地震叠前深度偏移方法流程及应用
5 地震处理之DMO校正和叠前偏移
5 倾角时差校正和叠前偏移概述盐丘侧面反射断面反射倾角时差校正和叠加速度回转波反射倾角时差校正原理叠前部分偏移频率波数域倾角时差校正对数拉伸倾角时差校正积分倾角时差校正速度误差变速回转波偏移倾角时差校正的应用盐丘侧面断面倾角时差校正与多次波倾角时差校正与相干线形噪音其它因素倾角时差校正小结叠前时间偏移倾角时差校正与共偏移距偏移盐丘侧面断面共反射点与共反射面叠加偏移速度分析叠前Stolt偏移倾角时差校正数据的共偏移距偏移叠前克希霍夫偏移利用共反射点道集的速度分析聚焦分析与速度无关的Fowler叠前偏移习题附录E:倾角时差校正和叠前时间偏移反射点偏离倾角时差校正方程对数拉伸倾角时差校正倾角时差椭圆非零偏移距的旅行时方程叠前频率波数域偏移利用波场外推进行速度分析参考文献5.0概述倾角时差校正(DMO)是应用于已经做过动校正的叠前数据,以便在叠加过程中使不同倾角的地层保持各自不同的叠加速度。
这样,DMO校正改善了剖面,该剖面比常规的经过动校正后的CMP道集剖面更接近于零偏移距剖面。
从而使我们更加有信心应用在第4章中讨论的零偏移距偏移方法。
我们在第3章中提过,叠加速度是依赖于倾角的(方程3-8)。
当存在一个水平同相轴与一个倾斜同相轴交叉时,我们只能选择在这种情况下占优的一个叠加速度,而不是它们两个,因此,常规的CMP道集叠加并不能使不同倾角的地层具有各自不同的叠加速度。
这对于零偏移距剖面是不适用的,因为零偏移距剖面包含了各种情况,各种倾角。
因此,在倾角不一致的情况下,叠加剖面并不等同于零偏移距剖面。
由于CMP叠加剖面不是严格地等于零偏移距剖面,我们希望叠加后的偏移处理能够得到一个清晰的剖面,使不同倾角的地层保持不同的叠加速度。
为了解决倾角不一致的问题,在叠前进行偏移处理要优于在叠后进行。
一种实用的替代叠前偏移的方法是在叠加处理之前,应用Levin方程(3-8)校正倾角对时差速度的影响。
叠前数据可以先用水平地层的速度校正时差,然后在这种NMO后紧跟DMO校正,来解决倾角对时差的影响。
地震资料叠前偏移及应用
地震资料叠前偏移及应用蔡伟涛1,朱志勇2(1.成都理工大学;2.江汉油田勘探开发研究院) 摘 要:叠前偏移处理技术是解决精细速度分析和复杂构造成像的有效手段之一,叠前时间偏移是近年来地震资料常规处理的发展趋势,可获得偏移归位后的速度场,适应于陡倾角构造和深部的正确成像,在本工区的应用中,采用Kir chho ff 积分求和的方法,使得叠前时间偏移处理的剖面比叠后偏移处理的剖面有较大的改善,使其质量得到提高,断层及地层不整合关系清晰,由此得到了较好的地质解释结果。
关键词:叠后偏移;叠前偏移;速度 地震资料处理是油气勘探过程中重要的基础工作,其处理成果的质量直接影响勘探的全过程。
因此,搞好地震资料处理,提高处理水平,是物探处理人员始终所追求的目标[1]。
1 叠前偏移的必要性在地震资料处理中,偏移是最重要的手段之一。
地震偏移使倾斜反射归位到它们真正的地下界面位置,并使绕射波收敛[1]。
我们知道,常规叠加是建立在水平层状介质及横向速度连续变化基础之上的,因此,对于构造起伏及横向速度剧烈变化情况它不能够满足斯奈尔定律,同时造成速度分析的多解性,最终导致无法实现真正的共反射点叠加和正确的成像结果;另外,在偏移前的道集中进行速度分析,也造成速度点偏离其真实地下位置,叠加剖面不等同于零炮检距剖面。
叠前偏移方法基于双平方根方程的非零炮检距成像理论,建立在对点散射的非零炮检距方程基础上,沿非零炮检距的绕射曲线旅行轨迹对振幅求和,是一种射线成像,能够解决叠后时间偏移存在的问题[2]。
总之,常规叠后偏移技术由于受到其理论本身的限制,越来越不能够满足高精度成像的要求。
叠前偏移方法,理论上消除了输入数据为零炮检距的假设,避免了NM O 校正叠加所产生的畸变,比起叠后时间偏移保存了更多的叠前地震信息,为叠前反演与属性提取奠定良好的资料基础。
图1 不同变速情况下偏移成像方法的选择2 偏移方法选择根据不同勘探目标,采用叠前偏移处理技术的研究思路是根据目标处理任务和要求,首先对原始资料和原有剖面进行分析,找出影响处理效果的关键问题,提出处理方向和可采用的技术(应该提出有多种技术组合的多套处理流程),然后进行技术和参数的处理试验,并参考用户意见确定最佳处理技术和流程,最后实施作业,完成目标处理全过程,提交用户满意的剖面。
三维叠前深度偏移流程
三维叠前深度偏移流程### 3D Pre-Stack Depth Migration Workflow.3D Pre-Stack Depth Migration Workflow.Seismic imaging plays a crucial role in hydrocarbon exploration and reservoir characterization. Conventional seismic migration methods, such as Kirchhoff or beam migration, assume a constant velocity model and ignore the complex subsurface structures, which can lead to inaccurate subsurface images. Pre-stack depth migration (PSDM) is an advanced seismic imaging technique that addresses these limitations by incorporating the velocity information and accounting for the wave propagation in the subsurface. PSDM produces higher-resolution and more accurate images of the subsurface, which is essential for accurate interpretation and decision-making in exploration and production.The 3D pre-stack depth migration workflow typically involves the following steps:1. Data preprocessing: This step involves preparing the seismic data for migration by removing noise, correctingfor amplitude and phase distortions, and applying necessary corrections for elevation and geometry.2. Velocity model building: An accurate velocity model is crucial for successful PSDM. Velocity models can be derived from seismic data using techniques such as tomography or full-waveform inversion.3. Kirchhoff or beam migration: In this step, the seismic data is migrated using the Kirchhoff or beam migration algorithm, which accounts for the wave propagation in the subsurface.4. Post-migration processing: After migration, the seismic image is processed to further enhance the image quality and interpretability. This can include processes such as noise suppression, dip filtering, and amplitude balancing.3D叠前深度偏移流程。
论偏移的方法和作用
论偏移的方法和作用论文提要地震偏移技术是现代地震勘探数据处理的三大技术之一。
它是在过去的古典技术上发展起来的,其它两大技术都是从其它相关学科引进到地震中来的。
所以,偏移技术具有地震勘探本身的特征。
地震偏移可在叠前做也可在叠后做。
叠前偏移是把共炮点道集记录或共偏移距道集记录中的反射波归位到产生它们的反射界面上,并使绕射波收敛到产生它的绕射点上。
在把反射波回投到反射界面上和绕射波收敛到绕射点上时,要去掉传播过程的效应,如扩散与衰减等。
最后得到能够反映界面反射系数特点的并正确归位了的地震波形剖面,即偏移剖面。
叠后偏移是在水平叠加剖面的基础上进行的,针对水平叠加剖面上存在的倾斜反射层不能正确的归位和绕射波不能完全收敛的问题采用了爆炸反射面的概念来实现倾斜反射层的正确归位和绕射波完全收敛。
正文一、地震偏移的类型分类如下表1-1表1-1(一)叠加叠加的要求必须是共反射点(CDP)和共中心点(CMP)才能叠加。
1.共反射点叠加法在野外采用多次覆盖的观测方法,在室内处理中采用水平叠加技术,最终得到的水平叠加剖面,这一整套的工作。
(1)水平界面共反射点时距曲线方程:t=⅟v(4h²+χ²)¹∕² 2-1V—波速;χ—炮检距;h—反射点的法线深度。
图1-1共反射点叠加剖面与偏移剖面当反射界面水平时,共反射点时距曲线与共炮点时距曲线在形式上是一致的,但表示的意义不同。
1)在共炮点时距曲线中t(o)表示激发点的自激自收时间,共中心点时距曲线中,t(o)表示M点垂直反射时间t(om)。
2)共炮点时距曲线方程,反映的是地下反射界面的一段,共反射点时距曲线方程,反映的是地下一个反射点。
(2)倾斜共反射点时距曲线方程:t=⅟v(4h²+χ²cosθ)¹∕²。
水平叠加将不同的接收点受到的来自地下统一反射点的不同激发点的信号,经过动校正后叠加起来。
2.影响叠加效果的因素为了保证多次叠加的质量,取得好的效果,了解影响叠加效果的因素就很有必要的,因为只要分析这些因素的影响,并估计可能造成的后果,就能找出减少或避免这些不利因素影响的办法。
叠前时间偏移处理方法及应用(刘俊杰)
叠前偏移技术的优点: 1.叠前偏移取消了输入数据为零炮检距的假设,以实际
叠前地震数据为输入,假设条件与实际条件相近似。
2. 取消了水平层状均匀介质的假设,通过波动方程波 场延拓方法,实现反射波成像。适于高陡构造与断裂成像。
第一节 序言
叠前偏移
叠前时间偏移
时间域RMS速度
(Kirchhoff积分法、波动方程偏移)
相干系数=
aij :在i第道中一个小的时间(或深度)窗口内第j个采样点的采样值 i:炮检距下标; j:窗口内采样点下标; nt:窗口内采样点数; noffs:炮检距总数。
第三节GeoDepth叠前时间偏移的主要技术
2. 相干反演与沿层RMS速度分析
速 度 范 围
沿层拾取RMS速度
色标相干系数
第三节GeoDepth叠前时间偏移的主要技术
参考偏移距Xref 参考偏移距的定义
第三节GeoDepth叠前时间偏移的主要技术
2. 相干分析与沿层RMS速度分析
沿层RMS速度分析
第三节GeoDepth叠前时间偏移的主要技术
2. 相干分析与沿层RMS速度分析
相干分析模型
Aij
第三节GeoDepth叠前时间偏移的主要技术
2. 相干反演与沿层RMS速度分析
1.Geodepth叠前时间偏移概述 2.叠加速度 3.均方根速度 4.层速度 5.浮动基准面及替换速度
第二节 GeoDepth叠前偏移涉及的几个概念
1.Geodepth叠前时间偏移概述
叠前时间偏移:用来解决不同倾斜层对应不同 的叠加速度的问题。
RMS速度模型 GeoDepth叠前时间偏移的核心:
第二节 GeoDepth叠前偏移涉及的几个概念
起伏地表Kirchhoff积分法叠前深度偏移方法研究与应用
关键 词 : 起伏 地表 ; 低信 噪比 ; 间时差 ; 道 叠前 深度 偏移
中图分 类号 :6 1 4 P 3 . 1 4 文 献标 识码 : A 据 成像 处理 该 方 法理 论 上 可行 , 在 数据 信 噪深 层速 度 模型 要统 一 在一起 建 立一 个完 整 的模 型 , 用
间时差大 , 以获得较 准确 的偏 移速 度场 , 难 构造 成像
结 果无 法达 到基 本 的地 质解 释 的要求 , 重 制约 了 严 这些 地 区油气勘探 程度 的深化 。 目前 尚没 有一套 有 效 的处理 流程来处 理上 述诸探 区 的数据 。
影 响 , lh l A k ai  ̄h和 B g i l通 过 给 定 一 个 等 效 常 aan4 一 速 , 出利用 T O( pgahcd tm n ea r进 提 D t orp i au igo rt ) o p o
行 基准 面校正 , 与 Wig s 这 gi : n 的积分 法上 延本 质上
21 0 0年 7月
岩 性 油 气 藏 LT I HOL OGI C RES RV0I E RS
C G 会 议 专 刊 E
・
地震处 理 ・
起 伏 地表 Ki h of r h f 积分 法 叠前 深度偏 移 c 方 法研 究 与应 用
刘少 勇 , 华 忠 张 兵 王 , ,
海 洋 楼 4 1 电话 :0 1 6 9 2 5 。E mal l s 1 8 @1 6c r 0。 ( 2 ) 5 8 3 6 — i: u y 9 5 2 . n i o
地震叠前深度偏移技术进展及应用问题与对策
地震叠前深度偏移技术进展及应用问题与对策王延光【摘要】地震叠前深度偏移技术是目前油气勘探、开发、科研和生产中应用的关键技术.结合胜利油区在叠前深度偏移技术方面的研究、应用成果及经验,首先介绍面向研究区块地表和地下地质情况的特色化实用叠前深度偏移与建模技术,在不同区块和地质任务的应用中,这些技术可以根据需求配套使用.其次,从采集—处理—解释一体化的思路出发,分析了叠前深度偏移技术的影响因素,并提出了针对性的解决对策.最后,通过几个典型区块的工业化应用实例验证了胜利油区叠前深度偏移技术一体化解决方案的效果,总结出一套“深度域+”的叠前深度偏移技术研究思路,进一步推动深度域地震技术的发展,更好地为油气田勘探和开发服务.%Seismic prestack depth migration is a key technology in hydrocarbon exploration,development,research and production.Based on study on prestack depth migration technology research and its application achievement and experience in Shengli oilfield,characteristics and practical prestack depth migration and modeling techniques were introduced firstly according to surface and subsurface geologic conditions of the study area,which could be used together in application to different study area and different geologic task according to the actual need.And secondly,effects on the prestack migration technique were analyzed based on the idea of integration of acquisition,processing and interpretation,and then the corresponding countermeasures were put forward.Finally,several industrial applications of the technique to typical examples in Shengli oilfield were used to verify effectiveness of integration solution of prestackdepth migration technology for hydrocarbon exploration.A set of "depth domain+" prestack depth migration technology has been summarized to promote further development of the seismic technique in domain of depth and to provide better service for oilfield exploration and development.【期刊名称】《油气地质与采收率》【年(卷),期】2017(024)004【总页数】8页(P1-7,29)【关键词】叠前深度偏移;速度建模;影响因素;应用实践;各向异性【作者】王延光【作者单位】中国石化胜利油田分公司物探研究院,山东东营257022【正文语种】中文【中图分类】P631.443近年来,随着油气勘探开发研究与实践的不断深入以及计算机运算能力的提升,地震叠前深度偏移技术成为广泛应用的常规技术,胜利油区的生产和科研实践充分验证了这一点。
地震勘探中的叠前深度偏移算法
地震勘探中的叠前深度偏移算法地震勘探是一种重要的地球物理探测方法。
通过利用地震波的反射、折射和传播特性,可以了解地下结构和地质情况,为石油、天然气等能源资源的探测和开发提供依据。
在地震勘探中,叠前深度偏移算法是一种重要的数据处理技术,可以提高地震成像质量,提高勘探地震数据的分辨率和准确性。
一、叠前深度偏移算法的基本原理叠前深度偏移算法是一种用于地震数据处理的数学算法,其基本思想是在时间域将地震数据转换为深度域,然后采用折射面模型或者波阵面模型来对地下结构进行成像。
其基本原理可以简单描述如下:1. 叠前深度偏移算法首先对地震数据进行逆时偏移(NMO处理),将时间域的地震数据转换为零偏移距时刻对应的地震数据。
2. 然后,将逆时深度层剖面上的地震数据集合在一起,形成叠前深度域数据。
3. 叠前深度偏移算法的关键是调整不同深度层的地震数据时差,以消除波形的走时差异,实现不同深度维度的波形匹配,进而实现相关波形叠加成像。
4. 此后,根据地震波在不同速度介质中的折射、反射特性,利用Kirchhoff积分公式计算深度域内的各点反射能量,最终形成地下结构的深度成像结果。
二、叠前深度偏移算法的应用叠前深度偏移算法在地震数据处理中广泛应用,可以大大提高地下结构成像质量和解析度。
其应用领域主要包括以下几个方面:1. 沉积物地质研究。
地震勘探可以对深层地质结构进行探测和解析,对于沉积物地质研究具有重要作用。
叠前深度偏移算法可以提高地震数据的分辨率和准确性,更好地揭示岩相、层序等信息。
2. 石油勘探与开发。
地震勘探是石油勘探和开发的核心技术之一,其质量和准确性对于石油勘探和开发的成功具有决定性作用。
叠前深度偏移算法可以提高地震成像质量,更好地勘探目标层位和构造特征。
3. 工程地质勘察。
叠前深度偏移算法可以应用于工程地质勘察中,对于建设工程和地质灾害防治具有重要意义。
其可以准确获取地下结构信息,对于建设工程场地的选址和设计提供重要依据。
叠前深度偏移
7、沿层剩余延迟迭代
东方公司研究院处理中心
叠前时间偏移
8、处理效果 叠前深度偏移
东方公司研究院处理中心
培训内容
叠前深度偏移基本原理 三维各向异性叠前深度偏移流程 二维叠前深度偏移基本流程 几点体会
东方公司研究院处理中心
几点体会与认识
1、GeoDepth软件的速度模型建立以及层速度迭代 优化方法具有行业领先优势; 2、GeoDepth软件产品多、应用模块多、模块中选 件多,需要在今后的项目中逐步消化应用; 3、此次培训收获很多,一是更系统地了解深度偏 移的工作流程与操作,二是掌握了Geodepth的更多 功能,为下一步做好深度偏移、用好深度偏移提供 了保障。
东方公司研究院处理中心
3、建立初始沿层层速度
基本步骤: • 层位网格化,建模 (MAP) • 生成时间域层速度 (CVI) • 沿层抽取沿层层速度并建模 (MAP) 1.编辑层速度平面图并建模 (MAP)很重要
东方公司研究院处理中心
4、更新沿层层速度
初始叠前深度偏移
CRP道集是否拉平
Y
N
计算沿层剩余延迟
理论模型
叠加剖面 时间偏移
叠加剖面 时间偏移
深度偏移
东方公司研究院深处度理偏移中心
各向异性叠前深度偏移工作思路
1
2
工区建立数据加载
道集的加载与检查 速度的加载与检查
初始速度模型的建立
层位模型的建立 创建初始深度域层速度体
4
各向异性深度偏移
井约束求取各向异性参数 各向异性叠前深度偏移
东方公司研究院处理中心
二维叠前深度偏移基本流程
工区建立
1.数据加载
(整理)论偏移的方法和作用
论偏移的方法和作用论文提要地震偏移技术是现代地震勘探数据处理的三大技术之一。
它是在过去的古典技术上发展起来的,其它两大技术都是从其它相关学科引进到地震中来的。
所以,偏移技术具有地震勘探本身的特征。
地震偏移可在叠前做也可在叠后做。
叠前偏移是把共炮点道集记录或共偏移距道集记录中的反射波归位到产生它们的反射界面上,并使绕射波收敛到产生它的绕射点上。
在把反射波回投到反射界面上和绕射波收敛到绕射点上时,要去掉传播过程的效应,如扩散与衰减等。
最后得到能够反映界面反射系数特点的并正确归位了的地震波形剖面,即偏移剖面。
叠后偏移是在水平叠加剖面的基础上进行的,针对水平叠加剖面上存在的倾斜反射层不能正确的归位和绕射波不能完全收敛的问题采用了爆炸反射面的概念来实现倾斜反射层的正确归位和绕射波完全收敛。
正文一、地震偏移的类型分类如下表1-1表1-1(一)叠加叠加的要求必须是共反射点(CDP)和共中心点(CMP)才能叠加。
1.共反射点叠加法在野外采用多次覆盖的观测方法,在室内处理中采用水平叠加技术,最终得到的水平叠加剖面,这一整套的工作。
(1)水平界面共反射点时距曲线方程:t=⅟v(4h²+χ²)¹∕² 2-1V—波速;χ—炮检距;h—反射点的法线深度。
图1-1共反射点叠加剖面与偏移剖面当反射界面水平时,共反射点时距曲线与共炮点时距曲线在形式上是一致的,但表示的意义不同。
1)在共炮点时距曲线中t(o)表示激发点的自激自收时间,共中心点时距曲线中,t(o)表示M点垂直反射时间t(om)。
2)共炮点时距曲线方程,反映的是地下反射界面的一段,共反射点时距曲线方程,反映的是地下一个反射点。
(2)倾斜共反射点时距曲线方程:t=⅟v(4h²+χ²cosθ)¹∕²。
水平叠加将不同的接收点受到的来自地下统一反射点的不同激发点的信号,经过动校正后叠加起来。
2.影响叠加效果的因素为了保证多次叠加的质量,取得好的效果,了解影响叠加效果的因素就很有必要的,因为只要分析这些因素的影响,并估计可能造成的后果,就能找出减少或避免这些不利因素影响的办法。
起伏地表多波共炮记录叠前深度偏移
分 量地 震模 拟 及偏 移 成像 方法 必 然得 到更 广泛 的发
展 和运 用 。
1 共 炮点 叠前 深 度偏 移 方法 原理 由 等 时 叠 加 原 理 可 知 , 炮 记 录 的 形 成 是 等 时 共 线 上 波 场 叠 加 的 结 果 , 反 , 移 就 是 将 叠 加 在 一 起 相 偏 的 反 射 波 场 重 新 分 散 在 等 时 线 上 , 其 复 位 。 想 使 使 要 叠 加在 一起 的 波场 重 新复 位 , 不 是 件 容易 的事 , 并 因 为 我 们 无 法 知 道 各 个 波 场 的 能 量 成 分 , 无 法 知 道 也
业 出 版 社 , 0 4 2 0.
[ ] 刘 国 杰 , 正 斌 , 智 斌 . 碳 树 脂 涂 料 及 施 工 2 夏 雷 氟 应 用 [ ] 北 京 : 国石 化 出版 社 , 0 5 M . 中 20 . [ ] 倪 玉德. 3 FEVE 氟 碳 树 脂 与 氟 碳 涂 料 [ ] M .北 京 : 学 工 业 出版 社 , 0 6 化 20 . [ ] 夏 范 武 , 书 林 , 君 将 . 联 型 氟 碳 树 脂 及 涂 4 王 许 交
21 00年第 1 期 7
内 蒙古 石 油化 工
2 3
起 伏 地 表 多波 共 炮 记 录 叠 前 深 度 偏 移
叠前时间偏移与叠前深度偏移1
叠前时间偏移与叠前深度偏移1叠前时间偏移与叠前深度偏移1、叠前偏移从实现方法上可分为叠前时间偏移和叠前深度偏移。
从理论上讲,叠前时间偏移只能解决共反射点叠加的问题,不能解决成像点与地下绕射点位置不重合的问题,因此叠前时间偏移主要应用于地下横向速度变化不太复杂的地区。
当速度存在剧烈的横向变化、速度分界面不是水平层状时,只有叠前深度偏移能够实现共反射点的叠加和绕射点的归位,叠前深度偏移是一种真正的全三维叠前成像技术,但它的成像效果必须依赖于准确的速度-深度模型,而模型的迭代和修改是一个非常复杂和费时的过程,周期长,花费也相当昂贵。
1.1 叠前时间偏移叠前时间偏移是复杂构造成像和速度分析的重要手段,它可以有效地克服常规NMO、DMO和叠后偏移的缺点,实现真正的共反射点叠加。
叠前时间偏移产生的共反射点(CRP)道集,消除了不同倾角和位置的反射带来的影响,不仅可以用来优化速度分析,而且也是进行AVO地震反演的前提。
Kirchhoff叠前时间偏移方法的基础是计算地下散射点的时距曲面。
根据Kirchhoff绕射积分理论,时距曲面上的所有样点相加就得到该绕射点的偏移结果。
具体的实现过程就是沿非零炮检距的绕射曲线旅行时轨迹对振幅求和,速度场决定求和路径的曲率,对每个共炮检距剖面单独成像,然后将所有结果叠加起来形成偏移剖面。
1.2 叠前深度偏移实际上,叠前时间偏移可认为是一种能适应各种倾斜地层的广义NMO叠加,其目的是使各种绕射能量聚焦,而不是把绕射能量归位到其相应的绕射点上去,它基于的速度模型是均匀的,或者仅允许有垂直变化,因此,叠前时间偏移仅能实现真正的共反射点叠加,当地下地层倾角较大,或者上覆地层横向速度变化剧烈,速度分界面不是水平层状的条件下,叠前时间偏移并不能解决成像点与地下绕射点位置不重合的问题。
为了校正这种现象,我们可以在时间剖面的基础上,再做一次校正,使成像点与绕射点位置重合,这就是做叠后深度偏移的目的,但叠后深度偏移有缺点,主要是无法避免NMO校正叠加所产生的畸变,而且在实现过程中缺少模型叠代修正的手段,因此叠后深度偏移一般作为叠前深度偏移流程的一部分,用于深度域模型层位的解释。
叠前深度偏移技术及其应用的发展历程
叠前深度偏移技术及其应用的发展历程引言地震偏移技术是现代地震勘探数据处理的三大基本技术之一,其目的是实现反射界面的空间归位和恢复反射界面的波场特征、振幅变化和反射系数,提高地震空间分辨率和保真度。
随着油气勘探开发的进一步深入,油气勘探的重点转向复杂地表和复杂地质条件的区域。
复杂构造区地震资料质量通常较差, 且横向速度变化剧烈,叠前时间偏移成像往往得不到精确的地下构造形态, 叠前深度偏移是解决复杂构造成像的有效工具。
近年来,随着计算机的发展,尤其是并行计算机的出现,使得计算量庞大的三维地震资料叠前深度偏移成为可能。
叠前深度偏移在解决复杂地质构造成像问题的同时能够提高资料信噪比和分辨率,压制多次波以及突出深层反射;不仅如此,与传统的时间域地震剖面相比,深度域成像的地震剖面更具地质意义。
叠前深变偏移的广泛研究和应用,对于在复杂地质环境中提高地震勘探的能力将是极大的促进。
一、叠前深度偏移技术发展常用的时间偏移技术是基于横向速度变化弱的水平层状介质模型产生的,而深度偏移技术是基于横向变速的真实地质深度模型发展而来的。
因此时间偏移不能解决速度横向变化引起的非双曲线时差问题,当横向速度变化大、超出常规时间偏移所能适应的尺度时,偏移的成像精度大为降低(这一现象由Hubral P于1977年首次发现)。
这个问题立即引起国际勘探地球物理学界的关注,并开始对非均匀介质偏移方法的研究。
波动理论的引入促进了深度偏移技术的发展。
2O 世纪7O年代,Claerbout 首次把波动方程引入到地震波场偏移成像中,Schneider 提出了基于波动方程积分解的克希霍夫积分法偏移,Gazdag 和Stolt 分别提出波动方程频率一波数域偏移方法,应用的都是简化形式的抛物线波动方程,即单程方程和爆炸反射面模型。
2O世纪8O年代出现了全波动方程偏移、逆时偏移成像等算法,但由于当时计算机效率低,对速度模型要求苛刻等原因,未能得到广泛应用。
叠前时间偏移与叠前深度偏移讲解
叠前时间偏移与叠前深度偏移摘要:偏移使倾斜反射归位到它们真正的地下界面位置,并使绕射波收敛,即可以提高空间分辨率。
按所处理的地震资料是否做过水平叠加划分为叠后偏移和叠前偏移两大类。
这里主要讨论叠前偏移。
偏移方法分为时间域和深度域两类,时间偏移技术是基于横向速度变化弱的水平层状介质模型产生的,而深度偏移技术是基于横向变速的真实地质深度模型发展而来的。
这里主要介绍克希霍夫积分法叠前时间偏移、有限差分法叠前时间偏移、Fourier变换法叠前时间偏移三种叠前时间偏移方法。
在叠前深度偏移上面,主要根据其技术的发展历史,现状,及未来趋势进行叙述,并进行了不同偏移技术的成像对比。
关键字:叠前时间偏移叠前深度偏移克希霍夫积分法正文:一、引言偏移使倾斜反射归位到它们真正的地下界面位置,并使绕射波收敛,即可以提高空间分辨率。
按所处理的地震资料是否做过水平叠加划分为叠后偏移和叠前偏移两大类。
偏移方法分为时间域和深度域两类。
时间偏移技术是基于横向速度变化弱的水平层状介质模型产生的,而深度偏移技术是基于横向变速的真实地质深度模型发展而来的。
从当前技术发展的状况看,目前国内应用的叠前偏移技术基本上可以概括为以下两类。
一种是基于波动方程积分解的克希霍夫积分法叠前偏移。
这种技术,在20世纪90年代以前就在研究,目前,随着多年来持续不断地改进和完善,已经成为一种高效实用的叠前偏移方法,它具有高角度成像、无频散、占用资源少和实现效率高的特点,能适应不均匀的空间采样和起伏地表,比较适合复杂构造的成像。
目前国际上有多种较为成熟的积分法叠前成像软件,是当前实际生产中使用的主要叠前深度偏移方法。
一种是基于波动方程微分解的波动方程叠前偏移。
这种技术目前在国内的应用还处于试验阶段。
叠前时间偏移与叠后时间偏移和叠前深度偏移一样,都是基于三大数学工具,即克希霍夫积分、有限差分和Fourier变换。
二、叠前时间偏移技术叠前时间偏移的可行性分为下面三个方面:①实现这种技术所需的软硬件成本合理。
地震资料数字处理课件 6---起伏地表波动方程法叠前深度偏移
基于波动方程定基准面 (Berry Hill, 1979,1984) 的层替代技术一即在进 行波场向上外推时,用 某一层的下伏介质速度 代替该层的速度,以消 除该层与下伏层之间因 速度差异而引起的波动 传播射线的弯曲。
图2 (a)上覆层与下伏层之间的速度差使射线在 在两者之间的界面上折曲。 (b)用下伏层速度 代替上覆层速度消除射线的折曲。
{ 波动方程法: 傅里叶有限差分(FFD)法 分步富里叶(SSF)法 广义屏(PS)法
存在的问题
随着地震勘探的不断发展,油气勘探的重点正转向复杂 地表条件和复杂地质条件的区域:如山地勘探,滩海、沼泽 地区勘探。山地等复杂地表地区的地震资料叠前深度偏移技 术,已受到人们的高度重视。我国东部陆地油气勘探程度的 日趋饱和,促使我国油气勘探的战略重点也正在向西部地形 复杂地区转移,这对地震勘探工作提出了新的挑战。要做好 叠前深度偏移,达到预想的效果,就必须解决好以下几个问 题:(1)基准面问题。现有的偏移程序,大都建立在激发点 和接收点位于同一个水平面上,这与我们需要进行叠前深度 偏移处理地区的实际观测条件不相符合。(2)静校正问题: 叠前深度偏移也是一个叠加的过程,从运动学的概念上来,
解决的办法
要实现从起伏观测面直接进行深度偏移,必须首先 用射线追踪或层析成像法反演出近地表速度再进一步利 用这种速度作深度偏移,替代的一种方法先用近地表速 度作波场延拓,转化到一个平滑的基准面,再用现有的 方式作深度偏移。目前,国内外都在极力研究这个问题。 准确的方法是先用初至层析法求出近地表速度建立起近 地表速度模型,将此速度模型合并到整个总的模型中, 从起伏观测面直接进行深度偏移。
这个基准面上。然后从这个水平基准面开始做常规的偏移。 由于插入的虚拟层的速度值很小,在使用波动方程深度外 推算子进行波场外推时,地震波在这个层中几乎是直上直 下的传播,其横向传播可以忽略不计,即用波动方程的方 式“抵消了”高程校正的时移,当到达实际地层时则恢复 正 常运算。“零速层”的最大优点在于无须对偏移算法做任 何 改动,就可以实现从非水平观测面偏移的过程,达到消除 复杂地表对地下构造的影响的目的。 以二维波动方程为例说明这项技术的基本理论。
叠前时间偏移参数
叠前时间偏移参数叠前时间偏移是地震勘探中一个重要的地球物理处理方法,它是通过在时间上对地震数据进行移位,来矫正地震记录中的时间差异,以更准确地确定地下结构。
本文将介绍叠前时间偏移的基本概念、方法、流程和应用。
一、叠前时间偏移的基本概念1. 概念叠前时间偏移是指在地震勘探中,通过对地震记录进行时间上的移位,将反射波到达时刻对齐,以获得更真实的地下结构信息的处理方法。
2. 时间偏移量叠前时间偏移量指的是在进行叠前时间偏移处理时,将每一道地震记录移位的时间量,通常以毫秒(ms)为单位表示。
3. 叠前和叠后叠前是指在进行地震勘探时,对地震数据进行处理前的状态;叠后是指完成处理后的状态。
叠前时间偏移处理是在叠前状态下进行的,其目的是将地震数据从叠前状态转换为叠后状态。
4. 基本原理地震勘探中,地震记录由源点放射的能量经过地下介质反射、折射和散射而产生。
这些能量到达地表需要经过不同的路径和时间,因此在地震记录中会存在时间差异。
为了得到真实的地下构造,需要将这些时间差异的影响去除。
叠前时间偏移就是通过移位地震记录,将反射波到达时刻对齐,消除时间差异,使得地震记录更加准确。
叠前时间偏移的方法包括常规叠前时间偏移和倾斜叠前时间偏移两种。
常规叠前时间偏移是指在进行时间误差校正时,所采用的传统方法。
它是基于反射面为水平面的假设进行的,采用匹配滤波算法进行处理,处理流程如下:(1)计算每一道地震记录的叠加道:将多道地震记录进行叠加,得到一幅总记录。
(2)设计一个参考地震波:选择参考地震波,通过分析反射系数和波波形的相似性,来确定最佳参考地震波。
(3)进行匹配滤波:将参考地震波与每一道地震记录进行卷积,得到一系列相互对齐的地震记录。
(4)进行叠前时间偏移:将卷积后的地震记录向前或向后移动一定的时间,使得反射波到达时刻对齐,产生像素强度最大的所需时间,即为叠前时间偏移量。
倾斜叠前时间偏移是指在进行时间误差校正时,考虑到地表和反射面之间的倾斜角度,综合考虑地震速度和深度变化等因素的基础上,采取倾斜校正算法进行处理。
煤田三维地震叠前深度偏移技术及其应用
Thet c no o y ofc l D e t c de t i r ton an isa plc to e h l g oa pr s a k p h m g a i d t p i a i ns 3
GAO u n , Y a Ⅵ NG D0NG h u u YU e g O S o h a, P n  ̄i
Ab t a t n t i a e , i c s h ma i g p i c p e a d k y t c n l g fp e- a k d p h- g a i n i D s r c :I h s p p r we d s u st e i g n rn i l n e e h o o y o r -t c e t - s mi r t n 3 o s im i x l r t n Th D r —t c e t - g a i n t c n l g a e l et e c r e ts a i l o i g o e r — e s c e p o a i . e 3 p e sa k d p h mi r to h o o y m y r a i h o r c p ta m n ft e o e z h h l cin p i t fe to o n nd t e sa k n f e r a o a t c i g o e l mmo - e e to ・ o n , i h d c e s st e e t n ft e F e n lz n h h t c n r f c i n p i t wh c e r a e x e t r s e o e l h o h a d g e t m p o e e r s l t n o e s i a a n t e a t a e s c d t r c s i g a p l a i n ,t e n r a l i r v s t e o u i f s im c d t .I h c u ls i mi a a p o e sn nd a p i to s h y h o c b e k n p i t o ma l a l o h s e h o o y r m o e l a l d s l y d h n h t f t e r - t c r a ig on s f s l f u t s f t i t c n l g a e r c e ry ip a e t a t a o p e s a k h t e m i r to e h o o y S h e h o o y o r — t c e t — g a i n c n i r v h b l y o D e s c i — g a i n t c n l g . o t e t c n l g fp e sa k d p h mi r t a mp o e t e a ii f3 s imi m o t e p o a i n i e e t g m i isr cu e n a c i v d a g o e l g c le f c . x l r to n d t c i n - tu t r sa d h sa h e e o d g o o i a fe t n Ke r s c a il ; D es c ; r - tc e t ir t n a p i ai n y wo d : o l ed 3 s imis p e sa k d p h m g ai ; p l to f o c