【奥赛】小学数学竞赛:工程问题(二).教师版解题技巧 培优 易错 难
【精品原创】六年级奥数培优教程讲义第10讲-一般工程问题(教师版)
第10讲 工程问题了解工作量、工作时间及工作效率的意思;能够从题目中找出工作量、工作时间及工作效率;理解三者之间的关系,并用三者关系解题。
工程问题指的是与工程建造有关的数学问题。
然而其内容已不仅是工程方面的,还包括水管注水、行路等许多方面。
工程问题常涉及到工作量、工作效率和工作时间,且这三者之间具有如下关系式: 工作量=工作效率×工作时间工作时间=工作量÷工作效率工作效率=工作量÷工作时间工作量指工作的多少,它可以是全部工作量,一般用单位“1”表示;也可是部分工作量,常用分数表示。
例如,工程的一半表示成12,工程的三分之一表示成13。
工作效率指工作的快慢,也就是单位时间里所干的工作量。
工作效率的单位是一个复合单位,用“工作量/天”或“工作量/时”等表示。
但在不引起误会的情况下,一般不写工作效率的单位。
工程问题可分为两类:一类是已知具体工作量,另一类是未给具体工作量。
在解答工程问题时,我们要遵循以下原则:一是工作量没有具体给出的,可设工作量为单位“1”;二是由于工作总量为“1”,那么,参与这项工作的每个人(队)单独做的工作效率可用此人(队)单独做的工作时间的倒数表示。
知识梳理教学目标考点一:用“组合法”解工程问题在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径例1、一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的7 30,乙队单独完成全部工程需要几天?【解析】此题已知甲、乙两队的工作效率和是115,只要求出甲队或乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730-115×3=130,从而求出甲队的工作效率。
小学奥数6-3-4 工程问题(二).专项练习及答案解析
1. 熟练掌握工程问题的基本数量关系与一般解法;2. 工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;3. 根据题目中的实际情况能够正确进行单位“1”的统一和转换;4. 工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是解决工程应用题的关键。
一. 工程问题的基本概念定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:① 具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;② 在理解、掌握分数的意义和性质的前提下灵活运用;③ 学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④ 学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.知识精讲教学目标工程问题(二)例题精讲模块一、工程问题——变速问题【例 1】 甲打一篇文稿,打完一半后吃晚饭,晚饭后每分钟比晚饭前多打32个字.前后共打50分钟,前25分钟比后25分钟少打640个字.文稿一共( )字.【考点】工程问题 【难度】3星 【题型】解答 、【关键词】走美杯,三年级,初赛,四年级【解析】 由“前25分钟比后25分钟少打640个字”,可知:多打这640个字需要的时间是:640÷32=20(分钟),那么就知饭前用了30分钟,饭后用了20分钟,如果这640个字全部用饭前的速度打,则需要10分钟,故可知饭前的速度是64个字每分钟,饭后的速度是96个字每分钟,则文稿一共有:64×30+96×20=3840个字。
小学六年级数学培优提升 第十课 工程问题 二
第十课 工程问题 二一、真题练习1、 一件工作,甲单独完成需要8天,乙的工作效率是甲的2倍,两人同时合作,几天能完成这件工作?2、 一项工程,甲队独做要20天完成,乙队独做要5天能完成全工程的61。
现由两队合做,多少天可以完成?3、 修一条水渠,甲队3天可以修全长的101,乙队单独修20天可以修完,如果两队合修,多少天可以修完?4、 一条公路长1500米,单独修好甲要15天,乙要10天,两队合修需几天才能完成?5、 师徒共同完成一件工作,徒弟独做20天完成,比师傅多用4天完成,如果师徒合作需几天完成?二、能力提升解题思路:1、有些工程题中,工作效率、工作时间和工作总量三者之间的数量关系很不明显,这时我们就可以考虑运用一些特殊的思路,如综合转化、整体思考等方法来解题。
2、周期工程问题中,工作时工作人员(或物体)是按一定顺序轮流交替工作的。
解答时,首先要弄清一个循环周期的工作量,利用周期性规律,使貌似复杂的问题迅速地化难为易。
其次要注意最后不满一个周期的部分所需的工作时间,这样才能正确解答。
(一)例题讲解例1、甲、乙两人合作加工一批零件,8天可以完成。
中途甲因事停工3天,因此,两人共用了10天才完成。
如果由甲单独加工这批零件,需要多少天才能完成?解析:从题中得知,由于甲停工3天,致使甲、乙两人多做了(10-8=)2天。
由此可知,甲3天的工作量相当于这批零件的2÷8=1/4。
得出甲需要3÷[(10-8)÷8]=12(天)例2、一项工程,甲单独做需要12小时,乙单独做需要18小时。
若甲做1小时后乙接替甲做1小时,再由甲接替乙做1小时……两人如此交替工作,问完成任务时需共用多少小时? 解析:此为周期工程问题。
1个周期中甲、乙分别工作1小时,周期效率为)181121(+,13617)181121( =+÷,即7个完整的工作周期后,还剩361,而后轮到甲继续做,用了31121361=÷小时。
5工程问题(二)小学六年级数学奥数讲座共30讲含答案-(5)
5工程问题(二)小学六年级数学奥数讲座共30讲含答案-(5)小学数学奥数基础教程(六年级)本教程共30讲第5讲工程问题(二)上一讲我们讲述的是已知工作效率的较简单的工程问题。
在较复杂的工程问题中,工作效率往往隐藏在题目条件里,这时,只要我们灵活运用基本的分析方法,问题也不难解决。
例1 一项工程,如果甲先做5天,那么乙接着做20天可完成;如果甲先做20天,那么乙接着做8天可完成。
如果甲、乙合做,那么多少天可以完成?分析与解:本题没有直接给出工作效率,为了求出甲、乙的工作效率,我们先画出示意图:从上图可直观地看出:甲15天的工作量和乙12天的工作量相等,即甲5天的工作量等于乙4天的工作量。
于是可用“乙工作4天”等量替换题中“甲工作5天”这一条件,通过此替换可知乙单独做这一工程需用20+4=24(天)甲、乙合做这一工程,需用的时间为例2 一项工程,甲、乙两队合作需6天完成,现在乙队先做7天,然后么还要几天才能完成?分析与解:题中没有告诉甲、乙两队单独的工作效率,只知道他们合作们把“乙先做7天,甲再做4天”的过程转化为“甲、乙合做4天,乙再单独例3 单独完成一件工作,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。
如果甲、乙二人合做2天后,剩下的继续由乙单独做,那么刚好在规定时间完成。
问:甲、乙二人合做需多少天完成?分析与解:乙单独做要超过3天,甲、乙合做2天后乙继续做,刚好按时完成,说明甲做2天等于乙做3天,即完成这件工作,乙需要的时间是甲的,乙需要10+5=15(天)。
甲、乙合作需要件工作,要用多少天才能完成?分析与解:把甲、乙、丙三人每人做一天称为一轮。
在一轮中,无论谁先谁后,完成的总工作量都相同。
所以三种顺序前面若干轮完成的工作量及用的天数都相同(见下图虚线左边),相差的就是最后一轮(见下图虚线右边)。
由最后一轮完成的工作量相同,得到练习51.甲、乙二人同时开始加工一批零件,每人加工零件总数的一半。
小学数学奥数解题技巧-三到六年级-解工程问题的方法
【例题】
【点拔】 一般解法:
用解工程问题的方法解:如果把这批零件的总数作为一项“工 程”,以1表示,则这个工厂计划
工程问题是研究工作量、工作效率和工作时间三者之间关系 的问题。这三者之间的关系是: 工作效率×工作时间=工作量 工作量÷工作时间=工作效率 工作量÷工作效率=工作时间 根据上面的数量关系,只要知道三者中的任意两种量,就可 求出第三种量。 由于工作量的已知情况不同,工程问题可分为整数工程问题 和分数工程问题两类。在整数工程问题中,工作量是已知的 具体数量。解答这类问题时,只要按照上面介绍的数量关系 计算就可解题,计算过程中一般不涉及分率。在分数工程问 题中,工作量是未知数量。解这类题时,也要根据上面介绍 的数量关系计算,但在计算过程中要涉及到分率。 (四)用份数法解工程问题
【例题】甲、乙两地相距487千米。李华驾驶摩托车从甲地到乙 地,需要1小时;王明骑自行车从乙地到甲地需要3小时。照这 样的速度,两人分别从两地同时相向出发,经过几小时在途中 相遇?
【点拔】 一般解法:
用解工程问题的方法解:把全程看作1。李华驾驶摩托车从 甲地到乙地需要1小时,李华的速度就是1;王明骑自行车从乙 地到甲地需要3小时,王明每1小时要行全程的
【例题】师、徒二人共同加工一批零件,需要4小时完成。师 傅单独加工这批零件需要5小时完成。师、徒二人共同加工完 这批零件时,徒弟加工了30个。这批零件有多少个?
【点拔】 从时间差考虑,师、徒共同加工完的时间与师傅单独加工完的时间 相差5-4=1(小时)。这说明师傅1小时加工的零件数等于徒弟4小时加 工的零件数。 所以,师傅5小时加工的零件就是这批零件的总数: 30×5=150(个)
【例题】一份稿件需要打字,甲、乙两人合打10天可以完成。甲单 独打15天可以完成。乙单独打需要几天完成?
小升初数学奥赛专题:工程问题
工程问题一、知识要点:工程问题指做一件工作或完成工程建设有关的数学问题。
解题时首先将全部工程看作单位“1”,再求工作效率,如:加工一批零件,小王8小时可以完成任务,那么他每小时完成任务的几分之几?2小时呢?4小时呢?工程问题中的几个基本关系式:(1)工作总量=()×()(2)工作效率=()÷()(3)工作时间=()÷()二、知识运用典型例题例1:(1)一段公路长30千米。
甲队单独修10天完成,乙队单独修15完成。
两队合修几天可以完成?(2)如果将上题:去掉“长30千米”这个条件,还能不能解答呢?题目变为:修一段公路,甲队单独修10天完成,乙队单独修15完成。
两队合修几天可以完成?例2:一项工程,甲队单独干,15天可以完成;问甲队每天完成这项工程的几分之几?5天完成这项工程的几分之几?例3:一段路,甲队单独修90天完成,乙队单独修60天可以完成,现在甲乙合修,多少天可以完成?例4:一项工作,小明单独做15小时可以做完,小华单独做10小时可以做完。
小明先做了3小时,余下的由小华完成。
问小华做了几小时?例5:甲乙合做一件工作要15天才能完成,现在甲乙合做10天后,再由乙独做6天,还剩下这件工作的110,甲单独完成这件工作要多少天呢?三、知识运用课堂训练1、(1)一项工程小王独立做10天完成,平均每天完成( )。
5天完成( )。
(2)一项工程小王每天完成101,5天可以完成( ),( )天可以完成全部工程。
2、小思带一些钱,如果只买上衣可买8件,只买裤子可买10条,现已经买了一条裤子,余下的钱配套买,还可以买几套衣服?3、小李和老李两人分别从A 、B 两地同时相向而行,小李2小时行了全程的12,老李2小时行了全程的13,他们出发后几小时相遇?4、一项工程,甲队单独做需要18天,乙队单独做需要24天。
如果两队合作8天后,剩下的工程有甲队单独做,甲队还要做多少天?课后训练等级1、一项工程,甲队单独做12天完成,乙队单独做15天完成。
小学奥数趣味学习《工程问题》典型例题及解答
小学奥数趣味学习《工程问题》典型例题及解答工程问题主要研究工作量、工作效率和工作时间三者之间的关系。
这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。
数量关系:工作量=工作效率×工作时间工作时间=工作量÷工作效率工作时间=工作总量÷(甲工作效率+乙工作效率)解题思路和方法:解答工程问题的关键是把工作总量看作单位“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。
例题1:一项工程,甲队独做要12天完成,乙队独做要15天完成,两队合做4天可以完成这项工程的()。
解:1、本题考察的是两个人的工程问题,解决本题的关键是求出甲、乙两队的工作效率之和。
进而用工作效率×工作时间=工作量。
2、甲队的工作效率为:1÷12=1/12,乙队的工作效率为:1÷15=1/15,两队合做4天,可以完成这项工程的(1/12+1/15)×4=3/5。
例题2:一项工程,甲、乙两队合作30天完成。
如果甲队单独做24天后,乙队再加入合做,两队合做12天后,甲队因事离去,由乙队继续做了15天才完成。
这项工程如果由甲队单独做,需要多少天完成?解:我们可以将“甲队单独做24天后,乙队再加入合做,两队合做12天后,甲队因事离去,由乙队继续做了15天才完成”转化为“甲、乙两队合做27天,甲再单独做9天”,由此可以求出甲9天的工作量为:,甲每天的工作效率为:,这项工程如果由甲队单独做,需要。
例题3:有一项工程,甲单独做需要6小时,乙单独做需要8小时,丙单独做需要10小时,上午8时三人同时开始,中间甲有事离开,如果到中午12点工程才完工,则甲上午离开的时间是几时几分?解:1、根据题意,知道了甲乙丙的工作时间可求出相应的工作效率。
冀教小学奥数工程问题2
冀教小学奥数工程问题2
根据您的要求,我将为您撰写一份标题为“冀教小学奥数工程问题2”的文档。
以下是文档的内容:
冀教小学奥数工程问题2
问题描述
冀教小学奥数工程是一个重要的研究项目,但在实施过程中可能会遇到一些问题。
下面列出了一些常见的问题:
1. 学生参与度低:有些学生对奥数工程缺乏兴趣,导致参与度低,影响研究效果。
2. 教学资源不足:有些学校在开展奥数工程时可能面临教材、设备等资源不足的问题。
3. 缺乏培训支持:部分老师对奥数教学方法和技巧了解不多,缺乏相应的培训支持。
解决方案
为解决上述问题,可以采取以下措施:
1. 提高兴趣:通过增加有趣的奥数题目、设置竞赛等活动,激发学生的研究兴趣。
2. 加强资源投入:学校可以增加购买奥数教材、数学器材等资源的投入,提供更好的研究环境。
3. 提供培训支持:学校可以邀请专业的奥数教师进行培训,提升教师的教学水平。
结论
冀教小学奥数工程是一个有潜力的研究项目,但在实施过程中需要克服一些问题。
通过提高学生参与度、加强教学资源投入和提供培训支持,可以改善奥数工程的效果,帮助学生更好地研究和掌握数学知识。
以上就是关于“冀教小学奥数工程问题2”的文档内容。
如有需要,请随时联系我,我将竭诚为您提供帮助。
谢谢!。
奥赛小学教育数学竞赛:工程问题二.教师版解题技巧培优易错难
工程问题(二)教课目的娴熟掌握工程问题的基本数目关系与一般解法;工程问题中常出现独自做,几人合作或轮番做,剖析时必定要学会分段办理;依据题目中的实质状况能够正确进行单位“1的”一致和变换;工程问题中的常看法题方法以及工程问题算术方法在其余种类题目中的应用.知识精讲工程问题是小学数学应用题教课中的要点,是分数应用题的引申与增补,是培育学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量当作单位“1”的应用题,它拥有抽象性,学生认知起来比较困难。
在教课中,让学生成立正确观点是解决工程应用题的要点。
一.工程问题的基本观点定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间互相关系的问题。
工作总量:一般抽象成单位“1”工作效率:单位时间内达成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,一定做到以下几方面:①具备整数应用题的解题能力,解决整数应用题的基本知识,如观点、性质、法例、公式等宽泛应用于分数、百分数应用题;②在理解、掌握分数的意义和性质的前提下灵巧运用;③学会画线段表示图.线段表示图能直观地揭露“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,能够帮助我们在复杂的条件与问题中理清思路,正确地进行剖析、综合、判断和推理;④学会多角度、多侧面思虑问题的方法.分数、百分数应用题的条件与问题之间的关系变化无常,单靠一致的思路模式有时很难找到正确解题方法.所以,在解题过程中,要擅长掌握对应、假定、转变等多种解题方法,不停地开辟解题思路.三、利用常有的数学思想方法:如代换法、比率法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数目关系,转变出与所求有关的工作效率,最后再利用先前的假定“把整个工程当作一个单位”,求得问题答案.一般状况下,工程问题求的是时间.例题精讲模块一、工程问题——变速问题【例1】甲打一篇文稿,打完一半后吃晚餐,晚餐后每分钟比晚餐前多打32个字.前后共打50分钟,前25分钟比后25分钟少打640个字.文稿一共()字.【考点】工程问题【难度】3星【题型】解答、【要点词】走美杯,三年级,初赛,四年级【分析】由“前25分钟比后25分钟少打640个字”,可知:多打这640个字需要的时间是:640÷32=20(分钟),那么就知饭前用了30分钟,饭后用了20分钟,假如这640个字所有吃饭前的速度打,则需要10分钟,故可知饭前的速度是64个字每分钟,饭后的速度是96个字每分钟,则文稿一共有:64×30+96×20=3840个字。
小学数学竞赛中工程问题应用题的解答方法
小学数学竞赛中工程问题应用题的解答方法. 1.工程问题的基本数量关系是:工作总量=工作效率×工作时间。
解题时,要抓住这一关系,灵活地运用这一数量关系提高解题能力。
2.以工作效率为突破,工作效率是解答工程问题的要点。
如果能直接求出工作效率,再解答其他问题就较容易,如果不能直接求出工作效率,就要仔细分析单独或合作的情况,想方设法求出单独做的工作效率或合作的工作效率。
3.抓住完成工作的几个过程或几种变化,工程问题中常出现单独做,几人合作或轮流做,分析时一定要对应工作每一阶段的工作量、工作时间来确定单独做或合作的工作效率。
4.抓住总题中的工作时间比、工作效率比、工作量比或隐蔽的条件来确定工作效率,或者确定工作效率之间的关系。
一般来说,单独的工作效率或合作的工作效率是解答工程问题的关键。
题1 1998·安徽省小学数学竞赛一块地,甲拖拉机10小时可耕完,乙拖拉机8小时可耕完。
现在这两台拖拉机同时耕1小时20分,剩下的地由甲拖拉机单独耕,还需( )小时耕完。
全解1小时20分=时,甲、乙的工作效率分别为1/10和1/8。
甲、乙合作的工作量是:()×=甲单独耕还需要的时间是:(1-)÷=7(小时)答:还需7小时耕完。
精析这是一道很有代表性的工程问题,在甲、乙工作效率知道以后.只要抓住剩下的工作量,用剩下的工作量除以甲的工作效率就可以了。
题2 1997·江西南昌市小学数学竞赛加工一批零件。
甲、乙合作1小时,完成了这批零件的11/60;乙、丙两人接着生产1小时,又完成了3/20;甲和丙又合作2小时,完成了1/3。
剩下的任务,甲、乙、丙三人合作,还需( )小时完成。
全解甲、乙工作效率和为:甲+乙=乙、丙工作效率和为:乙+丙=甲、丙工作效率和为:甲+丙=甲、乙、丙三人工作效率之和为:甲、乙、丙三人合作剩下的工作所需的时间是:(小时)答:还需小时完成。
精析本题的关键是剩下的由三队合作完成,就要知道三队的工作效率和由题意可知甲与乙、乙与丙、甲与丙韵工作效率和,把三者相加,再除以2,就可求出三队效率之和,进而求出三队合作完成余下任务所需要的时间。
小学奥数五六年级-工程问题(培优讲义)
工程问题 学生姓名 授课日期 教师姓名授课时长知识定位工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是工程应用题的关键。
本节课从始至终都以工程问题的概念来贯穿,目的在于使学生理解并熟练掌握概念。
知识梳理1.工程问题在主要概念定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间的相互关系的问题。
在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量)。
工程问题是小升初的常见考题,题型复杂多变,但是核心不变,即:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;在分数应用题中,经常将工作总量抽象成单位“1”;例如:一项工程,甲5天完成,则甲每天完成全部的几分之几?分析:这道题中,我们将一项工程抽象成单位“1”,5为工作时间,所以每天完成整个工程的1÷5=51,即为所求,同时51也是甲完成这项工作的速度,所以51就是这道题中甲的工作效率。
在解决工程问题时,对于题中已知条件给出的每一个数字或字母表示的具体含义必须在读完题后,清晰明了,然后通过所求与已知的逻辑关系,再进一步求解。
常用方法:列表法,条件转换法,整体法;每一种方法的使用要在具体题目中用心体会。
2.解决工程问题的基本思路(1)工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。
工程问题一般采用这种方法求解。
(2)先求出独做的队或个人的工作效率,然后用工作总量“1”除以一个队或个人的工作效率,就可以求出一个队或个人独做的工作时间。
(3)求剩余部分的工作量完成的时间。
六年级奥数工程问题(含答案)
工程问题知识框架一、基本概念(1)工作总量完成某一项工程所需的所有工作的数量和,常用“1”来表示.(2)工作时间(3)工作效率单位时间内所完成的工作量二、基本关系工作量= 工作效率×工作时间【提示】三者之间的关系,可以类比路程、速度和时间的关系.三、常用工具和方法(1)基本关系(2)整体化归思想(3)对比分析的方法重难点(1)重点:利用整体化归思想和对比分析方法解决较为复杂的工程问题(2)难点:复杂问题中整体化归思想、比例思想、方程思想与对比分析方法的综合运用例题精讲一、根据基本关系解题【例 1】一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【巩固】一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【例 2】一项工程,甲队单独完成需40天。
若乙队先做10天,余下的工程由甲、乙两队合作,又需20天可完成. 如果乙队单独完成此工程,则需______天.【巩固】一项工程,甲队单独做20天可以完成,甲队做了8天后,由于另有任务,剩下的工作由乙队单独做15天完成.问:乙队单独完成这项工作需多少天?二、运用整体化归思想解题【例 3】有两个同样的仓库,搬运完一个仓库的货物,甲需6小时,乙需7小时,丙需14小时。
甲、乙同时开始各搬运一个仓库的货物。
开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完。
则丙帮甲小时,帮乙小时。
【巩固】一池水,甲、乙两管同时开,5小时灌满;乙、丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲、丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?【例 4】一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的112倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有712的人去甲工地.其他工人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天,那么这批工人有多少人?【巩固】甲、乙、丙三队要完成A,B两项工程,B工程的工作量是A工程工作量再增加14,如果让甲、乙、丙三队单独做,完成A工程所需要的时间分别是20天,24天,30天.现在让甲队做A工程,乙队做B工程,为了同时完成这两项工程,丙队先与乙队合做B工程若干天,然后再与甲队合做A工程若干天.问丙队与乙队合做了多少天?【例 5】一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作,请问:完成任务时,共用了多少小时?【巩固】蓄水池有甲、丙两条进水管和乙、丁两条排水管,要灌满一池水,单开甲管需3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,现在池内有16的水,若按甲、乙、丙、丁、甲、乙、丙、丁……的顺序轮流打开1小时,问多少时间后水开始溢出水池?三、运用对比分析方法解题【例 6】一项工程,甲、乙合作需要20天完成,乙、丙合作需要15天完成,由乙单独做需要30天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?【巩固】一项工程,甲、乙合作需要9天完成,乙、丙合作需要12天,由丙单独做需要36天完成,那么如果甲、丙合作,完成这项工程需要多少天?【例 7】一项工程,如果甲先做5天,那么乙接着做20天可以完成;如果甲先做20天,那么乙接着做8天可以完成.如果甲、乙合作,那么多少天可以完成?【巩固】一件工作甲先做6小时,乙接着做12小时可以完成;甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?【例 8】一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天. 问这项工程由甲独做需要多少天?【巩固】抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的15.如果3人合抄只需8天就完成了,那么乙一人单独抄需要多少天才能完成?【例 9】放满一个水池,如果同时打开1,2,3号阀门,则20分钟可以完成;如果同时打开2,3,4阀门,则21分钟可以完成;如果同时打开1,3,4号阀门,则28分钟可以完成;如果同时打开1,2,4号阀门,则30分钟可以完成.问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?【例 10】某工程如果由第一、二、三小队合干需要12天才能完成;如果由第一、三、五小队合干需要7天才能完成;如果由第二、四、五小队合干需要8天才能完成;如果由第一、三、四小队合干需要42天才能完成.那么这五个小队一起合干需要多少天才能完成这项工程?【例 11】规定两人轮流做一个工程,要求第一个人先做1个小时,第二个人接着做一个小时,然后再由第一个人做1个小时,然后又由第二个人做1个小时,如此反复,做完为止.如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时?【巩固】公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙、……的顺序轮流打开1小时,恰好在打开水管整数小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【例 12】一项工程,甲、乙合作3125小时可以完成,若第1小时甲做,第2小时乙做,这样交替轮流做,恰好整数小时做完;若第1小时乙做,第2小时甲做,这样交替轮流做,比上次轮流做要多13小时,那么这项工作由甲单独做,要用多少小时才能完成?【巩固】甲、乙、丙三人完成一件工作,原计划按甲、乙、丙顺序每人轮流工作一天,正好整数天完成,若按乙、丙、甲的顺序每人轮流工作一天,则比原计划多用12天;若按丙、甲、乙的顺序每人轮流工作一天,则比原计划多用13天.已知甲单独完成这件工作需10.75天.问:甲、乙、丙一起做这件工作,完成工作要用多少天?四、综合运用多种思想解题【例 13】一批零件平均分给甲、乙两人同时加工,两人工作5小时,共完成这批零件的23。
小学奥数:工程问题(经典版)
工程问题1、重点难点考点分析工程问题的实质就是工作量、工作时间和工作效率之间的关系问题。
工程问题的解题思路和行程问题相似,需要找出三个基本量之间的关系,通过三个基本量之间的换算找出解题方法。
2、知识框架解决工程问题首先弄清行程问题中这三个量的关系:工作量=时间×效率 (a=t×e)时间=工作量÷效率 (t=a÷e)效率=工作量÷时间 (e=a÷t)3、概念解析工作量:工程问题中的工作量是工程问题的总体量,在未知情况下,可假设工作量为1 ;时间:工程问题中的时间是工程问题的因子量;效率:和时间一样,效率也是工程问题的因子量,其地位和形式与时间类似。
4、例题讲解甲、乙两个工程队共同完成一项工程需18天,如果甲队干3天、乙队干4天则完成工程的1/5。
问:甲、乙两队独立完成该工程各需多少天?打印一份稿件,甲单独打需要50分完成,乙单独打需30分完成。
现在甲单独打若干份后,乙接着打完,共42分。
问:甲打了稿件的几分之几?有甲、乙两根水管,分别同时给两个大小相同的水池A和B注水,在相同的时间内甲、乙两管注水量之比是7:5。
经过2⅓时,A、B两池中已注入水之和恰好是一池水。
此后,甲管的注水速度提高25%,乙管的注水速度降低30%。
当甲管注满A池时,乙管还需多长时间注满B池?一项工程,甲,乙两队合作30天完成.如果甲队单独做24天后,乙队再加入合作,两队合作12天后,甲队因事离去,由乙队继续做了15天才完成.这项工程如果由甲队单独完成,需要多少天李师傅加工540个零件。
他前一半时间每分生产8个,后一半时间每分生产12个,正好完成任务。
当他完成任务的45%时,恰好是上午9点。
张师傅开始工作的时间是几点几分几秒?师徒三人合作承包一项工程,8天能够全部完成。
已知师傅单独做所需的天数与两个徒弟合作所需的天数相同。
师傅与徒弟甲所需的天数的4倍与徒弟乙单独完成这项工程所需的天数相同。
小学奥数工程问题公式与解题方法
小学奥数工程问题公式与解题方法(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间。
(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。
特别是假定工作总量为几个工作时间的ZUI小公倍数时,分数工程问题能够转化为比较简单的整数工程问题,计算将变得比较简便。
)例1.一件工作,甲做9天能够完成,乙做6天能够完成.现在甲先做了3天,余下的工作由乙继续完成。
乙需要做几天能够完成全部工作?解一:9与6的ZUI小公倍数是18。
设全部工作量是18份。
甲每天完成2份,乙每天完成3份。
乙完成余下工作所需时间是(18-2×3)÷3=4(天)解二:甲与乙的工作效率之比是6∶9=2∶3甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天)。
【篇二】有甲、乙两项工作,张师傅单独完成甲工作要9天,单独完成乙工作要12天.王师傅单独完成甲工作要3天,单独完成乙工作要15天.如果两人合作完成这两项工作,ZUI少需要多少天?考点:工程问题.分析:人教版小学六年级奥数题及答案工程问题:根据题意知道,知道王师傅完成甲工作的时间少,张师傅完成乙工作的时间少,所以分配任务时,让王师傅做甲工作,张师傅做乙工作,然后两人再合作干乙工作.解答:解:分配任务,王师傅完成甲工作的时间少,先做3天甲工作,就完成了,张师傅完成乙工作的时间少,先做3天乙工作,点评:解答此题的关键是,根据两人的工作效率,如何实行分配工作,才能用ZUI少的时间完成两项工作.【篇三】某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?答案与解析:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1解得x=6。
六年级上册数学培优奥数讲义-第23讲 工程问题
第23讲 工程问题2知识装备工程问题解题时首先要将全部工程看作单位“1”,再求出单位时间的工作量占工作总量的几分之几,即工作效率。
一般要用到下面三个关系式:工作总量=工作效率×工作时间;工作时间=工作总量÷工作效率;工作效率=工作总量÷工作时间;在解答时要注意以下几点:1、有的工程问题,工作效率往往隐藏在条件中,工作过程也较为复杂,要仔细梳理工作过程、灵活运用基本数量关系。
2、涉及到具体数量的工程问题,关键要找到已知的具体数量与对应分率之间的关系,转化为分数应用题来解答。
3、对一些有循环周期的工程问题,要注意弄清一个周期的工作量,还要注意最后不满一个周期的部分所需的工作时间。
初级挑战1一项工程,甲单独完成需要10天,乙单独完成需要15天。
现在两人合作3天后,剩下的甲继续做,还需要多少天才能完成?思路引领:两人合作的工作效率是( ),3天后剩余工作量是( ),根据工作时间=工作总量÷工作效率即可求出甲的天数。
答案:合作效率:61=151+101,剩下:21=361-1⨯,甲还需做:5=10121÷(天) 能力探索11、一份稿件,甲单独打6小时完成,乙单独打12小时完成。
甲先打4小时,剩下的甲、乙合作,还需要几小时完成?答案:剩下:1-31461=⨯,还需要:34)121+61(31=÷(小时) 2、制作一批零件,甲车间与乙车间一起做只要8天就能完成。
现在两人合作2天后,剩下的甲车间单独做还需要12天。
那么甲车间单独制作这批零件需要多少天? 答案:剩下:1-43281=⨯,甲效率:1611243=÷ 甲车间单独完成:161611=÷(天)初级挑战2一项工程,甲、乙两人合作,36天完成,乙、丙两人合作,45天完成,甲、丙两人合作,60天完成。
甲、乙、丙独做,各需多少天完成?思路引领 :甲、乙合作工作效率和为( );乙、丙合作工效效率和为( );甲、丙合作工作效率和为( )。
【奥赛】小学数学竞赛:工程问题(一).教师版解题技巧 培优 易错 难
工程问题(一)教学目标1.熟练掌握工程问题的基本数量关系与一般解法;2.工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;3.根据题目中的实际情况能够正确进行单位“1”的统一和转换;4.工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.知识精讲工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是解决工程应用题的关键。
一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:①具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;②在理解、掌握分数的意义和性质的前提下灵活运用;③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.例题精讲模块一、工程问题基本题型【例 1】一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的128,乙每天完成总量的121,两人合作每天能完成总量的111282112+=,所以两人合作的话,需要111212÷=天能够完成.【答案】12【例 2】一项工程,甲单独做需要30天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的130,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111123020-=,所以乙单独做112020÷=天能完成.【答案】20【巩固】一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【考点】工程问题【难度】1星【题型】解答【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的121,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111122128-=,所以乙单独做28天能完成.【答案】1 28【例 3】甲乙两名打字员,打字速度一样快,甲30分钟打了A材料的14,乙40分钟打了B材料的27。
小学奥数工程问题罕见题型汇总
第九讲:工程问题(二)工程问题,究其实质是运用分数应用题的量率对应关系,即用对应分率表示工作总量与工作效率,这类方法能够称作是一种“ 工程习惯” ,这一类问题称之为“ 工程问题” 。
⑴解题重点是把“一项工程”当作一个单位,运用公式:工作效率×工作时间 =工作总量,表示出各个工程队(人员)或其组合在一致标准和单位下的工作效率。
⑵ 利用常见的数学思想方法,如代换法、比率法、列表法、方程法等。
抛开“ 工作总量” ,和“ 时间”,抓住题目给出的工作效率之间的数目关系,转变出与所求有关的工作效率,最后利用先前的假设“把整个工程当作一个单位”,求得问题答案,一般状况下,工程问题求的是时间。
有的状况下,工程问题其实不表现为两个工程队在“ 修路筑桥、开挖河渠”,甚至会表现为“行程问题” 、“ 经济价钱问题”等等,工程问题不单指一种题型,更是一种解题方法。
利用常见的数学思想方法,如代换法、比率法、列表法、方程法等.抛开“ 工作总量” 和“ 时间” ,抓住题目给出的工作效率之间的数目关系,转变出与所求有关的工作效率,最后再利用先前的假设“ 把整个工程当作一个单位” ,求得问题答案.一般状况下,工程问题求的是时间.【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效 =工时。
(2)用假定工作总量为“ 1”的方法解工程问题的公式:1÷工作时间 =单位时间内达成工作总量的几分之几;1÷单位时间能达成的几分之几=工作时间。
(注意:用假定法解工程题,可随意假定工作总量为 2、3、4、5 。
特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题能够转变为比较简单的整数工程问题,计算将变得比较简易。
)例 1: 甲, 乙两队开挖一条沟渠 . 甲队独自挖要 8天达成 , 乙队独自挖要 12 天达成 . 此刻两队同时挖了几日后 , 乙队调走 , 余下的甲队在 3 天内达成 . 乙队挖了多少天解: 能够理解为甲队先做 3 天后两队合挖的 .=3( 天)例 2: 加工一批部件 , 甲独自做 20 天能够竣工 , 乙独自做 30 天能够竣工 . 现两队合作来达成这个任务, 合作中甲歇息了 2 .5 天 , 乙歇息了若干天 , 这样共 14 天竣工 . 乙歇息了几日解 : 剖析 : 共 14 天竣工 , 说明甲做 (14-2.5) 天, 其他是乙做的 , 用 14 天减去乙做的天数就是乙歇息的天数 .14-=1( 天 )例 3: 一池水 , 甲, 乙两管同时开,5 小时灌满, 乙, 丙两管同时开,4 小时灌满. 此刻先开乙管 6 小时, 还需甲 , 丙两管同时开 2 小时才能灌满. 乙独自开几小时能够灌满解: 剖析 : 把乙先开做 6 小时看作与甲做 2 小时, 与丙做 2 小时, 还有 2 小时, 此刻可理解为甲乙同开 2 小时 , 乙丙同开 2 小时, 剩下的是乙 2 小时放的 .1 ÷=20( 小时)例 4: 某工程 , 甲, 乙合作 1 天能够达成全工程的 . 假如这项工程由甲队独自做 2 天, 再由乙队单独做 3 天 , 能达成全工程的 . 甲 , 乙两队独自达成这项工程各需要几日解 : 剖析 : 能够理解为两队合作 2 天, 余下的是乙 1 天做的 , 乙的工效 ,甲:=12(天)例 5: 一项工程 , 甲先独自做 2 天 , 而后与乙合做7 天 , 这样才能达成全工程的一半. 已知甲, 乙工效的比是 2:3. 假如这项工程由乙独自做 , 需要多少天才能达成解 : 剖析 : 乙的工效是甲工效的 3÷ 2=1.5 倍, 设甲的工效为 x, 乙的工效为 1.5x,(2+7)x+1.5x × 7=,解之得 :x=, 乙工效 1÷ 1.5x =26( 天 )比赛篇:例 1 一项工程,甲队独自做 20天达成,乙队独自做 30天达成 . 此刻他们两队一同做,此间甲队歇息了 3天,乙队歇息了若干天 . 从开始到达成共用了 16天 . 问乙队歇息了多少天?解一:假如 16天两队都不歇息,能够达成的工作量是因为两队歇息时期未做的工作量是乙队歇息时期未做的工作量是乙队歇息的天数是答:乙队歇息了5天半 .例 2 有甲、乙两项工作,张独自达成甲工作要 10天,独自达成乙工作要 15天;李独自达成甲工作要 8 天,独自达成乙工作要 20天 . 假如每项工作都能够由两人合作,那么这两项工作都达成最少需要多少天?解:很显然,李做甲工作的工作效率高,张做乙工作的工作效率高. 所以让李先做甲,张先做乙.设乙的工作量为60份( 15与 20的最小公倍数),张每日达成4份,李每日达成3份.8天,李就能达成甲工作. 此时张还余下乙工作(60-4 ×8)份 . 由张、李合作需要(60-4 ×8)÷( 4+3) =4(天) .8+4=12(天) .答:这两项工作都达成最少需要12天 .练一练:1、一件工作,甲、乙两人合作36天达成,乙、丙两人合作45天达成,甲、丙两人合作要60天达成 . 问甲一人独做需要多少天达成?2、一件工作,甲独做要12天,乙独做要 18天,丙独做要 24天 . 这件工作由甲先做了若干天,而后由乙接着做,乙做的天数是甲做的天数的 3倍,再由丙接着做,丙做的天数是乙做的天数的 2倍,终于做完了这件工作 . 问总合用了多少天?3、某项工作,甲组3人 8天能达成工作,乙组 4人 7天也能达成工作 . 问甲组 2人和乙组 7人合作多少时间能达成这项工作?4、制作一批部件,甲车间要10天达成,假如甲车间与乙车间一同做只需6天就能达成 .乙车间与丙车间一同做,需要8天才能达成 . 此刻三个车间一同做,达成后发现甲车间比乙车间多制作部件2400 个 . 问丙车间制作了多少个部件?5、一项工程 , 甲独做需12 小时 , 乙独做需 18 小时 , 若甲先做 1 小时 , 而后乙接替甲做 1 小时 , 再由甲接替乙做 1 小时 ,两人这样交替工作 , 问达成任务时共用多少小时 ?6、一件工作,甲、乙、丙三人合作需要 1小时,甲、乙合作需要 1小时 20分,甲、丙合作需要1小时 30分. 问甲独做需要多少时间?甲乙丙三人每分钟达成所有工作的1/60,甲乙二人每分钟达成 1/80,甲丙二人每分钟达成1/90,那么甲一人每分钟达成 1/80+1/90-1/60=1/10*(1/8+1/9-1/6)=1/10*(9+8-12)/72=1/10*5/72=1/144 ,则甲独作需 144 分钟即 2 小时 24 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程问题(二)教学目标1.熟练掌握工程问题的基本数量关系与一般解法;2.工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;3.根据题目中的实际情况能够正确进行单位“1”的统一和转换;4.工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.知识精讲工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是解决工程应用题的关键。
一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:①具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;②在理解、掌握分数的意义和性质的前提下灵活运用;③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.例题精讲模块一、工程问题——变速问题【例 1】 甲打一篇文稿,打完一半后吃晚饭,晚饭后每分钟比晚饭前多打32个字.前后共打50分钟,前25分钟比后25分钟少打640个字.文稿一共( )字.【考点】工程问题 【难度】3星 【题型】解答 、 【关键词】走美杯,三年级,初赛,四年级 【解析】 由“前25分钟比后25分钟少打640个字”,可知:多打这640个字需要的时间是:640÷32=20(分钟),那么就知饭前用了30分钟,饭后用了20分钟,如果这640个字全部用饭前的速度打,则需要10分钟,故可知饭前的速度是64个字每分钟,饭后的速度是96个字每分钟,则文稿一共有:64×30+96×20=3840个字。
【答案】3840【例 2】 工厂生产一批产品,原计划15天完成,实际生产时改进了生产工艺,每天生产产品的数量比原计划每天生产产品数量的多10件,结果提前4天完成了生产任务,则这批产品有 件。
【考点】工程问题 【难度】3星 【题型】解答 、 【关键词】希望杯,五年级,一试【解析】 设工厂原计划每天生产产品x 件,则改进生产工艺后每天生产产品的数量为51011x +件。
根据题意有515(10)1111x x =+⨯,解得11x =。
所以这批产品共有11×15=165(件)。
【答案】165件【例 3】 甲、乙两个工程队修路,最终按工作量分配8400元工资.按两队原计划的工作效率,乙队应获5040元.实际上从第5天开始,甲队的工作效率提高了1倍,这样甲队最终可比原计划多获得960元.那么两队原计划完成修路任务要多少天?【考点】工程问题 【难度】3星 【题型】解答 【解析】 开始时甲队拿到840050403360-=元,甲、乙的工资比等于甲、乙的工效比,即为3360:50402:3=;甲提高工效后,甲、乙总的工资及工效比为(3360960):(5040960)18:17+-=.设甲开始时的工效为“2”,那么乙的工效为“3”,设甲在提高工效后还需x 天才能完成任务.有(244):(343)18:17x x ⨯+⨯+=,化简为2165413668x x +=+,解得407x =.工程总量为40547607⨯+⨯=,所以原计划60(23)12÷+=天完成. 【答案】12天【例 4】 甲、乙合作一件工程,由于配合得好,甲的工作效率比单独做时提高110,乙的工作效率比单独做时提高15.甲、乙两人合作6小时,完成全部工作的25,第二天乙又单独做了6小时,还留下这件工作的1330尚未完成,如果这件工作始终由甲一人单独来做,需要多少小时? 【考点】工程问题 【难度】4星 【题型】解答 【关键词】人大附中【解析】 乙的工作效率是:2131(1)653036--÷=,甲的工作效率是:215111(6)(1)53651033+÷-⨯÷+=,所以,单独由甲做需要:113333÷=(小时). 【答案】33小时【巩固】一项工程,甲独做需10天,乙独做需15天.如果两人合做,甲的工作效率就要降低,只能完成原来的45,乙只能完成原来的910.现在要8天完成这项工程,两人合做天数尽可能少,那么两人要合做多少天?【考点】工程问题【难度】4星【题型】解答【解析】因为甲比乙的工作效率高,又要求合做的天数尽可能的少,所以除了两人合作之外,其余工程应由甲单独完成.现设两人合作x天,则甲单独做8-x天,于是得到方程(110×80%+115×90%)×x+110×(8-x)=l,解出x=5.所以,在满足条件下,两人至少要合作5天.【答案】5天【巩固】要发一份资料,单用A传真机发送,要10分钟;单用B传真机发送,要8分钟;若A、B同时发送,由于相互干扰,A、B每分钟共少发0.2页。
实际情况是由A、B同时发送,5分钟内传完了资料(对方可同时接收两份传真),则这份资料有________页。
【考点】工程问题【难度】4星【题型】解答【关键词】希望杯,六年级,一试【解析】没受干扰时传真机的合作工作效率为11910840+=,而实际的工作效率为15,所以这份资料共有910.2()8405÷-=(页)【答案】5天【例 5】甲、乙两人合作清理400米环形跑道上的积雪,两人同时从同一地点背向而行各自进行工作,最初,甲清理的速度比乙快13,中途乙曾用10分钟去换工具,而后工作效率比原来提高了一倍,结果从开始算起,经过1小时,就完成了清理积雪的工作,并且两人清理的跑道一样长,问乙换了工具后又工作了多少分钟?【考点】工程问题【难度】4星【题型】解答【关键词】四中,入学测试,希望杯,六年级,2试【解析】法一:直接求首先求出甲的工作效率,甲1个小时完成了200米的工作量,因此每分钟完成10200603÷=(米),开始的时候甲的速度比乙快13,也就是说乙开始每分钟完成为101(1) 2.533÷+=(米),换工具之后,工作效率提高一倍,因此每分钟完成2.525⨯=(米),问题就变成了,乙50分钟扫完了200米的雪,前若干分钟每分钟完成2.5米,换工具之后的时间每分钟完成了5米,求换工具之后的时间。
这是一个鸡兔同笼类型的问题,我们假设乙一直都是每分钟扫2.5米,那么50分钟应该能扫2.550125⨯=(米),比实际少了20012575-=(米),这是因为换工具后每分钟多扫了5 2.5 2.5-=(米),因此换工具后的工作时间为75 2.530÷=(分钟).法二:其实这个问题当中的400米是一个多余条件,我们只需要根据甲乙两人工作量相同和他们之间的工作效率之比就可以求出这个问题的答案。
我们不妨设乙开始每分钟清理的量为3,甲比他快1 3,甲每分钟可以清理4,60分钟之后,甲一共清理了460240⨯=份的工作量,乙和他的工作总量相同,也是240份,但是乙之前的工作效率为3,换工具后的工作效率为6,和(法一)相同的,利用鸡兔同笼的思想,可以得到乙换工具后工作了(240350)(63)30-⨯÷-=分钟。
【答案】30分钟【例 6】 甲、乙两人同时加工同样多的零件,甲每小时加工40个,当甲完成任务的12时,乙完成了任务的12还差40个.这时乙开始提高工作效率,又用了7.5小时完成了全部加工任务.这时甲还剩下20个零件没完成.求乙提高工效后每小时加工零件多少个?【考点】工程问题 【难度】4星 【题型】解答 【关键词】十三分,入学测试【解析】 当甲完成任务的12时,乙完成了任务的12还差40个,这时乙比甲少完成40个;当乙完成全部任务时,甲还剩下20个零件没完成,这时乙比甲多完成20个;所以在后来的7.5小时内,乙比甲多完成了402060+=个,那么乙比甲每小时多完成607.58÷=个.所以提高工效后乙每小时完成40848+=个.【答案】48个【例 7】 甲、乙两项工程分别由一、二队来完成.在晴天,一队完成甲工作要12天,二队完成乙工程要15天;在雨天,一队的工作效率要下降40%,二队的工作效率要下降10%.结果两队同时完成工作,问工作时间内下了多少天雨?【考点】工程问题 【难度】4星 【题型】解答【解析】 在晴天,一队、二队的工作效率分别为112和115,一队比二队的工作效率高111121560-=;在雨天,一队、二队的工作效率分别为()11140%1220⨯-=和()13110%1550⨯-=,二队的工作效率比一队高3115020100-=.由11:5:360100=知,3个晴天5个雨天,两个队的工作进程相同,此时完成了工程的1113512202⨯+⨯=,所以在施工期间,共有6个晴天10个雨天. 方法二:本题可以用方程的方法,在方程解应用题中会继续出现。
【答案】10个雨天【例 8】 一项挖土万工程,如果甲队单独做,16天可以完成,乙队单独做要20天能完成.现在两队同时施工,工作效率提高20%.当工程完成14时,突然遇到了地下水,影响了施工进度,使得每天少挖了47.25方土,结果共用了10天完成工程.问整工程要挖多少方土?【考点】工程问题 【难度】4星 【题型】解答【解析】 甲、乙合作时工作效率为(116+120)×(1+20%)=27200.则14的工程量需14÷27200=5027 (天),则遇到地下水后,甲、乙两队又工作了10-5027=22027(天).则此时甲、乙合作的工作效率为34÷22027=81880.遇到地下水前后工作效率的差为: 27200-81880=1894400,则总工作量为47.25÷1894400=1100方土.【答案】1100方土【例 9】 甲、乙两个工程队分别负责两项工程.晴天,甲完成工程需要10天,乙完成工程需要16天;雨天,甲和乙的工作效率分别是晴天时的30%和80%.实际情况是两队同时开工、同时完工.那么在施工期间,下雨的天数是 天.【考点】工程问题 【难度】4星 【题型】解答 【关键词】希望杯,六年级,1试【解析】在晴天,甲、乙两队的工作效率分别为110和116,甲队比乙队的工作效率高113101680-=;在雨天,甲队、乙队的工作效率分别为1330%10100⨯=和1180%1620⨯=,乙队的工作效率比甲队高1312010050-=.由于两队同时开工、同时完工,完成工程所用的时间相同,所以整个施工期间,晴天与雨天的天数比为13:8:15 5080=.如果有8个晴天,则甲共完成工程的13815 1.2510100⨯+⨯=,而实际的工程量为1,所以在施工期间,共有8 1.25 6.4÷=个晴天,15 1.2512÷=个雨天.【答案】12个雨天【例 10】一批工人到甲、乙两个工地工作,甲工地的工作量是乙工地的工作量的112倍,上午在甲工地工作的人数是乙工地人数的3倍,下午这批工人中的512在乙工地工作。