分数与除法的关系

合集下载

分数与除法的关系的应用

分数与除法的关系的应用
复习
分数与除法的联系与区别:
分数与除法的联系与区别:
联系
区别
分 分 分 分数是一个
分数 子 数 母 数可以看作
线
两个数相除ቤተ መጻሕፍቲ ባይዱ
除法 被 除 除 除法是一种 除 号 数 运算 数
用分数表示下面除法的商。
7÷9=
—7 9
4÷7=
—4 7
8÷15=
—8 15
5吨÷8吨=
—5 8
例3、小新家养鹅7只,养鸭10只, 养鹅的只数是鸭的几分之几?
求养鹅的只数是鸭的几分之几, 就是求7只是10只的几分之几,把 10看作一个整体,平均分成10份,
每份1只,7只就是这个整体的7
10
根据分数与除法的关系,
7 10
相当于7÷10,所以求养鹅的
只数是鸭的几分之几,可以用
除法计算.
小新家养鹅7只,养鸭10只, 养鹅的只数是鸭的几分之几?
7÷10 =
7 10
路程÷时间=速度
3÷13=
3 (米/分) 13
9块蛋糕,4只加菲猫,每只猫可以 分多少呢?
块数÷只数=每只分的块数
9÷4= 294.25块(块)
咱们每人
咱们每人 可以分多
平均可以 少千克?
分几个? 5÷6=
30÷6= 5(个)
5 (千克)
6
30个桃共 有5千克
共有6只猴子
1÷81=
1 81
答:月球的质量是地球质量的 1 81
(几(几(人2分1分数3)))之之的女男男几几几生生生??分占占人之全全数几班班是?人人女数数生的的
小红买6米红绳编了17个 中国结,平均每个中国结
需要用多少米红绳?
米数÷个数=每个的米数

《分数与除法的关系》教学反思

《分数与除法的关系》教学反思

《分数与除法的关系》教学反思《分数与除法的关系》教学反思1理解与掌握分数与除法的关系及其应用。

不但可以加深对分数意义的理解,而且为后面学习假分数,带分数,分数的基本性质以及比,百分数打下基础。

所以,分数与除法的关系及应用在整个教材中起到了承上启下的重要作用。

执教教师能从整体上把我教材,激励学生积极参与教学活动:问题让学生自己解决;方法让学生自己探索;规律让学生自己发现;知识让学生自己获得;课堂上给了学生充足的思考时间和活动空间,同时学生有了表现自我的机会和成功的体验,培养了学生的自我意识,发挥了学生的主体作用。

整个教学过程,结构严谨,层次分明,符合学生的认知规律,是学生独立地发现并应用了“分数与除法的关系”,发展了学生的思维能力,教学效果显著。

新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的'学习方式,指导建立具有“主动参与,乐于探究,交流合作”特征的多样化的学习方式,从而促进学生知识,技能,情感,态度和价值观的整体发展。

因此,教学学习活动应该是一个生动活泼的,主动的,富有个性的过程,教学的教与学的方式,应该是一个充满生命力的过程。

在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即一块饼的,3块饼的,通过这一过程,学生充分理解了“3÷4=”的算理。

探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现教学的“再创造”,在这其中教师的指导作用是潜在和深远的。

本课中,教师让学生充分动手分圆片,让他们在自己的尝试,探究,思考中,不断产生问题,解决问题,在生成新的问题,给学生留足了操作的空间,因此学生对分数与除法的关系理解得比较透彻。

《分数与除法的关系》教学反思2这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。

让学生通过本节课的学习,初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。

分数和除法的关系

分数和除法的关系

分数和除法的关系
分数与除法的联系:
分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号分数与除法的区别:
1、一般除法是中间的运算过程,分数是结果。

2、除法是运算方法,分数是一种数。

3、除法的运算符号÷,分数的符号/。

分数法则:
分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后能约分的要约分。

分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒数,最后能约分的要约分。

异分母分数相加减,先通分,即运用分数的基本性质将异分母分数转化为同分母分数,改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后能约分的要约分。

《分数与除法的关系》评课稿

《分数与除法的关系》评课稿

《分数与除法的关系》评课稿《分数与除法的关系》这节课,不仅要让学生掌握分数与除法之间直观的位置关系,还要在分数意义中理解分数与除法的区别与联系,这是教学目标所赋予本节课要完成的教学任务。

本节课围绕教学目标,授课者实施了有效教学活动,让学生在活动中不知不觉、轻松自如的获取了新知,提高了解决问题的能力。

一、导课有法课始,用看分数猜谜语的方式激发学生学习兴趣,调动学生学习的胃口,接着复习分数的意义、除法,出现分数与平均数、除法与平均数的相互关系,进而通过平均数将分数与除法连接起来,导出课题,“分数与除法之间到底有什么关系”呢?可谓顺其自然,水到渠成。

二、寻线拾联本节课以分数意义的探究为主线,深入理解分数与除法的联系。

分数与除法的最根本联系就在于分数的意义,所以在教学设计上以分数意义的理解为基础,在此之上先联系整数除法,逐步深入,在深入中慢慢体会掌握二者之间的关系,更从根本意义上接纳二者的联系。

三、合作学习学习新课前,教师先“温故”。

设计了几道整数除法题,意在帮助学生回忆起:把一个数平均分成几份,求每一份是多少,用除法。

接着出示1÷3的问题,让学生动手画一画,从分数的意义出发感受到,把1米长的毛线平均分成3份,其中的一份就是三分之一。

在此基础上探讨3÷4,有了前面的经验,学生再次动手操作就相对简单了也好理解了。

学生在积极的讨论、合作、交流、辨析中,互相激发灵感,探索分数的意义,归纳出分数与除法的关系,激发了学习的热情和动力。

四、解决问题光说不练是假把式。

为帮助学生进一步掌握分数与除法的关系,教师设计多种形式的习题,让学生在闯关应用。

学生一次次成功闯关,一次次历练,将所学转化为所用,学用结合,即提高了解决实际问题的能力,又提升了自己的自信心;即拓宽了视野,又增长了智慧。

总之本节课,教学设计严谨、合理、紧凑,教学环节步步为营、环环相扣;教学过程如行云流水,足见教师的教学基本功扎实,驾驭课堂的能力强,方法活。

分数应用题知识点总结(7篇)

分数应用题知识点总结(7篇)

分数应用题知识点总结第1篇分数与除法【知识点】:理解分数与除法的关系:被除数除数=(除数不为0)。

分数的分母不能是0。

因为在除法中,0不能做除数,因此根据分数与除法的关系,分数中的分母相当于除法中的除数,所以分母也不能是0。

运用分数与除法的关系解决实际问题。

用分数来表示两数相除的商。

根据分数与除法的关系把假分数化成带分数的方法。

用分子除以分母,把所得的商写在带分数的整数位置上,余数写在分数部分的分子上,仍用原来的分母作分母。

把带分数化成假分数的方法。

(两种)把带分数分成整数与真分数的和的形式,把整数化成用真分数的分母作分母的假分数,再加上原来的真分数,就可以把带分数转化成假分数。

将整数与分母相乘的积加上分子作分子,分母不变。

分数基本性质【知识点】:理解分数的基本性质。

分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。

联系分数与除法的关系以及商不变的规律,来理解分数的基本性质。

分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。

因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变的。

运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

找最大公因数【知识点】:理解公因数和最大公因数的意义。

两数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数。

找两个数的公因数和最大公因数的方法。

运用找因数的方法先分别找到两个数各自的因数,再找出两个数的因数中相同的因数,这些数就是两个数的公因数;再看看公因数中最大的是几,这个数就是两个数的最大公因数。

会找分子和分母的最大公因数。

补充【知识点】:其他找最大公因数的方法。

找两个数的公因数和最大公因数,可以先找出两个数中较小的数的因数,再看看这些因数中有哪些也是较大的数的因数,那么这些数就是这两个数的公因数。

其中最大的就是这两个数的最大公因数。

例如:找15和50的公因数和最大公因数:可以先找出15的因数:1,3,5,15。

分数的意义与除法的关系

分数的意义与除法的关系

分数的意义与除法的关系分数是我们在数学学习中经常遇到的一个概念,它是由一个除法表达式表示的数值。

在我们生活中,可以说分数无处不在,比如我们常说的百分比、比率等都是分数的一种表现形式。

所以,了解分数的意义以及与除法的关系对我们的数学学习非常重要。

首先,分数的意义就是表示一个整体被等分成若干等份,其中的一份。

分数由分子和分母组成,分母表示整体被等分的份数,而分子则表示我们所关注的部分的份数。

例如,我们常见的1/2表示整体被等分成了两份,而我们关注的是其中的一份。

分数的意义可以通过很多实际的例子来理解。

比如,我们可以考虑一张披萨被等分成了8份,这里分母就是8表示整个披萨的份数。

如果我们拿到了其中的3份,那么我们可以用分数3/8来表示我们所拿到的部分。

同样地,如果我们拿到了所有的8份,那么我们可以用分数8/8来表示整个披萨。

分数的意义还可以通过几何图形来理解。

比如,一个长方形的一部分可以通过将其等分来表示。

其中的一小块可以用分数来表示,分子表示长方形被等分的小块数,分母表示长方形被等分的总块数。

这种几何图形中的分数通常被称为面积分数,可以帮助我们更好地理解分数的意义。

与分数相关的一个重要概念就是除法,因为分数的表示方式就是一个除法表达式。

在分数的定义中,分子表示被关注的部分的数量,而分母表示整体被等分的份数。

这与除法的关系非常明显,分数的表示方式可以看作是对分子与分母进行除法运算的结果。

除法是一种数学运算,可以用来解决等分问题。

当整体被等分成若干份,我们关注其中的一份时,我们就需要用到除法来计算分子。

将整体的数量除以被等分的份数,就可以得到每份的数量,也就是分子。

这种应用使得分数与除法之间产生了密切的联系,并且帮助我们更好地理解分数的意义。

除法与分数还有一个重要的关系是倒数的概念。

倒数就是一个数与1的除法运算的结果,可以用分数来表示。

分数的分子为1,而分母为这个数。

倒数的概念在分数运算中起着重要的作用,可以帮助我们进行分数的互换和运算。

《分数与除法的关系》数学教案

《分数与除法的关系》数学教案

《分数与除法的关系》数学教案《分数与除法的关系》数学教案「篇一」教学目标(1)使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。

(2)运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数。

教学重点、难点重点、难点:理解分数与除法的关系。

教学过程一、复习铺垫1、口述下列分数的意义:1/44/57/92、口答列式计算。

(1)植树节有120名少先队员栽树,平均分成12个小组。

每个小组有多少名少先队员?120÷12=10(人)(2)把12米长的钢管平均截成6段,每段长多少米?12÷6=2(米)归纳:这两题都是将一个数平均分成若干份,求每一份是多少的应用题。

用除法计算。

如果把(2)题的12米改成1米,如何列式?1÷6它的商不能用整数表示,怎么办?这就是我们这节课要学习解决的问题。

出示课题“分数与除法的关系”。

二、教学新知1、教学例2。

把1米长的钢管,平均截成6段,每段长多少米?(1)边作图边讲解。

“1÷6”是把1平均分成6份,求其中1份是多少,根据题意也就是把1米长的钢管看作单位“1”,平均分成6份,表示这样1份的数是1/6,就是每段钢管的长。

所以1÷6=1/6(米)(2)如果把1米长的钢管平均分成4段、5段、7段,每段各是多少米?(口答)2、教学例3。

把3只月饼平均分成4份,每份是多少?教学过程备注(1)读题后指名学生列式:3÷4(2)边讲解边出示图式(3)引导学生说出第一种方法是把3只饼平均分成4份,先把每只饼都平均分成4份,取出其中的1份是1/4只,3块饼有3个1/4就是3/4只。

第二种方法是把3只月饼看作单位“1”,把它平均分成4份,表示这样的1份就是3/4只。

得出3÷4=3/4(只)小结:从上面两例说明,当两个自然数相除,它们的商可以用分数来表示。

3、归纳分数与除法的关系。

(1)观察例2、例3的算式。

1÷6=1/6(米)3÷4=3/4(只)(2)思考分数与除法有什么关系?(3)结论:被除数÷除数=被除数/除数(4)练一练:课本P75第1题。

分数与除法的关系课件

分数与除法的关系课件
除法
除法是一种数学运算,表示将一 个数(被除数)平均分配到另一 个数(除数)中。结果称为商。
分数与除法的基本运算规则
分数加法
两个分数相加,需要先 将分母统一,然后对分
子进行加法运算。
分数减法
两个分数相减,同样需 要先将分母统一,然后 对分子进行减法运算。
分数乘法
一个分数乘以另一个分 数,等于分子与分子相 乘,分母与分母相乘。
示例
$9 div 5 = frac{9}{5} = 1.overline{4}$。
分数与除法在复杂运算中的转换方法
总结词
在复杂的分数和除法运算中,灵 活运用转换方法可以简化计算过
程。
详细描述
在进行加、减、乘、除等运算时, 可以根据需要将分数或除法转换为 另一种形式,以便于计算。
示例
计算$frac{2}{3} div frac{4}{5}$时 ,可以先将除法转换为分数,即 $frac{2}{3} div frac{4}{5} = frac{2}{3} times frac{5}{4} = frac{5}{6}$。
分数除法
一个分数除以另一个分 数,等于分子与分子相 除,分母与分母相除。
分数与除法在数学中的应用
分数的应用
分数在数学、物理、化学等多个领域 都有广泛应用,如表示物体的比例、 速度、概率等。
除法的应用
除法在日常生活和工作中也十分常见 ,如计算平均值、分配物品、求解方 程等。
03
分数与除法的差异
分数与除法的运算优先级
详细描述
例如,将分数$frac{3}{4}$ 转换为除法,即$3 div 4 = 0.75$。
示例
$frac{5}{6} = 5 div 6 = 0.overline{8}$。

《分数与除法的关系》教案范文

《分数与除法的关系》教案范文

《分数与除法的关系》教案范文一、教学目标:知识与技能:1. 学生能够理解分数与除法之间的关系。

2. 学生能够将除法问题转化为分数问题,并进行解答。

3. 学生能够运用分数与除法的关系解决实际问题。

过程与方法:1. 学生通过观察、分析、归纳等活动,探索分数与除法的关系。

2. 学生通过实际操作,提高解决问题的能力。

情感态度价值观:1. 学生培养对数学的兴趣,感受数学与生活的联系。

2. 学生在解决问题过程中,培养合作、交流的能力。

二、教学重点与难点:重点:1. 分数与除法之间的关系。

2. 运用分数与除法的关系解决实际问题。

难点:1. 分数与除法关系的灵活运用。

2. 解决实际问题中的分数与除法运算。

三、教学方法:情境教学法、引导发现法、合作学习法。

四、教学准备:教师准备PPT、教学卡片、实物模型等教学资源。

学生准备笔记本、笔、计算器等学习工具。

五、教学过程:1. 导入:教师通过一个实际问题引入课题,如:“小明有3个苹果,他想把苹果平均分给他的3个朋友,每个人能分到几个苹果?”引导学生思考除法与分数的关系。

2. 新课导入:教师引导学生观察、分析分数与除法之间的关系,如:分数的分子相当于除法的被除数,分数线相当于除法的除号,分母相当于除法的除数。

3. 实例讲解:教师通过具体实例,讲解分数与除法的关系,如:8 ÷4 = 2,可以表示为8/4 = 2。

引导学生理解分数与除法之间的等价关系。

4. 练习巩固:教师给出一些练习题,让学生运用分数与除法的关系进行解答,如:计算12 ÷6,将其表示为分数形式。

5. 拓展与应用:教师引导学生运用分数与除法的关系解决实际问题,如:一个长方形的长是宽的两倍,求长方形的面积。

6. 课堂小结:教师带领学生总结本节课所学内容,强调分数与除法之间的关系,以及如何在实际问题中运用。

7. 布置作业:教师布置一些课后作业,让学生巩固所学知识,如:运用分数与除法的关系解决实际问题。

六年级上册数学试题-奥数拔高专题《分数》全国通用版

六年级上册数学试题-奥数拔高专题《分数》全国通用版

小学六年级奥数拔高专题《分数》1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

一、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。

②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。

③由整数部分和分数部分组成的分数叫做带分数。

2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。

②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

二、分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

2、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。

③异分母分数,先化成同分母分数(分数单位相同),再进行比较。

(依据分数的基本性质进行变化)三、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。

2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。

五、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??,能约分的必须约成最简分数;2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。

(一般保留三位小数。

)3、分数和小数比较大小:一般把分数变成小数后比较更简便。

六、分数的加法和减法 1、真分数加减法(1)同分母分数加、减法(分母不变,分子相加减)(2)异分母分数加、减法(通分后再加减)(3)分数加减混合运算:同整数。

《分数与除法的关系》教学反思_1

《分数与除法的关系》教学反思_1

《分数与除法的关系》教学反思《分数与除法的关系》教学反思1本节课在学习分数的意义基础上进行教学的。

分数的意义是从部分与整体的关系揭示的。

分数与除法可以表示两个整数相除(除数不能为0)的商揭示分数的另一方面的意义,以加深和扩展学生对分数意义的理解,同时为学习假分数以及把假分数化为整数或带分数作准备。

成功之处:夯实分数的意义的第二种情况。

在教学例1时,将除法的'意义与分数的意义联系起来。

实际上把1个蛋糕平均分给3人,求每人分得几个,就是应用整数除法的意义来列算式,只不过结果是依据分数的意义得出来的。

而在例2的教学中,首先通过学生把3块饼平均分给4个小朋友,每个小朋友分几块,也是应用平均分的除法意义列出算式,然后让学生实际分一分,学生通过动手操作得出三种不同的分法:一是把第1个饼平均分成4份,每个小朋友分得1/4块,再把第2、3个饼同样均分,最后每人分得3个1/4块,把它们拼在一起,得到1个饼的3/4;第二种是把3个饼摞在一起,平均分成4份,每个小朋友分得3个饼的1/4,拼在一起就是1个饼的3/4;第三种是把每个饼平均分成4份,一共分了12份,把12份平均分给4个小朋友,每个小朋友分3份,也就是3个1/4份,即3/4块。

通过两个例题的教学,明确列式与整数除法的意义相同,在计算时依据被除数÷除数=被除数/除数,不足之处:学生在求一个数是另一个数的几分之几时,列式总是出错,被除数和除数容易颠倒。

改进措施:1.加强求一个数是另一个数的几分之几的列式训练。

2.在教学中还要加强分数意义的两种情况的对比,让学生明确分数不仅表示部分与整体之间的关系,还表示实际数量。

《分数与除法的关系》教学反思2分数与除法的关系的理解与掌握,不但可以加深对分数意义的理解,而且为后面学习假分数、带分数、分数的基本性质以及比、百分数打下基础,所以,分数与除法的关系在整个教材中起到承上启下的重要作用。

新课标指出:“学生的教学学习内容应当是现实的,有意义的,富有挑战性的,这些内容要有利于学生主动地进行观察,猜测,验证,推测与交流等教学活动.”这说明创设有效的学习情境,可以引导学生开展“自主,探索,合作”的学习活动,促进学生主动的参与。

《分数与除法的关系》数学教案(精选7篇)

《分数与除法的关系》数学教案(精选7篇)

《分数与除法的关系》数学教案《分数与除法的关系》数学教案(精选7篇)作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

那么什么样的教案才是好的呢?以下是小编为大家整理的《分数与除法的关系》数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

《分数与除法的关系》数学教案篇1教学目标(1)使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。

(2)运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数。

教学重点、难点重点、难点:理解分数与除法的关系。

教学过程一、复习铺垫1、口述下列分数的意义:1/44/57/92、口答列式计算。

(1)植树节有120名少先队员栽树,平均分成12个小组。

每个小组有多少名少先队员?120÷12=10(人)(2)把12米长的钢管平均截成6段,每段长多少米?12÷6=2(米)归纳:这两题都是将一个数平均分成若干份,求每一份是多少的应用题。

用除法计算。

如果把(2)题的12米改成1米,如何列式?1÷6它的商不能用整数表示,怎么办?这就是我们这节课要学习解决的问题。

出示课题“分数与除法的关系”。

二、教学新知1、教学例2。

把1米长的钢管,平均截成6段,每段长多少米?(1)边作图边讲解。

“1÷6”是把1平均分成6份,求其中1份是多少,根据题意也就是把1米长的钢管看作单位“1”,平均分成6份,表示这样1份的数是1/6,就是每段钢管的长。

所以1÷6=1/6(米)(2)如果把1米长的钢管平均分成4段、5段、7段,每段各是多少米?(口答)2、教学例3。

把3只月饼平均分成4份,每份是多少?教学过程备注(1)读题后指名学生列式:3÷4(2)边讲解边出示图式(3)引导学生说出第一种方法是把3只饼平均分成4份,先把每只饼都平均分成4份,取出其中的1份是1/4只,3块饼有3个1/4就是3/4只。

除法与分数的区别

除法与分数的区别

除法与分数的区别你知道比,分数,还有除法之间的区别是什么吗?下面就跟着店铺一起来看看吧。

比与分数、除法有什么区别比、分数、除法既相互联系,又有区别。

联系:比的前项相当于除法的被除数、分数的分子;后项相当于除法的除数、分数的分母;比号相当于除法的除号、分数的分数线;比值相当于除法的商、分数的分数值。

区别:比指的是两个量之间的关系;除法是一种运算;分数是表示一个实际的数也表示分率。

比、分数、除法之间的关系是小学六年级所学的内容,理解他们之间的关系非常重要,它是解决以求问题的关键所在,在题中一定要理解它的已知条件是一个具体的数还是一个比或分率,将比转化为分率,或将分率转化为比这一点是解题的难点,所以一定要理解比、分数、除法之间的相互联系和区别。

除法除法概念除法是四则运算之一。

已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

两个数相除又叫做两个数的比。

若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c÷b,读作c除以b(或b除c)。

其中,c叫做被除数,b叫做除数,运算的结果a叫做商。

如在10÷5中,被除数为10,除数为5,商为2。

在代数式的书写中,也可以将a÷b简单写作分数形式a/b。

大部分的非英语语言中,c/b还可写成c : b。

英语中冒号的用法请参照比例。

除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。

余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。

商不变性质:被除数和除数同时乘或除以一个非零自然数,商既不变。

除法是乘法的逆运算。

分数 (数学术语)分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。

把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。

分数除法分数除法是分数乘法的逆运算。

分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

《分数与除法关系》五年级数学教案

《分数与除法关系》五年级数学教案

《分数与除法关系》五年级数学教案五年级数学教案《分数与除法关系》篇1一、教材分析“分数与除法的关系”这一教学内容,是小学数学第十册,第五单元中第一小节的授课内容,本节课承接了分数的意义等知识,又为今后学习,单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系,体会量与率的区别十分重要。

二、教学目标本节课的指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。

分数与除法的关系这一小节的目标有以下几点:1、知识目标:是理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。

2、能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。

3、情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。

勇于探索和思考,培养学生转化的思想。

三、课前准备本课材的内容是由以下几部分组成的:第一部分:是将1个物体平均分,来体会除法算式与分数的商的结果之间的联系。

第二部分:是将3个物体来平均分,来体会每份的多少?它的商与除法之间的关系。

第三部分:是本节的升华,总结分数与除法间的关系,归纳字母表示关系式。

第四部分:是教学有关单位名称之间的转化。

本节的重点是理解分数与除法之间的关系。

而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。

本节课我采取利用具体实物,图形相结合的教学手段来进行教学,教学过程的设计采取在大量的数活动和数学信息中感知知识产生和发展的过程。

在教学的进行中,要充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。

《分数与除法的关系》数学教案【7篇】

《分数与除法的关系》数学教案【7篇】

《分数与除法的关系》数学教案【7篇】《分数与除法》教学反思08-26小编为朋友们整理了7篇《《分数与除法的关系》数学教案》,可以帮助到您,就是小编我最大的乐趣哦。

分数除法教案篇一教学目标:1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。

2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

3、能够运用分数除以整数的方法解决简单的实际问题。

教学重点:引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

教学难点:1、探索分数除以整数的计算方法。

2、能够运用分数除以整数的方法解决简单的实际问题。

教学方法:导学教学法创新理念:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。

“学生是数学学习的主人,教师是数学学习的组织者、引导者、合”。

基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。

教具准备:长方形纸、课件。

教学流程:一、创设情境提出问题(1)把一张纸的4/7平均分成2份,每份是这张纸的几分之几?(2)把一张纸的4/7 平均分成3份,每份是这张纸的几分之几?【设计意图:创设分长方形纸这一情境,旨在一上课就把学生带入思考的空间,抓住他们最佳的学习状态。

】二、自主探究小组交流(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)自主学习提示1. 利用手中的的`学习纸,涂一涂,算一算,尝试解决这两个问题。

2. 同桌之间说一说彼此的想法。

3. 有困难的同学,可以借助课本第25页的提示,完成这两个问题。

【设计意图:在本环节教师指导学生自主学习,发挥学生探究主体性,对于多数学生而言教师不要过多提示,主要指导学困生完成探究任务。

】三交流释疑1、初步感知分数除法把一张纸的4/7 平均分成2份,每份是这张纸的几分之几?请同学们拿出图(一)来涂一涂。

交流:为什么要这样涂,每份是这张纸的几分之几呢?还有不同的涂法吗?能根据这个过程列出一个除法算式吗?这个除法算式和以前学的除法有什么不同?这就是这节课我们要学习的分数除法。

《分数与除法的关系》教学设计(含试卷)

《分数与除法的关系》教学设计(含试卷)

《分数与除法的关系》教学设计《分数与除法的关系》教学设计澄迈县第一小学陈晓雯一、教学内容:分数与除法的关系,苏教版教材第44、45页二、教学目标:1.学生结合具体情境,探索并理解分数与除法的关系,会用分数来表示两个整数相除的商。

2.会用分数表示有关单位换算的结果。

三、重点难点:1.理解、归纳分数与除法的关系。

2.用除法的意义理解分数的意义。

四、教具准备:圆片、教学挂图。

五、教学过程:(一)复习(1)把30个苹果平均分给6个同学,每人几个?板书:30÷6=5(个)(2)把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)(二)教学新课1新课导入(1)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)(2)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=(块)(3)1除以3除不尽,结果除了用循环小数,还可以用什么表示?通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。

进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。

( 4)指名让学生把思路告诉大家。

就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。

老师根据学生回答。

(板书:1 ÷ 3 =块)2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。

引出课题:分数与除法的关系2.学习例6 。

( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果能用整数表示出来吗?怎么办?(3)请同学们拿出准备好的圆纸片分一分。

学生交流老师:根据题意,我们可以把什么看作单位“1 ? (把3 块饼看作单位“1”。

分数与除法关系的应用

分数与除法关系的应用

4 4÷7= — ÷ 7
8 8÷15= — ÷ 15 15 15÷8= — ÷ 8
5 5吨÷8吨= — 吨 吨 8
小新家养鹅7只,养鸡10只。养 鹅的只数是鸭的几分之几?
7只 鹅 10只 鸭 1只
1只是10只的 7只是10只的
( 1 ) ) ( 10 ( 7 ) ) ( 10
动物园里有大象9头 动物园里有大象 头,金丝 猴4只。金丝猴的数量是大 只 象的几分之几? 象的几分之几?
想一想
复习
分数与除法的联系与区别: 分数与除法的联系与区别
联系 分 分 分数 子 数 线 除法 被 除 数 除 号
分 母
区别 分数是一个 数可以看作 两个数相除 除法是一种 运算
除 数
被除数
被除数÷除数 被除数÷
= — 除数
用分数表示下面除法的商。 用分数表示下面除法的商。
7 7÷9= — ÷ 9
4÷9= ÷
答:金丝猴的数量是大象的 金丝猴的数量是大多 人。
(2)女生占全班人数的 1)男生占全班人数的 ) ( 3)男生人数是女生 ) ( ) 几分之几? 几分之几? ? 几分之几? 几分之几 人数的几分之几? 人数的几分之几?

分数与除法的关系说课稿4篇

分数与除法的关系说课稿4篇

分数与除法的关系说课稿4篇分数与除法的关系说课稿1一、教材分析“分数与除法的关系”这一教学内容,是学校数学第十册,第五单元中第一小节的授课内容,本节课承接了分数的意义等学问,又为今后学习,单位名称的转化和分数的大小比较等内容做好学问的铺垫,所以让同学很好的把握分数与除法之间的关系,体会量与率的区分非常重要。

二、教学目标本节课的指导思想是以培育同学动手操作力量,创新力量以及收集信息和处理信息的力量,进展同学空间观念。

分数与除法的关系这一小节的目标有以下几点:1、学问目标:是理解并把握分数与除法的关系,知道如何用分数来表示除法算式的商。

2、力量目标:培育同学动手操作的力量,合作沟通的力量,进展同学的规律思维和分析处理问题的力量。

3、情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发觉,不畏困难。

勇于探究和思索,培育同学转化的思想。

三、课前预备本课材的内容是由以下几部分组成的:第一部分:是将1个物体平均分,来体会除法算式与分数的商的结果之间的联系。

其次部分:是将3个物体来平均分,来体会每份的多少?它的商与除法之间的关系。

第三部分:是本节的升华,总结分数与除法间的关系,归纳字母表示关系式。

第四部分:是教学有关单位名称之间的转化。

本节的重点是理解分数与除法之间的关系。

而本节的难点是详细体会每一个商的由来,它详细表示的意义,也就是通过分数与除法之间各部分关系的教学,事实上要将分数的意义在同学的感性熟悉上进行一次升华。

本节课我实行利用详细实物,图形相结合的教学手段来进行教学,教学过程的设计实行在大量的数活动和数学信息中感知学问产生和进展的过程。

在教学的进行中,要充分创设让同学主动探究的学习气氛,设计生动好玩,富有独特的数学活动,在学习中使同学获得有价值的数学,实实在在的学好基础学问,让每个同学通过学都得到不同程度的进展营造民主、和谐、活跃的学习空间,培育同学学习数学的力量。

材料预备:一米长的绳子一条,每个同学预备三个大小相同的圆纸片,水彩笔、直尺等文具。

《分数与除法的关系》教案(精选7篇)

《分数与除法的关系》教案(精选7篇)

《分数与除法的关系》教案(精选7篇)《分数与除法的关系》教案篇1教学内容:教科书第44-45页例6和相应的“试一试”、“练一练”,练习八第1-5题。

教学目标:1、结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除,会用分数表示有关单位换算的结果,能列式解决求一个数是另一个数的几分之几的简单实际问题2、在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

教学重点:探索并理解分数与除法的关系,会用分数表示两个整数相除。

教学难点:会用分数表示有关单位换算的结果能列式解决求一个数是另一个数的几分之几的简单实际问题。

教学对策:引导同学探索并理解分数与除法的关系,并根据分数与除法的关系进一步掌握求一个数是另一个数的几分之几的实际问题的解决。

教学准备:教学光盘; 3个同样的圆形纸片。

教学过程:一、导入1.出示情境图:把4块饼平均分给4个小朋友。

2.你能提出哪些问题?二、新课1.教学例6(1)把刚才出现的题目改为:把3块饼平均分给4个小朋友。

你能提出什么问题?怎样列式?把3块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的?每人分得的不满1块,结果可以用分数表示。

那么,可以用怎样的分数表示3÷4的商呢?请大家拿出3张同样的圆形纸片,把它们看作3块饼,依照题目分一分,看结果是多少?(2)同学操作,了解同学是怎样分和怎样想的。

组织交流,你是怎么分的?(3)小结:把3块饼平均分给4个小朋友,每人分得4/3块。

完成板书。

把题目改为:把3块饼平均分给5个小朋友,每人能分得多少块?3除以5,商是多少?怎样用分数表示?小组交流(4)总结归纳请大家观察上面两个等式,你发现分数与除法有什么关系?被除数÷除数=被除数/除数假如用a表示被除数,用b表示除数,这个关系式可以怎样写?a÷b=a/b讨论:b可以是0吗?(在除法中,0不能作除数;分数中的分母,相当于除法中的除数,所以分母不能是0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5) (5)
先填空,再根据分数和除法的关 系列出算式。
(1)小芳每天睡眠9小时,她一 天睡眠时间占全天的( 9 )。
(24 )
列式:
9÷24=( (294
) )
(2)冬冬看一本85页的故事书,
已经看了48页。看了全书 的( 48 )。
(85 )
列式:
48÷85=( (
48 ) 85)
全课小结
实验小学 吕玲玲
复习
1、 什么叫分数?什么叫分数单位?
2、43 表示把单位“1”平均分成( 4 )份,取这样的
( 3 ) 份的数。
3、43 块饼表示把一块饼平均分成( 4 )块,取这样
的(
3
)
块。也就是一块饼的(
3 4
)。 3 4
的分数
单位是( 1 ),它包含( 3 )个这样的分数单位。
4
复习
4、把6米长的钢管平均分成2段,每段长几米?
▪ 同学们,我们这节课学习了 分数与除法。通过今天的学习, 你有哪些收获?
4 3
) )
9 5
=( 9 )÷( 5 )
3 8
=(
3)÷(
8)
3克=( (10300) )千克 47秒=( (6407) )分
用分数表示各题的商。
1÷8=((81
) )
9÷4=((
9 4
) )
5÷17=((157) ) 23÷15=((1253))
31÷9=( (
31) 9)
在( )里填上分数。
9厘米=(
9
100
)米
59秒=(
59 60
)分
13分=(
13 60
)时
5时=( 5 )日
24
把1米长的彩带平均分成3份, 每份长 (米31。)
1米
把2根1米长的彩带平均分 成3份,每份有2个(13 )米, 是 ( 米2。)
(3)
1米
把一袋重2千克的糖果平均分
给5个小朋友,每人分得这袋 糖果的( 1 ),是( 2 )千克。
一块一块地分,每人每次分得 1 块。 4
一块一块地分,每人每次分得 1 块。 4
一块一块地分,每人每次分得 1 块。 4
3个41
块就是
3 4
块。
3块一起分,每人分得 3块的 1 。 4
3块一起分,每人分得 3块的 1 。 4
1块的 3 4
3块的 1 是 3 块。 44
一块一ቤተ መጻሕፍቲ ባይዱ地分,一共有12个 1 块。 4

还有要补充的吗?
分数与除法的联系与区别:
联系
区别
分数 分子 分数线 分母 分数值 分数是一种数
(不能为0)
除法 被除数 除号 除数 商
(不能为0)
除法是一种运算
试一试 7分米=( (170 ) )米
1米
7分米
( 7)米
(10)
23分=( (6203
)时 )
7÷12=((172) )
4÷3=((
每人分得不满1块,结 果可以用分数表示。
那我们可以用怎样的分数来表示
3÷4的商呢? 3÷4=( (
) )
同桌两人合作,利用3个圆形纸片,动手分分看.
一块一块地分,每人每次分得 1 块。 4
一块一块地分,每人每次分得 1 块。 4
一块一块地分,每人每次分得 1 块。 4
一块一块地分,每人每次分得 1 块。 4
5、把12支铅笔放在3个盒子里,平均每个盒子放 几支?
1÷3=
1 1÷3= 3 (个)
1
答:每人分得 个。
3
例2 把3块月饼平均分给4人,每人 分得多少块?
如何列式?
3÷4=?
每人分得不满1块,结 果可以用分数表示。
那我们可以用怎样的分数来表示
3÷4的商呢? 3÷4=( (
) )
3÷4=?
3÷5=( (
3 5
) )块
3÷4=( (
3 4
) )块
观察上面的两个等式,你发现分数与 除法有什么关系?
3÷5=( (
3 5
) )块
3÷4=( (
3 4
) )块
被除数÷除数=( (
) )
被除数÷除数=( (被除除数数
) )
如果用a表示被除数,b表示除数,
可以写成:
a÷b=( (
a b
)(b≠0)
一块一块地分,一共有12个 1 块。 4
1
1
1
4
4
4
1
1
1
4
4
4
1
1
1
4
4
4
1
1
1
4
4
4
12个 1 块平均分成4份,每份3个 1 块,
也就是4 3 块.
4
4
把3块饼平均分给4个小朋友,
每人分得
3 4
块.
3÷4=( (
3 4
) )块
把3块饼平均分给5个小朋友,
每人分得 ? 块.
你是怎样想的?在小组里交流.
相关文档
最新文档