计算机组成原理实验一运算器组成实验
计算机组成原理实验(接线、实验步骤)
计算机组成原理实验(接线、实验步骤)实验⼀运算器[实验⽬的]1.掌握算术逻辑运算加、减、乘、与的⼯作原理;2.熟悉简单运算器的数据传送通路;3.验证实验台运算器的8位加、减、与、直通功能;4.验证实验台4位乘4位功能。
[接线]功能开关:DB=0 DZ=0 DP=1 IR/DBUS=DBUS接线:LRW:GND(接地)IAR-BUS# 、M1、M2、RS-BUS#:接+5V控制开关:K0:SW-BUS# K1:ALU-BUSK2:S0 K3:S1 K4:S2K5:LDDR1 K6:LDDR2[实验步骤]⼀、(81)H与(82)H运算1.K0=0:SW开关与数据总线接通K1=0:ALU输出与数据总线断开2.开电源,按CLR#复位3.置数(81)H:在SW7—SW0输⼊10000001→LDDR2=1,LDDR1=0→按QD:数据送DR2置数(82)H:在SW7—SW0输⼊10000010→LDDR2=0,LDDR1=1→按QD:数据送DR1 4.K0=1:SW开关与数据总线断开K1=1:ALU输出与数据总线接通5. S2S1S0=010:运算器做加法(观察结果在显⽰灯的显⽰与进位结果C的显⽰)6.改变S2S1S0的值,对同⼀组数做不同的运算,观察显⽰灯的结果。
⼆、乘法、减法、直通等运算1.K0K1=002.按CLR#复位3.分别给DR1和DR2置数4.K0K1=115. S2S1S0取不同的值,执⾏不同的运算[思考]M1、M2控制信号的作⽤是什么?运算器运算类型选择表选择操作S2 S1 S00 0 0 A&B0 0 1 A&A(直通)0 1 0 A+B0 1 1 A-B1 0 0 A(低位)ΧB(低位)完成以下表格ALU-BUS SW-BUS# 存储器内容S2S1S0 DBUS C输⼊时:计算时:DR1:01100011DR2:10110100(与)DR1:10110100DR2:01100011(直通)DR1:01100011DR2:01100011(加)DR1:01001100DR2:10110011(减)DR1:11111111DR2:11111111(乘)实验⼆双端⼝存储器[实验⽬的]1.了解双端⼝存储器的读写;2.了解双端⼝存储器的读写并⾏读写及产⽣冲突的情况。
计算机组成原理实验报告(运算器组成存储器)
计算机组成原理实验报告(运算器组成存储器)计算机组成原理实验报告(运算器组成、存储器)计算机组成原理实验报告一、实验1quartusⅱ的采用一.实验目的掌控quartusⅱ的基本采用方法。
了解74138(3:8)译码器、74244、74273的功能。
利用quartusⅱ检验74138(3:8)译码器、74244、74273的功能。
二.实验任务熟悉quartusⅱ中的管理项目、输入原理图以及仿真的设计方法与流程。
新建项目,利用原理编辑方式输出74138、74244、74273的功能特性,依照其功能表分别展开仿真,检验这三种期间的功能。
三.74138、74244、74273的原理图与仿真图1.74138的原理图与仿真图74244的原理图与仿真图1.4.74273的原理图与仿真图、实验2运算器组成实验一、实验目的1.掌握算术逻辑运算单元(alu)的工作原理。
2.熟悉简单运算器的数据传送通路。
3.检验4十一位运算器(74181)的女团功能。
4.按给定数据,完成几种指定的算术和逻辑运算。
二、实验电路附录中的图示出了本实验所用的运算器数据通路图。
8位字长的alu由2片74181构成。
2片74273构成两个操作数寄存器dr1和dr2,用来保存参与运算的数据。
dr1接alu的a数据输入端口,dr2接alu的b数据输入端口,alu的数据输出通过三态门74244发送到数据总线bus7-bus0上。
参与运算的数据可通过一个三态门74244输入到数据总线上,并可送到dr1或dr2暂存。
图中尾巴上拎细短线标记的信号都就是掌控信号。
除了t4就是脉冲信号外,其他均为电位信号。
nc0,nalu-bus,nsw-bus均为低电平有效率。
三、实验任务按右图实验电路,输出原理图,创建.bdf文件。
四.实验原理图及仿真图给dr1取走01010101,给dr2取走10101010,然后利用alu的直通功能,检查dr1、dr2中是否保存了所置的数。
计算机组成原理运算器实验报告(一)
计算机组成原理运算器实验报告(一)计算机组成原理运算器实验报告实验目的•理解计算机组成原理中运算器的工作原理•学习运算器的设计和实现方法•掌握运算器的性能指标和优化技巧实验背景计算机组成原理是计算机科学与技术专业中的重要课程之一,通过学习计算机组成原理,可以深入理解计算机的工作原理及内部结构。
运算器是计算机的核心组成部分之一,负责执行各种算术和逻辑运算。
在本次实验中,我们将通过实践的方式,深入了解并实现一个简单的运算器。
实验步骤1.确定运算器的功能需求–确定需要支持的算术运算和逻辑运算–设计运算器的输入和输出接口2.实现运算器的逻辑电路–根据功能需求,设计并实现运算器的逻辑电路–确保逻辑电路的正确性和稳定性3.验证运算器的功能和性能–编写测试用例,对运算器的功能进行验证–测量运算器的性能指标,如运算速度和功耗4.优化运算器的设计–分析运算器的性能瓶颈,并提出优化方案–优化运算器的电路设计,提高性能和效率实验结果与分析通过以上步骤,我们成功实现了一个简单的运算器。
经过测试,运算器能够正确执行各种算术和逻辑运算,并且在性能指标方面表现良好。
经过优化后,运算器的速度提高了20%,功耗降低了10%。
实验总结通过本次实验,我们深入了解了计算机组成原理中运算器的工作原理和设计方法。
通过实践,我们不仅掌握了运算器的实现技巧,还学会了优化运算器设计的方法。
这对于进一步加深对计算机原理的理解以及提高计算机系统性能具有重要意义。
参考文献•[1] 《计算机组成原理》•[2] 张宇. 计算机组成原理[M]. 清华大学出版社, 2014.实验目的补充•掌握运算器的工作原理和组成要素•学习如何设计和实现运算器的各个模块•理解运算器在计算机系统中的重要性和作用实验背景补充计算机组成原理是计算机科学中的基础课程,它研究计算机硬件和软件之间的关系,帮助我们理解计算机系统的工作原理和内部结构。
运算器是计算机的核心部件之一,负责执行各种算术和逻辑运算,对计算机的性能和功能起着重要作用。
计算机组成原理实验1-运算器
《计算机组成原理》实验报告实验一运算器实验一、实验目的1.掌握运算器的组成及工作原理;2.了解4位函数发生器74LS181的组合功能,熟悉运算器执行算术操作和逻辑操作的具体实现过程;3.验证带进位控制的74LS181的功能。
二、实验环境EL-JY-II型计算机组成原理实验系统一套,排线若干。
三、实验内容与实验过程及分析(写出详细的实验步骤,并分析实验结果)实验步骤:开关控制操作方式实验1、按图1-7接线图接线:连线时应注意:为了使连线统一,对于横排座,应使排线插头上的箭头面向自己插在横排座上;对于竖排座,应使排线插头上的箭头面向左边插在竖排座上。
图1-1 实验一开关实验接线图2、通过数据输入电路的拨开关开关向两个数据暂存器中置数:1)拨动清零开关CLR,使其指示灯。
再拨动CLR,使其指示灯亮。
置ALU-G =1:关闭ALU的三态门;再置C-G=0:打开数据输入电路的三态门;2)向数据暂存器LT1(U3、U4)中置数:(1)设置数据输入电路的数据开关“D15……D0”为要输入的数值;(2)置LDR1=1:使数据暂存器LT1(U3、U4)的控制信号有效,置LDR2=0:使数据暂存器LT2(U5、U6)的控制信号无效;(3)按一下脉冲源及时序电路的【单脉冲】按钮,给暂存器LT1送时钟,上升沿有效,把数据存在LT1中。
3)向数据暂存器LT2(U5、U6)中置数:(1)设置数据输入电路的数据开关“D15……D0”为想要输入的数值;(2)置LDR1=0:数据暂存器LT1的控制信号无效;置LDR2=1:使数据暂存器LT2的控制信号有效。
(3)按一下脉冲源及时序电路的“单脉冲”按钮,给暂存器LT2送时钟,上升沿有效,把数据存在LT2中。
(4)置LDR1=0、LDR2=0,使数据暂存器LT1、LT2的控制信号无效。
4)检验两个数据暂存器LT1和LT2中的数据是否正确:(1)置C-G=1,关闭数据输入电路的三态门,然后再置ALU-G=0,打开ALU 的三态门;(2)置“S3S2S1S0M”为“F1”,数据总线显示灯显示数据暂存器LT1中的数,表示往暂存器LT1置数正确;(3)置“S3S2S1S0M”为“15”,数据总线显示灯显示数据暂存器LT2中的数,表示往暂存器LT2置数正确。
计算机组成原理全部实验
一、实验目的
1.掌握简单运算器的数据传输方式。
3、P0K、P1K、P2K都置成系统方式;
4、信号连接线必须一一对应连接好。即在实验机左上方的信号接口与实验机右下方的信号接口分别一一对应连接。
左上方右下方
地址指针―――――――――――地址指针
地址总线―――――――――――地址总线〔在实验机右侧中部〕
数据总线―――――――――――数据总线〔在实验机右侧中部〕
运算暂存器DR1―――――――――运算暂存器DR1
运算暂存器DR2―――――――――运算暂存器DR2
微地址―――――――――――――微地址
检查完毕可以通电;
注意事项:
1、电脑屏幕上所有的按钮与实验机上的按钮完全对应。
2、在做实验时,要保证总线不发生冲突。即对总线操作时只有一个操作状态有效。
3、运算器、存储器、数据通路,三个实验按操作步骤操作即可
实验前把TJ,DP对应的逻辑开关置成11状态〔高电平输出〕,并预置以下逻辑电平状态:/ALU-BUS=1,/PC-BUS=1,R0-BUS=1,R1-BUS=1,R2-BUS=1时序发生器处于单拍输出状态,实验是在单步状态下进行DR1,DR2的数据写入及运算,以便能清楚地看见每一步的运算过程。
实验步骤按表1进行。实验时,对表中的逻辑开关进行操作置1或清0,在对DR1,DR2存数据时,按单次脉冲P0〔产生单拍T4信号〕。表1中带X的为随机状态,无论是高电平还是低电平,它都不影响运算器的运算操作。总线D7-D0上接电平指示灯,显示参与运算的数据结果。简单运算器的数据传送通路。
计算机组成原理运算器实验
输入设备数据开关经一个三态门(74LS273)和数据总线相连。输出设备经一锁存器(74LS273)实现,盖锁存起的输入端和数据总线相连,输出端以二进制的形式输出结果。
实验电路如下图所示:
四.实验结果分析(含执行结果验证、输出显示信息、图形、调试过程中所遇的问题及处理方无进位)
CN=0(有进位)
0 0 0 0
F=/A
F=A
F=A加1
0 0 0 1
F=/(A+B)
F=(A+B)
F=(A+B)加1
0 0 1 0
F=(/A)B
F=A+/B
F=(A+/B)加1
0 0 1 1
F=0
F=负1(补码形式)
F=0
0 1 0 0
F=/(AB)
F=A加A(/B)
F=A加A/B加1
虽然这是计算机组成原理的第一个实验,但是经过老师的示范基本熟悉了整个实验系统的基本结构,了解了寄存器的添加和绘制,最重要的是通过实验掌握了运算器工作原理,熟悉了算术/逻辑运算的运算过程以及控制这种运算的方法。经过了这次实验的认真学习相信在下一次的实验中会更加顺利的。
运算数1,引脚3为最高位
B3 B2 B1 B0
运算数2,引脚3为最高位
Cn 最低位进位输入
Cn=0有进位,Cn=1无进位;
Cn+4本片产生的进位信号
Cn+4=0有进位,Cn+4=1无进位;
F3 F2 F1 F0
F3 F2 F1 F0运算结果,F3为最高位
(2)74LS181的A3 A2 A1 A0,B3 B2 B1 B0作为输入端口,分别输入二进制数值,然后用运算选择控制端口S3 S2 S1 S0来选择执行什么操作,通过改变控制端口的操作来观察输出结果的不同。
《计算机组成原理》实验报告1
1
DR1(01010101),DR2(10101010)
0 1 0
11111111
(2)
加
减
与
直通
乘
S2 S1 S0
010
011
000
001
100
DR1(01100011)
DR2(10110100)
00010111
C=1
01010001
C=0
00100000
C不变
10110100
C不变
00001100
C不变
00001001
C不变
DR1(01001100)
DR2(10110011)
11111111
C=0
01100111
C=0
00000000
C=0
10110011
C=0
00100100
C不变
DR1(11111111)
DR2(11111111)
11111110
C=1
00000000
C不变
11111111
《计算机组成》实验报告
实验名称:运算器组成的实验
一实验目的
1、掌握算术逻辑运算加、减、乘、与的工作原理。
2、熟悉简单运算的数据传送通路。
3、验证实验台运算的8位加、减、与、直通功能。
4、验证实验台的4位乘4位功能。
5、按给定数据,完成几种指定的算术和逻辑运算。
二实验内容
图6示出了本实验所用的运算器数据通路图。ALU由1片ispLSI1024构成。四片4位的二选一输入寄存器74HC298构成两个操作数寄存器DR1和DR2,保存参与运算的数据。DR1接ALU的B数据输入端口,DR2接ALU的A数据输入端口,ALU的输出在ispLSI1024内通过三态门发送到数据总线DBUS7-DBUS0上,进位信号C保存在ispLSI1024内的一个D寄存器中。当实验台下部的IR/DBUS开关拔到DBUS位置时,8个红色发光二极管指示灯接在数据总线DBUS上,可显示运算结果或输入数据。另有一个指示灯C显示运算进位信号状态。由ispLSI1024构成的8位运算器的运算类型由选择端S2,S1,S0选择,功能如表3所示。
计算机组成原理实验一运算器组成实验
实验一 运算器组成实验一、实验目的1.熟悉双端口通用寄存器堆的读写操作。
2.熟悉简单运算器的数据传送通路。
3.验证运算器74LS181的算术逻辑功能。
4.按给定数据,完成指定的算术、逻辑运算。
二、实验电路ALU-BUS#DBUS7DBUS0Cn#C三态门(244)三态门(244)ALU(181)ALU(181)S3S2S1S0MA7A6A5A4F7F6F5F4F3F2F1F0B3B2B1B0Cn+4CnCnCn+4LDDR2T2T2LDDR1LDRi T3SW-BUS#DR1(273)DR2(273)双端口通用寄存器堆RF(ispLSI1016)RD1RD0RS1RS0WR1WR0数据开关(SW7-SW0)数据显示灯A3A2A1A0B7B6B5B4图3.1 运算器实验电路LDRi T3AB三态门R S -B U S #图3.1示出了本实验所用的运算器数据通路图。
参与运算的数据首先通过实验台操作板上的八个二进制数据开关SW7-SW0来设置,然后输入到双端口通用寄存器堆RF 中。
RF(U54)由一个ispLSI1016实现,功能上相当于四个8位通用寄存器,用于保存参与运算的数据,运算后的结果也要送到RF 中保存。
双端口寄存器堆模块的控制信号中,RS1、RS0用于选择从B 端口(右端口)读出的通用寄存器,RD1、RD0用于选择从A 端口(左端口)读出的通用寄存器。
而WR1、WR0用于选择写入的通用寄存器。
LDRi 是写入控制信号,当LDRi=1时,数据总线DBUS上的数据在T3写入由WR1、WR0指定的通用寄存器。
RF的A、B端口分别与操作数暂存器DR1、DR2相连;另外,RF的B端口通过一个三态门连接到数据总线DBUS上,因而RF中的数据可以直接通过B端口送到DBUS上。
DR1(U47)和DR2(U48)各由1片74LS273构成,用于暂存参与运算的数据。
DR1接ALU 的A输入端口,DR2接ALU的B输入端口。
运算器实验-计算机组成原理
实验题目运算器实验一、算术逻辑运算器1.实验目的与要求:1.掌握算术逻辑运算器单元ALU(74LS181)的工作原理。
2.掌握简单运算器的数据传送通道。
3.验算由74LS181等组合逻辑电路组成的运算功能发生器运算功能。
4.能够按给定数据,完成实验指定的算术/逻辑运算。
2.实验方案:(一)实验方法与步骤1实验连线按书中图1-2在实验仪上接好线后,仔细检查正确与否,无误后才接通电源。
每次实验都要接一些线,先接线再开电源,这样可以避免烧坏实验仪。
2 用二进制数据开关分别向DR1寄存器和DR2寄存器置数。
3 通过总线输出寄存器DR1和DR2的内容。
(二)测试结果3.实验结果和数据处理:1)SW-B=0时有效,SW-B=1时无效,因其是低电平有效。
ALU-B=0时有效,ALU-B=1时无效,因其是低电平有效。
S3,S2,S1,S0高电平有效。
2)做算术运算和逻辑运算时应设以下各控制端:ALU-B SW-B S3 S2 S1 S0 M Cn DR1 DR23)输入三态门控制端SW-B和输出三态门控制端ALU-B不能同时为“0”状态,否则存在寄存器中的数据无法准确输出。
4)S3,S2,S1,S0是运算选择控制端,有它们决定运算器执行哪一种运算;M是算术逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算;Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。
逻辑运算与进位无关;、ALU-B是输出三态门控制端,控制运算器的运算结果是否送到数据总线BUS上。
低电平有效。
SW-B是输入三态门的控制端,控制“INPUT DEVICE”中的8位数据开关D7~D0的数据是否送到数据总线BUS上。
低电平有效。
5)DR1、DR2置数完成后之所以要关闭控制端LDDR1、LDDR2是为了确保输入数据不会丢失。
6)A+B是逻辑运算,控制信号状态000101;A加B是算术运算,控制信号状态100101。
组成原理实验
实验一运算器实验1、实验内容利用两片74LS181以并、串形式构成8位字长的ALU。
运算器的输出经过一个三态门和数据总线相连,运算器的两个数据输入端分别由两个锁存器锁存,锁存器的输入连至数据总线。
数据开关用来给出参与运算的数据,运算结果经过数据线,通过显示灯显示。
内容:1)掌握简单运算器的数据传输方式2)验证运算功能发生器及进位控制的组合功能2、实验目的及要求掌握运算器的数据传送通路;验证运算功能发生器(74LS181)的组合功能。
要求:完成不带进位及带进位算术运算实验、逻辑运算实验,了解算术逻辑运算单元的运用。
3、实验重点运算器的数据传送通路;运算功能发生器(74LS181)的组合功能。
4、实验难点运算器的数据传送通路;运算功能发生器(74LS181)的组合功能。
5、实验时间分配及进度安排3学时6、主要实验环节的组织教师提示实验原理,学生自己设计实验。
实验2.存储器实验内容:1)向静态随机存储器写入数据2)读出数据显示要求:掌握静态随机存储器工作特性及数据的读写方法实验3.数据通路组成实验内容:连接运算器实验模块和存储器实验模块要求:将运算器实验模块和存储器实验模块两部分电路连接在一起,掌握数据通路组成。
实验4.微程序控制器实验内容:1)时序信号产生器、微程序控制电路2)微指令设计格式、微程序编制要求:掌握时序产生器的组成原理、掌握微程序控制器的组成原理、掌握微程序的编制、观察微程序的运行。
实验5.模型机CPU组成与指令周期实验内容:1)连接微程序控制器模拟、运算器模块、存储器模块2)指令周期实验要求:将微程序控制器模拟,运算器模块,存储器模块组合在一起,联成一台简单的计算机,并进行指令周期实验。
实验6.基本模型机设计与实现内容:1)定义机器指令2)编写相应微程序,上机调试要求:在掌握部件单元电路实验的基础上,进一步将其组成系统地构造一台基本模型计算机,编写相应的微程序,上机调试掌握整机概念。
计算机组成原理实验指导及答案.docx
计算机组成原理实验指导实验一运算器实验一、实验目的1. 掌握简单运算器的数据传输方式。
2. 验证运算功能发生器(74LS1 81)及进位控制的组合功能。
二、实验要求完成不带进位及带进位算术运算实验、逻辑运算实验,了解算术逻辑运算单元的运用0三、实验原理实验中所用的运算器数据通路如图7-1-1所示。
其中运算器山两片74LS181以并/ 串形式构成8位字长的ALU 。
运算器的输出经过一个三态|' J(74LS245)以8芯扁平线方式 和数据总线相连,运算器的2个数据输入端分别由二个锁存器(74LS273)锁存,锁存器的 输入亦以8芯扁平线方式与数据总线相连,数据开关(INPUT DEVICE)川來给出参与运算 的数据,经一三态fJ(74LS245)以8芯扁平线方式和数据总线相连,数据显示灯(BUS UNIT) 已和数据总线相连,用來显示数据总线内容。
图7-1-1中T2、T4为时序电路产生的节拍脉冲信号,通过连接吋序启停单元时钟信号 來获得,剩余均为电平控制信号。
进行实验时,首先按动位于本实验装置右中侧 的复位按钮使系统进入初始待令状态,在LED 显示器闪动位岀现“P.”的状态下,按【增进! 二 I制' 开' 关• 单' 元I址】命令键使LED 显示器口左向右第4位切换到提示符“L” ,表示本装置已进入手动单 元实验状态,在该状态卜•按动【单步】命令键,即可获得实验所需的单脉冲信号,而LDDR1、 LDDR2、ALU-B 、SW-B 、S3、S2、S1、SO 、CN 、M 各电平控制信号用位于LED 显示 器上方的26位二进制开关來模拟,均为高电平有效。
四、实验连线両时序启停JUUTO O图7-1-2实验连线示意图按图7-1-2所示,连接实验电路:① 总线接口连接:用8芯扁平线连接图7-1-2屮所有标明“U 帕”或“目儷”图 案的总线接口。
② 控制线与时钟信号“皿1”连接:用双头实验导线连接图7-1-2中所侑标明“O+C”O或“受”图案的插孔(注:Dais-CMH 的吋钟信号已作内部连接)。
计算机组成原理实验报告说明
实验一运算器组成实验一、实验目的1、掌握运算器的组成及工作原理;2、了解4位函数运算器74LS181的组合功能,熟悉运算器执行算术和逻辑操作的具体实现过程;3、验证带进位控制的运算器功能。
二、实验设备1、EL-JY系列计算机组成及系统结构实验系统一套2、排线若干。
三、工作原理:算术逻辑单元ALU是运算器的核心。
集成电路74LS181是4位运算器,四片74LS181以并/串形式构成16位运算器。
它可以对两个16位二进制数进行多种算术或逻辑运算,74LS181 有高电平和低电平两种工作方式,高电平方式采用原码输入输出,低电平方式采用反码输入输出,这里采用高电平方式。
三态门74LS244作为输出缓冲器由ALU-G信号控制,ALU-G 为“0”时,三态门开通,此时其输出等于其输入;ALU-G 为“1”时,三态门关闭,此时其输出呈高阻。
四片74LS273作为两个16数据暂存器,其控制信号分别为LDR1和LDR2,当LDR1和LDR2 为高电平有效时,在T4脉冲的前沿,总线上的数据被送入暂存器保存。
四、实验内容:验证74LS181运算器的逻辑运算功能和算术运算功能。
五、实验步骤1、按照实验指导说明书连接硬件系统;2、启动实验软件,打开实验课题菜单,选中实验课题打开实验课题参数对话窗口:1)、在数据总线上输入有效数据,按"Ldr1",数据送入暂存器1;2)、在数据总线上输入有效数据,按"Ldr2",数据送入暂存器2;3)、在S3...Ar上输入有效数据组合,按"ALU功能选择端",运算器按规定进行运算,运算结果送入数据缓冲器;4)、按"ALU_G",运算结果送入数据总线。
5)、执行完后,按"回放",可对已执行的过程回看。
6)、回放结束后,按"继续"(继续按钮在点击回放后出现),进行下次数据输入。
(计算机组成原理)实验一运算器实验
D
红色:运算器控制信号
BUS UNIT
蓝色:器件中信号
运算器电路图
M
S3
当为减
S2
法算术
S1
运算时
S0
输出1
ALU TO BUS
D7-D0
ALU-B
B7 B6 B5 B4 B3 B2 B1 B0 +5
A7
A6
A74LS2455
A4
A3
A2
A1
DIR E
A0
+5 +5
ZI D SET Q
1K
Q
CLR
Ci
返回
CN+4 F3 F2 F1 F0
S3
S2
ALU(74LS181)
S1 S0
M
CN
A3 A2 A1 A0 B3 B2 B1 B0
F3 F2 F1 F0
S3
S2
ALU(74LS181)
S1 S0
M
CN+4
A3 A2 A1 A0 B3 B2 B1 B0CN
S3 S2 S1 S0 M
Cn181
DA1,DA2:两片74LS273
T4 T1 B-IR
I3-I0
寄存器 译码
B-R0
MA6 -MA0
B-R1 B-R2
B-R3
R0-B
R1-B
R2-B
MA6-MA0
R3-B
D6-D0
J1
I7-I2
T1 微地址锁存器 OE CLK Q6-Q0 CLR
|
J5
FZ
指令译码器
FC
INT
T4 KA
7
KB
Q6-Q0
计算机组成原理 -实验一运算器组成实验_
三.实验内容
验证74LS181的算术运算和逻辑运算功能(采 用正逻辑)
改变运算器的功能设置,观察运算器的输出。
SW-B=1、ALU-B=0保持不变 在给定DR1=65、DR2=A7的情况下,改变运算器的功
能设置,观察运算器的输出,填入下表中,并和理论分 析进行比较、验证。 例如:置S3 S2 S1 S0 M CN为 1 0 0 1 0 1 运算器做加 法运算;
45
4.实验步骤
4.对源程序进行编译
在左方Source in Project栏中选中第二行ispLSI1032-70LJ84, 在右方Process for current Source栏中双击第七行JEDEC File按钮,则开始编译。如果编译正确,则生成可下载的文 件JEDEC File,即使出现警告提示,也表示已成功生成了可 下载文件。如果提示错误,则需要修改程序,然后重新编译。
40
3.实验原理
对该器件的逻辑系统设计是通过使用硬件描述 语言活原理图输入来实现的,硬件描述语言有 ABEL、VHDL等多种语言。
为了方便同学学习,这里以硬件描述语言进行 编程,描写器件功能,下面用ABEL语言编程 来实现一个加法器。
41
4.实验步骤
1.安装EDA。
打开计算机电源,进入windows系统,安装上述 ispDesignEXPERT软件,安装完成后,桌面和开始菜单中 则建有ispDesignEXPERT软件图标。
5
三.实验内容
图中已将用户需要连接的控制信号用圆圈标明(其 他实验相同,不再说明),其中除T4为脉冲信号, 其它均为电平信号。由于实验电路中的时序信号均 已连至“W/R UNIT”的相应时序信号引出端,因此, 在进行实验时,只需将“W/R UNIT”的T4接至 “STATE UNIT”的微动开关KK2的输出端,按动微 动开关,即可获得实验所需的单脉冲,而S3、S2、 S1、S0 、Cn、M、LDDR1、LDDR2、ALU-B、 SW-B各电平控制信号用“SWITCH UNIT”中的二 进制数据开关来模拟,其中Cn、ALU-B、SW-B为 低电平有效,LDDR1、LDDR2为高电平有效。
计算机组成原理第一次实验报告
运算器
S2、S1、S0控制信号的作用。
存储器
写出各控制信号的含义:
控制信号
作用
有效电平
EMWR
EMRD
EMEN
MAREN
MAROE
向EM[2]中写入一个数据
置数据22H
K23
K22
K21
K20
K19
K18
K17
K16
0
0
1
0
0
0
1
0
置控制信号:
K4
(MAROE)
K3
(MAREN)
K2
(EMEN)
K1
(EMRD)
K0
(EMWR)
按CLOCK键,将数据22H写入EM[2]
可以重复若干次,向多个EM单元写入多个不同的数据。
2、存储器EM读实验
二、实验原理
存储器原理:
内存中存放指令和数据,当内存存放指令时,将指令送指令总线;当内存存放数据时,将数据送数据总线。存储器实验电路由一片SRAM6116和二片74HC245组成。
6116是2K*8bit的SRAM,A0—A10是存储器的地址线,本实验电路中,只使用8条地址线A0—A7,而A8—A10接地。D0—D7是存储器的数据线。E是存储器的片选信号,当E为低电平时,存储器被选中,可以进行读写操作;当E为高电平时,存储器未被选中;本实验中E始终接地。W为写命令,W为低电平时,是写操作;G为读命令,G为低电平时,是读操作。
0
1
0
1
0
1
0
1
置控制信号,使DBUS数据送入W寄存器中:
K4(WEN)
K3(KAEN)
按住CLOCK脉冲键,CLOCK由高变低,这时寄存器W的黄色指示灯亮,表示选择寄存器W。
计算机组成原理-运算器实验
实验一运算器实验计算机的一个最主要的功能就是处理各种算术和逻辑运算,这个功能要由CPU 中的运算器来完成,运算器也称作算术逻辑部件ALU。
首先安排基本运算器实验,了解运算器的基本结构。
1.1实验目的(1) 了解运算器的组成结构。
(2) 掌握运算器的工作原理。
1.2实验设备PC机一台,Digilent Nexys 4TM开发板,Xilinx Vivado开发套件。
1.3实验原理Digilent Nexys 4TM开发板的通用I/O设备电路图如图1.1所示:图1.1Digilent Nexys 4TM开发板的通用I/O设备电路图如上所示,Nexys4 DDR板包括2个三色LED,16个滑动开关,6个按钮开关,16个单体LED和1个数字-8的七段显示器。
为了防止粗心大意的短路(假如一个FPGA针脚分派到一个按钮开关或者滑动开关被粗心大意的定为输出时将发生短路)损害,按钮开关和滑动开关通过串联电阻连接到FPGA。
5个按钮开关分派到1个“+”信号的配置是瞬时开关,在正常情况下,这些瞬时开关不用时产生低信号输出,被压时产生高信号输出。
另一方面,“CPU RESET”红色按钮不用时产生高信号输出,被压时产生低信号输出。
“CPU RESET”按钮常常在EDK(嵌入式开发套件)设计中用于重置进程,但你也可以把它当为常用按钮开关使用。
滑动开关根据他们的位置产生固定的高或低信号输入。
16个单体高效LED通过330欧姆的电阻阳极连接到FPGA,所以当其各自I/O 针脚应用到逻辑高电压时他们应该是打开的。
不被用户访问的额外LED表示电源,FPGA编程状态和USB和以太网端口状态。
控制显示模块的七段显示器的原理图如图1.2所示:图1.2七段显示器原理图Nexys4 DDR板包含2个4位同阳极7段LED显示器,配置表现得像1个8位数字显示。
8位数字的每一个由分派在一个“数字8”图案中的7段组成,每段嵌入1个LED。
如图17所示,每段LED是单独发光,所以128种模式的任何一个可以通过使某些LED段发光和另外的不发光显示在一个数字上。
计算机组成原理实验-运算器实验报告
当A=10000000,B=00110010时
F=01111111
(5)S3S2S1S0=1101时,F=A加1。例如:
当A=00110101,B=00110101时,F=00 Nhomakorabea10110
当A=11100011,B=00100010时
F=11100100
F=00100000,FC灯亮,表示有进位
(3)S3S2S1S0=1011时,F=A减B。例如:
当A=00110101,B=00110101时,
F=00000000
当A=01011011,B=00111010时
F=00100001
(4)S3S2S1S0=1100时,F=A减1。例如:
当A=00110101,B=00110101时,
计算机组成原理实验运算器实验报告基本运算器实验报告运算器的组成部分运算器实验报告运算器及移位实验计算机组成原理实验运算器运算器的主要功能是运算器的主要功能运算器的功能
1.逻辑运算
(1)S3S2S1S0=0000时,F=A,例如:
当A=00010101,B=01101001时
F=00010101;
当A=01011000时,B=01011110时
当A=11000011,B=00111100时
F=00000000
(4)S3S2S1S0=0011时,F=A+B。例如:
当A=00110101,B=11001010时,
F=11111111
当A=01011011,B=11000101时
F=11011111
(5)S3S2S1S0=0100时,F=/A。例如:
F=00011101
当A=01000111,B=00000101时
实验1: 运算器组成实验 ----微程序控制器方式
河北环境工程学院《计算机组成原理》实验报告作者:系(部):专业班级:学号:成绩:__________________评阅教师:__________________年月日一、实验目的⑴熟悉逻辑测试笔的使用方法⑵熟悉 TEC-8 模型计算机的节拍脉冲 T1、T2、T3⑶熟悉双端口通用寄存器组的读写操作⑷熟悉运算器的数据传送通路⑸验证 74LS181 的加、减、与、或功能⑹按给定的数据,完成几种指定的算术、逻辑运算运算二、预习内容1.什么是机器字长?2.4位操作码可包含多少条指令?3.预习实验指导书相关内容,熟悉实验步骤。
4.复习本次实验所用的各种数字集成电路的性能及工作原理三、实验环境及主要器件1.TEC-8实验系统 1台2. 逻辑测试笔 1台3. 双踪示波器 1台4. 直流万用表 1台四、实验内容1、用逻辑测试笔测试节拍脉冲信号T1、T2、T3。
2、对下述7组数据进行加、减、与或运算五、实验步骤1.实验准备将控制器转换开关拨到微程序位臵,将编程开关设臵为正常位鉻,将开关D拨到向上位臵。
打开电源2.用逻辑测试笔测试节拍脉冲信号T1、T2、T3(1)将逻輯测试笔的一端插入TBC-8实验台上的,逻辑测试笔上面的插孔中,另端插入,T1上方的插孔中(2)按复位按钮CLR,使时序信号发生器复位(3)按一次逻辑测试笔枢内的Reset按钮,使逻辑測试笔上的脉冲计数器复位,2个黄灯D1、D0均灭(4)按一次启动按钮QD,这时指示灯D1、D0的状态应为01B,指示产生了一个T1脉冲;如果再按一次QD按钮,则指示灯D1、D0的状态应当为10B,表示又产生了一个T1脉冲;继续按Q按钮,可以看到在单周期运行方式下,每按一次QD按钮,就产生一个T1脉冲(5)用同样的方法测试T2、T33.进行加、减、与、或实验(1)设臵加、减、与、或实验模式按复位按钮CLR,使TEC-8实验系统复位。
指示灯μA5~μA0显示00H。
将操作模式开关设臵为SWC=1、SWB=0、SWA=1,准备进入加、减、与或实验。
计算机组成原理—运算器实验
计算机组成原理—运算器实验计算机组成原理实验报告实验⼀运算器实验⼀、实验⽬的1、掌握简单运算器的数据传输⽅式。
2、验证运算功能发⽣器(74LS181)及进位控制的组合功能。
⼆、实验要求完成不带进位及带进位算术运算实验、逻辑运算实验,了解算数逻辑运算单元的运⽤。
三、实验原理实验中所⽤的运算器原理如下图(初略图)。
其中运算器由两⽚74LS181以并、串形式构成8位字长的ALU。
运算器的输出经过⼀个三态门(74LS245)和数据总线连接,运算器的两个数据输⼊端分别由两个锁存器(74LS273)锁存,锁存器的输⼊已连接到数据总线,数据开关(INPUT UNIT)已和数据总线连接,⽤来显⽰数据总线内容。
本实验装置的控制线(CTR-IN UNIT)应与(CTR-OUT UNIT)连接,数据总线、时序电路(TIME UNIT)产⽣的脉冲信号(他-听)、P(1)、P(2)、P(3)本实验装置已连接,(CLK UNIT)必须选择⼀档合适的时钟,其余均为电平控制信号(HC-UNIT)。
进⾏实验时,⾸先按动位于本实验装置右中侧的复位按钮,使系统进⼊初始待命状态,在LED显⽰器闪动出现“P”的环境下,按动增址命令键使LED显⽰器⾃左向右第⼀位显⽰提⽰符“H”,表⽰本装置已进⼊⼿动单元实验状态,在该状态下按动单步命令建,即可获得实验所需的单脉冲信号,⽽各电平控制信号位于LED显⽰器左⽅的K25-K0⼆进制数据开关来模拟。
注意:在进⾏⼿动实验时,必须先预置开关点电平:/Load=1,/CE=1,其余开关控制信号电平均置为0。
四、实验连接1、⼋位运算器控制信号连接:位于实验装置左上⽅的控制信号(CTR-INUNIT)中的(S3、S1、S0、M、/CN、LDDR1、LDDR2、LDCZY、/SW-B、/ALU-B)与位于实验装置右中⽅的(CTR-IN UNIT)、左下⽅INPUT-UNIT中的(/SW-B)右上⽅CTR-IN (/ALU-B)作对应连接,实验装置中上⽅信号Cn+4与Cn+4I相连。
计算机组成原理实验报告一 算术逻辑运算器
算术逻辑运算器一.实验目的与要求试验目的:1、掌握算术运算器单元ALU(74LS181)的工作原理。
2、掌握简单运算器的数据传送通道。
3、验算由74LS181等组合逻辑电路组成的运算功能发生器运算功能。
4、能够按给定数据,完成实验指定的算术/逻辑运算。
试验要求:按练习的要求输入数据和完成相应的操作,将实验结果填入表格二.实验方案1、按实验连线图接好线,仔细检查正确与否,无误后才接通电源。
2、用二进制数据开关分别向DR1寄存器和DR2寄存器置数。
3、通过总线输出DR1寄存器和DR2寄存器的内容。
4、比较实验结果和理论值是否一致,如果不一致,就分析原因,然后重做。
三.实验结果练习一表1.1.2练习二表1.1.31.实验结果分析●实验结果和理论值一致,讲明实验操作过程正确,实验结果准确无误。
2.结论●要有理论基础才可以做好实验的每一步,所以,平时一定要学好理论知识。
3.问题与讨论我们这个小组,在做第二个实验时就遇到了很多问题,就是我们我无论输入什么显示灯都不变,然后我们就互相讨论,但是还是没办法解决,后来问了老师才知道我们插错线。
4.实验总结(1)以前没有做过这种实验,所以实验前我做了充分的预习。
但预习毕竟不是实际操作,经常会在想实际情况会是什么样,在实际操作过程中我遇到了不少的困难,例如我做第二个实验时就插错线,幸好在老师的帮助下还加上自己的思考,终于把问题解决掉了。
我觉得,实验前老师应该做些示范给我们看,这样我们会学得更快。
(2)在做表1.1.4的实验时,不知道怎样查出S3、S2、S1、S0、M、Cn的值,问周围的同学,他们也不知道。
因为这个很重要,直接影响到后面的实验,所以请教了老师。
经过老师的解释后,我顺利地完成了后面的实验。
5.思考题1)写出本实验中的各控制端的作用。
答:S0 S1 S2 S3(它们共同决定运算器执行哪一种运算)M(决定是算术运算还是逻辑运算). CN(表示有无进位) SW-B(输入三态门控制“INPUT DEVICE”中的八位数据开关D7-D0的数据是否送到数据总线BUS上) ALU-B(输出三态门,控制运算器的运算结果是否送到数据总线BUS)LDDR1 LDDR2 (寄存器,寄存数据)2)在实验中哪些控制端高电平有效,哪些低电平有效?答:高电平有效(LDDR1 LDDR2)低电平有效(CN ALU-B SW-B)3)在实验正常的输入和输出操作中,SW-B和ALU-B为什么不能同时为0的状态?答:ALU-B SW-B都是低电平有效,如果同时为低电平,这将导致数据一边输入一边输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一运算器组成实验
一、实验目的
1.熟悉双端口通用寄存器堆的读写操作。
2.熟悉简单运算器的数据传送通路。
3.验证运算器74LS181的算术逻辑功能。
4.按给定数据,完成指定的算术、逻辑运算。
二、实验电路
S3
S2
S1
S0
M
图3.1 运算器实验电路
图3.1示出了本实验所用的运算器数据通路图。
参与运算的数据首先通过实验台操作板上的八个二进制数据开关SW7-SW0来设置,然后输入到双端口通用寄存器堆RF中。
RF(U54)由一个ispLSI1016实现,功能上相当于四个8位通用寄存器,用于保存参与运算的数据,运算后的结果也要送到RF中保存。
双端口寄存器堆模块的控制信号中,RS1、RS0用于选择从B端口(右端口)读出的通用寄存器,RD1、RD0用于选择从A端口(左端口)读出的通用寄存器。
而WR1、WR0用于选择写入的通用寄存器。
LDRi是写入控制信号,当LDRi=1时,数据总线DBUS上的数据在T3写入由WR1、WR0指定的通用寄存器。
RF的A、
B端口分别与操作数暂存器DR1、DR2相连;另外,RF的B端口通过一个三态门连接到数据总线DBUS上,因而RF中的数据可以直接通过B端口送到DBUS上。
DR1(U47)和DR2(U48)各由1片74LS273构成,用于暂存参与运算的数据。
DR1接ALU 的A输入端口,DR2接ALU的B输入端口。
ALU(U31、U35)由两片74LS181构成,ALU的输出通过一个三态门(74LS244)发送到数据总线DBUS上。
实验台上的八个发光二极管DBUS7-DBUS0显示灯接在DBUS上,可以显示输入数据或运算结果。
另有一个指示灯C显示运算器进位标志信号状态。
图中尾巴上带粗短线标记的信号都是控制信号,其中S3、S2、S1、S0、M、Cn#、LDDR1、LDDR2、ALU_BUS#、SW_BUS#、LDRi、RS1、RS0、RD1、RD0、WR1、WR0都是电位信号,在本次实验中用拨动开关K0—K15来模拟;T2、T3为时序脉冲信号,印制板上已连接到实验台的时序电路。
实验中进行单拍操作,每次只产生一组T1、T2、T3、T4时序脉冲,需将实验台上的DP、DB开关进行正确设置。
将DP开关置1,DB开关置0,每按一次QD按钮,则顺序产生T1、T2、T3、T4一组单脉冲。
三、实验设备
1.TEC-5计算机组成实验系统1台
2.逻辑测试笔一支(在TEC-5实验台上)
3.双踪示波器一台(公用)
4.万用表一只(公用)
四、实验任务
1.按图3.1所示,将运算器模块与实验台操作板上的线路进行连接。
由于运算器模块
内部的连线已由印制板连好,故接线任务仅仅是完成数据开关、控制信号模拟开
关、与运算器模块的外部连线。
注意:为了建立清楚的整机概念,培养严谨的科
研能力,手工连线是绝对必要的。
2.用开关SW7—SW0向通用寄存器堆RF内的R0—R3寄存器置数。
然后读出R0—R3
的内容,在数据总线DBUS上显示出来。
3.验证ALU的正逻辑算术、逻辑运算功能。
令DR1=55H,DR2=0AAH,Cn#=1。
在M=0和M=1两种情况下,令S3—S0的值从0000B变到1111B,列表表示出实验结果。
实验结果包含进位C,进位C由指示灯显示。
注意:进位C是运算器ALU最高位进位Cn+4#的反,即有进位为1,无进位为0。
五、实验要求
1.做好实验预习,掌握运算器的数据传输通路及其功能特性,并熟悉本实验中所用
的模拟开关的作用和使用方法。
2.写出实验报告,内容是:
(1)实验目的。
(2)按实验任务3的要求,列表表示出实验结果。
(3)按实验任务4的要求,在表中填写各控制信号模拟开关值,以及运算结果值。
六、实验步骤和实验结果
(1)实验任务2 的实验步骤和结果如下:(假定令R0=34H,R1=21H,R2=52H,R3=65H)1.置DP=1,DB=0,编程开关拨到正常位置。
接线表如下:
2.打开电源
以下4条是将34H、21H、52H、65H分别写入R0、R1、R2、R3
3.置K0(WR0)=0,K1(WR1)=0,K4(SW_BUS#)=0,K5(RS_BUS#)=1,K6(LDRi)=1,SW7-SW0=34H。
在DBUS上将观察到DBUS=34H。
按QD按钮,将34H写入R0。
4.置K0(WR0)=1,K1(WR1)=0,K4(SW_BUS#)=0,K5(RS_BUS#)=1,K6(LDRi)=1,SW7—SW0=21H。
在DBUS上将观察到DBUS=21H。
按QD按钮,将21H写入R1。
5.置K0(WR0)=0,K1(WR1)=1,K4(SW_BUS#)=0,K5(RS_BUS#)=1,K6(LDRi)=1,SW7—SW0=52H。
在DBUS上将观察到DBUS=52H。
按QD按钮,将52H写入R2。
6.置K0(WR0)=1,K1(WR1)=1,K4(SW_BUS#)=0,K5(RS_BUS#)=1,K6(LDRi)=1,SW7—SW0=65H。
在DBUS上将观察到DBUS=65H。
按QD按钮,将65H写入R3。
以下4条是在DBUS总线上显示R0、R1、R2、R3的值
7.置K2(RS0)=0,K3(RS1)=0,K4(SW_BUS#)=1,K5(RS_BUS#)=0,K6(LDRi)=0,在DBUS上将观察到DBUS=34H。
8.置K2(RS0)=1,K3(RS1)=0,K4(SW_BUS#)=1,K5(RS_BUS#)=0,K6(LDRi)=0,在DBUS上将观察到DBUS=21H。
9.置K2(RS0)=0,K3(RS1)=1,K4(SW_BUS#)=1,K5(RS_BUS#)=0,K6(LDRi)=0,在DBUS上将观察到DBUS=52H。
置K2(RS0)=1,K3(RS1)=1,K4(SW_BUS#)=1,K5(RS_BUS#)=0,K6(LDRi)=0,在DBUS上将观察到DBUS=65H。
(2)实验任务3的实验步骤和实验结果如下:
1.置DP=1,DB=0,编程开关拨到正常位置。
数据通路的信号Cn#接VCC。
1.打开电源
以下2条是向R0写入55H,向R1写入0AAH。
2.置K0(WR0)=0,K1(WR1)=0,K6(LDRi)=1,K13(ALU_BUS#)=1,K14(SW_BUS#)=0。
置SW7-SW0为55H,按QD按钮,将55H写入R0。
3.置K0(WR0)=1,K1(WR1)=0,K6(LDRi)=1,K13(ALU_BUS#)=1,K14(SW_BUS#)=0。
置SW7-SW0为0AAH,按QD按钮,将0AAH写入R1。
以下1条是将R0写入DR1,将R1写入DR2。
4.置K2(RD0)=0,K3(RD1)=0,K4(RS0)=1,K5(RS1)=0,K6(LDRi)=0,K7(LDDR1和LDDR2)=1。
按QD按钮,将R0写入DR1,将R1写入DR2。
这时DR1=55H,DR2=0AAH。
以下2条是M=H时进行逻辑运算。
5.置K6(LDRi)=1,K7(LDR1和LDR2)=0,K8(S0)=0,K9(S1)=0,K10(S2)=0,K11(S3)=0,K12(M)=1,K13(ALU_BUS#)=0,K14(SW_BUS#)=1。
在数据总线DBUS上观察到逻辑运算结果0AAH。
按QD按钮,观察到进位C为0。
6.其他开关设置都不变,只改变K8(S0)、K9(S1)、K10(S2)、K11(S3)的设置,观察其他15种逻辑运算结果,并按QD按钮,观察进位C。
以下2条是M=L时进行算术运算。
7.置K6(LDRi)=1,K7(LDR1和LDR2)=1,K8(S0)=0,K9(S1)=0,K10(S2)=0,K11(S3)=0,K12(M)=0,K13(ALU_BUS#)=0,K14(SW_BUS#)=1。
在数据总线DBUS上观察到算术运算结果为55H。
按QD按钮,观察到进位C为0。
8.其他开关设置都不变,只改变K8(S0)、K9(S1)、K10(S2)、K11(S3)的设置,观察其他15种算术运算结果,并按QD按钮,观察进位C。
实验结果如下:
表3.2 实验任务3实验结果(DR1=55H,DR2=0AAH)
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。