骤。 (17)(本小题满分 12 分)
在右图所示的四边形 ABCD中,∠ BAD=90°, ∠BCD=120°,∠ BAC=60°,AC=2, 记∠ ABC=θ。
本卷包括必考题和选考题两部分,第 13 题— 21 题为必考题,每个试题考生都必须
作答,第 22 题— 23 题为选考题,考生根据要求作答 .
二、填空题 (本大题包括 4 小题,每小题 5 分,共 20 分,把正确答案填在答题卡中的横线
上)
r
13 已知 | a | 2 ,( 2
rห้องสมุดไป่ตู้
rr
)⊥ a ,则 b 在 a 方向上的投影为
是符合题目要求的。 )
x
2
1.已知集合 A { y | y 2 1,x R} , B { x | x x 2 0},则()
A. 1 A
B. 3 B
C. AI (CRB) A
D. A U B A
2.已知复数的共轭复数为 z,若 | z|=4,则 ·z= ( )
(A)4 (B)2
(C)16
(D) ±2
别是 8,9,10(单位: 小时),这三个数据与表格中的数据构成的新样本的平均数记为
表格中的数据平均数记为 x0 ,试判断 x0 与 x1 的大小(结论不要求证明) .
确的是()
A. x1 x2
B. x1 x2 C. x1 x2 0 D. x1 x2 0
6.执行如下图所示的程序框图,如果输入 t=0.1,则输出的 n=()
2021年百师联盟高考数学摸底试卷(文科)(全国卷)(附答案详解)
2021年百师联盟高考数学摸底试卷(文科)(全国卷)一、单选题(本大题共12小题,共60.0分)=1+i,则|z|=()1.(2021·全国·模拟题)已知复数z满足z1+iA. √3B. 2C. √5D. √322.(2021·全国·模拟题)集合M={x|y=ln(x2−3x−4)},N={x|−2<x<4},则M∪N=()A. (−∞,−1]∪(2.+∞)B. (−∞,−4)∪(1,+∞)C. (−∞,4)∪(4,+∞)D. (−∞,−2]∪[4,+∞)3.(2021·江西省宜春市·模拟题)人口普查是世界各国所广泛采用的搜集人口资料的一种科学方法,是提供全国基本人口数据的主要来源.根据人口普查的基本情况,可以科学的研究制定社会、经济、科教等各项发展政策,是国家科学决策的重要基础工作,人口普查资料是制定人口政策的依据和前提.截止2020年10月10日,我国共进行了六次人口普查,如图是这次人口普查的人数和增幅情况,下列说法正确的是()A. 人口数逐次增加,第二次增幅最大B. 第六次普查人数最多,第四次增幅最小C. 第六次普查人数最多,第三次增幅最大D. 人口数逐次增加,从第二次开始增幅减小4.(2021·全国·模拟题)已知实数a,b,c,则“ac<0”是“方程ax2+bx+c=0有解”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. (2021·全国·模拟题)如图,在△ABC 中,AN ⃗⃗⃗⃗⃗⃗ =NC⃗⃗⃗⃗⃗⃗ ,P 是BN 上的一点,BP ⃗⃗⃗⃗⃗ =3PN ⃗⃗⃗⃗⃗⃗ ,若AP ⃗⃗⃗⃗⃗ =m AB ⃗⃗⃗⃗⃗ +38AC ⃗⃗⃗⃗⃗ ,则实数m 的值为( )A. 14 B. 38 C. 34 D. 976. (2021·全国·模拟题)数列{a n }是等比数列,a 3=3,a 6=81,则a 5=( )A. 15B. 16C. 27D. 257. (2021·全国·模拟题)f(x)是定义在R 上的奇函数,且f(1)=0,f′(x)为f(x)的导函数,且当x ∈(0,+∞)时f′(x)>0,则不等式f(x −1)>0的解集为( )A. (0,1)∪(2,+∞)B. (−∞,1)∪(1,+∞)C. (−∞,1)∪(2,+∞)D. (−∞,0)∪(1,+∞)8. (2021·全国·模拟题)从一个边长为3的等边三角形开始,把三角形的每一条边三等分,并以每一条边三等分后的中段为边,向外作新的等边三角形(如图),但要去掉与原三角形叠合的边,接着对此图形每一个等边三角形“尖出”的部分继续上述过程.若按照上述规律,则第四个图形的周长是( )A.1433B.2049C.2569D. 6439. (2021·全国·模拟题)几何体的三视图如图,则其体积为( )A. 5πB. 6πC.32π3D. 12π10. (2021·全国·模拟题)设M ,N 是函数f(x)=2sin(ωx +φ)(ω>0)图象与直线y =2的交点,若M ,N 两点距离的最小值为6,P(−12,2)是该函数图象上的一个点,则该函数图象的解析式是( )A. f(x)=2sin(π3x +2π3) B. f(x)=2sin(π3x +π3) C. f(x)=2sin(π3x −π6)D. f(x)=2sin(π6x +π3)11. (2021·全国·模拟题)过双曲线x 2a2−y 2b 2=1(a >0,b >0)的左焦点F 的直线交y 轴于点M ,交双曲线右支于点P ,若2OM ⃗⃗⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ,(O 为原点),且点M 在圆O :x 2+y 2=a 2外,则双曲线的离心率的取值范围是( )A. 1<e <√3B. √2<e ≤√3C. e >√3D. e >1+√212. (2021·全国·模拟题)正项数列{a n }满足a 1=1,a n 2−(a n−1+2)a n −a n−1−3=0(n >1,n ∈N),则1a1a 3+1a3a 5+⋯+1a2019a 2021=( )A. 12003534B. 10106061C. 12202021D. 20205461二、单空题(本大题共4小题,共20.0分)13. (2020·云南省曲靖市·单元测试)函数f(x)=lnx +x 2的图象在点(1,f(1))处切线方程为______.14. (2018·黑龙江省·其他类型)现有2名女教师和1名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为______ .15. (2021·全国·模拟题)抛物线y 2=4x 的焦点为F ,设A(x 1,y 2),B(x 2,y 2)是抛物线上的两个动点,若x 1+x 2+2=2√33|AB|,则∠AFB 的最大值为______ .16. (2021·全国·模拟题)已知函数f(x)=mx −lnx −m 在区间(1,e)内有零点,则m 的取值范围为______ .三、解答题(本大题共7小题,共82.0分)17. (2021·全国·模拟题)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,2S =c 2−(a −b)2. (1)求cos C 的值;(2)已知c =4,求△ABC 面积的最大值.18.(2021·全国·模拟题)在四棱锥P−ABCD中,PD⊥平面ABCD,PD=1,PN=2ND.四边形ABCD为梯形,AD//BC,BC=2AD=2DC=4,∠ADC=120°.(1)求证:PB//平面CAN;(2)求三棱锥N−PBC的体积.19.(2021·全国·模拟题)某企业在开展“质量安全周”活动中,某种产品被检测出其中一项质量指标存在问题,该企业对甲、乙两条流水线生产该产品情况进行统计,表1是甲流水线样本的频数分布表,如图是乙流水线样本的频率分布直方图.表1质量指标数频数(190,195]10(195,200]9(200,205]18(205,210]7(210,215]6(1)某个月内甲、乙两条流水线各生产了3500件和1500件产品,现按照分层抽样的方法,从中抽出100件产品进行检测,问甲、乙两条生产线各抽出多少件产品?(2)随机从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.根据已知条件完成表2的2×2列联表,并回答能否有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲、乙两条流水线的选择有关”?表2甲流水线乙流水线合计合格品不合格品合计(其中n=a+b+c+d).附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)P(K20.150.100.050.0250.0100.0050.001≥k0) k0 2.072 2.706 3.841 5.024 6.6357.87910.82820.(2021·全国·模拟题)已知函数f(x)=ae x+x2−x.(1)当a=1时,求函数f(x)的单调区间;(2)若f(x)>2x−1恒成立,求实数a的取值范围.21. (2021·全国·模拟题)已知定点C(−3,0),D(3,0),动点M 满足:直线MC ,MD 的斜率之积为−49.(1)求动点M 的轨迹方程;(2)设M 的轨迹为G.直线I 过抛物线y 2=4√5x 的焦点且与C 相交于不同的两点A ,B.在x 轴上是否存在一个定点P(m,0),使得PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ 的值为定值?若存在,写出P 点的坐标;若不存在,说明理由.22. (2021·全国·模拟题)在直角坐标系xOy 中,曲线C 的参数方程为{x =2cosθ y =sinθ(θ为参数),直线l 的参数方程为{x =t +2 y =2t +3(t 为参数). (1)求直线l 普通方程;(2)设A(2,3),若直线1与曲线C 相交于P ,Q 两点,PQ 的中点为M ,求|AM|的值.23. (2021·全国·模拟题)已知函数f(x)=|3x −a|+x(a >0).(1)当a =4时,求不等式f(x)<3的解集;|−x.当x∈R时,证明:f(x)+g(x)≥2√2.(2)设函数g(x)=|x+6a答案和解析1.【答案】B【知识点】复数的模=1+i,∴z=(1+i)2=2i,【解析】解:z1+i则|z|=2,故选:B.利用复数的运算法则、模的计算公式即可得出.本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.2.【答案】C【知识点】并集及其运算【解析】解:集合M={x|y=ln(x2−3x−4)}={x|x2−3x−4>0}={x|x<−1或x>4},又N={x|−2<x<4},所以M∪N={x|x<4或x>4}.故选:C.先利用对数不等式以及一元二次不等式的解法求出集合M,再利用并集的定义求解即可.本题考查了集合并集的应用,解题的关键是掌握集合并集的定义,属于基础题.3.【答案】C【知识点】合情推理(归纳、类比推理)【解析】解:根据柱状图:对于A:人口逐次增加,第三次增幅最大,故A错误;对于B:第六次人口数最多,第六次增幅最小,故B错误;对于C:第六次普查人数最多,第三次增幅最大,故C正确;对于D:人口数逐次增加,从第三次开始增幅减小,故D错误.故选:C.直接利用柱状图和数据的变化规律判断A、B、C、D的结论.本题考查的知识要点:柱状图,数据的变化规律,主要考查学生的视图能力,属于基础题.4.【答案】A【知识点】必要条件、充分条件与充要条件的判断 【解析】解:若ac <0,则Δ=b 2−4ac >0, ax 2+bx +c =0有解,故“ac <0”是“方程ax 2+bx +c =0有解”的充分条件, 当a =0,b ≠0时,方程ax 2+bx +c =0有解,但ac <0不成立, 故“ac <0”不是“方程ax 2+bx +c =0有解”的必要条件, 综上“ac <0”是“方程ax 2+bx +c =0有解”的充分不必要条件. 故选:A .根据充要条件的定义判断即可.本题考查了一元二次方程解的判断,充要条件的定义,属于基础题.5.【答案】A【知识点】向量的加法、减法、数乘运算、平面向量的基本定理及其应用 【解析】解:∵在△ABC 中,AN ⃗⃗⃗⃗⃗⃗ =NC ⃗⃗⃗⃗⃗⃗ ,P 是BN 上的一点,BP ⃗⃗⃗⃗⃗ =3PN⃗⃗⃗⃗⃗⃗ , ∴AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +34BN ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +34(AN ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=14AB ⃗⃗⃗⃗⃗ +34×12AC ⃗⃗⃗⃗⃗ =14AB ⃗⃗⃗⃗⃗ +38AC⃗⃗⃗⃗⃗ , 又∵AP ⃗⃗⃗⃗⃗ =m AB ⃗⃗⃗⃗⃗ +38AC ⃗⃗⃗⃗⃗ ,∴m =14. 故选:A .AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +34BN ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +34(AN ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=14AB ⃗⃗⃗⃗⃗ +34×12AC ⃗⃗⃗⃗⃗ =14AB ⃗⃗⃗⃗⃗ +38AC⃗⃗⃗⃗⃗ ,结合AP ⃗⃗⃗⃗⃗ =m AB ⃗⃗⃗⃗⃗ +38AC ⃗⃗⃗⃗⃗ 可求得m 值. 本题考查平面向量基本定理及线性运算,考查数学运算能力,属于基础题.6.【答案】C【知识点】等比数列的通项公式【解析】解:设等比数列{a n }的公比为q ;由a 3=3、a 6=81,得q 3=a 6a 3=813=27,解得q =3,所以a 5=a 3⋅q 2=3×32=27. 故选:C .设等比数列{a n }的公比为q ,则根据q 3=a6a 3可解出q 值,由a 5=a 3⋅q 2即可计算出出答案.本题主要考查等比数列的通项,考查运算求解能力,属于简单题.7.【答案】A【知识点】利用导数研究函数的单调性【解析】解:∵f(x)是定义在R上的奇函数,且f(1)=0,当x∈(0,+∞)时f′(x)>0,∴f(x)在(−∞,0),(0,+∞)上单调递增,图形如下:∴f(x)>0的解集为:(−1,0)∪(1,+∞),又y=f(x−1)的图象是y=f(x)的图象向右平移一个单位,∴不等式f(x−1)>0的解集为(0,1)∪(2,+∞),故选:A.依题意,作出y=f(x)的图象,得到f(x)>0的解集,继而可得不等式f(x−1)>0的解集.本题考查利用导数研究函数的单调性,考查运算求解能力,是中档题.8.【答案】D【知识点】合情推理(归纳、类比推理)【解析】解:设图形的边长分别为a1,a2,a3,a4,边数为b1,b2,b3,b4,周长为c n,(n=1,2,3,4,),由图形可得a2=a1×13=1,a3=13a2=13,a4=13a3=19,b1=3,b2=3×4=12,b3=3×4×4=48,b4=3×4×4×4=192,∴C1=3×3=9,C2=12×1=12,C3=48×13=16,C4=192×19=643.故选:D.找出相邻图形的边长之间的关系,以及相邻图形边数之间的关系进行求解即可.本题考查了归纳推理的应用,此类问题一般是根据所给的条件,先列举一部分,然后再归纳规律即可,属于中档题.9.【答案】B【知识点】空间几何体的三视图【解析】解:由三视图可知,几何体是下部为圆柱底面半径为1,高为2,上部是34个半球,球的半径为2,所以几何体的体积为:V=34×12×43πR3+πr2ℎ=4π+2π=6π.故选:B.判断几何体的形状,然后求解体积即可.本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键,是基础题.10.【答案】A【知识点】函数y=A sin(ωx+φ)的图象与性质【解析】解:M,N是函数f(x)=2sin(ωx+φ)(ω>0)图象与直线y=2的交点,若M,N两点距离的最小值为6,所以T=6,所以ω=2πT =π3,P(−12,2)是该函数图象上的一个点,所以π3×(−12)+φ=2kπ+π2,解得φ=2kπ+2π3(k∈Z),故f(x)=2sin(2x+2π3).故选:A.直接利用函数的图象和性质求出函数的关系式.本题考查的知识要点:三角函数的关系式的求法,正弦型函数的性质的应用,主要考查学生的运算能力和数学思维能力,属于基础题.11.【答案】C【知识点】双曲线的性质及几何意义【解析】解:如图,由2OM ⃗⃗⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ ,得M 是FP 的中点,则P(c,b 2a ),M(0,b22a ),∵点M(0,b 22a )在圆O 外,∴b 22a>a ,得b 2=c 2−a 2>2a 2, 又e >1,∴e >√3. 故选:C .由题意画出图形,由向量等式得M 是FP 的中点,求出M 的坐标,再由M 在圆O :x 2+y 2=a 2外即可求得双曲线的离心率的取值范围.本题考查双曲线的几何性质,考查数形结合思想,是基础题.12.【答案】B【知识点】数列的递推关系【解析】解:∵a n 2−(a n−1+2)a n −a n−1−3=0(n >1,n ∈N),∴(a n +1)[a n −(a n−1+3)]=0,a n >0, ∴a n −a n−1=3,∴数列{a n }是等差数列,首项为1,公差为3, ∴a n =1+3(n −1)=3n −2. ∴1a 2n−1a 2n+1=1(6n−5)(6n+1)=16(16n−5−16n+1),∴1a1a 3+1a3a 5+⋯+1a2019a 2021=16[(1−17)+(17−113)+⋯…+(16055−16061)]=16(1−16061)=10106061. 故选:B .由a n 2−(a n−1+2)a n −a n−1−3=0(n >1,n ∈N),通过因式分解可得:(a n +1)[a n −(a n−1+3)]=0,a n >0,于是a n −a n−1=3,再利用等差数列的通项公式、裂项求和方法即可得出.本题考查了等差数列的通项公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.13.【答案】3x−y−2=0【知识点】导数的几何意义【解析】解:由f(x)=lnx+x2,得f′(x)=1x+2x,则f′(1)=3,又f(1)=1,则切线方程为y−1=3(x−1),即3x−y−2=0.故答案为:3x−y−2=0.求出原函数的导函数,得到函数在x=1处的导数,再求出f(1),利用直线方程的点斜式得答案.本题考查利用导数研究过曲线上某点处的切线方程,是基础题.14.【答案】12【知识点】古典概型的计算与应用【解析】解:设两道题分别为A,B题,所以抽取情况共有:AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB,其中第1个,第2个分别是两个女教师抽取的题目,第3个表示男教师抽取的题目,一共有8种;其中满足恰有一男一女抽到同一题目的事件有:ABA,ABB,BAA,BAB,共4种;故所求事件的概率为12.故答案为:12列举基本事件,利用古典概型概率公式求解即可列举法是确定基本事件的常用方法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.15.【答案】2π3【知识点】抛物线的性质及几何意义【解析】解:由抛物线定义可得|AF|=x1+1,|BF|=x2+1,所以由x1+x2+2=2√33|AB|,得|AF|+|BF|=2√33|AB|,由余弦定理可得cos∠AFB=|AF|2+|BF|2−|AB|22|AF|BF|=|AF|2+|BF|2−34(|AF|+|BF|)22|AF|BF|=14(|AF|2+|BF|2)−32|AF|BF|2|AF|BF|,由基本不等式得|AF|2+|BF|2⩾2|AF|BF|,所以cos∠AFB⩾−|AF||BF|2|AF||BF|=−12,(∠AFB)max=2π3.故答案为:2π3.根据抛物线的定义将x1+x2+2=2√33|AB|转化为|AF|+|BF|=2√33|AB|,再结合余弦定理和基本不等式可以求出cos∠AFB的范围,进而得到∠AFB的最大值.本题考查抛物线的定义,考查余弦定理的应用,考查基本不等式的应用,考查数学运算的核心素养,属于中档题.16.【答案】(1e−1,1)【知识点】函数零点存在定理【解析】解:令f(x)=mx−lnx−m=0,得m(x−1)=lnx,令y=m(x−1)和y=lnx,只需两函数图象在区间(1,e)上有交点.如图,A(e,1),B(1,0),直线AB的斜率k=1e−1.y=lnx在B处切线的斜率k=y′|x=1=1,∴m的取值范围为(1e−1,1).故答案为:(1e−1,1).把f(x)=mx−lnx−m在区间(1,e)内有零点,转化为y=m(x−1)和y=lnx的图象在区间(1,e)上有交点,画出图形,数形结合得答案.本题考查函数零点的判定及应用,考查数形结合思想,训练了利用导数求曲线上某点处切线的斜率,是中档题.17.【答案】解:(1)∵2S=c2−(a−b)2=c2−a2−b2+2ab,又由余弦定理可得,c2=a2+b2−2abcosC,即c2−a2−b2=−2abcosC,∵S=12absinC,∴2×(12absinC)=−2abcosC+2ab,即sinC=2−2cosC,∴sin2C=1−cos2C=(2−2cosC)2,解得cosC=35或cosC=1(舍去),∴cosC =35. (2)由余弦定理可得,16=a 2+b 2−2abcosC =a 2+b 2−65ab ≥2ab −65ab =45ab ,∴ab ≤20,当且仅当a =b =2√5时等号成立, ∵sin 2C +cos 2C =1,cosC =35, ∴sinC =45,S △ABC =12absinC =12×20×45=8,∴△ABC 面积的最大值为8.【知识点】余弦定理、正弦定理【解析】(1)由题意2S =c 2−(a −b)2=c 2−a 2−b 2+2ab ,结合正弦定理、余弦定理,即可求解,(2)根据已知条件,运用余弦定理和均值不等式,可得ab ≤20,再结合三角形面积公式,即可求解.本题考查了余弦定理、正弦定理,考查了均值不等式,需要学生有较强的综合知识,属于中档题.18.【答案】解:(1)证明:因为AD//BC ,BC =4=2AD , 连接BD 交AC 于M ,由△ADM∽△CBM ,可得BM =2MD , 由于PN =2ND , 连接MN ,MN//PB ,又MN ⊂平面ACN ,PB ⊄平面ACN , 所以PB//平面ACN ; (2)过D 作DH ⊥BC 于H , 因为AD//BC ,∠ADC =120°,所以∠DCB =60°,DH =√3,S △DBC =12×4×√3=2√3, 设三棱锥D −PBC 的高为h ,三棱锥N −PBC 的高为ℎ1, 则V N−PBCVD−PBC=ℎ1ℎ=PN PD =23,V D−PBC =V P−DBC =13S △DBC ×PD =2√33,V N−PBC=23V D−PBC=4√39.【知识点】圆柱、圆锥、圆台的侧面积、表面积和体积、线面平行的判定【解析】(1)连接BD交AC于M,由三角形的相似的性质和平行线的判定,可得MN//PB,再由线面平行的判定定理,即可得证;(2)过D作DH⊥BC于H,求得DH和△DBC的面积,由等积法和棱锥的体积公式,计算可得所求值.本题考查线面平行的判定和棱锥的体积的求法,考查转化思想和运算能力、推理能力,属于中档题.19.【答案】解:(1)按照分层抽样抽出100件产品中,甲有1005000×500=70件,乙有1005000×1500=30件,(2)甲、乙两条生产线各抽出50件,甲流水线生产的不合格产品有16件,合格产品有34件,∵乙流水线生产的不合格产品的概率为(0.012+0.028)×5=15,∴乙流水线生产的不合格产品有10件,合格产品有40件,则2×2列联表如下,∵K2=100(340−640)250×50×74×26≈1.87,∵1.87<2.072,∴没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲、乙两条流水线的选择有关”.【知识点】独立性检验【解析】(1)由分层抽样的定义即可求出甲、乙两条流水线抽出的产品数.(2)分别求出甲、乙两条生产线不合格产品和合格产品的件数,填写列联表,计算观测值,对照临界值得出结论即可.本题考查了列联表与独立性检验的问题,考查了分层抽样,属于中档题.20.【答案】解:(1)当a=1时,f(x)=e x+x2−x,则f′(x)=e x+2x−1,设ℎ(x)=e x +2x −1,则ℎ′(x)=e x +2>0, ∴ℎ(x)在R 上单调递增,又ℎ(0)=0,则当x <0时,ℎ(x)<0,f′(x)<0,f(x)单调递减,当x >0时,ℎ(x)>0,f′(x)>0,f(x)单调递增,∴f(x)的单调递减区间为(−∞,0),单调递增区间为(0,+∞); (2)ae x+x 2−x >2x −1恒成立,即a >3x−1−x 2e x恒成立, 设g(x)=3x−1−x 2e x,则g′(x)=x 2−5x+4e x=(x−1)(x−4)e x,易知函数g(x)在(−∞,1),(4,+∞)上单调递增,在(1,4)上单调递减, 且g(x)极大值=g(1)=1e ,当x >4时,−(x 2−3x +1)<0,g(x)<0, ∴g(x)max =1e ,∴a >1e .【知识点】利用导数研究闭区间上函数的最值、利用导数研究函数的单调性【解析】(1)将a =1代入,对函数f(x)求导,判断导函数与0的关系即可得到单调区间; (2)问题等价于a >3x−1−x 2e x恒成立,设g(x)=3x−1−x 2e x,求出g(x)的最大值即可得解.本题考查利用导数研究函数的单调性,极值及最值,考查转化思想及运算求解能力,属于中档题.21.【答案】解:(1)设M(x,y),因为直线MC ,MD 的斜率之积为−49. 所以yx+3⋅yx−3=−49, 整理得方程为x 29+y 24=1(y ≠0),(2)抛物线的焦点F(√5,0),当直线与x 轴不垂直时,设直线l 的方程为y =k(x −√5), 代入椭圆方程,得(9k 2+4)x 2−18√5k 2x +45k 2−36=0, 设A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=18√5k 24+9k 2,x 1x 2=45k 2−364+9k 2,y 1y 2=k 2(x 1−√5)(x 2−√5)=k 2[x 1x 2−√5(x 1+x 2)+5]=−16k 24+9k 2, 所以PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =(x 1−m,y 1)⋅(x 2−m,y 2)=(x 1−m)(x 2−m)+y 1y 2=(9m 2−18√5m+29)k 2+4m 2−364+9k 2,令PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =t , 则t =(9m 2−18√5m+29)k 2+4m 2−364+9k 2,所以{9m 2−18√5m +29=9t 4m 2−36=4t,解得m =11√59,此时PA ⃗⃗⃗⃗⃗ ⋅PB⃗⃗⃗⃗⃗ =−12481,当直线l 与x 轴垂直时,l 的方程为x =√5, 代入椭圆方程解得A(√5,−43),B(√5,43),所以PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =−12481, 综上,在x 轴上存在一个定点P(11√59,0),使得PA⃗⃗⃗⃗⃗ ⋅PB⃗⃗⃗⃗⃗ =−12481为定值.【知识点】圆有关的轨迹问题【解析】(1)设M(x,y),由直线MC ,MD 的斜率之积为−49,得yx+3⋅yx−3=−49,化简即可得出答案.(2)分两种情况:当直线与x 轴不垂直时,当直线l 与x 轴垂直时,写出直线l 的方程,联立椭圆的方程,结合韦达定理可得x 1+x 2,x 1x 2,y 1y 2,再由向量的数量积计算PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ ,即可得出答案.本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题.22.【答案】解:(1)直线l 的参数方程为{x =t +2 y =2t +3(t 为参数),转换为普通方程为y =2x −1.(2)曲线C 的参数方程为{x =2cosθ y =sinθ(θ为参数),转换为直角坐标方程为x 24+y 2=1;直线的参数方程转换为标准式为{x =2√5y =3√5(t 为参数)代入x 24+y 2=1,得到175t 2√5+36=0, 所以t 1+t 2=17√5,t 1t 2=36×517,所以|AM|=|t 1+t 22|=26√517.【知识点】曲线的参数方程【解析】(1)直接利用转换关系,在参数方程极坐标方程和直角坐标方程之间进行转换;(2)利用一元二次次方程根和系数的关系式的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和数学思维能力,属于基础题.23.【答案】(1)解:当a=4时,f(x)=|3x−4|+x,由f(x)<3,可得|3x−4|+x<3,即|3x−4|<3−x,的x−3<3x−4<3−x,解得12<x<74,所以不等式f(x)<3的解集为(12,7 4 ).(2)证明:f(x)+g(x)=|3x−a|+|x+6a |=|3(x−a3)|+|x+6a|=2|(x−a3)|+|(x−a3)|+|x+6a|≥|(x−a3)|+|x+6a|(当且仅当x=a3时取等号)≥|(x−a3)−(x+6a)|(当且仅当(x−a3)(x+6a)≤0时取等号,a>0)=|a3+6a|≥2√2(当且仅当a=3√2时,等号成立).【知识点】证明不等式的基本方法、不等式和绝对值不等式【解析】(1)利用绝对值不等式的解法求解即可;(2)利用放缩法及基本不等式即可得证.本题主要考查绝对值不等式的解法,不等式的证明,考查放缩法及基本不等式的应用,属于中档题.。
2020届百校联考高考百日冲刺全国II卷文科数学试题一和答案详细解析及备考策略
多地确定高三返校时间,以“云考试”模拟测试
“真的很着急,希望赶紧开学,不过还是安全第一吧。”北京高三学生戴兆均纠结地说。
记者了解到,多地遵循高三、初三率先开学的原则,实行分类分批、错时错峰开学,已 有不少省份明确毕业生的开学返校日期。截至 3 月 30 日,贵州、新疆、西藏等 10 地高三年 级已开学,广西、江西、湖南、海南等省份定于 4 月 7 日高三、初三年级开学,辽宁省高三 年级 4 月中旬起返校。北京、上海、广东、湖北等省份还未明确开学时间。
,则 a,b,c 的大小关系为( )
A.a<b<c
B.b<c<a
C.a<c<b
二、填空题:本大题共 4 小题,每小题 5 分.
D.b<a<c
13. (5 分)已知向量
,若
,则实数 λ 的值为
.
14.(5 分)已知实数 x,y 满足
,则 z=3x﹣y 的最小值为
.
15.(5 分)《九章算术(卷第五)商功》中有如下问题:“今有冥谷上广二丈,袤七丈,下广
居家考试能否保证成绩的真实性?受访学生认为,“作弊没有意义,模拟考试的目的就 是为了测试真实水平。”厦门市教育科学研究院副院长傅兴春说,目前高三年级处于第二轮 复习阶段。线上考试的目的,一是让学生了解存在的知识缺陷,有的放矢地复习;二是让老 师深入了解学生学习情况,更有针对性地安排后期教学。
“云考试”面临技术、流程与公平挑战
【我说】在对高考考生压力来源的一次调查中,我们发现,考生真正的压力不是高考本 身,而是来自不合理的比较,但孩子的攀比心理有些并非来自他们自身,而是来自家长。
2020届百校联盟高三复习全程精练模拟卷(全国卷)文科数学试题(含答案解析)
2020届百校联盟高三复习全程精练模拟卷(全国卷)文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合{}1,0,1,2A =-,{}22530B x x x =-++>,则AB =( )A .{}0,1,2B .{}0,1C .{}1,2D .{}1,0,1-2.复数32iz i+=的虚部为( ) A .2B .-2C .-3D .3i -3.已知()f x 是R 上的偶函数,且当0x ≤时,()2321f x x x =+-,则当0x >时,()f x =( )A .2321x x -+-B .2321x x ---C .1232-+x xD .2321x x --4.已知()4,3a =,()9,9b =-,则a 在a b +方向上的投影为( ) A .165B .335C .1613D .33135.维生素C 又叫抗坏血酸,是一种水溶性维生素,是高等灵长类动物与其他少数生物的必需营养素.维生素C 虽不直接构成脑组织,也不向脑提供活动能源,但维生素C 有多种健脑强身的功效,它是脑功能极为重要的营养物.维生素C 的毒性很小,但食用过多仍可产生一些不良反应.根据食物中维C 的含量可大致分为:含量很丰富:鲜枣、沙棘、猕猴桃、柚子,每100克中的维生素C 含量超过100毫克;比较丰富:青椒、桂圆、番茄、草莓、甘蓝、黄瓜、柑橘、菜花,每100克中维生素C 含量超过50毫克;相对丰富:白菜、油菜、香菜、菠菜、芹菜、苋菜、菜苔、豌豆、豇豆、萝卜,每100克中维生素C 含量超过30~50毫克.现从猕猴桃、柚子两种食物中测得每100克所含维生素C 的量(单位:mg )得到茎叶图如图所示,则下列说法中不正确的是( )A .猕猴桃的平均数小于柚子的平均数B .猕猴桃的方差小于柚子的方差C .猕猴桃的极差为32D .柚子的中位数为1216.甲,乙,丙三名学生,仅有一人通过了全国英语六级等级考试.当它们被问到谁通过了全国英语六级等级考试时,甲说:“丙通过了”;乙说:“我通过了”;丙说:“甲和乙都没有通过”.假设这三名学生中有且只有一人说的是对的,那么通过了全国英语六级等级考试的学生是( ) A .甲 B .乙C .丙D .仅靠以上条件还不能推出是谁7.函数()211x x f x x +-=-的图象大致为( )A .B .C .D .8.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n 、x 的值分别为3、1,则输出v 的值为( )A .7B .8C .9D .109.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为男、子、伯、侯、公共五级.若给有巨大贡献的2人进行封爵,则其中恰有1人被封“伯”的概率为( ) A .825B .25C .1225D .172510.过椭圆()2222:10x y C a b a b+=>>的左焦点F 的直线过C 的上顶点B ,且与椭圆C相交于另一点A ,点A 在y 轴上的射影为A ',若34FO AA =',O 是坐标原点,则椭圆C 的离心率为( )A B C .12D 11.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象相邻的最高点之间的距离为π,将函数()y f x =的图象向左平移12π个单位长度后得到函数()g x 的图象,且()g x 为奇函数,则( )A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称B .()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称 C .()f x 在,63ππ⎛⎫-⎪⎝⎭上单调递增 D .()f x 在2,36ππ⎛⎫-- ⎪⎝⎭上单调递增12.在三棱锥S ABC -中,4SB SA AB BC AC =====,SC =S ABC -外接球的表面积是( )A .403πB .803πC .409πD .809π二、填空题13.已知函数()()1cos f x x x =+,则()f x 在点()()0,0f 处的切线方程为______.14.已知sin 33πα⎛⎫-= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________. 15.在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,4Cπ,3a =,()cos 2cos a B c b A =-,则c =______.16.已知()1,0F c -,()2,0F c 是双曲线C :()222210,0x ya b a b-=>>的左、右焦点,若点1F 关于双曲线渐近线的对称点为P ,且2OPF ∆2(O 为坐标原点),则双曲线C 的离心率为______.三、解答题17.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD AB ⊥,//AB CD ,122AB AD AP CD ====,E 为PC 的中点.(1)求证:BE ⊥平面PCD ;(2)求三棱锥B PCD -的体积.18.已知公差不为0的等差数列{}n b 中,47b =且1b ,2b ,5b 成等比数列. (1)求数列{}n b 的通项公式;(2)若数列{}n a 为等比数列,且满足221a b =+,3385a b =,求数列{}n a 的通项公式及前8项的和.19.国家规定每年的7月1日以后的60天为当年的暑假.某钢琴培训机构对20位钢琴老师暑假一天的授课量进行了统计,如下表所示:培训机构专业人员统计近20年该校每年暑假60天的课时量情况如下表:(同组数据以这组数据的中间值作代表) (1)估计20位钢琴老师一日的授课量的平均数;(2)若以(1)中确定的平均数作为上述一天的授课量.已知当地授课价为200元/小时,每天的各类生活成本为80元/天;若不授课,不计成本,请依据往年的统计数据,估计一位钢琴老师60天暑假授课利润不少于2万元的概率.20.已知F 是抛物线()2:20C y px p =>的焦点,点P 在x 轴上,O 为坐标原点,且满足14OP OF =,经过点P 且垂直于x 轴的直线与抛物线C 交于A 、B 两点,且8AB =.(1)求抛物线C 的方程;(2)直线l 与抛物线C 交于M 、N 两点,若64OM ON ⋅=-,求点F 到直线l 的最大距离.21.已知函数()()221ln f x a x ax x =+--,a R ∈.(l )设()()()21g x f x a x =-+,讨论函数()g x 的单调性;(2)若函数()f x 的图象在()1,+∞上恒在x 轴的上方,求实数a 的取值范围. 22.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 4sin 10ρθρθ+-=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x ,y 轴的交点分别为M ,N ,若点P 在曲线C 位于第一象限的图象上运动,求四边形OMPN 面积的最大值. 23.已知函数()224f x x x =---. (1)解不等式()4f x >;(2)若不等式()222f x x -->-的解集为(),m n ,正实数a ,b 满足3a b n m +=-,求113a b+的最小值.参考答案1.A 【分析】解出集合B ,利用交集的定义可求得集合A B .【详解】因为{}{}2212530253032B x x x x x x x x ⎧⎫=-++>=--<=-<<⎨⎬⎩⎭,又{}1,0,1,2A =-,所以{}0,1,2A B ⋂=.故选:A. 【点睛】本题考查交集的计算,同时也考查了一元二次不等式的求解,考查计算能力,属于基础题. 2.C 【分析】先给分子和分母同乘以i ,化简后可得其虚部. 【详解】 因为()2323223231i i i iz i i i ++-+====--,所以z 的虚部为-3. 【点睛】此题考查的是复数的运算和复数的有关概念,属于基础题. 3.D 【分析】若令0x >,则0x -<,再将x -代入()2321f x x x =+-中化简,再结合偶函数的定义可得0x >时的函数关系式. 【详解】当0x >时,0x -<,则()()()()22321321f x f x x x x x =-=-+--=--.【点睛】此题考查的是利用偶函数的性质求分段函数的解析式,属于基础题. 4.C 【分析】先由已知求出a b +的坐标,然后利用向量投影的定义求解即可. 【详解】因为()()()4,39,95,12a b +=+-=-,所以a 在a b +方向上的投影为()cos ,a a b a aa b a b⋅++=+4,35,121613⋅-==.【点睛】此题考查了向量的数量积,向量的夹角,向量的投影等知识,属于基础题. 5.B 【分析】A. 根据茎叶图分别算出猕猴桃的平均数和柚子的平均数比较即可.B. 根据茎叶图中的数据的波动情况判断C. 根据茎叶图中的数据计算即可.D. 根据茎叶图中的数据计算即可. 【详解】由茎叶图知,猕猴桃的平均数为1041021131221211341166+++++=,柚子的平均数为1141131211211311321226+++++=,则猕猴桃的平均数小于柚子的平均数,故A 正确;猕猴桃的数据波动比柚子的数据波动大,所以猕猴桃的方差大于柚子的方差,故B 错误; 猕猴桃的极差为13410232-=,故C 正确; 柚子的中位数为1211211212+=,故D 正确. 故选:B 【点睛】本题主要考查样本估计总体中的数字特征,还考查了理解辨析,运算求解的能力,属于基础题. 6.B 【分析】由于甲,乙,丙三名学生中有且只有一人说的是对的,所以分别假设三名学生的说法是对,进行逻辑推理可判断出结果. 【详解】由题意,仅有一人通过了全国英语六级等级考试,则甲说与乙说的只有一个是正确的.假设甲说的是正确的,则丙通过了全国英语六级等级考试.此时乙说是错误的,丙说是正确的,不符合“只有一人说的是对的”的前提条件;假设乙说的是正确的,则甲说的错误,丙说的也错误,符合“只有一人说的是对的”的前提条件;故通过了全国英语六级等级考试的学生是乙. 【点睛】此题考查的是逻辑推理,属于基础题. 7.D 【分析】将函数()y f x =的解析式变形为()1131f x x x =-++-,利用双勾函数的单调性可得出函数()y f x =的单调区间,结合()01f =可判断出函数()y f x =的图象. 【详解】()2211111111131111x x x x f x x x x x x x +--+-+===+++=-++----,故该图象是由函数1y x x=+的图象先向右平移1个单位长度,再向上平移3个单位长度得到的,由于函数1y x x=+在(),1-∞-上单调递增,在()1,0-上单调递减,在()0,1上单调递减,在()1,+∞上单调递增,故函数()y f x =在(),0-∞上单调递增,在()0,1上单调递减,在()1,2上单调递减,在()2,+∞上单调递增.()01f =,故函数()211x x f x x +-=-的图象大致为D 项.故选:D. 【点睛】本题考查函数图象的识别,一般分析函数的定义域、奇偶性、单调性、零点与函数值符号,结合排除法得解,考查推理能力,属于中等题. 8.B 【分析】列出循环的每一步,由此可得出输出的v 值. 【详解】由题意可得:输入3n =,1x =,2v =,3m =;第一次循环,2135v =⨯+=,312m =-=,312n =-=,继续循环; 第二次循环,5127v =⨯+=,211m =-=,211n =-=,继续循环; 第三次循环,7118v =⨯+=,110m =-=,110n =-=,跳出循环; 输出8v =. 故选:B. 【点睛】本题考查根据算法框图计算输出值,一般要列举出算法的每一步,考查计算能力,属于基础题. 9.A 【分析】每1个人都有5种封爵方法,所以2人共有5525⨯=种情况,而恰有一人被封“伯”的有8种情况,然后概率可求得 【详解】由题意知,基本事件的总数有5525⨯=种情形;而其中有1人被封“伯”的情况有:第1人被封“伯”有4种情形,第2人被封“伯”也有4种情形,则其中有1人被封“伯”的共有8种情形;根据古典概型及其概率的计算公式,可得其中有1人被封“伯”的概率为825. 【点睛】此题考查了是古典概率,属于基础题 10.D 【分析】求得点B 的坐标,由34FO AA =',得出3BF FA =,利用向量的坐标运算得出点A 的坐标,代入椭圆C 的方程,可得出关于a 、b 、c 的齐次等式,进而可求得椭圆C 的离心率. 【详解】由题意可得()0,B b 、(),0F c -.由34FO AA =',得34BF BA =,则31BF FA =,即3BF FA =.而(),BF c b =--,所以,33c b FA ⎛⎫=-- ⎪⎝⎭,所以点4,33b A c ⎛⎫-- ⎪⎝⎭.因为点4,33b A c ⎛⎫-- ⎪⎝⎭在椭圆2222:1x y C a b+=上,则22224331b c a b ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=, 整理可得2216899c a ⋅=,所以22212c e a ==,所以e =. 即椭圆C的离心率为2故选:D. 【点睛】本题考查椭圆离心率的求解,解答的关键就是要得出a 、b 、c 的齐次等式,充分利用点A 在椭圆上这一条件,围绕求点A 的坐标来求解,考查计算能力,属于中等题. 11.C 【分析】根据函数()f x 图象相邻的最高点之间的距离为π,得到T π=,易得()()2sin 2f x x ϕ=+.将函数()y f x =的图象向左平移12π个单位长度后,可得()2sin 26g x x πϕ⎛⎫++ ⎪⎝⎭=,再根据()g x 是奇函数,得到()2sin 26f x x π⎛⎫=- ⎪⎝⎭,然后逐项验证即可. 【详解】因为函数()f x 图象相邻的最高点之间的距离为π, 所以其最小正周期为T π=,则22Tπω==. 所以()()2sin 2f x x ϕ=+. 将函数()y f x =的图象向左平移12π个单位长度后,可得()2sin 22sin 2126x x g x ππϕϕ⎡⎤⎛⎫⎛⎫++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=的图象,又因为()g x 是奇函数,令()6k k Z πϕπ+=∈,所以()6k k ϕπ=π-∈Z .又2πϕ<,所以6πϕ=-.故()2sin 26f x x π⎛⎫=- ⎪⎝⎭. 当6x π=时,()1f x =,故()f x 的图象不关于点,06π⎛⎫⎪⎝⎭对称,故A 错误;当6x π=-时,()2f x =-,故()f x 的图象关于直线6x π=-对称,不关于点,06π⎛⎫-⎪⎝⎭对称,故B 错误; 在,63ππ⎛⎫-⎪⎝⎭上,2,622x πππ⎛⎫-∈- ⎪⎝⎭,()f x 单调递增,故C 正确;在2,36ππ⎛⎫-- ⎪⎝⎭上,3,2262x πππ⎛⎫-∈-- ⎪⎝⎭,()f x 单调递减,故D 错误.故选:C 【点睛】本题主要考查三角函数的图象和性质及其图象变换,还考查了运算求解的能力,属于中档题. 12.B 【分析】取AB 的中点D ,连接SD 、CD ,推导出90SDC ∠=,设设球心为O ,ABC ∆和SAB ∆的中心分别为E 、F ,可得出OE ⊥平面ABC ,OF ⊥平面SAB ,利用勾股定理计算出球O 的半径,再利用球体的表面积公式可得出结果. 【详解】取AB 的中点D ,连接SD 、CD ,由SAB ∆和ABC ∆都是正三角形,得SD AB ⊥,CD AB ⊥,则42SD CD ==⨯=,则(((222222SD CD SC +=+==,由勾股定理的逆定理,得90SDC ∠=.设球心为O ,ABC ∆和SAB ∆的中心分别为E 、F . 由球的性质可知:OE ⊥平面ABC ,OF ⊥平面SAB ,又14233OE DF OE OF ====⨯=,由勾股定理得3OD ==所以外接球半径为R ===所以外接球的表面积为2280443S R πππ===⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题. 13.20x y -= 【分析】根据()()1cos f x x x =+,求导()1cos sin 'x x x x f =+-,再求得()'0f ,()0f ,写出切线方程. 【详解】因为()()1cos f x x x =+所以()()sin 1cos si 1cos n 'x x x x x f x x -=+-=++, 所以()'02f =.又()00f =,所以()f x 在点()()0,0f 处的切线方程为()020y x -=-, 即20x y -=. 故答案为:20x y -= 【点睛】本题主要考查导数的几何意义,还考查了运算求解的能力,属于基础题. 14.79-【分析】观察前后式子,配凑22632πππαα⎛⎫-=-+ ⎪⎝⎭,通过诱导公式展开即可. 【详解】27sin 2sin 2cos 212sin 632339πππππαααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-=--=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦【点睛】此题考查三角函数的正弦和差公式结合二倍角公式进行化简,属于较易题目.15【分析】利用正弦定理将()cos 2cos a B c b A =-统一化为角,然后化简求出角3A π=,再利用正弦定理可求出c . 【详解】由()cos 2cos a B c b A =-及正弦定理,得()sin cos 2sin sin cos A B C B A =-,得sin cos 2sin cos sin cos A B C A B A =-,得sin cos sin cos 2sin cos A B B A C A +=,得()sin 2sin cos A B C A +=,得sin 2sin cos C C A =,显然sin 0C ≠,得12cos A =,解得1cos 2A =.又0A π<<,所以3A π=.再由正弦定理,得sin sin a c A C =,即3sin sin 34cππ=,解得c 【点睛】此题考查的是利用正弦定理解三角形,考查了三角函数恒等变形公式,属于基础题. 16.2【分析】不妨设渐近线方程为b y x a=,根据点1F 关于双曲线渐近线的对称点为P ,可得到OP c =,再根据2OPF ∆2,由正弦定理2221sin 2OPF S OP OF POF ∆=∠2=,求得2POF ∠,根据其与渐近线的倾斜角的关系求得ba,再求离心率. 【详解】不妨设渐近线方程为by x a=, 由题意,12OF OF c OP ===, 所以222211sin sin 22OPF S OP OF POF c c POF ∆=∠=⋅⋅∠24=,解得2sin POF ∠=. 所以260POF ∠=︒或2120POF ∠=︒. 当260POF ∠=︒时,则渐近线by x a=的倾斜角为60︒,则tan 60b a =︒=2c a ==. 即双曲线C 的离心率为2; 当2120POF ∠=︒时,则渐近线by x a=的倾斜角为30,则tan 303b a =︒=c a ==.即双曲线C 的离心率为3综上,双曲线C 的离心率为2故答案为:2【点睛】本题主要考查双曲线的几何性质,还考查了数形结合的思想和运算求解的能力,属于中档题. 17.(1)证明见解析;(2)83【分析】(1)取PD 的中点F ,先证明四边形ABEF 是平行四边形,可得//BE AF ,只需证AF ⊥平面PCD 即可,而由已知易证CD ⊥平面PAD ,从而可证得CD AF ⊥,而由等腰三角形的性质可证得AF PD ⊥,由此可证得AF ⊥平面PCD ;(2)先在,Rt PAD Rt PAB ∆∆中利用勾股定理求出,PD PB 的长,再在Rt ADC ∆中,求出AC ,从而可得PC 的长,而E 为PC 的中点,所以12PE CE PC ==,在Rt PBE ∆中,再利用勾股定理求出BE ,而由(1)可知BE ⊥平面PCD ,所以13CD B P PCD V S BE -∆=⋅三棱锥,代值可得答案. 【详解】(1)证明:如下图,取PD 的中点F ,连接AF ,EF . 又E 为PC 的中点,则EF 是PCD ∆的中位线. 所以//EF CD 且12EF CD =.又//AB CD 且12AB CD =, 所以//EF AB 且EF AB =. 所以四边形ABEF 是平行四边形. 所以//BE AF .因为AD AP =,F 为PD 的中点, 所以AF PD ⊥.因为AD AB ⊥,//AB CD ,所以AD CD ⊥.因为PA ⊥平面ABCD ,所以PA CD ⊥. 又AD PA A ⋂=,所以CD ⊥平面PAD . 所以CD AF ⊥.又PD CD D ⋂=,所以AF ⊥平面PCD . 又//BE AF ,所以BE⊥平面PCD .(2)因为122AB AD AP CD ====,所以由勾股定理得PD PB BC =====AC PC ===所以12PE CE PC ===所以BE ==由(1)得,CD ⊥平面PAD ,所以CD PD ⊥.所以11422PCD S CD PD ∆=⋅=⨯⨯=由(1)得,BE ⊥平面PCD ,所以118333PC B PCD D V S BE ∆-=⋅=⨯=三棱锥. 【点睛】此题考查线面垂直的判定和棱锥的体积的求法,属于中档题.18.(1)21n b n =-;(2)2nn a =;8510S =【分析】(1)由1b ,2b ,5b 成等比数列,得2215b b b =,再结合47b =可得()()()272737d d d -=-+,解方程可求出公差,从而可求出通项公式; (2)由221a b =+,3385a b = 和21n b n =-,求出23,a a ,从而可求出公比,进而求出通项公式和前n 项和公式. 【详解】(1)设等差数列{}n b 的公差为d .由已知47b =且1b ,2b ,5b 成等比数列,得2215b b b =,得()()()244423b d b d b d -=-+, 即()()()272737d d d -=-+, 化简得()720d d -=, 解得0d =(舍去)或2d =.所以()()4474221n b b n d n n =+-=+-⨯=-. (2)由(1)知21n b n =-, 所以2214a b =+=,33885855a b ==⨯=. 所以数列{}n a 的公比322a q a ==. 所以222422n n n n a a q--=⋅=⨯=.设数列{}n a 前8项的和为8S , 则()8821251012S ⨯-==-.【点睛】此题考查的是等差数列和等比数列的基本量计算,属于基础题 19.(1)4.4小时;(2)0.4. 【分析】(1)将每组的中点值乘以频数,相加后除以20可得出20位老师暑假一日的授课量的平均数;(2)设一位钢琴老师每年暑假60天的授课天数为x ,计算出每位钢琴老师每日的利润,结合每位钢琴老师60天暑假授课利润不少于2万元求得x 的取值范围,再结合课时量频数表可得出所求事件的概率. 【详解】(1)估计20位老师暑假一日的授课量的平均数为()11237577391 4.420x =⨯+⨯+⨯+⨯+⨯=小时; (2)设每年暑假60天的授课天数为x ,则利润为()4.420080800y x x =⨯-=. 由80020000x ≥,得25x ≥.一位老师暑假利润不少于2万元,即授课天数不低于25天, 又60天暑假内授课天数不低于25天的频率为3320.420.预测一位老师60天暑假授课利润不少于2万元的概率为0.4. 【点睛】本题考查频数分布表的应用,考查平均数与概率的计算,考查数据处理能力,属于基础题. 20.(1)216y x =;(2)4. 【分析】(1)求得点P 的坐标,可得出直线AB 的方程,与抛物线的方程联立,结合8AB =求出正实数p 的值,进而可得出抛物线的方程;(2)设点()11,M x y ,()22,N x y ,设l 的方程为x my n =+,将直线l 的方程与抛物线的方程联立,列出韦达定理,结合64OM ON ⋅=-求得n 的值,可得出直线l 所过定点的坐标,由此可得出点F 到直线l 的最大距离. 【详解】 (1)易知点,02p F ⎛⎫⎪⎝⎭,又14OP OF =,所以点,08p P ⎛⎫⎪⎝⎭,则直线AB 的方程为8p x =.联立282p x y px ⎧=⎪⎨⎪=⎩,解得82p x p y ⎧=⎪⎪⎨⎪=⎪⎩或82p x p y ⎧=⎪⎪⎨⎪=-⎪⎩,所以822p p AB p ⎛⎫=--== ⎪⎝⎭.故抛物线C 的方程为216y x =;(2)设l 的方程为x my n =+,联立216y xx my n⎧=⎨=+⎩有216160y my n --=,设点()11,M x y ,()22,N x y ,则1216y y n =-,所以()212212256y y x xn ==.所以212121664OM ON x x y y n n ⋅=+=-=-,解得8n =. 所以直线l 的方程为8x my =+,恒过点()8,0.又点()4,0F ,故当直线l 与x 轴垂直时,点F 到直线l 的最大距离为4. 【点睛】本题考查抛物线方程的求解,同时也考查了抛物线中最值问题的求解,涉及韦达定理设而不求法的应用,考查运算求解能力,属于中等题. 21.(1)详见解析;(2)[]1,0- 【分析】(1)先求导函数()()22'1120ax ax x x g xx +=--=->,然后通过对0a ≥和0a <讨论,判断导函数的正负,从而可求出函数的单调区间; (2)“若函数()f x 的图象在1,上恒在x 轴的上方”等价于“不等式()0f x >在1,上恒成立”,即不等式()221ln 0a x ax x +-->在1,上恒成立,即不等式可转化为()2ln 210x ax a x +-+<在1,上恒成立,然后构造函数()()2ln 21x ax h x x a =+-+,只需()h x 在1,上最大值小于零即可,从而可求出a 的取值范围. 【详解】(1)()()()221ln g x f x a x ax x =-+=--,a R ∈,()()22'1120ax ax x x g xx +=--=->.①若0a ≥,2210ax +>,()'0g x <,函数()g x 的单调减区间是()0,∞+,无单调增区间;②若0a <,令()'0g x <,得0x <<令()'0g x >,得x >所以函数()g x 的单调减区间是⎛ ⎝,单调增区间是⎫+∞⎪⎪⎭. 综上所述,若0a ≥,函数()g x 的单调减区间是()0,∞+,无单调增区间;若0a <,函数()g x 的单调减区间是⎛ ⎝,单调增区间是⎫+∞⎪⎪⎭. (2)“若函数()f x 的图象在1,上恒在x 轴的上方”等价于“不等式()0f x >在1,上恒成立”,即不等式()221ln 0a x ax x +-->在1,上恒成立, 即不等式可转化为()2ln 210x ax a x +-+<在1,上恒成立. 令()()()2ln 211x ax h x a x x =+-+>, 则()()()222111221'ax a x ax a x h xx -++=+-+=()()211ax x x --=. ①若0a ≤,则()'0h x <,()h x 在1,上单调递减,所以()()11h x h a <=--,不等式恒成立等价于10a --≤,即10a -≤≤;②若102a <<,则112a >,当112x a<<时,()'0h x <,当12x a >时,()'0h x >, ()h x 在11,2a ⎛⎫ ⎪⎝⎭上单调递减,在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递增, 所以()1,2x h h a ⎡⎫⎛⎫∈+∞⎪⎪⎢⎝⎭⎣⎭,不符合题意; ③若12a ≥,当1x >时,()'0h x >,()h x 在1,上单调递增, 所以()()()1,h x h ∈+∞,不符合题意.综上所述,实数a 的取值范围是[]1,0-.【点睛】此题考查利用导数求函数的单调区间,利用导数解决不等式恒成立问题,属于较难题.22.(1)2214x y +=;2410x y +-=;(2)4【分析】(1)根据2cos sin x y αα=⎧⎨=⎩,利用平方关系消去参数α,即可得到普通方程,将cos sin x y ρθρθ=⎧⎨=⎩代入2cos 4sin 10ρθρθ+-=,即可得到直角坐标方程.(2)易得直线2410x y +-=与x ,y 轴的交点分别为M ,N 的坐标,设曲线C 上的点()2cos ,sin P αα,利用S 四边形OMPN OMP ONP S S ∆∆=+求解.【详解】(1)由2cos sin x y αα=⎧⎨=⎩,得2222cos sin 12x y αα⎛⎫+=+= ⎪⎝⎭, 故曲线C 的普通方程为2214x y +=. 由2cos 4sin 10ρθρθ+-=将cos sin x yρθρθ=⎧⎨=⎩,代入上式, 得2410x y +-=,故直线l 的直角坐标方程为2410x y +-=.(2)易知直线2410x y +-=与x ,y 轴的交点分别为1,02M ⎛⎫ ⎪⎝⎭,10,4N ⎛⎫ ⎪⎝⎭, 设曲线C 上的点()2cos ,sin P αα,因为P 在第一象限,所以02πα<<.连接OP ,则S 四边形OMPN OMP ONP S S ∆∆=+,11sin 2cos 22OM ON αα=⋅+⋅11sin cos 444πααα⎛⎫=+=+ ⎪⎝⎭.当4πα=时,四边形OMPN 面积的最大值为4. 【点睛】本题主要考查参数方程,极坐标方程,直角坐标方程的转化以及面积问题,还考查了运算求解的能力,属于中档题.23.(1)()10,6,3⎛⎫-∞-+∞ ⎪⎝⎭;(2)1. 【分析】(1)根据绝对值的几何意义,去掉绝对值求解.(2)由()222f x x -->-,易得26x <<,再根据其解集为(),m n ,得到6n =,2m =.则34a b +=,然后利用“1”的代换,利用基本不等式求解.【详解】(1)不等式()4f x >等价于 ()()12244x x x <⎧⎨--->⎩,或()()142244x x x ≤≤⎧⎨--->⎩,或()()42244x x x >⎧⎨-+->⎩, 解得6x <-或1043x <≤或4x >. 故不等式()4f x >的解集是()10,6,3⎛⎫-∞-+∞ ⎪⎝⎭. (2)由()222f x x -->-,得42x -->-,得42x -<,得242x -<-<,解得26x <<,所以6n =,2m =.因为正实数a ,b 满足34a b n m +=-=,所以()1314a b +=. 又a ,b 是正实数, 由基本不等式得()111113334a b a b a b ⎛⎫+=++ ⎪⎝⎭1311121434b a a b ⎛⎛=⎫+++≥+= ⎪ ⎝⎭⎝, 当且仅当33b a a b=,即当2a =,23b =时取等号, 故113a b+的最小值为1. 【点睛】本题主要考查绝对值不等式的解法,不等式与解集的关系以及基本不等式的应用,还考查了运算求解的能力,属于中档题.。
百万联考2020-2021学年高三全国一卷1月联考文科数学试题(有答案)
高三数学试卷(文科)(考试时间:120分钟试卷满分:150分) 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}60A x x =->,{}35B x x =-<<,则A B ⋂=( )A .∅B .{}56x x <<C .{}35x x -<<D .{}356x x x <-<<或 2.若复数()212i z =-,则1z -=( )A .20B .C .32D .3.某校高—年级在某次数学测验中成绩不低于80分的所有考生的成绩统计表如下:则及格(不低于90分)的所有考生成绩的中位数( )A .在[]90,100内B .在(]100,110内C .在(]110,120内D .在(]120,130内4.等差数列{}32n -的前4项和等于该数列的( )A .第6项B .第7项C .第8项D .第9项5.若正三棱锥P ABC -的高为1,AB = )A .B .C .D .6.已知双曲线22:4640C x y -+=的两个焦点分别为1F ,2F ,O 为坐标原点,若P 为C 上异干顶点的任意一点,则1POF △与2POF △的周长之差为( )A .8B .16C .8-或8D .16-或167.已知函数()()sin f x x ωϕ=+图象的两个对称中心为,06π⎛⎫ ⎪⎝⎭,,02π⎛⎫ ⎪⎝⎭,则()f x 的解析式可以为( ) A .()2sin 43f x x π⎛⎫=- ⎪⎝⎭ B .()1sin 24f x x π⎛⎫=- ⎪⎝⎭ C .()cos 62f x x π⎛⎫=- ⎪⎝⎭ D .()sin 36f x x π⎛⎫=+ ⎪⎝⎭8.已知a ,b 表示两条不同的直线,α、β表示两个不同的平面,则下列命题为真命题的是( )A .若αβ⊥,//a α,//b β,则a b ⊥B .若//αβ,则b α∃⊂,a β⊂,a b ⊥C .若a α⊥,//αβ,//b β,则//a bD .若//a α,a β⊂,b αβ⋂=,则a 与b 异面9.我国古代数学名著《九章算术》里有一道关于鸡啄粟的问题:“今有三鸡共啄粟一千一粒,雏啄一,母啄二,翁啄四.主责本粟.问三鸡啄各偿各几何?”如图所示的程序框图反映了对此问题的一个求解算法,运行该程序框图,则输出的x =( )A .123B .133C .143D .15310.函数()f x =的定义域为( ) A .10,9⎛⎤ ⎥⎝⎦ B .1,9⎡⎫+∞⎪⎢⎣⎭ C .(]0,9D .[)9,+∞ 11.正八边形在生活中是很常见的对称图形,如图1中的正八边形的U 盘,图2中的正八边形窗花.在图3的正八边形12345678A A A A A A A A 中,647172A A A A A A λ+=,则λ=( )A .42-B .2C .22 D12.已知函数()()2cos 2144f x x ax ax =+++只有一个零点,则a =( )A .2-B .1C .2D .4二、填空题:本大题共4小题.把答案填在答题卡的相应位置.13.函数()322f x x =-的图象在点()1,0处的切线的斜率为______.14.从集合{}中任意选取一个元素作为球O 的半径,则球O 的表面积不小于20π的概率为______.15.已知等比数列{}n a 的前3项和为3,且34a =,则{}n a 的前n 项和n S =______.16.已知抛物线2:8C y x =与圆22:128D x y +=交于A ,B 两点,F 是C 的焦点,ABF △的重心为G .设P 是圆D 上一动点,则PG 的最大值为______.三、解答题:本大题共6小题.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题17.ABC △的内角A ,B ,C 所对的边分别为a ,b ,c .已知sin sin 8A B +=,2b a =. (1)求cos A .(2)若D 是AB 边上一点,且ACD △的面积为228,证明:AD CD =. 18.某工厂的工人生产一种内径为25.40mm 的零件,为了了解零件的生产质量,从该厂的1000件零件中抽出50件,测得其内径尺寸如下(单位:mm ):25.418⨯25.426⨯ 25.404⨯ 25.3811⨯ 25.398⨯ 25.441⨯ 25.437⨯ 25.375⨯这里用x n ⨯表示有n 件尺寸为mm x 的零件.(1)求这50件零件内径尺寸的平均数x ;(2)设这50件零件内径尺寸的方差为2s ,试估计该厂1000件零件中其内径尺寸在(),x s x s -+内的件数.2.04=.19.已知椭圆()2222:10x y C a b a b +=>>的离心率为12,以C 的长轴为直径的圆的方程为224x y +=. (1)求C 的方程.(2)直线l 与y 轴平行,且与C 交于P ,Q 两点,A ,B 分别为C 的左、右顶点.直线AP 与BQ 交于点G ,证明:点P 与点G 的横坐标的乘积为定值.20.如图,在四棱柱1111ABCD A B C D -中,平面11CDD C ⊥底面ABCD ,//AB CD ,1AD CD ⊥且13DD =,24CD AB ==,5AC =.(1)证明:四边形ABCD 为直角梯形.(2)若1,32CDD ππ⎛⎫∠∈ ⎪⎝⎭,求四棱柱1111ABCD A B C D -体积的取值范围.21.已知函数()ln e xx a f x a +=. (1)若1a =,讨论()f x 的单调性;(2)若()0,1x ∀∈,()ln x f x x>,求a 的取值范围. (二)选考题:请考生从第22,23两题中任选一题作答.如果多做,则按所做的第一个题目计分.22.【选修44-:坐标系与参数方程】在直角坐标系xOy 中,直线l 的参数方程为,1x t y t=-⎧⎨=+⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为22123cos ρθ=+. (1)求l 的普通方程和C 的直角坐标方程; (2)若l 与C 交于M ,N 两点,()1,0P ,求11PM PN+的值. 23.【选修45-:不等式选讲】已知函数()211f x x x =-++.(1)求()f x 的值域; (2)若()f x 的最小值为m ,且22a b m +=,求221221a b ++的最小值. 高三数学试卷参考答案(文科)1.【答案】C【解析】本题考查集合的交集,考查运算求解能力. 【解答】解:因为{}6A x x =<,所以{}35A B x x ⋂=-<<.故选C .2.【答案】D【解析】本题考查复数的模,考查运算求解能力.【解答】解:因为34i z =--,所以144i z -=+,则1z -==故选D .3.【答案】B【解析】本题考查统计中对中位数的估计,考查解读表格信息的能力与数据处理能力.【解答】解:由表可知,及格的考生共有401512105284+++++=人,在[]90,100内有40人,在(]100,110内有15人,故及格的所有考生成绩的中位数在(]100,110内.故选B .4.【答案】C【解析】本题考查等差数列,考查运算求解能力.【解答】解:等差数列{}32n -的前4项和为1471022+++=,由3222n -=,得8n =.【解析】本题考查棱锥的侧面积,考查空间想象能力与运算求解能力.【解答】解:如图,取AB 的中点D ,设PO ⊥底面ABC ,垂足为O ,连接PD ,CD ,则11233OD CD ==⨯=.因为1PO =,所以PO =132⨯⨯=.故选A .6.【答案】D【解析】本题考查双曲线定义的应用,考查数形结合的数学思想.【解答】解:C 的方程可化为2216416y x -=,所以8a =, 易知1POF △与2POF △周长差的绝对值为216a =,故1POF △与2POF △的周长之差为16-或16.故选D .7.【答案】C【解析】本题考查三角函数的图象及其对称性,考查推理论证能力.【解答】解:设()()sin f x x ωϕ=+的最小正周期为T , 则()262kT k ππ-=∈Z ,2T πω=, 则()3k k ω=∈Z ,排除A ,B .而()sin 36f x x π⎛⎫=+ ⎪⎝⎭的图象不关于点,06π⎛⎫ ⎪⎝⎭对称,排除D .【解析】本题考查点、线、面的位置关系,考查空间想象能力与推理论证能力.【解答】解:对于选项A ,当a ,b 都平行于α与β的交线时,//a b ,所以A 为假命题.对于选项B ,b α∃⊂,a β⊂,a b ⊥,所以B 为真命题.若a α⊥,//αβ,则a β⊥,由//b β,可得a b ⊥,所以C 为假命题.若//a α,a β⊂,b αβ⋂=,则//a b ,所以D 为假命题.故选B .9.【答案】C【解析】本题考查程序框图,考查逻辑推理的核心素养.【解答】解:∵2y x =,2z y =,∵247s x x x x =++=, 由算法的功能可知,输出的10011437x ==. 故选C .10.【答案】B【解析】本题考查函数的定义域与对数运算,考查运算求解能力.【解答】解:由()243log 12log log 120x +⋅≥, 得24212243log 121log log 12log 3log 3log log 129x ≥-=-⋅=-=,则19x ≥. 故选B .11.【答案】D 【解析】本题考查平面向量的基本定理的应用,考查数形结合的数学思想与直观想象、推理论证的核心素养.【解答】解:连接63A A ,14A A ,72A A 且6314A A A A B ⋂=,在14A A 上取一点C ,使得176AC A A =,则716A A A C =. 设3BA m =,则(63722A A A A m m m ==++=+,由图可知,)6471646672722222mA A A A A A A C AB A A A A ++=+===⋅故λ=D .12.【答案】B【解析】本题考查函数的零点问题,考查化归与转化的数学思想.【解答】解:令21x t +=,则()f x 有且只有一个零点等价于()()2cos 1g t t a t =+-只有一个零点, 因为()g t 是偶函数,所以()g t 的图象必过坐标原点,所以()010g a =-=,故1a =.故选B .13.【答案】6【解析】本题考查导数的几何意义,考查运算求解能力.【解答】解:因为()26f x x '=,所以()16f '=. 故答案为:6.14.【答案】57【解析】本题考查古典概型与球体的表面积,考查运算求解能力.【解答】解:设球O 的半径为()0R R >,由2420R ππ≥,得R ≥57. 故答案为:57. 15.【答案】()123n -- 【解析】本题考查等比数列的性质与前n 项和,考查运算求解能力.【解答】解:设{}n a 的公比为q ,则324443S q q =++=,解得2q =-,则11a =,()123nn S --=. 故答案为:()123n --. 16.【答案】6+【解析】本题考查圆与抛物线的综合,考查数形结合的数学思想与运算求解能力. 【解答】解:由222128,80,x y y x ⎧+=⎪⎨=≥⎪⎩得()2812800x x x +-=≥, 解得8x =或16x =-(舍去).不妨假设()8,8A ,则()8,8B -.因为()2,0F ,所以G 的坐标为882880,33++-+⎛⎫ ⎪⎝⎭,即()6,0. 因为圆D的半径为PG的最大值为6+.故答案为:6+.17.【答案】(1)解:∵2b a =,∵sin 2sin B A =,又sin sin A B +=,∵sin A = ∵2b a =,∵a b <,A B <,0,2A π⎛⎫∈ ⎪⎝⎭,故7cos 8A ==. (2)证明:∵21sin 2ACD S b AD A AD =⋅=⋅=△, ∵47AD b =. 由余弦定理得2222cos CD AC AD AC AD A =+-⋅222447427787b b b b b ⎛⎫⎛⎫=+-⨯⨯= ⎪ ⎪⎝⎭⎝⎭, ∵47CD b =,故AD CD =. 【评分细则】【1】第(1)问中,没有推理得到0,2A π⎛⎫∈ ⎪⎝⎭,而直接得到7cos 8A =±,扣2分.若只得到AB <,而未写0,2A π⎛⎫∈ ⎪⎝⎭,不扣分. 【2】第(2)问中,未写2222cos CD AC AD AC AD A =+-⋅,直接得到2222447427787CD b b b b b ⎛⎫⎛⎫=+-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,不扣分. 18.【答案】解:(1)()()25.4125.39825.40425.4225.386x =+⨯+⨯++⨯⎡⎣ ()25.4325.37525.4425.38525.4325025.40++⨯++⨯+⨯÷=⎤⎦.(2)因为()222220.01160.02170.03120.041500.000416s =⨯+⨯+⨯+⨯÷=,所以0.010.01 2.040.0204s ===⨯=,25.400.020425.3796x s -=-=,25.400.020425.4204x s +=+=,所以这50件零件内径尺寸在(),x s x s -+内的件数为5017537---=,故该厂1000件零件中其内径尺寸在(),x s x s -+内的件数约为37100074050⨯=. 【评分细则】【1】第(1)问中,x 的结果写为25.4不扣分.【2】第(2)问中,没有求x s -与x s +的值,而直接得出这50件零件内径尺寸在(),x s x s -+内的件数为37,需扣1分.19.【答案】(1)解:因为以C 的长轴为直径的圆的方程为224x y +=,所以24a =. 因为12c e a ==,所以21c =,2223b a c =-=, 故C 的方程为22143x y +=. (2)证明:设直线l 的方程为()0x m m =≠,(),P m n ,则(),Q m n -,22m -<<,且0m ≠,直线AP 的方程为()22n y x m =++, 直线BQ 的方程为()22n y x m =---,()()2,22,2n y x m n y x m ⎧=+⎪⎪+⎨⎪=--⎪-⎩将两式相除得22122m x m x -+-⋅=+-, 解得4x m =,即4G x m =,故44P G x x m m⋅=⨯=为定值. 【评分细则】【1】第(1)问中,根据圆的方程得到2a =同样给2分.【2】第(2)问中,未写22m -<<,且0m ≠,扣1分.20.【答案】(1)证明:过1D 作1D H CD ⊥,垂足为H ,因为平面11CDD C ⋂底面ABCD CD =,平面11CDD C ⊥底面ABCD ,所以1D H ⊥底面ABCD .因为AD ⊂平面ABCD ,所以1D H AD ⊥.又1AD CD ⊥,1CD D H H ⋂=,所以AD ⊥平面11CDD C .因为CD ⊂平面11CDD C ,所以AD CD ⊥.又//AB CD ,AB CD ≠,所以四边形ABCD 为直角梯形.(2)解:由(1)知,1D H ⊥底面ABCD ,则1D H 为四棱柱1111ABCD A B C D -的高. 因为1,32CDD ππ⎛⎫∠∈ ⎪⎝⎭,所以1111sin 3sin 2D H DD CDD CDD ⎛⎫=∠=∠∈ ⎪ ⎪⎝⎭.因为AD CD ⊥,所以3AD ==, 所以四边形ABCD 的面积()124392S =⨯+⨯=, 所以四棱柱1111ABCD A B C D -的体积27V S DH ⎫=⋅∈⎪⎪⎝⎭,故四棱柱1111ABCD A B C D -体积的取值范围是272⎛⎫ ⎪ ⎪⎝⎭.【评分细则】【1】第(1)问中,证明1D H ⊥底面ABCD 时,没有写平面11CDD C ⋂底面ABCD CD =,扣1分.最后一行写成2CD AB =,不扣分,如果既没有写AB CD ≠,又没有写2CD AB =,就要扣1分.【2】第(2)问中,写到四棱柱1111ABCD A B C D -的体积27V S DH ⎫=⋅∈⎪⎪⎝⎭,但没有下结论“四棱柱1111ABCD A B C D -的体积的取值范围是27⎫⎪⎪⎝⎭”,不扣分.21.【答案】解:()f x 的定义域为(),-∞+∞,因为1a =,所以()1e e x x xx f x -⎛⎫'='= ⎪⎝⎭. 当1x <时,()0f x '>,()f x 在(),1-∞上单调递增;当1x >时,()0f x '<,()f x 在()1,+∞上单调递减.(2)由ln ln e x x a x a x+>,得ln e ln ln e x x a x a x +>, 即()ln e ln e x xa x x a <对()0,1x ∈恒成立. 令()ln x h x x =,则()21ln x h x x-'=, 当()0,e x ∈时,()0h x '>,()h x 单调递增,当()1,x ∈+∞时,()0h x '>,当()0,1x ∈时,()0h x <. 由()ln e ln ex x a x x a <,得()()e x h x h a <,所以e x x a <,所以e x x a >对()0,1x ∈恒成立.设()e xx m x =,()0,1x ∈, 由(1)知()m x 在()0,1上单调递增, 所以1e a ≥,即a 的取值范围为1,e ⎡⎫+∞⎪⎢⎣⎭.【评分细则】【1】第(1)问中,未写定义域,直接得到()1e x x f x -'=不扣分. 【2】第(2)问中,写到1e a ≥,但未写a 的取值范围为1,e ⎡⎫+∞⎪⎢⎣⎭,不扣分. 如果没有先说明()h x 在()0,1的单调性与()h x 在()1,+∞上的正负情况,直接由()()e x h x h a <得到e x x a <,则要扣2分.22.【答案】解:(1)l 的普通方程为10x y +-=. 由22123cos ρθ=+,得2223cos 12ρρθ+=,则()222312x y x ++=, 即C 的直角坐标方程为22134x y +=. (2)由题意,l的参数方程为1,22x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 参数),· 代入22134x y +=,得27160t --=. 设M ,N 对应的参数分别为1t ,2t,则12t t +=,12167t t =-,则121212122711371627t t t t PM PN t t t t +-+=====. 【评分细则】【1】第(1)问中,得到C 的直角坐标方程为224312x y +=,不扣分.【2】第(2)问得到27160t --=后,可以直接求出1t ,2t ,其步骤如下: 设M ,N 对应的参数分别为1t ,()212t t t <,则1127t =,2127t =,则12111172431122PM PN t t ⨯+=+===. 23.【答案】解:(1)当1x ≤-时,()33f x x =-≥;当112x -<≤时,()32,32f x x ⎡⎫=-∈⎪⎢⎣⎭; 当12x >时,()332f x x =>. 综上,()32f x ≥. 故()f x 的值域为3,2⎡⎫+∞⎪⎢⎣⎭. (2)由(1)知,32m =,2232a b +=,则22122a b ++=, 所以222222221211111111212222a b a b a a b b ⎛⎫ ⎪⎛⎫+=+=+++ ⎪ ⎪+⎝⎭ ⎪++⎝⎭()2222111222221222b a a b ⎛⎫+ ⎪=++≥+= ⎪ ⎪+⎝⎭, 当且仅当22221212b a a b +=+,即21a =,212b =时,等号成立, 故221221a b ++的最小值为2. 【评分细则】【1】第(1)问中,未写“综上,()32f x ≥”,直接得出“()f x 的值域为3,2⎡⎫+∞⎪⎢⎣⎭”,不扣分. 【2】第(2)问未写取等条件,直接得出“221221a b ++的最小值为2”扣1分.。
2020-2021学年最新高考总复习数学(文)高考模拟押题卷及答案解析
最新高考压轴卷数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
满分150分。
考试时间120分钟,考试结束后,将本试题卷和答题卡一并收回。
第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案的标号涂黑。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合M 满足{1,2}{1,2,3,4},则满足条件的集合M 的个数为 A.1 B .2 C .3. D. 4 2.下列四个结论:①若0x >,则sin x x >恒成立;②命题“若sin 0,0x x x -==则”的逆命题为“若0sin 0x x x ≠-≠,则”; ③“命题p q ∨为真”是“命题p q ∧为真”的充分不必要条件; ④命题“,ln 0x R x x +∀∈->”的否定是“000,ln 0x R x x +∃∈-≤”. 其中正确结论的个数是 A .1个B .2个C .3个D .4个3.执行右图所示的程序框图,则输出s 的值为 A 、43 B 、54 C 、65D 、54.如图是一个无盖器皿的三视图,正视图、侧视图和俯视图中的正方形边长为2,正视图、侧视图中的虚线都是半圆,则该器皿的表面积是 A .24π+B .20π+C . 224π+D . 220π+5.函数xy ⎪⎭⎫⎝⎛-=211的值域为( )A 、[)+∞,0B 、()1,0C 、[)1,0D 、[]1,06.定义:在数列{}n a 中,若满足d a a a a nn n n =-+++112(+∈N n ,d 为常数),称{}n a 为“等差比数列”。
已知在“等差比数列”{}n a 中,,3,1321===a a a 则=20132015a a A .2420151⨯-B .2420141⨯-C .2420131⨯-D .242013⨯7.已知22(0)()|log |(0)x x f x x x ⎧≤=⎨>⎩,则方程[()]2f f x =的根的个数是A .3个B .4个C .5个D .6个8.在ABC ∆中,内角C B A ,,的对边分别为,,,c b a 且0222=-++a bc c b ,则cb C a --︒)30sin(的值为A .21 B .23C .21- D .23-9.在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务。
2020年百校联盟高考数学模拟试卷(文科)(4月份)(全国Ⅰ卷)(有答案解析)
2020年百校联盟高考数学模拟试卷(文科)(4月份)(全国Ⅰ卷)(有答案解析)2020年百校联盟高考数学模拟试卷(文科)(4月份)(全国Ⅰ卷)一、选择题(本大题共12小题,共60.0分)1. 已知集合A ={x ∈Z|x 2≤1},B ={x|x ?ln (x +3)=0},则A ∪B =( )A. {?1,0,1}B. {?2,?1,1}C. {?2,0,1}D. {?2,?1,0,1} 2. 设z ?是复数z 的共轭复数,若z ??i =1+i ,则z ?z ?=( )A. √2B. 2C. 1D. 0 3. 下列函数中,既不是奇函数,也不是偶函数的是( )A. y =xsinxB. y =xlnxC. y =x ?e x ?1e x +1 D. y =xln(√x 2+1?x)4. 数列{a n }是等比数列,S n 是其前n 项和,a n >0,a 2+a 3=4,a 3+3a 4=2,则S 3=( )A. 283B. 12C. 383D. 135. 已知一个几何体的三视图如图所示,则该几何体的体积为( )A. 43B. 2C. 83 D. 1036. 已知函数f(x)=2cos 2x ?cos (2x ?π3),则下列结论正确的个数是( )①函数f(x)的最小正周期为π;②函数f(x)在区间[0,π3]上单调递增;③函数f(x)在[0,π2]上的最大值为2;④函数f(x)的图象关于直线x =π3对称.A. 1B. 2C. 3D. 47. 如图,在△ABC 中,AB =2,AC =3,∠BAC =π3,M 、N 分别为BC 、AM 的中点,则CN ????? ?AB= ( )A. ?2B. ?34 C. ?54D. 548. 改编自中国神话故事的动画电影《哪吒之魔童降世》自7月26日首映,在不到一个月的时间,票房收入就超过了38亿元,创造了中国动画电影的神话.小明和同学相约去电影院观看《哪吒之魔童降世》,影院的三个放映厅分别在7:30,8:00,8:30开始放映,小明和同学大约在7:40至8:30之间到达影院,且他们到达影院的时间是随机的,那么他们到达后等待的时间不超过10分钟的概率是( )A. 13B. 12C. 25D. 349. 已知函数f(x)=log 12(x 2?ax +a)在(12,+∞)上为减函数,则实数a 的取值范围是( ) A. (?∞,1]B. [?12,1]C. (?12,1]D. (?12,+∞)10. 若x ,y 满足约束条件{4x ?3y ?6≤02x ?2y +1≥0x +2y ?1≥0,则z =|x ?y +1|的最大值为( )A. 2B. 2411C. 2811D. 311. 如图所示,在三棱锥P ?ABC 中,AB ⊥BC ,AB =3,BC =2,点P 在平面ABC 内的投影D 恰好落在AB 上,且AD =1,PD =2,则三棱锥P ?ABC 外接球的表面积为( )A. 9πB. 10πC. 12πD. 14π12. 已知函数f(x)=x+aax?1(x >0),若a =√1?x 2>0,则f(x)的取值范围是( )A. [?√2?1,?1)B. (?2√2,?1)C. [?2√2,?1)D. (?√2,0)二、填空题(本大题共4小题,共20.0分)13. 从一个有53名学生的班级中,随机抽取5人去参加活动,若采用系统抽样的方法抽取,则班长被抽中的概率为______.14. 已知函数f(x)=x 3?5x +a ,直线2x +y +b =0与函数f(x)的图象相切,a ,b 为正实数,则a +b 的值为______. 15. 已知实数x ,y 满足y ≥2x >0,则yx +9x2x+y 的最小值为______. 16. F 1、F 2是双曲线C :x 2a 2y 2b 2=1(a >0,b >0)的左、右焦点.过F 2作直线l ⊥x 轴,交双曲线C于M 、N 两点,若∠MF 1N 为锐角,则双曲线C 的离心率e 的取值范围是______.三、解答题(本大题共7小题,共82.0分)17. 已知△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,a 2=b 2+bc ,且sinC +tanBcosC =1.(1)求角A ;(2)b =2,P 为△ABC 所在平面内一点,且满足APCP =0,求BP 的最小值,并求BP 取得最小值时△APC 的面积S .18.双十一购物狂欢节,是指每年11月11日的网络促销日,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,已成为中国电子商务行业的年度盛事.某生产商为了了解其生产的产A B说明理由;(2)填写下面关于店铺个数的2×2列联表,并根据列联表判断是否有95%的把握认为销售量与电商平台有关;则其中恰好有两个店铺的销售量在95以上的概率是多少?,n=a+b+c+d.附:K2=n(ad?bc)2(a+b)(c+d)(a+c)(b+d)19.如图①,平行四边形ABCD中,AB=4,AD=2,∠ABC=π,E为CD中点.将△ADE沿AE3折起,使平面ADE⊥平面ABCE,得到如图②所示的四棱锥P?ABCE.(1)求证:平面PAE⊥平面PBE;(2)求点B到平面PEC的距离.20.动圆P过定点A(2,0),且在y轴上截得的弦GH的长为4.(1)若动圆圆心P的轨迹为曲线C,求曲线C的方程;(2)在曲线C的对称轴上是否存在点Q,使过点Q的直线l′与曲线C的交点S、T满足1|QS|2+1|QT|2为定值?若存在,求出点Q的坐标及定值;若不存在,请说明理由.21.已知函数f(x)=ax+1x ,g(x)=exx1.(1)讨论函数f(x)在(0,+∞)上的单调性;(2)若对任意的x∈(0,+∞),f(x)<g(x)恒成立,求实数a的取值范围.< p="">22.在平面直角坐标系xOy中,曲线C的参数方程为{x=1+cosθy=1+sinθ(θ为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(φ+π4)+√2=0,P为直线l 上的任意一点(1)Q为曲线C上任意一点,求P、Q两点间的最小距离;.(2)过点P作曲线C的两条切线,切点为A、B,曲线C的对称中心为点C,求四边形PACB面积的最小值.23.已知函数f(x)=√|x+2|+|x?1|?a.(1)当a=4时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,设a的最大值为s,当正数m,n满足12m+n +2m+3n=s时,求3m+4n的最小值.-------- 答案与解析 --------1.答案:D解析:解:∵A ={?1,0,1},B ={0,?2},∴A ∪B ={?2,?1,0,1}.故选:D .可以求出集合A ,B ,然后进行并集的运算即可.本题考查了描述法、列举法的定义,一元二次不等式的解法,并集的运算,考查了计算能力,属于基础题. 2.答案:B解析:解:∵z ?i =1+i ,∴z ?=1+i i=(1+i)(?i)?i 2=1?i ,则z ?z ?=|z|2=(√2)2=2.故选:B .把已知等式变形,再由复数代数形式的乘除运算化简,结合z ?z ?=|z|2求解.本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,是基础题. 3.答案:B解析:解:根据题意,依次分析选项:对于A ,y =xsinx ,其定义域为R ,有f(?x)=xsinx =f(x),即函数f(x)为偶函数;对于B ,y =xlnx ,其定义域为(0,+∞),既不是奇函数,也不是偶函数;对于C ,y =x ?e x ?1e x +1,其定义域为R ,有f(?x)=(?x)?e ?x ?1e ?x +1=x ?e x ?1e x +1=f(x),即函数f(x)为偶函数;对于D ,y =2+1?x),其定义域为R ,有f(?x)=(?x)ln (√x 2+1+x)=xln(√x 2+1?x)=f(x),即函数f(x)为偶函数;故选:B .根据题意,依次分析选项中函数的奇偶性,综合即可得答案.本题考查函数奇偶性的判断,注意分析函数的定义域,属于基础题. 4.答案:D解析:解:∵数列{a n }是等比数列,S n 是其前n 项和,a n >0,a 2+a 3=4,a 3+3a 4=2,∴{a 1q +a 1q 2=4a 1q 2+3a 1q 3=2q >0,解得a 1=9,q =13,∴S 3=9(1?133)1?13=13.故选:D .利用等比数列通项公式列出方程组,求出a 1=9,q =13,由此能求出S 3的值.本题考查等比数列的前3项和的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基5.答案:C解析:解:根据三视图,可知几何体为四棱锥P?ABCD,体积V=13×2×2√2×√2=83.故选:C.根据三视图可知几何体为四棱锥,画出直观图,利用体积公式求解.本题考查了根据三视图,求几何体的体积,属于中档题.6.答案:B解析:解:f(x)=2cos2x?cos(2x?π3)=cos2x+1?12cos2x?√32sin2x=12cos2x?√32sin2x+1=cos(2x+π3)+1,∴T=2π2=π,①对;由2kπ?π≤2x+π3≤2kπ,得x∈[kπ?2π3,kπ?π6],k∈Z,所以函数f(x)单调递增区间为[kπ? 2π3,kπ?π6],②错;∵x∈[0,π2]时,2x+π3∈[π3,4π3],cos(2x+π3)∈[?1,12],函数f(x)在[0,π2]上的最大值为32,③错,∵2x+π3=kπ,x=kπ2π6,k∈Z,④对,故选:B.先根据函数化简得f(x)=cos(2x+π3)+1,根据T=2π2=π,可判断①;先求出所以单调递增区间,然后可以判断②;可求f(x)在在[0,π2]上的最大值,可以判断③;可求出f(x)的所有对称轴,可判断④.本题考查命题,以及三角函数的化简和化简,属于中等题.解析:解:因为在△ABC 中,AB =2,AC =3,∠BAC =π3,M 、N 分别为BC 、AM 的中点,则CN ?AB=12(CA +CM ? )?AB =12(?AC +12CB )?AB =12[?AC +12(AB ????? ?AC ????? )]?AB ????? =12(12AB ????? ?32AC )?AB =1AB 2?3AB ?AC =14×22?34×2×3×12=?54.故选:C .根据已知条件把所求问题转化,即可求得结论.本题考查向量的数量积的应用以及向量的三角形法则,考查向量的表示以及计算,考查计算能力. 8.答案:C解析:解:由题意可知,满足条件的时间段为7:50~8:00,8:20~8:30共20分钟,由几何概型知所求的概率P =2050=25.故选:C .由满足条件的时间段为7:50~8:00,8:20~8:30共20分钟,结合与长度有关的几何概率公式可求.本题主要考查了与长度有关的几何概率公式的应用,属于基础试题. 9.答案:B解析:解:∵y =log 12x 在(0,+∞)上为减函数,∴y =x 2?ax +a 在(12,+∞)上为增函数,且y >0恒成立,∴{?a 2≤12(12)2?12a +a ≥0,解得?12≤a ≤1.故选:B .由复合函数的单调性法则可知y =x 2?ax +a 在(12,+∞)上为增函数,由对数函数的真数大于0可知,y >0恒成立,则实数a 应满足{??a2≤12(12)212a +a ≥0,解不等式组即可得到答案.本题主要考查复合函数的单调性法则以及对数函数的图象及性质,考查计算能力,属于基础题. 10.答案:C解析:解:作出不等式组对应的平面区域如图:令t =x ?y +1,得y =x +1?t 表示,斜率为1纵截距为1?t 的一组平行直线,{4x ?3y +6=0x +2y ?1=0C(1511,?211);平移直线y =x +1?t ,当直线y =x +1?t 经过点C(1511,?211)时,直线y =x +1?t 的截距最小,此时t max =1511?(?211)+1=2811,当直线y =x +1?t 与AB 重合时,直线y =x +1?t 的截距最大,A(0,12)此时t min =0?12+1=12,∴z =|x ?y +1|的取值范围是:[12,2811]. 故z =|x ?y +1|的最大值为2811.故选:C .作出不等式组对应的平面区域,令t =x ?y +1,利用目标函数t 的几何意义,结合图象得到结论.本题主要考查线性规划的基本应用,利用数形结合,结合目标函数的几何意义是解决此类问题的基本方法. 11.答案:D解析:解:由题意可知,PD ⊥平面ABC ,所以平面PAB ⊥平面ABC ,又因为AB ⊥BC ,所以BC ⊥平面PAB ,构造直三棱柱PAB ?MNC ,则直三棱柱PAB ?MNC 的外接球即为所求,球心O 为直直三棱柱底面三角形外接圆圆心连心线连心的中点,△PAB 中,由正弦定理可得,r =√52sin π4=√102,故R =(√102)=√142,故S =4π×144=14π故选:D .结合已知构造直三棱柱PAB ?MNC ,则直三棱柱PAB ?MNC 的外接球即为所求,球心O 为直直三棱柱底面三角形外接圆圆心连心线连心的中点,结合球的性质及勾股定理可求.本题考查球的表面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.12.答案:C解析:解:由a =√1?x 2得,a 2+x 2=1,不妨设a =cosα,x =sinα,其中α∈(0,π2),则y =sinα+cosαsin αcos α?1,令t =sinα+cosα=√2sin (α+π4)∈(1,√2],sinαcosα=t 2?12,∴1y =t 2?32t =t2?32t 在t ∈(1,√2]上为增函数,∴y =2tt?3在t ∈(1,√2]上为减函数,∴y ∈[?2√2,?1).故选:C .依题意,a 2+x 2=1,采用三角换元设a =cosα,x =sinα,可得y =sinα+cosαsin αcos α?1,再令t =sinα+cosα∈(1,√2],可得y =2tt?3在t ∈(1,√2]上为减函数,由此求出f(x)的取值范围.本题考查函数值域的求法,考查三角换元思想,属于中档题.13.答案:553解析:解:从一个有53名学生的班级中,随机抽取5人去参加活动,若采用系统抽样的方法抽取,则班长被抽中的概率为5 53,故答案为:553.根据在系统抽样中,每个个体被抽到的概率是相等的,得出结论.本题主要考查系统抽样的特征,属于基础题. 14.答案:2 解析:解:由f(x)=x 3?5x +a ,得f′(x)=3x 2?5,∵直线2x +y +b =0与函数f(x)的图象相切,设切点的坐标为(x 0,y 0),则3x 025=?2,∴x 0=1或x 0=?1,∴y 0=a ?4或y 0=a +4,即切点坐标为(1,a ?4)或(?1,a +4),代入直线中,得a +b =2或a +b =?2,∵a ,b 为正实数,∴a +b =2.故答案为:2.先对f(x)求导,根据条件设切点的坐标为(x 0,y 0),然后由f′(x 0)=?2求出切点坐标,进一步求出a +b 的值.本题考查了利用导数研究曲线上某点切线方程,考查了方程思想,属基础题.15.答案:174解析:解:设t=yx,由题意知t≥2,则yx+9x2x+y=t+9t+2,令f(t)=t+9t+2,t≥2,∵f′(x)=1?9(t+2)2>0,∴f(t)在t≥2上单调递增,∴f(t)≥f(2)=174,故答案为:174.先令t=yx ,可转化成f(t)=t+9t+2,t≥2,因为不满足不等式取等号时的条件,使用单调性求最值.本题考查导数求最值,使用不等式求最值时,注意取等号时的条件,属于中档题.16.答案:(1,1+√2)解析:解:解:当x=c时,c2a2?y2b2=1,可得y=±b2a故M(c,b2a)如图只要∠MF1F2<45°即可,则tan∠MF1F2< p="">即b22c=b22ac<1,即b2<2ac,则c2?a2<2ac,即c2?2ac?a2<0,则e2?2e?1<0,解得:1?√2<e<1+√2< p="">又e>1,∴1<e<1+√2< p="">故答案为:(1,1+√2)求出交点M,N的坐标,只要∠MF1F2<45°即可,利用斜率公式进行求解即可.本题主要考查双曲线离心率的计算,根据∠MF1F2<45°转化为斜率解决问题.考查学生的转化能力.17.答案:解:(1)因为a2=b2+bc?a2+c2?b2=c2+bc;∴a2+c2?b22ac =c+b2a;∴b+c=2acosB;由正弦定理得:sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB?sinB=sin(A?B);因为都是三角形内角;∴A=2B;又由sinC+tanBcosC=1.得sin(B+C)=cosB;∴sinA=cosB;∴sinB=12.∴B=π6,A=π.(2)由(1)可知C=π2.∴△ABC为直角三角形.又因为AP ????? ?CP=0?PA ⊥PC ;所以点P 在以CA 为直径的圆上,如图:∵b =2,所以:BC =2√3,AB =4,设O 为AC 的中点,连接BO ,则当点P 在BO 上时,BP 取得最小值,此时BP =BO ?PO =√1+(2√3)2?1=√13?1.设∠OCP =α,则∠COP =π?2α,∴sinα=PA AC=12PA ;cosα=PC AC=12PC ;∴S =12PA ?PC =2sinαcosα=sin2α;在直角三角形BOC 中,sin ∠COB =sin (π?2α)=sin2α=BCBO =√3√13=2√3913.∴当BP 取得最小值时(√13?1)时,△APC 的面积S 为:2√3913.解析:(1)先根据已知条件得到b +c =2acosB ;再结合正弦定理得到A =2B ,结合sinC +tanBcosC =1即可求得结论;(2)根据数量积为0推得点P 在以CA 为直径的圆上,进而得到当点P 在BO 上时,BP 取得最小值,求出最小值以及△APC 的面积S 即可.本题考查了数量积运算性质以及解三角形,考查了推理能力与计算能力,综合性比较强,属于中档题.18.答案:解:(1)A 、B 两个电商平台销售数据的茎叶图如图,由茎叶图可知B 电商平台的销售更好,因为B 整体数据集中比A 高,(2)填表如下;销售量>80 销售量≤80 总计 A 电商平台 2 8 10 B 电商平台 6 4 10 总计 81220K 2=20(2×4?6×8)28×12×10×10≈3.333<3.841,没有95%的把握认为销售量与电商平台有关.(3)从这20个网络销售店铺销售量前五名为97,96,96,94,87.分别设为A ,B ,C ,D ,E ,随机抽取三个店铺共有10种可能,如下:(A,B ,C),(A,B ,D),(A,B ,E),(A,C ,D),(A,C ,E),(A,D ,E),(B,C ,D),(B,C ,E),(B,D ,E),(C,D ,E),恰好有两个店铺的销售量在95以上有6种,恰好有两个店铺的销售量在95以上的概率为610=35.解析:(1)根据题意画茎叶图,(2)根据数据填表,代公式,比较,判断,(3)根据题意找出店铺销售量前五名,然后求事件,求概率.本题考查独立性检验,以及求概率,属于中档题.19.答案:(1)证明:在图①中连接BE,由平面几何知识,求得AE=2,BE=2√3,又∵AB=4,∴BE⊥AE,在图②中,∵平面APE⊥平面ABCE,且平面APE∩平面ABCE=AE,∴BE⊥平面PAE,又∵BE?平面PBE,∴平面PAE⊥平面PBE;(2)解:设O为AE的中点,连接PO,CO,由已知可得△PAE为等边三角形,∴PO=√3.∵平面PAE⊥平面ABCE,∴PO⊥平面ABCE,得PO⊥CO.在△OEC中,OE=1,EC=2,∠OEC=2π3.由余弦定理得OC=√7.∴PC=√3+7=√10.在△PEC中,PE=EC=2,PC=√10.∴S△PEC=12×√10×(√102)=√152,又∵S△BCE=12×2√3×1=√3.设点B到平面PEC的距离为d,由V P?BCE=V B?PCE,得13×√3×√3=13×√152×d,解得d=2√155.∴点B到平面PEC的距离为2√155.解析:(1)求解三角形可得AE=2,BE=2√3,结合AB=4,得到BE⊥AE,再由平面APE⊥平面ABCE,结合平面与平面垂直的性质可得BE⊥平面PAE,进一步得到平面PAE⊥平面PBE;(2)设O为AE的中点,连接PO,CO,求得PO=√3,进一步求解三角形可得OC、PC的值,求解三角形PEC与BEC的面积,利用等体积法可求得点B到平面PEC的距离.本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了利用等积法求点到平面的距离,考查计算能力,是中档题.20.答案:解:(1)设P(x,y),由题意知:PA=PG,当P点不在y轴上时,过P作PB⊥GH,交GH于点B,则B为GH的中点,∴GB=12GH=2,∴PG=√x2+4,又∵PA=√(x?2)2+y2=√x2+4,整理可得y2=4x(x≠0);当点P 在y 轴上时,易知P 点与O 点重合,P(0,0)也满足y 2=4x ,∴曲线C 的方程为y 2=4x ,(2)假设存在Q(a,0)满足题意,设S(x 1,y 1),T(x 2,y 2),根据题意可知直线l′的斜率必不为0,设其方程为x =t 1y +a(t 1≠0),联立{x =t 1y +a y 2=4x ,整理可得y 2?4t 1y ?4a =0,∴y 1+y 2=?4t 1,y 1y 2=?4a ,∴x 1+x 2=t 1(y 1+y 2)+2a =4t 12+2ax 1x 2=116y 12y 22=a 2,∵QS 2=(x 1?a)2+y 12=(x 1?a)2+4x 1=x 12+(4?2a)x 1+a 2,QT 2=(x 2?a)2+y 22=(x 2?a)2+4x 2=x 22+(4?2a)x 2+a 2,∴QS 2+QT 2=x 12+(4?2a)x 1+a 2+x 22+(4?2a)x 2+a 2=(x 1+x 2)2+(4?2a)(x 1+x 2)?2x 1x 2+2a 2=(x 1+x 2)(x 1+x 2+4?2a)?2x 1x 2+2a 2=(4t 12+2a)(4t 12++4),QS 2?QT 2=16a 2(t 12+1)2,则1|QS|2+1|QT|2=QS 2+QT 2QS 2?QT 2=2t 12+a2a 2(t 12+1),当a =2时,上式=14与t 1无关为定值,所以存在Q(2,0)使过点Q 的直线与曲线交于点S 、T 满足1|QS|2+1|QT|2为定值14.解析:(1)设P(x,y),过P 作PB ⊥GH ,交GH 于点B ,则B 为GH 的中点,GB =12GH =2,PG =√x 2+4,PA =√(x ?2)2+y 2=√x 2+4,整理可得y 2=4x(x ≠0);(2)假设存在Q(a,0)满足题意,设S(x 1,y 1),T(x 2,y 2),设其方程为x =t 1y +a(t 1≠0),联立{x =t 1y +a y 2=4x,利用根与系数关系表示出QS 2,QT 2,进而表示出1|QS|2+1|QT|2即可.本题考查动点轨迹方程的求法,考查韦达定理,考查换元法的应用,考查计算能力,属于中档题.21.答案:解:(1)∵f(x)=ax +1x ,∴f′(x)=a ?1x 2=ax 2?1x 2,当a ≤0时,f′(x)<0,函数f(x)在(0,+∞)上单调递减;当a >0时,由f′(x)=0,得x =±√aa (舍负),当x ∈(0,√a a )时,f′(x)<0,函数f(x)单调递减,当x ∈(√aa ,+∞)时,f′(x)>0,函数f(x)单调递增.(2)由f(x)0,设?(x)=e x ?ax 2?x ?1(x >0),则?′(x)=e x ?2ax ?1,令H(x)=e x ?2ax ?1,则H′(x)=e x ?2a ,当a ≤12时,∵x ∈(0,+∞),∴H′(x)>0,H(x)为增函数,∴H(x)=?′(x)>?′(0)=0,∴?(x)在(0,+∞)上为增函数,∴?(x)>?(0)=0成立,即f(x)12时,由H′(x)=e x ?2a =0,解得x =ln2a ,x ∈(0,ln2a)时,H′(x)<0,H(x)为减函数,x ∈(ln2a,+∞)时,H′(x)>0,H(x)为增函数,∴?′(x)≥?′(ln2a)≥2a ?1?2aln2a ,设t(a)=2a ?1?2aln2a(a >12),则t′(a)=?2ln2a <0,∴t(a)在(12,+∞)上为减函数,∴t(a)<0< p="">∴?x 0∈(0,+∞),当x ∈(0,x 0)时,?′(x)<0,?(x)为减函数,当x ∈(x 0,+∞)时,?′(x)>0,?(x)为增函数,又?(0)=0,∴当x ∈(0,x 0)时,?(x)<0,∴当a >12时,对x ∈(0,+∞),f(x)<="" 综上所述,a="">2].解析:(1)对f(x)求导得,f′(x)=a ?1x 2=ax 2?1x 2,然后分a ≤0和a >0两个类别,讨论f′(x)的正负,即可得f(x)的单调性;(2)构造函数?(x)=e x ?ax 2?x ?1(x >0),求出?′(x),令H(x)=?′(x)=e x ?2ax ?1,再求H′(x)=e x ?2a ,当a ≤12时,易证得?(x)在(0,+∞)上为增函数,?(x)>?(0)=0成立,即f(x)12时,由H′(x)=e x ?2a =0,解得x =ln2a ,可得函数H(x)的单调性即?′(x)的单调性,于是?′(x)≥?′(ln2a)≥2a ?1?2aln2a ,再令t(a)=2a ?1?2aln2a(a >12),求导可知t(a)在(12,+∞)上为减函数,t(a)<t(1< p="">2)=0,即?′(ln2a)<0,最后结合隐零点的思维可证得当a >12时,对x ∈(0,+∞),f(x)<g(x)不恒成立,因此得解.< p=""> 本题考查导数的综合应用,涉及利用导数判断函数的单调性、求极值、恒成立问题等知识点,还有分类讨论、构造函数、多次求导以及隐零点等方法,有一定综合性,考查学生的分析能力和逻辑推理能力,属于难题.22.答案:解:(1)曲线C 的参数方程为{x =1+cos θy =1+sinθ(θ为参数),转换为直角坐标方程为(x ?1)2+(y ?1)2=1.直线l 的极坐标方程为ρsin(φ+π4)+√2=0,转换为直角坐标方程为x +y +2=0.所以圆心(1,1)到直线x +y +2=0的距离d =√2=2√2,所以最小距离d min =2√2?1.(2)由于圆心到直线的最小距离d =2√2,所以构成的切线长为√(2√2)2?1=√7,所以四边形PACB 面积的最小值为S =2×12×1×√7=√7.解析:(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间的进行转换.(2)利用点到直线的距离公式的应用和三角形的面积公式的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 23.答案:解:(1)a =4时,|x +2|+|x ?1|?4≥0,当x2;当?2≤x ≤1时,x +2?x +1?4≥0,解得x ∈?;当x >1时,x +2+x ?1?4≥0,解得x ≥32,∴函数f(x)的定义域为{x|x ≤?52或x ≥32};(2)∵函数f(x)的定义域为R ,∴|x +2|+|x ?1|?a ≥0对任意的x ∈R 恒成立,∴a ≤|x +2|+|x ?1|,又|x +2|+|x ?1|≥|x +2?x +1|=3,∴a ≤3,∴s =3,∴12m+n+2m+3n=3,且m >0,n >0,∴3m +4n =(2m +n)+(m +3n)=13[(2m +n)+(m +3n)]?(12m+n +2m+3n )=13[3+2(2m+n)m+3n+m+3n2m+n]≥13(3+2√2)=1+2√23,当且仅当m =1+2√215,n =3+√215时取等号,∴3m +4n 的最小值为1+2√23.解析:(1)a =4时,得出f(x)需满足|x +2|+|x ?1|?4≥0,然后讨论x 的取值,去掉绝对值号求出x 的范围即可得出f(x)的定义域;(2)根据题意可知a ≤|x +2|+|x ?1|对x ∈R 恒成立,从而可得出a ≤3,进而得出s =3,从而得出12m+n +2m+3n =3,然后即可得出3m +4n =13[3+2(2m+n)m+3n+m+3n2m+n ],然后根据基本不等式即可得出3m +4n 的最小值.本题考查了绝对值不等式的解法,不等式|a|+|b|≥|a ?b|的运用,基本不等式求值的方法,考查了计算能力,属于基础题.</g(x)不恒成立,因此得解.<></t(1<><0<></e<1+√2<></e<1+√2<><></g(x)恒成立,求实数a的取值范围.<>。
2020年百校联盟高考数学模拟试卷(文科)(4月份)(全国Ⅰ卷)(含解析)
2020年百校联盟高考数学模拟试卷(文科)(4月份)(全国Ⅰ卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x∈Z|x2≤1},B={x|x⋅ln(x+3)0},则A∪B=()A.{−1, 0, 1}B.{−2, −1, 1}C.{−2, 0, 1}D.{−2, −1, 0, 1}2.设z是复数z的共轭复数,若z⋅i=1+i,则z⋅z=()A.√2B.2C.1D.03.下列函数中,既不是奇函数,也不是偶函数的是()A.y=xsinxB.y=xlnxC.y=x⋅e x−1e+1D.y=xln(√x2+1−x)4.数列{a n}是等比数列,S n是其前n项和,a n>0,a2+a3=4,a3+3a4=2,则S3=()A.283B.12 C.383D.135.已知一个几何体的三视图如图所示,则该几何体的体积为()A.43B.2 C.83D.1036.已知函数f(x)=2cos2x−cos(2x−π3),则下列结论正确的个数是()①函数f(x)的最小正周期为π;②函数f(x)在区间[0, π3]上单调递增;③函数f(x)在[0, π2]上的最大值为2;④函数f(x)的图象关于直线x=π3对称.A.1B.2C.3D.47.如图,在△ABC中,AB=2,AC=3,∠BAC=π3,M、N分别为BC、AM的中点,则CN→⋅AB→=()A.−2B.−34C.−54D.548.改编自中国神话故事的动画电影《哪吒之魔童降世》自7月26日首映,在不到一个月的时间,票房收入就超过了38亿元,创造了中国动画电影的神话.小明和同学相约去电影院观看《哪吒之魔童降世》,影院的三个放映厅分别在7:30,8:00,8:30开始放映,小明和同学大约在7:40至8:30之间到达影院,且他们到达影院的时间是随机的,那么他们到达后等待的时间不超过10分钟的概率是()A.13B.12C.25D.349.已知函数f(x)=log12(x2−ax+a)在(12, +∞)上为减函数,则实数a的取值范围是()A.(−∞, 1]B.[−12, 1]C.(−12, 1] D.(−12, +∞)10.若x,y满足约束条件{4x−3y−6≤02x−2y+1≥0x+2y−1≥0,则z=|x−y+1|的最大值为()A.2B.2411C.2811D.311.如图所示,在三棱锥P−ABC中,AB⊥BC,AB=3,BC=2,点P在平面ABC内的投影D恰好落在AB上,且AD=1,PD=2,则三棱锥P−ABC外接球的表面积为()A.9πB.10πC.12πD.14π12.已知函数f(x)=x+aax−1(x>0),若a=√1−x2>0,则f(x)的取值范围是()A.[−√2−1, −1)B.(−2√2, −1)C.[−2√2, −1)D.(−√2, 0)二、填空题:本大题共4小题,每小题5分.13.从一个有53名学生的班级中,随机抽取5人去参加活动,若采用系统抽样的方法抽取,则班长被抽中的概率为________.14.已知函数f(x)=x3−5x+a,直线2x+y+b=0与函数f(x)的图象相切,a,b为正实数,则a+ b的值为________.15.已知实数x,y满足y≥2x>0,则yx +9x2x+y的最小值为________.16.F1、F2是双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点.过F2作直线l⊥x轴,交双曲线C于M、N两点,若∠MF1N为锐角,则双曲线C的离心率e的取值范围是________+√2).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知△ABC中,角A、B、C所对的边分别是a、b、c,a2=b2+bc,且sinC+tanBcosC=1.(1)求角A;(2)b=2,P为△ABC所在平面内一点,且满足AP→⋅CP→=0,求BP的最小值,并求BP取得最小值时△APC的面积S.18.双十一购物狂欢节,是指每年11月11日的网络促销日,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,已成为中国电子商务行业的年度盛事.某生产商为了了解其生产的产品在不同电商平台的销售情况,统计了A、B两个电商平台各十个网络销售店铺的销售数据:(1)作出A、B两个电商平台销售数据的茎叶图,根据茎叶图判断哪个电商平台的销售更好,并说明理由;(2)填写下面关于店铺个数的2×2列联表,并根据列联表判断是否有95%的把握认为销售量与电商平台有关;(3)生产商要从这20个网络销售店铺销售量前五名的店铺中,随机抽取三个店铺进行销售返利,则其中恰好有两个店铺的销售量在95以上的概率是多少?附:K2=n(ad−bc)2,n=a+b+c+d.(a+b)(c+d)(a+c)(b+d)19.如图①,平行四边形ABCD中,AB=4,AD=2,∠ABC=π3,E为CD中点.将△ADE沿AE折起,使平面ADE⊥平面ABCE,得到如图②所示的四棱锥P−ABCE.(1)求证:平面PAE⊥平面PBE;(2)求点B到平面PEC的距离.20.动圆P过定点A(2, 0),且在y轴上截得的弦GH的长为4.(1)若动圆圆心P的轨迹为曲线C,求曲线C的方程;(2)在曲线C的对称轴上是否存在点Q,使过点Q的直线l′与曲线C的交点S、T满足1|QS|+1|QT|为定值?若存在,求出点Q的坐标及定值;若不存在,请说明理由.21.已知函数f(x)=ax+1x ,g(x)=exx−1.(1)讨论函数f(x)在(0, +∞)上的单调性;(2)若对任意的x∈(0, +∞),f(x)<g(x)恒成立,求实数a的取值范围.请考生从第22、23题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的方框涂黑,按所选涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,曲线C 的参数方程为{x =1+cosθy =1+sinθ (θ为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin(φ+π4)+√2=0,P 为直线l 上的任意一点(1)Q 为曲线C 上任意一点,求P 、Q 两点间的最小距离;.(2)过点P 作曲线C 的两条切线,切点为A 、B ,曲线C 的对称中心为点C ,求四边形PACB 面积的最小值.[选修4-5:不等式选讲]23.已知函数f(x)=√|x +2|+|x −1|−a . (1)当a =4时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R ,设a 的最大值为s ,当正数m ,n 满足12m+n +2m+3n =s 时,求3m +4n 的最小值.2020年百校联盟高考数学模拟试卷(文科)(4月份)(全国Ⅰ卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ∈Z|x 2≤1},B ={x|x ⋅ln(x +3)0},则A ∪B =( ) A.{−1, 0, 1} B.{−2, −1, 1} C.{−2, 0, 1} D.{−2, −1, 0, 1}【解答】∵A ={−1, 0, 1},B ={0, −2}, ∴A ∪B ={−2, −1, 0, 1}.2.设z 是复数z 的共轭复数,若z ⋅i =1+i ,则z ⋅z =() A.√2 B.2 C.1 D.0【解答】 ∵z ⋅i =1+i ,∴z =1+i i =(1+i)(−i)−i =1−i ,则z ⋅z =|z|2=(√2)2=2.3.下列函数中,既不是奇函数,也不是偶函数的是( ) A.y =xsinx B.y =xlnx C.y =x ⋅e x −1e x +1D.y =xln(√x 2+1−x) 【解答】根据题意,依次分析选项:对于A ,y =xsinx ,其定义域为R ,有f(−x)=xsinx =f(x),即函数f(x)为偶函数; 对于B ,y =xlnx ,其定义域为(0, +∞),既不是奇函数,也不是偶函数; 对于C ,y =x ⋅e x −1e +1,其定义域为R ,有f(−x)=(−x)⋅e −x −1e +1=x ⋅e x −1e +1=f(x),即函数f(x)为偶函数;对于D ,y =2+1−x),其定义域为R ,有f(−x)=(−x)ln(√x 2+1+x)=xln(√x 2+1−x)=f(x),即函数f(x)为偶函数;4.数列{a n }是等比数列,S n 是其前n 项和,a n >0,a 2+a 3=4,a 3+3a 4=2,则S 3=( ) A.283 B.12C.383D.13【解答】∵数列{a n }是等比数列,S n 是其前n 项和,a n >0,a 2+a 3=4,a 3+3a 4=2, ∴{a 1q +a 1q 2=4a 1q 2+3a 1q 3=2q >0 ,解得a 1=9,q =13,∴S 3=9(1−133)1−13=13.5.已知一个几何体的三视图如图所示,则该几何体的体积为( )A.43 B.2C.83D.103【解答】根据三视图,可知几何体为四棱锥P −ABCD , 体积V =13×2×2√2×√2=83.6.已知函数f(x)=2cos 2x −cos(2x −π3),则下列结论正确的个数是( ) ①函数f(x)的最小正周期为π;②函数f(x)在区间[0, π3]上单调递增; ③函数f(x)在[0, π2]上的最大值为2;④函数f(x)的图象关于直线x =π3对称. A.1 B.2 C.3 D.4【解答】f(x)=2cos 2x −cos(2x −π3)=cos2x +1−12cos2x −√32sin2x =12cos2x −√32sin2x +1=cos(2x +π3)+1,∴T =2π2=π,①对;由2kπ−π≤2x +π3≤2kπ,得x ∈[kπ−2π3, kπ−π6],k ∈Z ,所以函数f(x)单调递增区间为[kπ−2π3, kπ−π6],②错;∵x ∈[0, π2]时,2x +π3∈[π3, 4π3],cos(2x +π3)∈[−1, 12],函数f(x)在[0, π2]上的最大值为32,③错,∵2x +π3=kπ,x =kπ2−π6,k ∈Z ,④对,7.如图,在△ABC 中,AB =2,AC =3,∠BAC =π3,M 、N 分别为BC 、AM 的中点,则CN →⋅AB →= ( )A.−2B.−34C.−54D.54【解答】因为在△ABC 中,AB =2,AC =3,∠BAC =π3,M 、N 分别为BC 、AM 的中点, 则CN →⋅AB →=12(CA →+CM →)⋅AB →=12(−AC →+12CB →)⋅AB → =12[−AC →+12(AB →−AC →)]⋅AB → =12(12AB →−32AC →)⋅AB → =14AB →2−34AB →⋅AC → =1×22−3×2×3×1 =−54.8.改编自中国神话故事的动画电影《哪吒之魔童降世》自7月26日首映,在不到一个月的时间,票房收入就超过了38亿元,创造了中国动画电影的神话.小明和同学相约去电影院观看《哪吒之魔童降世》,影院的三个放映厅分别在7:30,8:00,8:30开始放映,小明和同学大约在7:40至8:30之间到达影院,且他们到达影院的时间是随机的,那么他们到达后等待的时间不超过10分钟的概率是( ) A.13 B.12C.25D.34【解答】由题意可知,满足条件的时间段为7:50∼8:00,8:20∼8:30共20分钟, 由几何概型知所求的概率P =2050=25.9.已知函数f(x)=log 12(x 2−ax +a)在(12, +∞)上为减函数,则实数a 的取值范围是( )A.(−∞, 1]B.[−12, 1] C.(−12, 1] D.(−12, +∞)【解答】∵y =log 12x 在(0, +∞)上为减函数,∴y =x 2−ax +a 在(12,+∞)上为增函数,且y >0恒成立, ∴{−−a2≤12(12)2−12a +a ≥0,解得−12≤a ≤1. 10.若x ,y 满足约束条件{4x −3y −6≤02x −2y +1≥0x +2y −1≥0 ,则z =|x −y +1|的最大值为( )A.2B.2411C.2811D.3 【解答】作出不等式组对应的平面区域如图:令t =x −y +1,得y =x +1−t 表示,斜率为1纵截距为1−t 的一组平行直线, {4x −3y +6=0x +2y −1=0⇒C(1511, −211);平移直线y =x +1−t ,当直线y =x +1−t 经过点C(1511, −211)时,直线y =x +1−t 的截距最小, 此时t max =1511−(−211)+1=2811,当直线y =x +1−t 与AB 重合时,直线y =x +1−t 的截距最大,A(0, 12) 此时t min =0−12+1=12,∴z =|x −y +1|的取值范围是:[12, 2811]. 故z =|x −y +1|的最大值为2811.11.如图所示,在三棱锥P −ABC 中,AB ⊥BC ,AB =3,BC =2,点P 在平面ABC 内的投影D 恰好落在AB 上,且AD =1,PD =2,则三棱锥P −ABC 外接球的表面积为( )A.9πB.10πC.12πD.14π【解答】由题意可知,PD ⊥平面ABC ,所以平面PAB ⊥平面ABC , 又因为AB ⊥BC ,所以BC ⊥平面PAB ,构造直三棱柱PAB −MNC ,则直三棱柱PAB −MNC 的外接球即为所求,球心O 为直直三棱柱底面三角形外接圆圆心连心线连心的中点,△PAB 中,由正弦定理可得,r =√52sin π4=√102, 故R =√1+(√102)2=√142,故S =4π×144=14π12.已知函数f(x)=x+aax−1(x >0),若a =√1−x 2>0,则f(x)的取值范围是( ) A.[−√2−1, −1) B.(−2√2, −1) C.[−2√2, −1) D.(−√2, 0)【解答】由a =√1−x 2得,a 2+x 2=1,不妨设a =cosα,x =sinα,其中α∈(0,π2),则y =sinα+cosαsinαcosα−1,令t =sinα+cosα=√2sin(α+π4)∈(1,√2],sinαcosα=t2−12,∴1y=t 2−32t =t2−32t 在t ∈(1,√2]上为增函数,∴y =2tt−3在t ∈(1,√2]上为减函数, ∴y ∈[−2√2,−1).二、填空题:本大题共4小题,每小题5分.13.从一个有53名学生的班级中,随机抽取5人去参加活动,若采用系统抽样的方法抽取,则班长被抽中的概率为________. 【解答】从一个有53名学生的班级中,随机抽取5人去参加活动, 若采用系统抽样的方法抽取,则班长被抽中的概率为553,14.已知函数f(x)=x 3−5x +a ,直线2x +y +b =0与函数f(x)的图象相切,a ,b 为正实数,则a +b 的值为________. 【解答】由f(x)=x 3−5x +a ,得f ′(x)=3x 2−5, ∵直线2x +y +b =0与函数f(x)的图象相切,设切点的坐标为(x 0, y 0),则3x 02−5=−2,∴x0=1或x0=−1,∴y0=a−4或y0=a+4,即切点坐标为(1, a−4)或(−1, a+4),代入直线中,得a+b=2或a+b=−2,∵a,b为正实数,∴a+b=2.15.已知实数x,y满足y≥2x>0,则yx +9x2x+y的最小值为________.【解答】设t=yx,由题意知t≥2,则yx +9x2x+y=t+9t+2,令f(t)=t+9t+2,t≥2,∵f′(x)=1−9(t+2)2>0,∴f(t)在t≥2上单调递增,∴f(t)≥f(2)=174,16.F1、F2是双曲线C:x2a −y2b=1(a>0,b>0)的左、右焦点.过F2作直线l⊥x轴,交双曲线C于M、N两点,若∠MF1N为锐角,则双曲线C的离心率e的取值范围是________+√2).【解答】当x=c时,c2a2−y2b2=1,可得y=±b2a故M(c, b2a)如图只要∠MF1F2<45∘即可,则tan∠MF1F2<tan45∘=1,即b2a2c=b22ac<1,即b2<2ac,则c2−a2<2ac,即c2−2ac−a2<0,则e2−2e−1<0,解得:1−√2<e<1+√2又e>1,∴1<e<1+√2三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知△ABC中,角A、B、C所对的边分别是a、b、c,a2=b2+bc,且sinC+tanBcosC=1.(1)求角A;(2)b=2,P为△ABC所在平面内一点,且满足AP→⋅CP→=0,求BP的最小值,并求BP取得最小值时△APC 的面积S . 【解答】因为a 2=b 2+bc ⇒a 2+c 2−b 2=c 2+bc ; ∴a2+c 2−b 22ac=c+b 2a;∴b +c =2acosB ;由正弦定理得:sinB +sinC =2sinAcosB ,∴sinB +sin(A +B)=2sinAcosB ⇒sinB =sin(A −B); 因为都是三角形内角;∴A =2B ;又由sinC +tanBcosC =1.得sin(B +C)=cosB ; ∴sinA =cosB ;∴sinB =12.∴B =π6,A =π3.由(1)可知C =π2.∴△ABC 为直角三角形. 又因为AP →⋅CP →=0⇒PA ⊥PC ; 所以点P 在以CA 为直径的圆上,如图: ∵b =2,所以:BC =2√3,AB =4, 设O 为AC 的中点,连接BO , 则当点P 在BO 上时,BP 取得最小值,此时BP =BO −PO =√1+(2√3)2−1=√13−1. 设∠OCP =α,则∠COP =π−2α, ∴sinα=PAAC =12PA ;cosα=PCAC =12PC ; ∴S =12PA ⋅PC =2sinαcosα=sin2α;在直角三角形BOC 中,sin∠COB =sin(π−2α)=sin2α=BCBO =√3√13=2√3913. ∴当BP 取得最小值时(√13−1)时,△APC 的面积S 为:2√3913.18.双十一购物狂欢节,是指每年11月11日的网络促销日,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,已成为中国电子商务行业的年度盛事.某生产商为了了解其生产的产品在不同电商平台的销售情况,统计了A、B两个电商平台各十个网络销售店铺的销售数据:(1)作出A、B两个电商平台销售数据的茎叶图,根据茎叶图判断哪个电商平台的销售更好,并说明理由;(2)填写下面关于店铺个数的2×2列联表,并根据列联表判断是否有95%的把握认为销售量与电商平台有关;(3)生产商要从这20个网络销售店铺销售量前五名的店铺中,随机抽取三个店铺进行销售返利,则其中恰好有两个店铺的销售量在95以上的概率是多少?,n=a+b+c+d.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)【解答】A、B两个电商平台销售数据的茎叶图如图由茎叶图可知B电商平台的销售更好,因为B整体数据集中比A高,填表如下;≈3.333<3.841,K2=20(2×4−6×8)28×12×10×10没有95%的把握认为销售量与电商平台有关.从这20个网络销售店铺销售量前五名为97,96,96,94,87.分别设为A,B,C,D,E,随机抽取三个店铺共有10种可能,如下:(A, B, C),(A, B, D),(A, B, E),(A, C, D),(A, C, E),(A, D, E),(B, C, D),(B, C, E),(B, D, E),(C, D, E),恰好有两个店铺的销售量在95以上有6种,恰好有两个店铺的销售量在95以上的概率为610=35.19.如图①,平行四边形ABCD中,AB=4,AD=2,∠ABC=π3,E为CD中点.将△ADE沿AE折起,使平面ADE⊥平面ABCE,得到如图②所示的四棱锥P−ABCE.(1)求证:平面PAE⊥平面PBE;(2)求点B到平面PEC的距离.【解答】证明:在图①中连接BE,由平面几何知识,求得AE=2,BE=2√3,又∵AB=4,∴BE⊥AE,在图②中,∵平面APE⊥平面ABCE,且平面APE∩平面ABCE=AE,∴BE⊥平面PAE,又∵BE⊂平面PBE,∴平面PAE⊥平面PBE;设O为AE的中点,连接PO,CO,由已知可得△PAE为等边三角形,∴PO=√3.∵平面PAE⊥平面ABCE,∴PO⊥平面ABCE,得PO⊥CO.在△OEC中,OE=1,EC=2,∠OEC=2π3.由余弦定理得OC=√7.∴PC=√3+7=√10.在△PEC中,PE=EC=2,PC=√10.∴S△PEC=12×√10×√22−(√102)2=√152,又∵S△BCE=12×2√3×1=√3.设点B到平面PEC的距离为d,由V P−BCE=V B−PCE,得13×√3×√3=13×√152×d,解得d=2√155.∴点B到平面PEC的距离为2√155.20.动圆P过定点A(2, 0),且在y轴上截得的弦GH的长为4.(1)若动圆圆心P的轨迹为曲线C,求曲线C的方程;(2)在曲线C的对称轴上是否存在点Q,使过点Q的直线l′与曲线C的交点S、T满足1|QS|2+1|QT|2为定值?若存在,求出点Q的坐标及定值;若不存在,请说明理由.【解答】设P(x, y),由题意知:PA=PG,当P点不在y轴上时,过P作PB⊥GH,交GH于点B,则B为GH的中点,∴GB=12GH=2,∴PG=√x2+4,又∵PA=√(x−2)2+y2=√x2+4,整理可得y2=4x(x≠0);当点P在y轴上时,易知P点与O点重合,P(0, 0)也满足y2=4x,∴曲线C的方程为y2=4x,假设存在Q(a, 0)满足题意,设S(x1, y1),T(x2, y2),根据题意可知直线l′的斜率必不为0,设其方程为x=t1y+a(t1≠0),联立{x=t1y+ay2=4x,整理可得y2−4t1y−4a=0,∴y1+y2=−4t1,y1y2=−4a,∴x1+x2=t1(y1+y2)+2a=4t12+2ax1x2=116y12y22=a2,∵QS2=(x1−a)2+y12=(x1−a)2+4x1=x12+(4−2a)x1+a2,QT2=(x2−a)2+y22=(x2−a)2+4x2=x22+(4−2a)x2+a2,∴QS2+QT2=x12+(4−2a)x1+a2+x22+(4−2a)x2+a2=(x1+x2)2+(4−2a)(x1+x2)−2x1x2+2a2=(x1+x2)(x1+x2+4−2a)−2x1x2+2a2=(4t12+2a)(4t12++4),QS2⋅QT2=16a2(t12+1)2,则1|QS|+1|QT|=QS2+QT2QS⋅QT=2t12+a2a(t12+1),当a=2时,上式=14与t1无关为定值,所以存在Q(2, 0)使过点Q的直线与曲线交于点S、T满足1|QS|+1|QT|为定值14.21.已知函数f(x)=ax+1x ,g(x)=exx−1.(1)讨论函数f(x)在(0, +∞)上的单调性;(2)若对任意的x∈(0, +∞),f(x)<g(x)恒成立,求实数a的取值范围.【解答】∵f(x)=ax+1x ,∴f′(x)=a−1x=ax2−1x,当a≤0时,f′(x)<0,函数f(x)在(0, +∞)上单调递减;当a>0时,由f′(x)=0,得x=±√aa(舍负),当x∈(0,√aa )时,f′(x)<0,函数f(x)单调递减,当x∈(√aa,+∞)时,f′(x)>0,函数f(x)单调递增.由f(x)<g(x),得e x−ax2−x−1>0,设ℎ(x)=e x−ax2−x−1(x>0),则ℎ′(x)=e x−2ax−1,令H(x)=e x−2ax−1,则H′(x)=e x−2a,当a≤12时,∵x∈(0, +∞),∴H′(x)>0,H(x)为增函数,∴H(x)=ℎ′(x)>ℎ′(0)=0,∴ℎ(x)在(0, +∞)上为增函数,∴ℎ(x)>ℎ(0)=0成立,即f(x)<g(x)成立.当a>12时,由H′(x)=e x−2a=0,解得x=ln2a,x∈(0, ln2a)时,H′(x)<0,H(x)为减函数,x∈(ln2a, +∞)时,H′(x)>0,H(x)为增函数,∴ℎ′(x)≥ℎ′(ln2a)≥2a−1−2aln2a,设t(a)=2a−1−2aln2a(a>12),则t′(a)=−2ln2a<0,∴t(a)在(12,+∞)上为减函数,∴t(a)<t(12)=0,即ℎ′(ln2a)<0∴∃x0∈(0, +∞),当x∈(0, x0)时,ℎ′(x)<0,ℎ(x)为减函数,当x∈(x0, +∞)时,ℎ′(x)>0,ℎ(x)为增函数,又ℎ(0)=0,∴当x∈(0, x0)时,ℎ(x)<0,∴当a >12时,对x ∈(0, +∞),f(x)<g(x)不恒成立, 综上所述,a ∈(−∞,12].请考生从第22、23题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的方框涂黑,按所选涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,曲线C 的参数方程为{x =1+cosθy =1+sinθ (θ为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin(φ+π4)+√2=0,P 为直线l 上的任意一点(1)Q 为曲线C 上任意一点,求P 、Q 两点间的最小距离;.(2)过点P 作曲线C 的两条切线,切点为A 、B ,曲线C 的对称中心为点C ,求四边形PACB 面积的最小值. 【解答】曲线C 的参数方程为{x =1+cosθy =1+sinθ(θ为参数),转换为直角坐标方程为(x −1)2+(y −1)2=1.直线l 的极坐标方程为ρsin(φ+π4)+√2=0,转换为直角坐标方程为x +y +2=0. 所以圆心(1, 1)到直线x +y +2=0的距离d =√2=2√2,所以最小距离d min =2√2−1. 由于圆心到直线的最小距离d =2√2, 所以构成的切线长为√(2√2)2−1=√7,所以四边形PACB 面积的最小值为S =2×12×1×√7=√7. [选修4-5:不等式选讲]23.已知函数f(x)=√. (1)当a =4时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R ,设a 的最大值为s ,当正数m ,n 满足12m+n +2m+3n =s 时,求3m +4n 的最小值. 【解答】a =4时,|x +2|+|x −1|−4≥0,当x <−2时,−x −2−x +1−4≥0,解得x ≤−52; 当−2≤x ≤1时,x +2−x +1−4≥0,解得x ∈⌀;当x>1时,x+2+x−1−4≥0,解得x≥32,∴函数f(x)的定义域为{x|x≤−52或x≥32};∵函数f(x)的定义域为R,∴|x+2|+|x−1|−a≥0对任意的x∈R恒成立,∴a≤|x+2|+|x−1|,又|x+2|+|x−1|≥|x+2−x+1|=3,∴a≤3,∴s=3,∴12m+n +2m+3n=3,且m>0,n>0,∴3m+4n=(2m+n)+(m+3n)=13[(2m+n)+(m+3n)]⋅(12m+n+2m+3n)=13[3+2(2m+n)m+3n+m+3n 2m+n ]≥13(3+2√2)=1+2√23,当且仅当m=1+2√215,n=3+√215时取等号,∴3m+4n的最小值为1+2√23.。
百校联考2020年高考考前冲刺必刷卷(一)数学(文)试题(PDF版,含解析)
,-./!!0+12
!"#$%&'! !!( ! )*+,-./"012" 34' !!(# 5678"912" 3:4;<#
'(&)#"&!"t } &-'(&)$ *!"S /(&)$
/(*')"6*'#&#"" E"q t \ '(&)#"&!"
3 = ' (*'"")+ (""')$
'!$, $=>%'(&))&("&2'*-&)$N .(&))"&*
-& 2'"0 .*(&))"*-& $
("-'"0O&.(""2 ;)P".*(&)#"".(&)'
'$( $= > %%) &&"!*&#'') &&"&$''"? @
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百校联盟最新高考最后一卷(押题卷)文科数学(第一模拟)一、选择题:共10题1.已知集合A ={x|x (x-2)≥0},B ={-1,0,1,2,3},则(∁R A )∩B =A.{-1,0,2,3}B.{-1,0,1,2}C.{0,1,2}D.{1}【答案】D【解析】本题主要考查集合的交、补运算和不等式的解法.根据不等式的解法求出集合A ,在求补集时注意等号能否取到,根据集合的运算法则容易得出结论.通解 由题意知,∁R A ={x|0<x <2},又B ={-1,0,1,2,3},则(∁R A )∩B ={1},故选D. 优解 因为0∈A ,所以0∉∁R A ,故0∉(∁R A )∩B ,排除选项A 、B 和C,故选D.2.已知i 是虚数单位,复数z 满足(√3+i)z =√3-i,则|z |=A.1B.√72C.√3D.2【答案】A【解析】本题主要考查复数的概念和基本运算.由复数的除法运算法则将z 化简成a+b i(a ,b ∈R )的形式,根据共轭复数的定义和复数模的运算性质容易得出结论.通解 z =√3−√3+i=(√3−2(√3+i )(√3−i )=12-√32i,则z −=12+√32i,|z −|=√14+34=1,故选A. 优解 由题意知|z−|=|z|=|√3−√3+i|=|√3−|√3+i |=22=1,故选A.3.“m >2”是“函数f (x )=m+log 2x (x ≥12)不存在零点”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】本题主要考查充要关系的判断和函数的性质.首先判断函数f (x )是单调递增函数,最多有一个零点,求出不存在零点时m 的取值范围,根据充要关系的定义,能够得出结论.常用逻辑用语是每年高考的必考知识点,经常和其他知识结合考查,难度不大,但容易出错,高考中以客观题的形式出现,属于易错题.函数f (x )的值域是[m-1,+∞),当m >2时,f (x )>1,不存在零点.若函数f (x )不存在零点,则m >1,所以“m >2”是“函数f (x )=m+log 2x (x ≥12)不存在零点”的充分不必要条件,故选A.4.已知b ∈{x|3−zz≥0},则直线x+by =0与圆(x-2)2+y 2=2相离的概率为 A.13B.12C.23D.34【答案】A【解析】本题考查直线与圆的位置关系和几何概型,先解不等式求出b的取值范围,再通过直线与圆相离解出b的取值范围,最后利用几何概型的知识求解.b∈{x|3−zz≥0}=(0,3],若直线x+by=0与圆(x-2)2+y2=2相离,则2√1+z2>√2,得-1<b<1,故所求概率P=1−03−0=13,故选A.5.执行如图所示的程序框图,如果输入x的值为1 024,则输出y的值为A.-74B.-34C.0D.2【答案】A【解析】本题主要考查循环结构的程序框图以及指数、对数的运算等,意在考查考生对程序框图基本功能的理解和运用,以及运算求解能力.程序运行的过程:当x=1 024时,满足x>0,这时x=log21 024-2=8;x=8满足x>0,这时x=log28-2=1;x=1满足x>0,这时x=log21-2=-2;x=-2不满足x>0,这时y=2-2-2=14-2=-74,故选A.6.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为A.18B.16C.13D.12【答案】B【解析】本题考查棱锥体积的求解.解题的关键是明确三棱锥D1-EDF的体积等于三棱锥F-EDD1的体积.在正方体ABCD-A1B1C1D1中,易知B1C∥平面EDD1,又三棱锥D1-EDF的体积等于三棱锥F-EDD 1的体积,而三棱锥F-EDD 1的高为正方体的棱长1,底面EDD 1是以DD 1=1为底,1为高的三角形,所以z 三棱锥z −zzz 1=13z △zzz 1·CD =16,故选B.7.将函数f (x )=4sin 2x 的图象向右平移φ(0<φ<π2)个单位长度后得到函数g (x )的图象,若对于满足|f (x 1)-g (x 2)|=8的x 1,x 2,有|x 1-x 2|min =π6,则φ=A.π6B.π4C.π3D.5π12【答案】C【解析】本题主要考查三角函数的图象与性质,考查考生运用数形结合思想解决问题的能力.先求出g (x )的解析式,要使|f (x 1)-g (x 2)|=8,则f (x 1)=4,g (x 2)=-4,或f (x 1)=-4,g (x 2)=4,可以求出φ的值.三角函数的图象和性质是高考必考内容,常与三角恒等变换、解三角形结合在一起考查,属于中档题.由题意知,g (x )=4sin(2x-2φ),-4≤g (x )≤4,又-4≤f (x )≤4,若x 1,x 2满足|f (x 1)-g (x 2)|=8,则x 1,x 2分别是函数f (x ),g (x )的最值点,不妨设f (x 1)=-4,g (x 2)=4,则x 1=3π4+k 1π(k 1∈Z ),x 2=(π4+φ)+k 2π(k 2∈Z ),|x 1-x 2|=|π2-φ+(k 1-k 2)π|(k 1,k 2∈Z ),又|x 1-x 2|min =π6,0<φ<π2,所以π2-φ=π6,得φ=π3,故选C.8.如图所示,在△ABC 中,N 为AC 上靠近点A 的四等分点,P 为BN 上一点,若zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(m+29)zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +29zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则实数m 的值为A.19B.13C.1D.3【答案】A【解析】本题主要考查平面向量的线性运算、平面向量基本定理等知识,考查考生分析问题、解决问题的能力.由题意知,zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =14zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,设zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λzz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λzz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λ(zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=(1-λ)zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +λzz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1-λ)zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +z4zz⃗⃗⃗⃗⃗⃗⃗⃗⃗ .又zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(m+29)zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +29zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =m zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +29zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以{z 4=291−z =z,即{z =89z =19,故选A.9.已知双曲线C :z 23-y 2=1的左、右焦点分别为F 1,F 2,过点F 2的直线与双曲线C 的右支相交于P ,Q 两点,且点P 的横坐标为2,则△PF 1Q 的周长为 A.16√33B.5√3C.14√33D.4√3【答案】A【解析】本题主要考查双曲线的方程和性质、直线与双曲线的位置关系,考查考生的运算求解能力和分析问题、解决问题的能力.易知双曲线C :z 23-y 2=1中,a =√3,b =1,所以c =√z 2+z 2=2,则F 1(-2,0),F 2(2,0).因为点P 的横坐标为2,所以PQ ⊥x 轴.令x =2,则y 2=43-1=13,则y =±√33,即|PF 2|=√33,则|PF 1|=√|zz 2|2+|z 1z 2|2=7√33,故△PF 1Q 的周长为|PF 1|+|QF 1|+|PQ|=16√33,故选A.10.已知函数f (x )=a-x 2(1e ≤x ≤e)(其中e 为自然对数的底数)与函数g (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是 A.[1,1e 2+2]B.[1e2+2,e 2-2]C.[1,e 2-2]D.[e 2-2,+∞)【答案】C【解析】本题主要考查函数图象的对称性、方程根的存在性及运算求解能力.题目可转化为函数y =-f (x )=-a+x 2的图象与函数g (x )=2ln x 的图象在[1e ,e]上有交点,利用分离变量法求出a 的取值范围.由已知得方程-(a-x 2)=2ln x ,即-a =2ln x-x 2在[1e,e ]上有解,设h (x )=2ln x-x 2,求导得h'(x )=2z -2x =2(1−z )(1+z )z,因为1e ≤x ≤e,所以h (x )在x =1处有唯一的极大值点,且为最大值点,则h (x )max ==h (1)=-1,h (1e )=-2-1e2,h (e)=2-e 2,且h (e)<h (1e),所以h (x )的最小值为h (e)=2-e 2.故方程-a =2ln x-x 2在[1e ,e]上有解等价于2-e 2≤-a ≤-1,从而解得a 的取值范围为[1,e 2-2],故选C.二、填空题:共5题11.已知函数f (x )={(12)z +34,z ≥2log 2z ,0<z <2,若f [1z (z )]=1,则实数a = .【答案】√2【解析】本题主要考查分段函数的单调性,指数、对数运算.对于这个复合函数的求值,可以由外到内,先求出1z (z )的值,再求出a .由f (x )的单调性可知,f (x )max =f (2)=1,所以1z (z )=2,f (a )=12,当x ≥2时,f (x )>34,不符合题意,所以f (a )=12=log 2a ,a =√2.12.如图所示的茎叶图记录了甲、乙两人在某5次综合测评中的成绩(均为整数),其中一个数字模糊不清,则甲的平均成绩不超过乙的平均成绩的概率为 .【答案】15【解析】本题主要考查古典概型概率的计算、茎叶图的有关知识,考查考生的数据处理能力和运算求解能力.由茎叶图可知,z 甲=88+89+90+91+925=90,设模糊不清的数字为a (0≤a ≤9,a ∈N),则z 乙=83+83+87+90+z +995=88.4+z5.若甲的平均成绩不超过乙的平均成绩,则88.4+z5≥90,解得a ≥8,所以a =8或a =9,所以甲的平均成绩不超过乙的平均成绩的概率为15.13.已知A ,B ,C 三点的坐标分别为(3,0),(0,3),(cos α,sin α),若zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1,则1+tan z 2sin 2z +sin2z的值为 .【答案】−95【解析】本题以平面向量为基础考查三角恒等变换的有关知识以及考生的计算能力.首先根据向量数量积的坐标运算化简已知条件,再把所求的式子进行化简,整体代换,得出结论.平面向量的运算和三角恒等变换都是高考必考知识点,要注意三角与向量知识的交汇考题.易知zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(cos α-3,sin α),zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(cos α,sin α-3),由zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·zz ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1,得sin α+cos α=23, 两边同时平方得2sin αcos α=-59,故1+tan z2sin 2z +sin2z=cos z +sin zcos z2sin z (sin z +cos z )=12sin z cos z =-95.14.在平面直角坐标系xOy 中,M 为不等式组{z −2≤0z −1≤0z +2z −z ≥0所表示的区域内的一动点,若目标函数z =x-2y 的最大值为2,则|OM|的取值范围是 .【答案】[2√55,√5]【解析】本题主要考查线性规划的有关知识,考查考生用数形结合思想解决问题的能力.由约束条件画出可行域,根据z max =2求出a 的值,再结合图形求出|OM|的取值范围.不等式组{z −2≤0z −1≤0z +2z −z ≥0所表示的平面区域如图中△ABC 所示,作直线x-2y =0并平移,由图可知,当直线y =12x-12z 经过A 点时,在y 轴上的截距最小,此时目标函数z =x-2y 取得最大值2,由{z =2z −2z =2得{z =2z =0,A (2,0)是直线x+2y =a 与直线x-2=0的交点,代入直线x+2y-a =0,得a =2.原点O 到点B (2,1)的距离是√5,到直线x+2y-2=0的距离是√12+2=2√55,所以|OM|的取值范围是[2√55,√5].15.已知函数f (x )=x 2-6|x|+2,x ∈[a-2,a+2],记函数f (x )的最大值为M (a ),则M (a )的最小值为 . 【答案】-3【解析】本题主要考查含绝对值的函数的综合问题,意在考查考生的分类讨论、数形结合等数学思想.解题的思路是在平面直角坐标系中,画出函数f (x )=x 2-6|x|+2的图象,对a 分类讨论求出M (a )的表达式,进而求M (a )的最小值.由于f (x )={z 2−6z +2,z >0z 2+6z +2,z ≤0,①当a-2≤0且0<a+2,即-2<a ≤2时,M (a )=2;②当0<a-2且a ≤3,即2<a ≤3时,f (x )在x =a-2处取得最大值,M (a )=a 2-10a+18;③当0<a-2且a >3,即a >3时,f (x )在x =a+2处取得最大值,M (a )=a 2-2a-6;④当a+2≤0且-3≤a ,即-3≤a ≤-2时,f (x )在x =a+2处取得最大值,M (a )=a 2+10a+18;⑤当a+2≤0且-3>a ,即a <-3时,f (x )在x =a-2处取得最大值,M (a )=a 2+2a-6.所以M (a )的最小值为-3.三、解答题:共6题16.已知函数f (x )=√3cos 2x+2sin(3π+x )sin(π-x ),x ∈R .(1)求f (x )的图象的对称轴及f (x )的单调递增区间;(2)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且f (A )=-√3,a =3,求BC 边上的高的最大值.【答案】(1)由题意知f (x )=√3cos 2x-2cos x sin x =√3cos 2x-sin 2x =-2sin(2x-π3).令2x-π3=k π+π2(k ∈Z ),得x =z π2+5π12(k ∈Z ),∴函数f (x )图象的对称轴为x =z π2+5π12(k ∈Z ).由2k π+π2≤2x-π3≤2k π+3π2(k ∈Z ),得k π+5π12≤x ≤k π+11π12(k ∈Z ),∴函数f (x )的单调递增区间是[k π+5π12,k π+11π12](k ∈Z ).(2)∵f (A )=-2sin(2A-π3)=-√3,又0<A <π2,∴A =π3,由余弦定理a 2=b 2+c 2-2bc cos A , 得32=b 2+c 2-2bc ·12≥2bc-bc =bc ,∴bc ≤9,当且仅当b =c 时取等号.设BC 边上的高为h ,由三角形的面积公式得S △ABC =12ah =12bc sin A ≤9√34,h ≤3√32,即BC边上的高的最大值是3√32.【解析】本题主要考查三角函数的性质、解三角形及利用所学知识解决问题的能力.(1)先通过三角恒等变换化简f(x),再求对称轴及单调递增区间;(2)根据余弦定理和基本不等式求出bc≤9,从而求出三角形面积的最大值,利用等面积法求出BC边上的高的最大值. 【备注】三角类试题是高考的重点,以利用正、余弦定理解三角形,三角恒等变换,三角函数的图象、性质等为主,属于中低档题.将以上三个知识点结合起来,或者与向量知识相结合命制成小综合题是近几年常见的考查形式,也将是2016年的命题趋势,考生需要多加关注.求解这类试题的关键是熟练、准确地运用公式以及对式子进行恰当的恒等变形,灵活运用三角函数的图象探求给定函数的性质.17.抛掷一枚骰子,记它每次落地时向上一面的点数为该次抛掷的点数,抛掷的点数可随机出现1到6中的任意一个.甲、乙两名同学玩抛掷骰子的游戏,已知共有2枚骰子,甲、乙各抛掷1枚.(1)求甲、乙抛掷的点数均是质数的概率;(2)求甲、乙抛掷的点数之和能被3整除的概率.【答案】易知甲、乙两名同学各抛掷1枚骰子,抛掷的点数的所有可能结果共有6×6=36种情况. (1)易知1~6中的质数有2,3,5,记“甲、乙抛掷的点数均是质数”为事件A,则A包含的可能结果有(2,2),(2,3),(2,5),(3,2),(3,3),(3,5),(5,2),(5,3),(5,5),共9种, 则甲、乙抛掷的点数均是质数的概率P(A)=936=14. (2)记“甲、乙抛掷的点数之和能被3整除”为事件B,则B包含的可能结果有(1,2),(1,5),(2,1),(2,4),(3,3),(3,6),(4,2),(4,5),(5,1),(5,4),(6,3),(6,6),共12种,则甲、乙抛掷的点数之和能被3整除的概率P(B)=1236=13.【解析】本题主要考查古典概型的有关知识.解题的关键是准确列举基本事件,在列举基本事件时切忌重复或遗漏,所以考生一定要特别注意题目中的细节,以确保计算结果准确、过程完善.【备注】概率与统计解答题常结合图表考查分层抽样、古典概型概率的计算等知识,一般来说,这类问题在求解时并不是很难,准确识图并掌握图形所给信息是解题的关键.对于古典概型概率的计算,其难点在于对基本事件的列举,通常先利用树形图等方法列举出总的基本事件及满足条件的基本事件,再根据古典概型的概率计算公式求解即可.18.在等腰直角三角形ABC中,∠BAC=90°,AB=AC=2,D,E分别是边AB,BC的中点,将△BDE沿DE翻折,得到四棱锥B'-ADEC,且F为棱B'C的中点,B'A=√2.(1)求证:EF⊥平面B'AC;(2)在线段AD上是否存在一点Q,且zz⃗⃗⃗⃗⃗⃗⃗⃗⃗ =λzz⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,使得AF∥平面B'EQ?若存在,求出λ的值;若不存在,请说明理由.【答案】(1)取AB'的中点H,连接DH,H F.∵在等腰直角三角形ABC中,∠BAC=90°,AB=AC=2,D,E分别是边AB,BC的中点,∴AD=BD=1,即B'D=1,又翻折后AB'=√2,∴AB'2=AD2+DB'2,即AD⊥B'D,则△ADB'为等腰直角三角形,∴DH⊥AB'.∵翻折后DE⊥AD,DE⊥B'D,且AD∩B'D=D,∴DE⊥平面ADB',∵DE∥AC,∴AC⊥平面ADB',∵DH⊂平面ADB',∴AC⊥DH,∵AB',AC⊂平面B'AC,且AB'∩AC=A,∴DH⊥平面B'A C.又HF∥AC,DE∥AC,且HF=12AC=DE,∴四边形DEFH是平行四边形,∴EF∥DH, ∴EF⊥平面B'AC.(2)当λ=2,即点Q是线段AD上靠近点D的三等分点时,AF∥平面B'EQ.取EC的中点P,连接FP,AP.在△CB'E中,F为B'C的中点,则FP∥B'E,∵B'E⊂平面B'EQ,FP⊄平面B'EQ,∴FP∥平面B'EQ.如图,在△ABC中,D,E分别是AB,BC的中点,Q是AD上靠近点D的三等分点,P是EC 的中点,∴BQ=12AB+13AD=12AB+16AB=23AB,BE=12BC,BP=12BC+12EC=12BC+14BC=34BC,∴在△ABP中,zzzz =2,zzzz=12zz34zz=23,∴zzzz =zzzz,∴AP∥QE,故AP∥平面B'EQ,∵AP∩FP=P,∴平面AFP∥平面B'EQ, ∵AF⊂平面AFP,∴AF∥平面B'EQ.【解析】本题主要考查线面位置关系中的平行与垂直及推理论证能力和空间想象能力.(1)要证线面垂直,只需证线线垂直,可以利用勾股定理和线面垂直去证明;(2)要证AF ∥平面B'EQ ,可用面面平行去证明.【备注】高考对立体几何的考查常以四棱柱、三棱锥等为载体,主要考查空间中点、线、面的位置关系及几何体体积的计算.在求几何体体积时,可利用等体积法进行转化;在证明线面平行时,一般要转化为证明线线平行;在证明线面垂直时,一般要转化为证明线线垂直.19.已知等差数列{a n }的公差d 为正数,且a 2,a 3为方程x 2-5x+6=0的两个实根.数列{b n }的前n 项和为S n ,且点(b n ,S n )在直线y =-x+1上. (1)求数列{a n }和{b n }的通项公式;(2)令c n =a n ·b n ,求数列{c n }的前n 项和T n .【答案】(1)因为a 2,a 3是方程x 2-5x+6=0的两个实根,所以{z 2+z 3=5z 2·z 3=6,解得{z 2=2z 3=3或{z 2=3z 3=2.又等差数列{a n }的公差d 为正数,所以{z 2=2z 3=3,所以d =1,a 1=2-1=1,a n =1+(n-1)·1=n ,n ∈N *. 因为点(b n ,S n )在直线y =-x+1上,所以S n =-b n +1. 当n =1时,b 1=S 1=-b 1+1,即b 1=1.当n ≥2时,b n =S n -S n-1=(-b n +1)-(-b n-1+1),即b n =12b n-1,所以数列{b n }是首项为12,公比为12的等比数列,即b n =(12)n ,n ∈N *.(2)由(1)知a n =n ,n ∈N *且b n =(12)n ,n ∈N *,则c n =a n ·b n =n ·(12)n ,n ∈N *.所以T n =1×1+2×(1)2+3×(1)3+…+n ×(1)n ①,12T n =1×(12)2+2×(12)3+…+(n-1)×(12)n +n ×(12)n+1 ②,①-②得12T n =12+(12)2+(12)3+…+(12)n -n ·(12)n+1=1-(n+2)·(12)n+1,所以T n =2-(n+2)·(12)n ,n ∈N *.【解析】本题考查数列的通项公式及前n 项和的求解,同时考查了等差数列的相关性质、等比数列的概念及错位相减法的应用.(1)利用一元二次方程根与系数的关系列出关于a 2,a 3的方程组,进而得{a n }的通项公式,由S n 与b n 的递推关系求数列{b n }的通项公式;(2)直接使用错位相减法求解即可.20.已知函数f (x )=x (x-a )2,g (x )=-x 2+(a-1)x+a (a ∈R ).(1)如果函数f (x )和g (x )有相同的极值点,求a 的值,并直接写出函数f (x )的单调区间; (2)令F (x )=f (x )-g (x ),试讨论函数y =F (x )在区间[-1,3]上的零点个数.【答案】(1)f (x )=x (x-a )2=x 3-2ax 2+a 2x , 则f'(x )=3x 2-4ax+a 2=(3x-a )(x-a ). 令f'(x )=0得,x =a 或x =z3. 因为二次函数g (x )在x =z −12处有极大值,所以z −12=a 或z −12=z3,解得a =-1或a =3.当a =3时,f (x )的单调递增区间为(-∞,1)和(3,+∞),单调递减区间为(1,3);当a =-1时,f (x )的单调递增区间为(-∞,-1)和(-13,+∞),单调递减区间为(-1,-13).(2)F (x )=f (x )-g (x )=x (x-a )2-[-x 2+(a-1)x+a ]=x (x-a )2+(x-a )(x+1)=(x-a )[x 2+(1-a )x+1]. 令h (x )=x 2+(1-a )x+1,则方程h (x )=0的判别式Δ=(1-a )2-4=(a+1)(a-3).①当Δ<0,即-1<a <3时,h (x )=0无实根,故y =F (x )的零点为x =a ∈[-1,3],满足题意, 即函数y =F (x )有唯一的零点a ,a ∈[-1,3]; ②当Δ=0,即a =-1或a =3时,若a =-1,则h (x )=0的实数解为x =-1,故y =F (x )在区间[-1,3]上有唯一的零点-1, 若a =3,则h (x )=0的实数解为x =1,故y =F (x )在区间[-1,3]上有两个零点1,3; ③当Δ>0,即a <-1或a >3时,若a <-1,由于h (-1)=a+1<0<h (0)=1,h (3)=13-3a >0,此时h (x )=0在区间[-1,3]上有唯一实数解,故y =F (x )在区间[-1,3]上有唯一的零点, 若a >3,由于h (-1)=a+1>4,h (0)=1>0,h (3)=13-3a ,当13-3a ≤0,即a ≥13时,数形结合可知h (x )=0在区间[-1,3]上有唯一实数解,故y =F (x )在区间[-1,3]上有唯一的零点,当13-3a >0,即3<a <133时,由于y =h (x )的图象的对称轴为x =z −12,故1<z −12<53,又h (0)=1>0,h (3)=13-3a >0,且Δ>0,所以h (x )=0在区间[-1,3]上有两个不相等的实数解,故y =F (x )在区间[-1,3]上有两个不相等的零点.综上所述,当a <3或a ≥133时,函数y =F (x )有唯一的零点;当3≤a <133时,函数y =F (x )有两个不相等的零点.【解析】本题主要考查函数的单调性、极值点、零点及利用分类讨论、转化与化归等思想方法解决问题的能力.(1)根据相同的极值点求出a 的值和单调区间;(2)根据a 的值讨论函数F (x )的零点个数.【备注】高考对导数的考查主要包括导数的几何意义以及以导数为工具研究函数的图象与性质,并常与方程的根、不等式恒成立相结合,综合考查考生的应用能力.解题的关键是正确求出导函数,熟练掌握解这类题的一般方法,注意分类讨论和数形结合思想方法的运用,以不变应万变.21.已知椭圆C :z 2z2+z 2z2=1(a >b >0)的右焦点为F 2(2,0),点P (1,-√153)在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为-1的直线l 与椭圆C 相交于M ,N 两点,使得|F 1M|=|F 1N|(F 1为椭圆的左焦点)?若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)解法一 ∵椭圆C 的右焦点为F 2(2,0),∴c =2,椭圆C 的左焦点为F 1(-2,0). 由椭圆的定义可得2a =√153)+(1−2)+(−√153)=√969+√249=2√6,解得a =√6,∴b 2=a 2-c 2=6-4=2.∴椭圆C 的标准方程为z 26+z 22=1. 解法二 ∵椭圆C 的右焦点为F 2(2,0),∴c =2,故a 2-b 2=4,又点P (1,-√153)在椭圆C 上,则1z 2+159z 2=1,故1z 2+4+159z 2=1,化简得3b 4+4b 2-20=0,得b 2=2,a 2=6,∴椭圆C 的标准方程为z 26+z 22=1. (2)假设存在满足条件的直线l ,设直线l 的方程为y =-x+t ,由{z 26+z 22=1z =−z +z得x 2+3(-x+t )2-6=0,即4x 2-6tx+(3t 2-6)=0,Δ=(-6t )2-4×4×(3t 2-6)=96-12t 2>0,解得-2√2<t <2√2.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=3z2,x 1x 2=3z2−64,由于|F 1M|=|F 1N|,设线段MN 的中点为E ,则F 1E ⊥MN ,故z z 1z =-1z zz =1,又F 1(-2,0),E (z 1+z 22,z 1+z 22),即E (3z ,4), ∴z z 1z =z 43z 4+2=1,解得t =-4.当t =-4时,不满足-2√2<t <2√2,∴不存在满足条件的直线l .【解析】本题主要考查椭圆的定义、方程,直线与椭圆的位置关系等,考查考生的数形结合思想和运算求解能力.对于第(1)问,考虑两种方法解决,利用椭圆的定义比较快捷;第(2)问是探究性问题,先假设存在满足条件的直线l ,设出直线l 的方程,与椭圆方程联立,得到关于x 的一元二次方程,结合判别式求出t 的取值范围,再由|F 1M|=|F 1N|求出t =-4,与题意不符,则不存在满足条件的直线l .【备注】高考一般从两个方面对圆锥曲线进行考查:一是由圆锥曲线的定义或几何性质求圆锥曲线的标准方程;二是研究直线与圆锥曲线的交点问题、弦的中点问题、直线的方程、几何图形的面积、动点、动直线变化过程中的不变量(即定值)问题等.。