人教A版高中数学必修二全册全册导学案

合集下载

人教版高中数学必修2全册导学案及答案

人教版高中数学必修2全册导学案及答案

高一数学必修2导学案主备人: 备课时间: 备课组长:1.1.1棱柱、棱锥、棱台的结构特征一、学习目标:1、知识与技能:(1)能根据几何结构特征对空间物体进行分类。

(2)会用语言概述棱柱、棱锥、棱台的结构特征。

(3)会表示有关几何体以及柱、锥、台的分类。

2、过程与方法:(1)通过直观感受空间物体,概括出柱、锥、台的几何结构特征。

(2)观察、讨论、归纳、概括所学的知识。

3、情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象概括能力。

二、学习重点、难点:学习重点:感受大量空间实物及模型,概括出柱、锥、台的结构特征。

学习难点:柱、锥、台的结构特征的概括。

三、使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。

2、要求小班、重点班学生全部完成,平行班学生完成A、B类问题。

3、A类是自主探究,B类是合作交流。

四、知识链接:平行四边形:矩形:正方体:五、学习过程:A问题1:什么是多面体、多面体的面、棱、顶点?A问题2:什么是旋转体、旋转体的轴?B问题3:什么是棱柱、锥、台?有何特征?如何表示?如何分类?C问题4;探究一下各种四棱柱之间有何关系?C问题5:质疑答辩,排难解惑1.有两个面互相平行,其余各面都是平行四边形的几何体是不是棱柱?(举反例说明)2.棱柱的任何两个平面都可以作为棱柱的底面吗?A 例1:如图,截面BCEF 把长方体分割成两部分,这两部分是否是棱柱?B 例2:一个三棱柱可以分成几个三棱锥?六、达标测试A1、下面没有对角线的一种几何体是()A .三棱柱B .四棱柱C .五棱柱D .六棱柱A2、若一个平行六面体的四个侧面都是正方形,则这个平行六面体是()A .正方体B .正四棱锥C .长方体D .直平行六面体B3、棱长都是1的三棱锥的表面积为()A .3B.23C.33D.43B4、正六棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为()A .279cm2B .79cm2C .323cm2D .32cm2B5、若长方体的三个不同的面的面积分别为2,4,8,则它的体积为()A .2B .4C .8D .12C6、一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A .必须都是直角三角形B.至多只能有一个直角三角形C .至多只能有两个直角三角形D.可能都是直角三角形A7、长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为_______________.七、小结与反思:【励志良言】不为失败找理由,只为成功找方法。

人教A版数学必修二第二章第八课时导学案2.2.4

人教A版数学必修二第二章第八课时导学案2.2.4

§2.2.4 平面与平面平行的性质学习目标1. 掌握两个平面平行的性质定理;2. 灵活运用面面平行的判定定理和性质定理,掌握“线线、线面、面面”平行的转化.60~ P 61,找出疑惑之处)复习1:直线与平面平行的性质定理是_____________________________________________.复习2:平面与平面平行的判定定理是_____________________________________________.讨论:如果平面α和平面β平行,那么平面α内的直线与另一个平面内的直线具有什么位置关系?二、新课导学※ 探索新知探究:平面与平面平行的性质定理问题1:如图8-1,平面α和平面β平行,a α⊂.请在图中的平面β内画一条直线b 和a 平行.问题2:在图8-1中,把平行直线,a b 所确定的平面作出来,并且表示为γ.问题3:在你所画的图中,平面γ和平面α、β是相交平面,直线,a b 分别是γ和α、β的交线,并且它们是平行的.根据以上的论述,你能得出什么结论?请把它用符号语言写在下面.问题4:在图8-2中,任意再作一个平面与,αβ都相交,得到的两条交线平行吗?和你上面得出的结论相符吗?你能从理论上证明吗?图8-2新知:两个平面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行.反思:定理的实质是什么?※ 典型例题例1 如图8-3,α∥β,AB ∥CD ,且A α∈,C α∈,B β∈,D β∈.求证:AB CD =.图8-3例 2 已知平面α∥平面β,,AB CD 夹在,αβ之间,,A C α∈,,B D β∈,,E F 分别为,AB CD 的中点,求证:EF ∥α,EF ∥β.(提示:注意,AB CD 的关系)小结:应用两个平面平行的性质定理关键要找到和这两个面相交的平面.※ 动手试试练. 已知平面α∥平面β,,A C α∈,,B D β∈,直线AB 与CD 交于点S ,且8AS =,9BS =,34CD =,⑴当S 在,αβ之间时,CS 长多少?⑵当S 不在,αβ之间时,CS 长又是多少?三、总结提升※ 学习小结1. 平面与平面平行的性质定理及应用;2. 直线与直线、直线与平面、平面与平面平行的相互转换.※ 知识拓展两个平面平行,还有如下结论:⑴如果两个平面平行,则一个平面内的任何直线都平行于另外一个平面;⑵夹在两个平行平面内的所有平行线段的长度都相等;⑶如果一条直线垂直于两个平行平面中的一个,那么这条直线也垂直于另一个平面. ⑷如果一条直线和两个平行平面中的一个相交,那么它和另一个也相交. 学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列命题错误的是( ).A.平行于同一条直线的两个平面平行或相交B.平行于同一个平面的两个平面平行C.平行于同一条直线的两条直线平行D.平行于同一个平面的两条直线平行或相交2. ,m n 是不重合的直线,,αβ是不重合的平面:①m α⊂,n ∥α,则m ∥n②m α⊂,m ∥β,则α∥β③n αβ=,m ∥n ,则m ∥α且m ∥β上面结论正确的有( ).A.0个B.1个C.2个D.3个3. 3个平面把空间分成6个部分,则( ).A.三平面共线B.三平面两两相交C.有两平面平行且都与第三平面相交D.三平面共线或者有两平面平行且都与第三平面相交4. 直线与两个平行平面中的一个平行,则它与另一平面_______________.5. 一个平面上有两点到另一个平面的距离相等,则这两个平面________________. 课后作业1. 如图8-4:S 是平行四边形ABCD 平面外一点,,M N 分别是,SA BD 上的点,且SM AM =NDBN , 求证://MN 平面SDC图8-42. 设,P Q 是单位正方体1AC 的面11AA D D 、面1111A B C D 的中心,如图8-5证明:⑴PQ ∥平面11AA B B ;⑵面1D PQ ∥面1C DB .图8-5C。

人教A版数学必修二 《直线的点斜式方程》 (2)导学案

人教A版数学必修二 《直线的点斜式方程》 (2)导学案

山西省朔州市平鲁区李林中学高中数学 直线的点斜式方程 (2)导学案 新人教A 版必修25. 已知三角形的三个顶点(2,2),(3,2),(3,0)A B C -,求这个三角形的三边所在的直线方程.二、知新例1.已知直线111222:;:l y k x b l y k x b =+=+,试讨论:(1)1l ∥2l 的条件是什么?(2)12l l ⊥的条件是什么?变式1:判断下列各对直线是否平行或垂直;(1)1211:3,:222l y x l y x =+=- (2)1253:,:35l y x l y x ==- 2.求经过点(1,2)且与直线23y x =-平行的直线方程.3.求经过点(-2,-2),且与直线35y x =-垂直的直线方程例2.求与直线4350x y -+=垂直,且与坐标轴围成面积为24的直线方程变式:直线l 过点(2,3)P -且与x 轴、y 轴分别交于,A B 两点,若P 恰为线段AB 的中点,求直线l 的方程.三、当堂检测1.直线的方程00()y y k x x -=-( )A.可以表示任何直线B.不能表示过原点的直线C.不能表示与y 轴垂直的直线D.不能表示与x 轴垂直的直线2.方程1y ax a=+表示的直线可能是( )3.若k<0,b<0,则直线y=kx+b 一定不过( )A.第一象限B.第二象限C.第三象限D.第四象限4.已知直线12:,:,l y kx b l y bx k =+=+则可以表示它们的图像的是( )5.直线l :y-3=k(x+1)必经过定点 ;若l 的倾斜角为120°,则l 的纵截距是6.直线l 的倾斜角是直线1y x =+的倾斜角的两倍,且过定点P (3,3),则直线l 的方程为7.k 取不同实数时,方程2kx+y+1-6k=0表示不同的直线,这些直线都过一定点P ,则P 的坐标为8.已知直线l 与直线230x y +=有相同的斜率,且经过点(-1,2),求直线l 的点斜式方程9.已知三角形的三个顶点是A (4,0),B (6,7),C (0,3)求BC 边上的高所在直线的方程10.已知直线l 始终与直线y=2x+3垂直,且与直线y-2=k(x-1)相交,求直线l 的斜截式方程.。

人教A版数学必修二第一章第四课时导学案1.2.3

人教A版数学必修二第一章第四课时导学案1.2.3

§1.2.3 空间几何体的直观图学习目标1. 掌握斜二测画法及其步骤;2. 能用斜二测画法画空间几何体的直观图.16~ P 19,找出疑惑之处)复习1:中心投影的投影线_________;平行投影的投影线_______.平行投影又分___投影和____投影.复习2:物体在正投影下的三视图是_____、______、_____;画三视图的要点是_____ 、_____ 、______.引入:空间几何体除了用三视图表示外,更多的是用直观图来表示.用来表示空间图形的平面图叫空间图形的直观图.要画空间几何体的直观图,先要学会水平放置的平面图形的画法.我们将学习用斜二测画法来画出它们.你知道怎么画吗?二、新课导学※ 探索新知探究1:水平放置的平面图形的直观图画法问题:一个水平放置的正六边形,你看过去视觉效果是什么样子的?每条边还相等吗?该怎样把这种效果表示出来呢?新知1:上面的直观图就是用斜二测画法画出来的,斜二测画法的规则及步骤如下:(1)在已知水平放置的平面图形中取互相垂直的x 轴和y 轴,建立直角坐标系,两轴相交于O .画直观图时,把它们画成对应的x '轴与y '轴,两轴相交于点O ',且使x O y '''∠=45°(或135°).它们确定的平面表示水平面;(2) 已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x '轴或y '轴的线段;(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,长度为原来的一半;(4) 图画好后,要擦去x 轴、y 轴及为画图添加的辅助线(虚线).※ 典型例题例1 用斜二测画法画水平放置正六边形的直观图.讨论:把一个圆水平放置,看起来象个什么图形?它的直观图如何画?结论:水平放置的圆的直观图是个椭圆,通常用椭圆模板来画.探究2:空间几何体的直观图画法问题:斜二测画法也能画空间几何体的直观图,和平面图形比较,空间几何体多了一个“高”,你知道画图时该怎么处理吗?例2 用斜二测画法画长4cm 、宽3cm 、高2cm 的长方体的直观图.新知2:用斜二测画法画空间几何体的直观图时,通常要建立三条轴:x 轴,y 轴,z 轴;它们相交于点O ,且45xOy ∠=°,90xOz ∠=°;空间几何体的底面作图与水平放置的平面图形作法一样,即图形中平行于x 轴的线段保持长度不变,平行于y 轴的线段长度为原来的一半,但空间几何体的“高”,即平行于z 轴的线段,保持长度不变.※ 动手试试练1. 用斜二测画法画底面半径为4cm ,高为3cm 的圆柱.例3 如下图,是一个空间几何体的三视图,请用斜二测画法画出它的直观图.正视图 侧视图 俯视图练2. 由三视图画出物体的直观图.正视图 侧视图 俯视图小结:由简单组合体的三视图画直观图时,先要想象出几何体的形状,它是由哪几个简单几何体怎样构成的;然后由三视图确定这些简单几何体的长度、宽度、高度,再用斜二测画法依次画出来.三、总结提升※ 学习小结1. 斜二测画法要点①建坐标系,定水平面;②与坐标轴平行的线段保持平行;③水平线段(x 轴)等长,竖直线段(y 轴)减半;④若是空间几何体,与z 轴平行的线段长度也不变.2. 简单组合体直观图的画法;由三视图画直观图.※ 知识拓展1. 立体几何中常用正等测画法画水平放置的圆.正等测画法画圆的步骤为:(1)在已知图形⊙O 中,互相垂直的x 轴和y 轴画直观图时,把它们画成对应的x '轴与y '轴,且使0120x O y '''∠=(或060);(2)已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x '轴或y '轴的线段;(3)平行于x 轴或y 轴的线段,长度均保持不变.2. 空间几何体的三视图与直观图有密切联系:三视图从细节上刻画了空间几何体的结构,根据三视图可以得到一个精确的空间几何体,得到广泛应用(零件图纸、建筑图纸),直观图是对空间几何体的整体刻画,根据直观图的结构想象实物的形象. 学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 一个长方体的长、宽、高分别是4、8、4,则画其直观图时对应为( ).A. 4、8、4B. 4、4、4C. 2、4、4D.2、4、22. 利用斜二测画法得到的①三角形的直观图是三角形②平行四边形的直观图是平行四边形③正方形的直观图是正方形④菱形的直观图是菱形,其中正确的是( ).A.①②B.①C.③④D.①②③④3. 一个三角形的直观图是腰长为4的等腰直角三角形,则它的原面积是( ).A. 8B. 16C.4. 下图是一个几何体的三视图请画出它的图形为_____________________.5. 等腰梯形ABCD 上底边CD =1,腰AD =CB =2, 下底AB =3,按平行于上、下底边取x 轴,则直观图A B C D ''''的面积为________.课后作业1.一个正三角形的面积是2,用斜二测画法画出其水平放置的直观图,并求它的直观图形的面积.2. 用斜二测画法画出下图中水平放置的四边形的直观图.正视图 俯视图侧视图。

人教A版高中数学必修第二册全册学案

人教A版高中数学必修第二册全册学案

人教A版高中数学必修第二册全册学案人教A版高中数学必修第二册全册学案一、学案概述本学案是以人教A版高中数学必修第二册全册教材为基础,为学生提供全面的学习指导。

旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。

二、知识梳理本学案按照教材章节顺序,对各章节知识点进行了梳理。

对于每个知识点,学案提供了相关例题和解析,以便学生加深对知识点的理解和掌握。

第一章集合与函数1.1 集合及其表示方法 1.2 集合之间的关系 1.3 函数及其表示方法 1.4 函数的性质第二章三角函数2.1 正弦、余弦、正切函数的定义与性质 2.2 三角函数的图像及变换方法 2.3 三角函数的应用第三章数列3.1 数列的概念与分类 3.2 等差数列和等比数列的通项公式 3.3 数列的前n项和公式 3.4 数列的应用第四章平面几何4.1 点、线、面的基本概念和性质 4.2 三角形、四边形的性质和判定方法 4.3 多边形、圆、扇形、弓形的性质和面积计算方法 4.4 几何图形的作图方法第五章概率与统计5.1 概率的基本概念和计算方法 5.2 统计的基本概念和方法 5.3 中心极限定理的应用三、学习建议1、学生应根据个人学习情况,制定合理的学习计划,逐步掌握各章节知识点。

2、对于每个知识点,学生应通过多种方式进行练习,例如课堂练习、课后作业、自主解题等,加深对知识点的理解和掌握。

3、学生应注意知识点的归纳和总结,形成自己的知识体系。

4、学生应积极参加课堂讨论和提问,与老师和同学交流学习心得,提高学习效果。

四、总结归纳本学案对人教A版高中数学必修第二册全册教材进行了全面的知识梳理和学习指导,旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。

学生应根据个人学习情况,制定合理的学习计划,通过多种方式进行练习,注意知识点的归纳和总结,积极参加课堂讨论和提问,提高学习效果。

外研版高中英语必修3全册学案版本外研版高中英语必修3全册学案版本外语教学与研究出版社出版的《高中英语必修3》是一本针对高中英语教学的教材,旨在帮助学生掌握英语语言知识,提高英语应用能力。

人教A版数学必修二第一章第五课时导学案1.3.1(1)

人教A版数学必修二第一章第五课时导学案1.3.1(1)

§1.3.1 柱体、锥体、台体的表面积与体积(1)学习目标1. 理解和掌握柱、锥、台的表面积计算公式;2. 能运用柱、锥、台的表面积公式进行计算和解决有关实际问题.学习过程一、课前准备~ P25,找出疑惑之处)23复习:斜二测画法画的直观图中,x'轴与y'轴的夹角为____,在原图中平行于x轴或y轴的线段画成与___和___保持平行;其中平行于x轴的线段长度保持_____,平行于y轴的线段长度____________.引入:研究空间几何体,除了研究结构特征和视图以外,还得研究它的表面积和体积.表面积是几何体表面的面积,表示几何体表面的大小;体积是几何体所占空间的大小.那么如何求柱、锥、台、球的表面积和体积呢?二、新课导学※探索新知探究1:棱柱、棱锥、棱台的表面积问题:我们学习过正方体和长方体的表面积,以及它们的展开图(下图),你觉的它们展开图与其表面积有什么关系吗?结论:正方体、长方体是由多个平面围成的多面体,其表面积就是各个面的面积的和,也就是展开图的面积.新知1:棱柱、棱锥、棱台都是多面体,它们的表面积就是其侧面展开图的面积加上底面的面积.试试1:想想下面多面体的侧面展开图都是什么样子,它们的表面积如何计算?正六棱柱正四棱台正四棱锥探究2:圆柱、圆锥、圆台的表面积问题:根据圆柱、圆锥的几何特征,它们的侧面展开图是什么图形?它们的表面积等于什么?你能推导它们表面积的计算公式吗?新知2:(1)设圆柱的底面半径为r ,母线长为l ,则它的表面积等于圆柱的侧面积(矩形)加上底面积(两个圆),即2222()S r rl r r l πππ=+=+.(2)设圆锥的底面半径为r ,母线长为l ,则它的表面积等于圆锥的侧面积(扇形)加上底面积(圆形),即2()S r rl r r l πππ=+=+.试试2:圆台的侧面展开图叫扇环,扇环是怎么得到的呢?(能否看作是个大扇形减去个小扇形呢)你能试着求出扇环的面积吗?从而圆台的表面积呢?新知3:设圆台的上、下底面半径分别为r ',r ,母线长为l ,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即2222()()S r r r l rl r r r l rl ππππ''''=+++=+++.反思:想想圆柱、圆锥、圆台的结构,你觉得它们的侧面积之间有什么关系吗?※ 典型例题例: 已知棱长为a ,各面均为等边三角形的四面体S ABC -,求它的表面积.※ 动手试试练习: 一个正三棱锥的侧面都是直角三角形,底面边长为a ,求它的表面积.三、总结提升※ 学习小结1. 棱柱、棱锥、棱台及圆柱、圆锥、圆台的表面积计算公式;2. 将空间图形问题转化为平面图形问题,是解决立体几何问题最基本、最常用的方法.※ 知识拓展当柱体、锥体、台体是一些特殊的几何体,比如直棱柱、正棱锥、正棱台时,它们的展开图是一些规则的平面图形,表面积比较好求;当它们不是特殊的几何体,比如斜棱柱、不规则的四面体时,要注意分析各个面的形状、特点,看清楚题目所给的条件,想办法求.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 正方体的表面积是64,则它对角线的长为( ).A. B. C. D.162. 一个圆柱的侧面展开图是一个正方形,这个圆柱的表面积与侧面积的比是( ). A.122ππ+ B.144ππ+ C.12ππ+ D.142ππ+ 3. 一个正四棱台的两底面边长分别为m ,n ()m n >,侧面积等于两个底面积之和,则这个棱台的高为( ).A.mn m n +B.mn m n -C.m n mn +D.m n mn- 4. 如果圆锥的轴截面是正三角形,则该圆锥的侧面积与表面积的比是_____________.5. 已知圆台的上、下底面半径和高的比为1︰4︰4,母线长为10,则圆台的侧面积为___________.6. 圆锥的底面半径为r ,母线长为l ,侧面展开图扇形的圆心角为θ,求证:360r lθ=⋅(度).。

吉林省舒兰市第一中学高中数学人教A版导学案 必修二 4.1 圆的方程

吉林省舒兰市第一中学高中数学人教A版导学案 必修二 4.1 圆的方程

第四章 4.1 圆的方程 编号041【学习目标】1.把握圆的标准方程的特点,能依据所给有关圆心、半径的具体条件精确 地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简洁的实际问题.2.通过圆的标准方程的推导,培育同学利用求曲线的方程的一般步骤解决一些实际问题的力量.3.通过圆的标准方程,解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想训练.【学习重点】(1)圆的标准方程的推导步骤;(2)依据具体条件正确写出圆的标准方程. 【学问链接】(1)圆的定义;(2)直线方程的定义,直线上点的坐标与直线方程解得关系。

【基础学问】探究一:如何建立圆的标准方程呢?1.建系设点: 2.写点集: 3.列方程: 4.化简方程:探究二:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?【例题讲解】例1: 写出下列各圆的方程:(1)圆心在原点,半径是3; (2)圆心在C(3,4),半径为5 (3)经过点P(5,1),圆心在点C(8,-3); 变式训练1: 说出下列圆的圆心和半径:(1)5)2()3(22=-+-y x ;(2)7)3()4(22=+++y x ;(3)4)2(22=+-y x例2: (1)已知两点P (4,9)和P (6, 3),求以PP 为直径的圆的方程;(2)试推断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?【基础学问】问题1.方程222410x y x y +-++=表示什么图形?方程222460x y x y +-++=表示什么图形?问题2.方程220x y Dx Ey F ++++=在什么条件下表示圆?新知:方程220x y Dx Ey F ++++=表示的轨迹. ⑴当2240D E F +->时,表示以(,)22D E --为圆心,22142D E F +-为半径的圆;⑵当2240D E F +-=时,方程只有实数解2D x =-,2E y =-,即只表示一个点(-2D ,-2E );(3)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形小结:方程220x y Dx Ey F ++++=表示的曲线不肯定是圆只有当2240D E F +->时,它表示的曲线才是圆,形如220x y Dx Ey F ++++=的方程称为圆的一般方程思考:1.圆的一般方程的特点?2.圆的标准方程与一般方程的区分?例3:推断下列二元二次方程是否表示圆的方程?假如是,恳求出圆的圆心及半径.⑴224441290x y x y +-++=; ⑵2244412110x y x y +-++=例4 :已知线段AB 的端点B 的坐标是(4,3),端点A 在圆上()2214x y ++=运动,求线段AB 的中点M 的轨迹方程.【达标检测】1.圆(x +1)2+(y -2)2=4的圆心、半径是 ( D )A .(1,-2),4B .(1,-2),2C .(-1,2),4D .(-1,2),22.过点A(4,1)的圆C 与直线10x y --=相切于点B(2,1),则圆C 的方程为2)3(22=+-y x 3.一个等腰三角形底边上的高等于5,底边两端点的坐标是(-4,0)和(4,0),求它的外接圆的方程.4.圆2)1()1(22=++-y x 的周长是( C ) A.π2 B.π2 C.2π2 D.π45.点P(5,2m )与圆2422=+y x 的位置关系是( A ) A.在圆外 B.在圆内 C.在圆上 D.不确定6.已知圆C与圆1)1(22=+-y x 关于直线x y -=对称,则圆C的方程为( C ) A1)1(22=++y x B.122=+y x C.1)1(22=++y x D.1)1(22=-+y x 7.已知圆C 的圆心是直线x-y+1=0与x 轴的交点,且圆C 与直线x+y+3=0相切,求圆C 的方程.2)1(22=++y x8.已知圆心在x的圆O 位于y 轴左侧,且与直线x+y=0相切,求圆O 的方程.2)2(22=++y x9.方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示圆,则实数m 的取值范围是( A )A.-71<m <1 B.-1<m <71 C.m <-71或m >1 D.m <-1或m >7110.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于直线x +y =0对称,则有( A ) A.D +E =0 B.D +F =0 C.E +F =0 D.D +E +F =0 11.经过三点A (0,0)、B (1,0)、C (2,1)的圆的方程为( D ) A.x 2+y 2+x -3y -2=0 B. x 2+y 2+3x +y -2=0 C. x 2+y 2+x +3y =0 D. x 2+y 2-x -3y =0 12.方程220x y x y k +-++=表示一个圆,则实数k 的取值范围是21<k .13.过点A (-2,0),圆心在(3,-2)的圆的一般方程为0164622=-+-+y x y x . 14.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点的轨迹方程,并说明它的轨迹是什么.轨迹方程是)5,3(0104822≠≠=+--+x x y x y x 轨迹是以A 为圆心10为半径的圆但除去两点【问题与收获】。

人教版高中数学必修2全册导学案及答案

人教版高中数学必修2全册导学案及答案

人教版高中数学必修2全册导学案及答案全文表达流畅,无影响阅读体验的问题。

为了确保文章的质量,我认为在回答你的提问之前,有必要对导学案和答案的特点进行一下了解。

人教版高中数学必修2全册导学案是教师在备课过程中为了引导学生自主学习而准备的一份辅助教材。

它通常包含了本课时的学习目标、学习内容的整理、学习方法指导和相关习题等。

这些内容对于学生来说是非常重要的,因为通过导学案,学生可以在自主学习的过程中得到更好的指导和帮助。

作为导学案的一部分,答案的提供也是非常重要的。

学生在自学过程中,可以通过对答案的核对来检验自己的学习情况,找出自己的问题所在,并及时进行纠正和补充学习。

根据题目要求,我将按照导学案的格式布局,提供必修2全册的导学案及答案。

这样你可以更方便地进行自主学习,并通过对答案的核对来加深对数学知识的理解。

导学案及答案第一章函数与导数1.1 函数的概念与表示学习目标:1. 了解函数的基本概念;2. 掌握用集合、映射等方法表示函数的方法。

学习内容:1. 函数的定义;2. 函数的表示方法;3. 函数的性质。

学习方法指导:1. 仔细阅读教材相关内容,理解函数的定义;2. 注意区分自变量和因变量的概念;3. 多做一些例题,加深对函数表示方法的理解。

习题:1. 设函数f(x) = 2x + 3,求f(1)的值;2. 函数y = x^2的图象为抛物线,确定该函数的定义域和值域。

答案:1. 将x = 1带入函数f(x),得到f(1) = 2(1) + 3 = 5。

2. 函数y = x^2的定义域为全体实数集R,值域为非负实数集[0,+∞)。

......根据上述导学案的格式,我将为你提供人教版高中数学必修2全册的导学案及答案。

由于篇幅限制,本文无法将全册的导学案及答案一一列出。

但你可以根据此示例并借鉴此格式,自行拟定其他章节的导学案及答案。

希望上述内容对你有所帮助,祝你学习顺利!。

人教A版数学必修二第二章第十三课时导学案2.3.4平面与平面垂直的性质

人教A版数学必修二第二章第十三课时导学案2.3.4平面与平面垂直的性质

§2.3.4 平面与平面垂直的性质学习目标 1. 理解和掌握两个平面垂直的性质定理及其应用;2. 进一步理解线线垂直、线面垂直、面面垂直的相互转化及转化的数学思想.学习过程一、课前准备71~ P 72,找出疑惑之处)复习1:直线与平面垂直的性质定理是_____________________________________________.复习2:直线与平面垂直的判定定理是_____________________________________________.复习3:两个平面垂直的定义是什么?二、新课导学※ 探索新知探究:平面与平面垂直的性质问题1:如图13-1,黑板所在平面与地面所在平面垂直,在黑板上是否存在直线与地面垂直?若存在,怎样画线?图13-1问题2:如图13-2,在长方体中,面AADD ''与面ABCD 垂直,AD 是其交线,则直线AA '与AD 关系如何?直线AA '与面ABCD 呢?图13-2反思:以上两个问题有什么共性?你得出了什么结论?请用图形和符号语言把它描述在下面,并试着证明这个结论.黑板地面新知:平面与平面垂直的性质定理 若两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.反思:这个定理实现了什么关系的转化?※ 典型例题例1 如图13-3,已知平面,αβ,αβ⊥,直线a 满足a β⊥,a α⊄,求证:a ∥面α.图13-3例2 如图13-4,四棱锥P ABCD -的底面是个矩形,2,AB BC =PAB 是等边三角形,且侧面PAB 垂直于底面ABCD .⑴证明:侧面PAB ⊥侧面PBC ;⑵求侧棱PC 与底面ABCD 所成的角.※ 动手试试练1. 平面α⊥平面β,P α∈,过点P 作平面β的垂线a ,求证:a α⊂.练2. 如图13-5,平面α⊥平面β,AB αβ=,a ∥α,a AB ⊥,求证:a β⊥.图13-5三、总结提升※ 学习小结1. 两个平面垂直的性质定理及应用;可证明线面垂直、线线垂直、线在面内及求直二面角;2. 判定定理和性质定理的交替运用,三种垂直关系的相互转化.※ 知识拓展两个平面垂直的性质还有:⑴如果两个平面互相垂直,那么经过一个平面内一点且垂直于另外一个平面的直线,必在这个平面内;⑵如果两个相交平面都垂直于另一个平面,那么这两个平面的交线垂直于这个平面; ⑶三个两两垂直的平面,它们的交线也两两垂直.你能试着用图形和符号语言描述它们吗?学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列命题错误的是( ).A.αβ⊥⇒α内所有直线都垂直于βB.αβ⊥⇒α内一定存在直线平行于βC.α不垂直β⇒α内不存在直线垂直βD.α不垂直β⇒α内一定存在直线平行于β2. 已知αβ⊥,下列命题正确个数有( ).①αβ内的已知直线必垂直于内的任意直线②αβ内的已知直线必垂直于内的无数条直线③α内的任一直线必垂直于βA.3B.2C.1D.03. 已知αβ⊥,,a b αβ⊂⊂,b 是α的斜线,a ⊥b ,则a 与β的位置关系是( ).A.a ∥βB. a 与β相交不垂直C. a β⊥D.不能确定4. 若平面αβ⊥平面,直线a α⊂,则a 与β的位置关系为_____________________.5. 直线m 、n 和平面α、β满足m n ⊥,m α⊥,αβ⊥,则n 和β的位置关系为__________. 课后作业1. 如图13-6,平面α⊥平面γ,βγ⊥平面平面,l αβ=,求证:l γ⊥.图13-62. 如图13-7,,,CD CD AB αββ⊥⊂⊥,CE ,EF ⊂α,90FEC ∠=°, 求证:面EFD ⊥面DCE .图13-7。

高中数学 3.2.1《直线的点斜式方程》导学案 新人教A版必修2

高中数学 3.2.1《直线的点斜式方程》导学案 新人教A版必修2

【学习目标】 1、知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。

(3)体会直线的斜截式方程与一次函数的关系.2、过程与方法:在已知直角坐标系内确定一条直线的几何要素----直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。

3、情感态度与价值观:通过让体会直线的斜截式方程与一次函数的关系,进一步培养数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

【重点难点】(1)重点:直线的点斜式方程和斜截式方程。

(2)难点:直线的点斜式方程和斜截式方程的应用。

【学法指导】1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。

2、牢记直线的点斜式方程形式,注意适用条件。

3、要求小班、重点班学生全部完成,平行班学生完成A 、B 类问题。

【知识链接】1.直线倾斜角的概念 2. 直线的斜率两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直. 【学习过程】A 问题1、在直角坐标系内确定一条直线,应知道哪些条件?yxOP P 0B 问题2、直线l 经过点),(000y x P ,且斜率为k 。

设点),(y x P 是直线l 上的任意一点,请建立y x ,与00,,y x k 之间的关系。

A 问题3、(1)过点),(000y x P ,斜率是k 的直线l 上的点,其坐标都满足方程(1)(2)坐标满足方程(1)的点都在经过),(000y x P ,斜率为k 的直线l 上吗?B 问题4、直线的点斜式方程能否表示坐标平面上的所有直线呢?B 问题5、(1)x 轴所在直线的方程是什么?y 轴所在直线的方程是什么?yP 0(2)经过点),(000y x P 且平行于x 轴(即垂直于y 轴)的直线方程是什么?(3)经过点),(000y x P 且平行于y 轴(即垂直于x 轴)的直线方程是什么?.l l l α︒A 例1直线经过点P(-3,2),且倾斜角为=45,求直线的点斜式方程,并画出直线A 问题7、已知直线l 的斜率为k ,且与y 轴的交点为),0(b ,求直线l 的方程。

人教A版高中数学导学案必修2 第2章 点线面的位置关系

人教A版高中数学导学案必修2 第2章 点线面的位置关系

1§2.1.1 平面学习目标1. 了解平面的描述性概念;2. 掌握平面的表示方法和基本画法;3. 掌握平面的基本性质;4. 能正确地用数学语言表示点、直线、平面以及它们之间的关系.学习过程一、课前准备4043引入:平面是构成空间几何体的基本要素.那么什么是平面呢?平面如何表示呢?平面又有哪些性质呢?二、新课导学※探索新知探究1:平面的概念与表示问题:生活中哪些物体给人以平面形象?你觉得平面可以拉伸吗?平面有厚薄之分吗?新知1:平面(plane)是平的;平面是可以无限延展的;平面没有厚薄之分.问题:通常我们用一条线段表示直线,那你认为用什么图形表示平面比较合适呢?新知2:如上图,通常用平行四边形来表示平面.平面可以用希腊字母,,αβγ来表示,也可以用平行四边形的四个顶点来表示,还可以简单的用对角线的端点字母表示.如平面α,平面ABCD,平面AC等.规定:①画平行四边形,锐角画成45°,横边长等于其邻边长的2倍;②两个平面相交时,画出交线,被遮挡部分用虚线画出来;③用希腊字母表示平面时,字母标注在锐角内.问题:点动成线、线动成面.联系集合的观点,点和直线、平面的位置关系怎么表示?直线和平面呢?新知3:⑴点A在平面α内,记作Aα∈;点A在平面α外,记作Aα∉.⑵点P在直线l上,记作P l∈,点P在直线外,记作P l∉.⑶直线l上所有点都在平面α内,则直线l在平面α内(平面α经过直线l),记作lα⊂;否则直线就在平面外,记作lα⊄.探究2:平面的性质问题:直线l与平面α有一个公共点P,直线l是否在平面α内?有两个公共点呢?新知4:公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.用集合符号表示为:,,A lB l∈∈且,A B lααα∈∈⇒⊂问题:两点确定一直线,两点能确定一个平面吗?任意三点能确定一个平面吗?新知5:公理2 过不在一条直线上的三点,有且只有一个平面. 如上图,三点确定平面ABC.问题:把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于点B?为什么?新知6:公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.如下图所示:平面α与平面β相交于直线l,记作lαβ=.公理3用集合符号表示为,P a∈且Pβ∈⇒lαβ=,且P l∈※典型例题例1 如图,用符号表示下列图形中点、直线、平面之间的位置关系.2例2 如图在正方体ABCD A B C D ''''-中,判断下列⑴直线AC 在平面ABCD ⑵设上下底面中心为,O O 则平面AA C C ''与平面BB D D '的交线为OO ';⑶点,,A O C '⑷平面AB C ''与平面AC '重合.※ 动手试试练 用符号表示下列语句,并画出相应的图形: ⑴点A 在平面α内,但点B 在平面α外; ⑵直线a 经过平面α外的一点M ; ⑶直线a 既在平面α内,又在平面β内.三、总结提升※ 学习小结1. 平面的特征、画法、表示;2. 平面的基本性质(三个公理);3. 用符号表示点、线、面的关系.※ 知识拓展平面的三个性质是公理(不需要证明,直接可以用),是用公理化方法证明命题的基础.其中公理1可以用来判断直线或者点是否在平面内;公理2用来确定一个平面,判断两平面重合,或者证明点、线共面;公理3用来判断两个平面相交,证明点共线或者线共点的问题.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下面说法正确的是( ).①平面ABCD 的面积为210cm ②100个平面重合比50个平面重合厚③空间图形中虚线都是辅助线④平面不一定用平行四边形表示.A.①B.②C.③D.④ 2. 下列结论正确的是( ).①经过一条直线和这条直线外一点可以确定一个平面②经过两条相交直线,可以确定一个平面③经过两条平行直线,可以确定一个平面④经过空间任意三点可以确定一个平面A.1个B.2个C.3个D.4个3. 们的交点一定( ) A.在直线DB 上B.在直线AB 上C.在直线CB 上D.都不对4. 直线12,l l 相交于点P ,并且分别与平面γ相交于点,A B 两点,用符号表示为____________________.5. 两个平面不重合,在一个面内取4点,另一个面内取3点,这些点最多能够确定平面_______个. 1. 画出满足下列条件的图形:⑴三个平面:一个水平,一个竖直,一个倾斜; ⑵ ,,,l AB CD αβαβ=⊂⊂AB ∥l ,CD ∥l .2.如图在正方体中,A 是顶点,,B C 都是棱的中点,请作出经过,,A B C 三点的平面与正方体的截面.3§2.1.2空间直线与直线之间的位置关系1. 正确理解异面直线的定义;2. 会判断空间两条直线的位置关系;3. 掌握平行公理及空间等角定理的内容和应用;4. 会求异面直线所成角的大小.一、课前准备(预习教材P 44~ P 47,找出疑惑之处) 复习1:平面的特点是______、 _______ 、_______.复习2:平面性质(三公理)公理1___________________________________; 公理2___________________________________; 公理3___________________________________.二、新课导学※ 探索新知探究1:异面直线及直线间的位置关系问题:平面内两条直线要么平行要么相交(重合不考虑),空间两条直线呢?观察:如图在长方体中,直线A B'与CC '的位置关系如何?结论:直线A B '与CC '既不相交,也不平行.新知1:像直线A B '与CC '这样不同在任何一个平面内的两条直线叫做异面直线(skew lines).试试:请在上图的长方体中,再找出3对异面直线.问题:作图时,怎样才能表示两条直线是异面的?新知2:异面直线的画法有如下几种(,a b 异面):试试:请你归纳出空间直线的位置关系.探究2:平行公理及空间等角定理问题:平面内若两条直线都和第三条直线平行,则这两条直线互相平行,空间是否有类似规律?观察:如图2-1,在长方体中,直线C D ''∥A B '',AB ∥A B '',那么直线AB 与C D ''平行吗?图2-1新知3: 公理4 (平行公理)平行于同一条直线的两条直线互相平行.问题:平面上,如果一个角的两边与另一个角的两边分别平行,则这两个角相等或者互补,空间是否有类似结论?观察:在图2-1中,ADC ∠与A D C '''∠,ADC ∠与A B C '''∠的两边分别对应平行,这两组角的大小关系如何?新知4: 定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.探究3:异面直线所成的角问题:平面内两条直线的夹角是如何定义的?想一想异面直线所成的角该怎么定义?图2-2新知5: 如图2-2,已知两条异面直线,a b ,经过空间任一点O 作直线 a '∥a ,b '∥b ,把a '与b '所成的锐角(或直角)叫做异面直线,a b 所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作a b ⊥.反思:思考下列问题.⑴ 作异面直线夹角时,夹角的大小与点O 的位置有关吗?点O 的位置怎样取才比较简便? ⑵ 异面直线所成的角的范围是多少?4⑶ 两条互相垂直的直线一定在同一平面上吗?⑷ 异面直线的夹角是通过什么样的方法作出来的?它体现了什么样的数学思想?※ 典型例题例1 如图2-3,,,,E F G H 分别为空间四边形ABCD 各边,,,AB BC CD DA 的中点,若对角线2,BD = 4AC =,则22EG HF +的值为多少?(性质:平行四边形的对角线的平方和等于四条边的平方和).图2-3例2 如图2-4,在正方体中,求下列异面直线所成的角.⑴BA '和CC ' ⑵B D ''和C A '图2-4※ 动手试试练 正方体ABCD A B C D ''''-的棱长为a ,求异面直线AC 与A D ''所成的角.三、总结提升※ 学习小结1. 异面直线的定义、夹角的定义及求法;2. 空间直线的位置关系;3. 平行公理及空间等角定理.※ 知识拓展异面直线的判定定理:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.如图,,,,a A B B a ααα⊂∉∈∉,则直线AB 与直线※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. ,,a b c 为三条直线,如果,a c b c ⊥⊥,则,a b 的位置关系必定是( ).A.相交B.平行C.异面D.以上答案都不对 2. 已知,a b 是异面直线,直线c 平行于直线a ,那么c 与b ( ).A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线 3. 已知l αβ=,,a b αβ⊂⊂,且,a b 是异面直线,那么直线l ( ).A.至多与,a b 中的一条相交B.至少与,a b 中的一条相交C.与,a b 都相交D.至少与,a b 中的一条平行4. 正方体ABCD A B C D ''''-的十二条棱中,与直线AC '是异面直线关系的有___________条.5. 长方体1111ABCD A B C D -中,3AB =,2,BC =1AA =1,异面直线AC 与11AD 所成角的余弦值是______. 1. 已知,E E '是正方体AC '棱AD ,A D ''的中点,求证:CEB C E B '''∠=∠.2. 如图2-5,在三棱锥P ABC -中,PA BC ⊥,E 、F 分别是PC 和AB 上的点,且32PE AF EC FB ==,设EF 与PA 、BC 所成的角分别为,αβ, 求证:90αβ+=°.5图2-5§2.1.3空间直线与平面之间的位置关系 §2.1.4平面与平面之间的位置关系1. 掌握直线与平面之间的位置关系,理解直线在平面外的概念,会判断直线与平面的位置关系;2. 掌握两平面之间的位置关系,会画相交平面的图形.一、课前准备(预习教材P 48~ P 50,找出疑惑之处)复习1:空间任意两条直线的位置关系有_______、 _______、_______三种.复习2:异面直线是指________________________ 的两条直线,它们的夹角可以通过______________ 的方式作出,其范围是___________.复习3:平行公理:__________________________ ________________;空间等角定理:____________ ___________________________________________.二、新课导学※ 探索新知 探究1:空间直线与平面的位置关系 问题:用铅笔表示一条直线,作业本表示一个平面,你试着比画,它们之间有几种位置关系?观察:如图3-1,直线A B 与长方体的六个面有几种位置关系?图3-1新知1:直线与平面位置关系只有三种:⑴直线在平面内—— ⑵直线与平面相交—— ⑶直线与平面平行——其中,⑵、⑶两种情况统称为直线在平面外.反思:⑴从交点个数方面来分析,上述三种关系对应的交点有多少个?请把结果写在新知1的——符号后面 ⑵请你试着把上述三种关系用图形表示出来,并想想用符号语言该怎么描述.探究2:平面与平面的位置关系 问题:平面与平面的位置关系有几种?你试着拿两个作业本比画比画.观察:还是在长方体中,如图3-2,你看看它的六个面两两之间的位置关系有几种? 图3-2新知2:两个平面的位置关系只有两种: ⑴两个平面平行——没有公共点 ⑵两个平面相交——有一条公共直线试试:请你试着把平面的两种关系用图形以及符号语言表示出来.6※ 典型例题例1 下列命题中正确的个数是( )①若直线l 上有无数个点不在平面α内,则l ∥α. ②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.A.0B.1C.2D.3例2 已知平面,αβ,直线,a b ,且α∥β,a α⊂, b β⊂,则直线a 与直线b 具有怎样的位置关系?※ 动手试试练1. 若直线a 不平行于平面α,且a α⊄,则下列结论成立的是( )A.α内的所有直线与a 异面B.α内不存在与a 平行的直线C.α内存在唯一的直线与a 平行D.α内的直线与a 都相交.练2. 已知,,a b c 为三条不重合的直线,,,αβγ为三个不重合的平面:①a ∥c ,b ∥c ⇒a ∥b ; ②a ∥γ,b ∥γ⇒a ∥b ; ③a ∥c ,c ∥α⇒a ∥α; ④a ∥γ,a ∥αα⇒∥γ;⑤a α⊄,b α⊂,a ∥b ⇒a ∥α. 其中正确的命题是( )A.①⑤B.①②C.②④D.③⑤三、总结提升※ 学习小结1. 直线与平面、平面与平面的位置关系;2. 位置关系用图形语言、符号语言如何表示;3. 长方体作为模型研究空间问题的重要性.※ 知识拓展求类似确定空间的部分、平面的个数、交线的条数、交点的个数问题,都应对相应的点、线、面的位置关系进行分类讨论,做到不重不漏.分类讨论是数学中常用的重要数学思想方法,可以使问题化难※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 直线l 在平面α外,则( ).A.l ∥αB.l 与α至少有一个公共点C.l A α=D.l 与α至多有一个公共点 2. 已知a ∥α,b α⊂,则( ). A.a ∥b B.a 和b 相交C.a 和b 异面D.a 与b 平行或异面3. 四棱柱的的六个面中,平行平面有( ). A.1对 B.1对或2对 C.1对或2对或3对D.0对或1对或2对或3对4. 过直线外一点与这条直线平行的直线有____条;过直线外一点与这条直线平行的平面有____个.5. 若在两个平面内各有一条直线,且这两条直线互相平行,那么这两个平面的位置关系一定是______. 1. 已知直线,a b 及平面α满足: a ∥α,b ∥α,则 直线,a b 的位置关系如何?画图表示.2. 两个不重合的平面,可以将空间划为几个部分?三个呢?试画图加以说明.§2.1 空间点、直线、平面之间的1. 理解和掌握平面的性质定理,能合理运用;2. 掌握直线与直线、直线与平面、平面与平面的位置关系;3. 会判断异面直线,掌握异面直线的求法;4. 会用图形语言、符号语言表示点、线、面的位置关系.一、课前准备(预习教材P40~ P50,找出疑惑之处)复习1:概念与性质⑴平面的特征和平面的性质(三个公理);⑵平行公理、等角定理;⑶直线与直线的位置关系⎧⎪⎨⎪⎩平行相交异面⑷直线与平面的位置关系⎧⎪⎨⎪⎩在平面内相交平行⑸平面与平面的位置关系⎧⎨⎩平行相交复习2:异面直线夹角的求法:平移线段作角,解三角形求角.复习3:图形语言、符号语言表示点、线、面的位置关系⑴点与线、点与面的关系;⑵线与线、线与面的关系;⑶面与面的关系.二、新课导学※典型例题例1 如图4-1,ABC∆在平面α外,AB Pα=,BC Qα=,AC Rα=,求证:P,Q,R三点共线.图4-1小结:证明点共线的基本方法有两种⑴找出两个面的交线,证明若干点都是这两个平面的公共点,由公理3可推知这些点都在交线上,即证若干点共线.⑵选择其中两点确定一条直线,证明另外一些点也都在这条直线上.例2 如图4-2,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,且EH FG与相交于点K.求证:EH,BD,FG三条直线相交于同一点.图4-2小结:证明三线共点的基本方法为:先确定待证的三线中的两条相交于一点,再证明此点是二直线所在平面的公共点,第三条直线是两个平面的交线,由公理3得证这三线共点.例3 如图4-3,如果两条异面直线称作“一对”,那么在正方体的12条棱中,共有异面直线多少对?图4-378反思:分析清楚几何特点是避免重复计数的关键,计数问题必须避免盲目乱数,分类时要不重不漏.※ 动手试试练1. 如图4-4,是正方体的平面展开图,图4-4则在这个正方体中:①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成60°角 ④DM 与BN 是异面直线 其中正确命题的序号是( )A.①②③B.②④C.③④D.②③④练2. 如图4-5,在正方体中,E ,F 分别为AB 、AA '的中点,求证:CE ,D F ',DA 三线交于一点.图4-5练3. 由一条直线和这条直线外不共线的三点,能确定平面的个数为多少?小结:分类讨论的数学思想三、总结提升※ 学习小结1. 平面及平面基本性质的应用;2. 点、线、面的位置关系;3. 异面直线的判定及夹角问题.※ 知识拓展异面直线的判定方法:①定义法:利用异面直线的定义,说明两直线不平行,也不相交,即不可能在同一个平面内. ②定理法:利用异面直线的判定定理说明.③反证法(常用):假设两条直线不异面,则它们一定共面,即这两条直线可能相交,也可能平行,然.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 直线1l ∥2l ,在1l 上取3个点,在2l 上取2个点,由这5个点确定的平面个数为( ). A.1个 B.3个 C.6个 D.9个 2. 下列推理错误的是( ).A.A l ∈,A α∈,B l ∈,B α∈l α⇒⊂B.A α∈,A β∈,B α∈,B β∈AB αβ⇒=C.l α⊄,A l A α∈⇒∉D.A ,B ,C α∈, A ,B ,C β∈,且A ,B ,C 不共线αβ⇒与重合3. a ,b 是异面直线,b ,c 是异面直线,则a ,c 的位置关系是( ).A.相交、平行或异面B.相交或平行C.异面D.平行或异面4. 若一条直线与两个平行平面中的一个平面平行,则它与另一平面____________.5. 垂直于同一条直线的两条直线位置关系是_____ _____________;两条平行直线中的一条与某一条直线垂直,则另一条和这条直线______.课后作业1. 如图4-6,在正方体中M ,N 分别是AB 和DD '的中点,求异面直线B M '与CN 所成的角.图4-62. 如图4-7,已知不共面的直线a,b,c相交于O点,M,P点是直线α上两点,N,Q分别是直线b,c上一点.求证:MN和PQ§2.2.1 直线与平面平行的判定1. 通过生活中的实际情况,建立几何模型,了解直线与平面平行的背景;2. 理解和掌握直线与平面平行的判定定理,并会用其证明线面平行.一、课前准备(预习教材P54~ P55,找出疑惑之处)复习:直线与平面的位置关系有______________,_______________,_________________.讨论:直线和平面的位置关系中,平行是最重要的关系之一,那么如何判定直线和平面是平行的呢?根据定义好判断吗?二、新课导学※探索新知探究1:直线与平面平行的背景分析实例1:如图5-1,一面墙上有一扇门,门扇的两边是平行的.当门扇绕着墙上的一边转动时,观察门扇转动的一边l与墙所在的平面位置关系如何?图5-1实例2:如图5-2,将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l与桌面所在的平面具有怎样的位置关系?图5-2结论:上述两个问题中的直线l与对应平面都是平行的.探究2:直线与平面平行的判定定理问题:探究1两个实例中的直线l为什么会和对应的平面平行呢?你能猜想出什么结论吗?能作图把这一结论表示出来吗?新知:直线与平面平行的判定定理定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.如图5-3所示,a∥α.图5-3反思:思考下列问题⑴用符号语言如何表示上述定理;⑵上述定理的实质是什么?它体现了什么数学思想?⑶如果要证明这个定理,该如何证明呢?※典型例题例1 有一块木料如图5-4所示,P为平面BCEF内一点,要求过点P在平面BCEF内作一条直线与平面ABCD平行,应该如何画线?图5-4例2 如图5-5,空间四边形ABCD中,,E F分别是910,AB AD 的中点,求证:EF ∥平面BCD .图5-5※ 动手试试练1. 正方形ABCD 与正方形ABEF 交于AB ,M 和N 分别为AC 和BF 上的点,且AM FN =,如图5-6 所示.求证:MN ∥平面BEC .图5-6练 2. 已知ABC ∆,,D E 分别为,AC AB 的中点,沿DE 将ADE ∆折起,使A 到A '的位置,设M 是A B '的中点,求证:ME ∥平面A CD '.三、总结提升※ 学习小结1. 直线与平面平行判定定理及其应用,其核心是线线平行⇒线面平行;2. 转化思想的运用:空间问题转化为平面问题.※ 知识拓展判定直线与平面平行通常有三种方法: ⑴利用定义:证明直线与平面没有公共点.但直接证明是困难的,往往借助于反正法来证明. ⑵利用判定定理,其关键是证明线线平行.证明线线平行可利用平行公理、中位线、比例线段等等. ⑶利用平面与平面平行的性质.(后面将会学习到)※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 若直线与平面平行,则这条直线与这个平面内的( ).A.一条直线不相交B.两条直线不相交C.任意一条直线都不相交D.无数条直线不相交 2. 下列结论正确的是( ). A.平行于同一平面的两直线平行B.直线l 与平面α不相交,则l ∥平面αC.,A B 是平面α外两点,,C D 是平面α内两点,若AC BD =,则AB ∥平面αD.同时与两条异面直线平行的平面有无数个3. 如果AB 、BC 、CD 是不在同一平面内的三条线段,则经过它们中点的平面和直线AC 的位置关系是( ).A.平行B.相交C.AC 在此平面内D.平行或相交 4. 在正方体1111ABCD A B C D -的六个面和六个对角面中,与棱AB 平行的面有________个.5. 若直线,a b 相交,且a ∥α,则b 与平面α的位置关系是_____________.1. 如图5-7,在正方体中,E 为1DD 的中点,判断1BD 与平面AEC 的位置关系,并说明理由.图5-72. 如图5-8,在空间四边形ABCD 中,P 、Q 分别是ABC ∆和BCD ∆的重心.求证:PQ ∥平面ACD.图5-8§2.2. 2 平面与平面平行的判定1. 能借助于长方体模型讨论直线与平面、平面与平面的平行问题;2. 理解和掌握两个平面平行的判定定理及其运用;3. 进一步体会转化的数学思想.一、课前准备 (预习教材P 56~ P 57,找出疑惑之处) 复习1:直线与平面平行的判定定理是___________ ___________________________________________. 复习2:两个平面的位置关系有___种,分别为____ ___和_______.讨论:两个平面平行的定义是两个平面没有公共点,怎样证明两个平面没有公共点呢?你觉得好证吗?二、新课导学※ 探索新知探究:两个平面平行的判定定理问题1:平面可以看作是由直线构成的.若一平面内的所有直线都与另一个平面平行,则这两个平面平行吗?由此你可以得到什么结论?结论:两个平面平行的问题可以转化为一个平面内的直线与另一个平面平行的问题.问题2:一个平面内所有直线都平行于另外一个平面好证明吗?能否只证明一个平面内若干条直线和另外一个平面平行,那么这两个平面就平行呢?试试:在长方体中,回答下列问题⑴如图6-1,AA AA B B '''⊂面,AA '∥面BB C C '',则面AA B B ''∥面BBC C ''吗?图6-1⑵如图6-2,AA '∥EF ,AA '∥DCC D ''面,EF ∥DCC D ''面,则A ADD ''面∥DCCD ''面吗?图6-2⑶如图6-3,直线A C ''和B D ''相交,且A C ''、B D ''都和平面ABCD 平行(为什么),则平面A B C D ''''∥平面ABCD 吗?图6-3反思:由以上3个问题,你得到了什么结论?新知:两个平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 如图6-4所示,α∥β.图6-4反思:⑴定理的实质是什么?⑵用符号语言把定理表示出来.⑶如果要证明定理,该怎么证明呢?※ 典型例题例1 已知正方体1111ABCD A B C D -,如图6-5,求证: 平面11AB D ∥1CB D.图6-5例2 如图6-6,已知,a b 是两条异面直线,平面α过 a ,与b 平行,平面β过b ,与a 平行, 求证:平面α∥平面β图6-6小结:证明面面平行,只需证明线线平行,而且这两条直线必须是相交直线.※ 动手试试练. 如图6-7,正方体中,,,,M N E F 分别是棱A B '',A D '',BC '',CD ''的中点,求证:平面∥ 平面EFDB .三、总结提升※ 学习小结1. 平面与平面平行的判定定理及应用;2. 转化思想的运用.※ 知识拓展判定平面与平面平行通常有5种方法 ⑴根据两平面平行的定义(常用反证法); ⑵根据两平面平行的判定定理;⑶垂直于同一条直线的两个平面平行(以后学习);⑷两个平面同时平行于第三个平面,则这两个平面平行(平行的传递性);⑸一个平面内的两条相交直线分别平行于另外一个平面内的两条直线,则这两个平面平行(判定定理※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 平面α与平面β平行的条件可以是( ). A.α内有无穷多条直线都与β平行B.直线a 与,αβ都平行,且不在α和β内C.直线a α⊂,直线b β⊂,且a ∥β,b ∥αD.α内的任何直线都与β平行2. 经过平面α外的一条直线a 且与平面α平行的平面( ).A.有且只有一个B.不存在C.至多有一个D.至少有一个3. 设有不同的直线,a b ,及不同的平面α、β,给出的三个命题中正确命题的个数是( ).①若a ∥α,b ∥α,则a ∥b ②若a ∥α,α∥β,则a ∥β③若,a αα⊂∥β,则a ∥β.A.0个B.1个C.2个D.3个4. 如果两个平面分别经过两条平行线中的一条,则这两个平面的位置关系是________________.5. 若两个平面都平行于两条异面直线中的每一条,则这两平面的位置关系是_______________. 1. 如图6-8,在几何体ABC A B C '''-中,1∠+ 2180∠=°,34180∠+∠=°,求证:平面ABC ∥ 平面A B C '''.图6-82. 如图6-9,A '、B '、C '分别是PBC ∆、PCA ∆、 PAB ∆的重心.求证:面A B C '''∥ABC 面.图6-9§2.2.3 直线与平面平行的性质1. 掌握直线和平面平行的性质定理;2. 能灵活运用线面平行的判定定理和性质定理,掌握“线线”“线面”平行的转化.5860复习1:两个平面平行的判定定理是____________ _____________________________________;它的实质是由__________平行推出__________平行.复习2:直线与平面平行的判定定理是___________ _____________________________________.讨论:如果直线a 与平面α平行,那么a 和平面α内的直线具有什么样的关系呢?二、新课导学※ 探索新知探究:直线与平面平行的性质定理问题1:如图7-1,直线a 与平面α平行.请在图中的平面α内画出一条和直线a 平行的直线b .图7-1问题2:我们知道两条平行线可以确定一个平面(为什么?),请在图7-1中把直线,a b 确定的平面画出来,并且表示为β.问题3:在你画出的图中,平面β是经过直线,a b 的平面,显然它和平面α是相交的,并且直线b 是这两个平面的交线,而直线a 和b 又是平行的.因此,你能得到什么结论?请把它用符号语言写在下面.问题4:在图7-2中过直线a 再画另外一个平面γ与平面α相交,交线为c .直线a ,c 平行吗?和你上面得出的结论相符吗?你能不能从理论上加以证明呢?图7-2新知:直线与平面平行的性质定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线都与该直线平行.反思:定理的实质是什么?※ 典型例题例 1 如图7-3所示的一块木料中,棱BC 平行于A C ''面.⑴要经过A C ''面内的一点P 和棱BC 将木料锯开,应怎样画线?⑵所画的线与平面AC 是什么位置关系?。

人教A版必修二高中数学第二章 2.2.1-2.2.2同步课堂导学案【含详细解析】

人教A版必修二高中数学第二章  2.2.1-2.2.2同步课堂导学案【含详细解析】

2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定[学习目标]1.理解直线与平面平行、平面与平面平行判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行、平面与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理、平面与平面平行的判定定理证明一些空间线面关系的简单问题.[知识链接]1.直线与平面的位置关系有平行、相交、直线在平面内.2.直线a 与平面α平行的定义:直线与平面无公共点.[预习导引]a ∥β,b ∥β要点一线面平行判定定理的应用例1如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH ∥平面BCD ;(2)BD ∥平面EFGH .证明(1)∵EH为△ABD的中位线,∴EH∥BD.∵EH⊄平面BCD,BD⊂平面BCD,∴EH∥平面BCD.(2)∵BD∥EH,BD⊄平面EFGH,EH⊂平面EFGH,∴BD∥平面EFGH.规律方法 1.利用直线与平面平行的判定定理证明线面平行,关键是寻找平面内与已知直线平行的直线.2.证线线平行的方法常用三角形中位线定理、平行四边形性质、平行线分线段成比例定理、平行公理等.跟踪演练1如图,四边形ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点,求证:SA∥平面MDB.证明连接AC交BD于点O,连接OM.∵M为SC的中点,O为AC的中点,∴OM∥SA.∵OM⊂平面MDB,SA⊄平面MDB,∴SA∥平面MDB.要点二面面平行判定定理的应用例2如图所示,在三棱柱ABCA1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB∥平面ADC1.证明由棱柱性质知,B1C1∥BC,B1C1=BC,又D,E分别为BC,B1C1的中点,所以C1E綊DB,则四边形C1DBE为平行四边形,因此EB∥C1D,又C1D⊂平面ADC1,EB⊄平面ADC1,所以EB∥平面ADC1.连接DE,同理,EB1綊BD,所以四边形EDBB1为平行四边形,则ED綊B1B.因为B1B∥A1A,B1B=A1A(棱柱的性质),所以ED綊A1A,则四边形EDAA1为平行四边形,所以A1E∥AD,又A1E⊄平面ADC1,AD⊂平面ADC1,所以A1E∥平面ADC1.由A1E∥平面ADC1,EB∥平面ADC1,A1E⊂平面A1EB,EB⊂平面A1EB,且A1E∩EB=E,所以平面A1EB∥平面ADC1.规律方法 1.要证明两平面平行,只需在其中一个平面内找到两条相交直线平行于另一个平面.2.判定两个平面平行与判定线面平行一样,应遵循先找后作的原则,即先在一个面内找到两条与另一个平面平行的相交直线,若找不到再作辅助线.跟踪演练2如图,三棱锥PABC中,E,F,G分别是AB,AC,AP的中点.证明平面GFE∥平面PCB.证明因为E,F,G分别是AB,AC,AP的中点,所以EF∥BC,GF∥CP.因为EF,GF⊄平面PCB,BC,CP⊂平面PCB.所以EF∥平面PCB,GF∥平面PCB.又EF∩GF=F,所以平面GFE∥平面PCB.要点三线面平行、面面平行判定定理的综合应用例3已知底面是平行四边形的四棱锥PABCD,点E在PD上,且PE∶ED=2∶1.在棱PC 上是否存在一点F,使BF∥平面AEC?证明你的结论,并说出点F的位置.解如图,连接BD交AC于O点,连接OE,过B点作OE的平行线交PD于点G,过点G 作GF∥CE,交PC于点F,连接BF.∵BG∥OE,BG⊄平面AEC,OE⊂平面AEC,∴BG∥平面AEC.同理,GF∥平面AEC.又BG∩GF=G,∴平面BGF∥平面AEC,∴平面BGF与平面AEC无公共点,∴BF与平面AEC无公共点.∴BF∥平面AEC.∵BG∥OE,O是BD的中点,∴E是GD的中点.又∵PE∶ED=2∶1,∴G是PE的中点.而GF∥CE,∴F 为PC 的中点.因此,当点F 是PC 的中点时,BF ∥平面AEC .规律方法要证明面面平行,由面面平行的判定定理知需在某一平面内寻找两条相交且与另一平面平行的直线.要证明线面平行,又需根据线面平行的判定定理,在平面内找与已知直线平行的直线,即:线线平行――→线面平行的判定线面平行――→面面平行的判定面面平行跟踪演练3如图,S 是平行四边形ABCD 所在平面外一点,M ,N 分别是SA ,BD 上的点,且AM SM =DN NB .求证:MN ∥平面SBC .解连接AN 并延长交BC 于P ,连接SP ,因为AD ∥BC ,所以DN NB =ANNP,又因为AM SM =DN NB ,所以AM SM =ANNP ,所以MN ∥SP .又MN ⊄平面SBC ,SP ⊂平面SBC ,所以MN ∥平面SBC .1.过直线l 外两点,作与l 平行的平面,则这样的平面()A .不可能作出B .只能作出一个C .能作出无数个D .上述三种情况都存在答案D解析设直线外两点为A 、B ,若直线AB ∥l ,则过A 、B 可作无数个平面与l 平行;若直线AB 与l 异面,则只能作一个平面与l 平行;若直线AB 与l 相交,则过A 、B 没有平面与l 平行.2.能保证直线a与平面α平行的条件是()A.b⊂α,a∥bB.b⊂α,c∥α,a∥b,a∥cC.b⊂α,A、B∈a,C、D∈b,且AC=BDD.a⊄α,b⊂α,a∥b答案D解析A错误,若b⊂α,a∥b,则a∥α或a⊂α;B错误,若b⊂α,c∥α,a∥b,a∥c,则a∥α或a⊂α;C错误,若满足此条件,则a∥α或a⊂α或a与α相交;D正确.3.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交答案B解析直线l不平行于平面α,且l⊄α,所以l与α相交,故选B.4.在正方体EFGHE1F1G1H1中,下列四对截面彼此平行的一对是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G答案A解析如图,∵EG∥E1G1,EG⊄平面E1FG1,E1G1⊂平面E1FG1,∴EG∥平面E1FG1,又G1F∥H1E,同理可证H 1E ∥平面E 1FG 1,又H 1E ∩EG =E ,∴平面E 1FG 1∥平面EGH 1.5.梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α的位置关系是________.答案CD ∥α解析因为AB ∥CD ,AB ⊂平面α,CD ⊄平面α,由线面平行的判定定理可得CD ∥α.1.直线与平面平行的关键是在已知平面内找一条直线和已知直线平行,即要证直线和平面平行,先证直线和直线平行,即由立体向平面转化,由高维向低维转化.2.证明面面平行的一般思路:线线平行⇒线面平行⇒面面平行.3.准确把握线面平行及面面平行两个判定定理,是对线面关系及面面关系作出正确推断的关键.一、基础达标1.已知三个平面α,β,γ,一条直线l ,要得到α∥β,必须满足下列条件中的()A .l ∥α,l ∥β,且l ∥γB .l ⊂γ,且l ∥α,l ∥βC .α∥γ,且β∥γD .l 与α,β所成的角相等答案C解析α∥γ⇒α与γβ∥γ⇒β与γα与β无公共点⇒α∥β.2.下列图形中能正确表示语句“平面α∩β=l ,a ⊂α,b ⊂β,a ∥β”的是()答案D解析A中不能正确表达b⊂β;B中不能正确表达a∥β;C中也不能正确表达a∥β;D正确.3.在正方体ABCDA1B1C1D1中,M是棱CD上的动点,则直线MC1与平面AA1B1B的位置关系是()A.相交B.平行C.异面D.相交或平行答案B解析如图,MC1⊂平面DD1C1C,而平面AA1B1B∥平面DD1C1C,故MC1∥平面AA1B1B.4.平面α内有不共线的三点到平面β的距离相等且不为零,则α与β的位置关系为() A.平行B.相交C.平行或相交D.可能重合答案C解析若三点分布于平面β的同侧,则α与β平行,若三点分布于平面β的两侧,则α与β相交.5.点E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,则空间四面体的六条棱中与平面EFGH平行的条数是()A.0B.1C.2D.3答案C解析如图,由线面平行的判定定理可知,BD∥平面EFGH,AC∥平面EFGH.6.若夹在两个平面间的三条平行线段相等,那么这两个平面的位置关系为________.答案平行或相交解析三条平行线段共面时,两平面可能平行也可能相交,当三条平行线段不共面时,两平面一定平行.7.如图所示的几何体中,△ABC 是任意三角形,AE ∥CD ,且AE =AB =2a ,CD =a ,F 为BE 的中点,求证:DF ∥平面ABC .证明如图所示,取AB 的中点G ,连接FG ,CG ,∵F ,G 分别是BE ,AB 的中点,∴FG ∥AE ,FG =12AE .又∵AE =2a ,CD =a ,∴CD =12AE .又AE ∥CD ,∴CD ∥FG ,CD =FG ,∴四边形CDFG 为平行四边形,∴DF ∥CG .又CG ⊂平面ABC ,DF ⊄平面ABC ,∴DF ∥平面ABC .二、能力提升8.已知直线l ,m ,平面α,β,下列命题正确的是()A .l ∥β,l ⊂α⇒α∥βB .l ∥β,m ∥β,l ⊂α,m ⊂α⇒α∥βC .l ∥m ,l ⊂α,m ⊂β⇒α∥βD .l ∥β,m ∥β,l ⊂α,m ⊂α,l ∩m =M ⇒α∥β答案D解析如图所示,在长方体ABCDA 1B 1C 1D 1中,AB ∥CD ,则AB∥平面DC1,AB⊂平面AC,但是平面AC与平面DC1不平行,所以A错误;取BB1的中点E,CC1的中点F,则可证EF∥平面AC,B1C1∥平面AC.EF⊂平面BC1,B1C1⊂平面BC1,但是平面AC与平面BC1不平行,所以B 错误;可证AD∥B1C1,AD⊂平面AC,B1C1⊂平面BC1,又平面AC与平面BC1不平行,所以C错误;很明显D是面面平行的判定定理,所以D正确.9.三棱锥SABC中,G为△ABC的重心,E在棱SA上,且AE=2ES,则EG与平面SBC的关系为________.答案平行解析如图,延长AG交BC于F,则由G为△ABC的重心知AG∶GF=2,又AE∶ES=2,∴EG∥SF,又SF⊂平面SBC,EG⊄平面SBC,∴EG∥平面SBC.10.如图是正方体的平面展开图.在这个正方体中,①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.以上四个命题中,正确命题的序号是________.答案①②③④解析以ABCD为下底面还原正方体,如图:则易判定四个命题都是正确的.11.如图,在三棱柱ABCA1B1C1中,D为BC的中点,连接AD,DC1,A1B,AC1,求证:A1B∥平面ADC1.证明连接A1C,设A1C∩AC1=O,再连接OD.由题意知,A1ACC1是平行四边形,所以O 是A1C的中点,又D是CB的中点,因此OD是△A1CB的中位线,即OD∥A1B.又A1B⊄平面ADC1,OD⊂平面ADC1,所以A1B∥平面ADC1.三、探究与创新12.如图在正方体ABCDA1B1C1D1中,E,F,M,N分别为棱AB,CC1,AA1,C1D1的中点.求证:平面CEM∥平面BFN.证明因为E,F,M,N分别为其所在各棱的中点,如图连接CD1,A1B,易知FN∥CD1.同理,ME∥A1B.易证四边形A1BCD1为平行四边形,所以ME∥NF.连接MD1,同理可得MD1∥BF.又BF,NF为平面BFN中两相交直线,ME,MD1为平面CEM中两相交直线,故平面CEM∥平面BFN.13.在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EF∥AB,FG∥BC,EG∥AC,AB=2EF,M是线段AD的中点,求证:GM∥平面ABFE.证明因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°,所以△ABC ∽△EFG ,∠EGF =90°,由于AB =2EF ,因此BC =2FG .如图,连接AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形,因此GM ∥FA .又FA ⊂平面ABFE ,GM ⊄平面ABFE ,所以GM ∥平面ABFE .。

吉林省舒兰市第一中学高中数学人教A版导学案 必修二 3.2 直线的五种形式的方程

吉林省舒兰市第一中学高中数学人教A版导学案 必修二 3.2 直线的五种形式的方程

第三章 3.2 直线的五种形式的方程(老师版) 编号039【学习目标】1.娴熟把握直线方程的五种形式的特点和适用范围.2.体会一般式与直线的其他方程形式之间的关系.3.会应用五种形式求直线的方程,提高运算求解的力量.【学习重点】重点:各种直线方程的的形式特点和适用范围难点:各种直线方程的局限性,把握求直线方程的机敏性 【基础学问】1.直线的点斜式方程 过点P (0x ,0y ),斜率为k 的直线l 的方程为:()00x x k y y -=-斜率存在的直线方程为()00x x k y y -=-;斜率不存在的直线方程为x x =或-0=x x2.直线的斜截式方程 斜率为k ,且与y 轴的交点为()b ,0的直线l 的方程为:b kx y += 。

其中我们把直线l 与y 轴的交点()b ,0的纵坐标b 叫做直线l 在y 轴上的截距。

也称纵截距。

纵截距不是距离,它是直线与y 轴交点的纵坐标,所以可以取一切实数。

直线方程的斜截式其实是点斜式在00=x 时的特殊状况。

对于直线1l :11b x k y +=,2l :22b x k y +=有①1l //2l ⇔21k k =,且21b b ≠②1l ⊥2l ⇔121-=k k3.直线的两点式方程 经过两点1P()11y x ,,2P ()22y x ,(其中21x x ≠,21y y ≠)直线l 方程为:121121x x x x y y y y --=--若21x x =,21P P 与x 轴垂直,此时的直线l 的方程为1x x =;若21y y =,1P 2P 与y 轴垂直,此时的直线l 的方程为1y y =4.直线的截距式方程 经过点A ()0,a ,B ()b ,0的直线l 方程为:1=+b ya x ,其中a 、b 分别为直线在x 、y 轴上不为零的截距。

留意:1x x =,1y y =和kx y =的直线不能用截距式方程表示。

a y x =+表达的是在两坐标轴上截距相等均为a 且a 不为零的直线方程。

高中数学人教A版2019必修第二册 7 2 1 复数的加 减法运算及其几何意义 导学案

高中数学人教A版2019必修第二册  7 2 1 复数的加 减法运算及其几何意义 导学案

7.2.1 复数的加、减法运算及其几何意义学习目标1.知识目标1.掌握复数代数形式的加、减运算法则;2.了解复数代数形式的加、减运算的几何意义.2.核心素养1.逻辑推理:根据复数与平面向量的对应关系推导其几何意义;2.数学运算:复数加、减运算及有其几何意义求相关问题;3.数学建模:结合复数加、减运算的几何意义和平面图形,数形结合,综合应用.重点难点重点:复数的代数形式的加、减运算及其几何意义.难点:加、减运算及其几何意义.学习过程一、预习导入阅读课本75-76页,填写。

1.复数加法与减法的运算法则(1)设z1=a+b i,z2=c+d i是任意两个复数,则①z1+z2=__________________________;②z1-z2=__________________________.(2)对任意z 1,z 2,z 3∈C ,有 ①z 1+z 2=___________; ②(z 1+z 2)+z 3=___________. 2.复数加减法的几何意义图3­2­1如图3­2­1所示,设复数z 1,z 2对应向量分别为OZ →1,OZ →2,四边形OZ 1ZZ 2为平行四边形,向量OZ →与复数___________对应,向量Z 2Z 1→与复数___________对应.思考:类比绝对值|x -x 0|的几何意义,|z -z 0|(z ,z 0∈C)的几何意义是什么? 提示 |z -z 0|(z ,z 0∈C)的几何意义是复平面内点Z 到点Z 0的距离.小试牛刀1.判断下列命题是否正确(正确的打“√”,错误的打“×”) (1)复数与向量一一对应.( ) (2)复数与复数相加减后结果只能是实数.( )(3)因为虚数不能比较大小,所以虚数的模也不能比较大小. ( ) 2.已知复数z 1=3+4i ,z 2=3-4i ,则z 1+z 2等于( )A .8iB .6C .6+8iD .6-8i3.在复平面内,复数1+i 与1+3i 分别对应向量OA ―→和OB ―→,其中O 为坐标原点,则|AB ―→|等于( ) A . 2 B .2 C .10 D .4 4.(5-i)-(3-i)-5i =________.自主探究题型一 复数的加减运算 例1计算:(1)(-3+2i)-(4-5i); (2)(5-6i)+(-2-2i)-(3+2i); (3)(a +b i)+(2a -3b i)+4i(a ,b ∈R). 跟踪训练一1.计算:(1)2i -[3+2i +3(-1+3i)];(2)(a +2b i)-(3a -4b i)-5i(a ,b ∈R). 题型二 复数加减运算的几何意义 例2根据复数及其运算的几何意义,求复平面内的两点Z 1(x 1,y 1),Z 2(x 2,y 2)间的距离. 跟踪训练二1、已知四边形ABCD 是复平面上的平行四边形,顶点A ,B ,C 分别对应于复数-5-2i ,-4+5i,2,求点D 对应的复数及对角线AC ,BD 的长. 题型三 复数加、减运算几何意义的应用例3 已知z ∈C ,且|z +3-4i|=1,求|z |的最大值与最小值. 跟踪训练三1.设z 1,z 2∈C ,已知|z 1|=|z 2|=1,|z 1+z 2|=2,求|z 1-z 2|.当堂检测1. a ,b 为实数,设z 1=2+b i ,z 2=a +i ,当z 1+z 2=0时,复数a +b i 为( )A .1+iB .2+iC .3D .-2-i2.已知z 1=2+i ,z 2=1+2i ,则复数z =z 2-z 1对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.计算|(3-i)+(-1+2i)-(-1-3i)|=________.4.已知复数z 1=(a 2-2)+(a -4)i ,z 2=a -(a 2-2)i(a ∈R ),且z 1-z 2为纯虚数,则a =________.5.在复平面内,复数-3-i 与5+i 对应的向量分别是OA →与OB →,其中O 是原点,求向量OA →+OB →,BA →对应的复数及A ,B 两点间的距离.答案小试牛刀 1. (1) × (2) × (3) × 2.B. 3.B. 4. 2-5i. 自主探究例1 【答案】(1)-7+7i. (2)-10i. (3)3a +(4-2b )i. 【解析】(1)(-3+2i)-(4-5i)=(-3-4)+[2-(-5)]i =-7+7i.(2)(5-6i)+(-2-2i)-(3+2i)=[5+(-2)-3]+[(-6)+(-2)-2]i =-10i. (3)(a +b i)+(2a -3b i)+4i =(a +2a )+(b -3b +4)i =3a +(4-2b )i. 跟踪训练一1.【答案】(1)-9i. (2)-2a +(6b -5)i.【解析】(1)原式=2i -(3+2i -3+9i)=2i -11i =-9i.(2)原式=-2a +6b i -5i =-2a +(6b -5)i. 例2【答案】|Z 1Z 2|=√(x 1−x 2)2+(y 1−y 2)2.【解析】 因为复平面内的点Z 1(x 1,y 1),Z 2(x 2,y 2)对应的复数分别为Z 1=x 1+y 1i,Z 2=x 2+y 2i . 所以Z 1,Z 2之间的距离为|Z 1Z 2|=|Z 1Z 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=|Z 1−Z 2|=|(x 1−x 2)+(y 1−y 2)|=√(x 1−x 2)2+(y 1−y 2)2跟踪训练二1、【答案】D 对应的复数是1-7i ,AC 与BD 的长分别是53和13.【解析】如图,因为AC 与BD 的交点M 是各自的中点,所以有z M =z A +z C 2=z B +z D2,所以z D =z A +z C -z B=1-7i ,因为AC ―→:z C -z A =2-(-5-2i)=7+2i ,所以|AC ―→|=|7+2i|=72+22=53,因为BD ―→:z D -z B =(1-7i)-(-4+5i)=5-12i ,所以|BD ―→|=|5-12i|=52+122=13.故点D 对应的复数是1-7i ,AC 与BD 的长分别是53和13. 例3 【答案】 |z |max =6,|z |min =4.【解析】由于|z +3-4i|=|z -(-3+4i)|=1,所以在复平面上,复数z 对应的点Z与复数-3+4i 对应的点C 之间的距离等于1,故复数z 对应的点Z 的轨迹是以C (-3,4)为圆心,半径等于1的圆.而|z |表示复数z 对应的点Z 到原点O 的距离,又|OC |=5, 所以点Z 到原点O 的最大距离为5+1=6,最小距离为5-1=4. 即|z |max =6,|z |min =4. 跟踪训练三1.【答案】|z 1-z 2|= 2.【解析】设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),由题设知a 2+b 2=1,c 2+d 2=1,(a +c )2+(b +d )2=2, 又(a +c )2+(b +d )2=a 2+2ac +c 2+b 2+2bd +d 2, 可得2ac +2bd =0.∴|z 1-z 2|2=(a -c )2+(b -d )2 =a 2+c 2+b 2+d 2-(2ac +2bd )=2, ∴|z 1-z 2|= 2. 当堂检测1-2.DB 3. 5 4. -15. 【答案】向量OA →+OB →对应的复数为2.向量BA →对应的复数为-8-2i. A ,B 两点间的距离为217. 【解析】向量OA →+OB →对应的复数为(-3-i)+(5+i)=2.∵BA →=OA →-OB →,∴向量BA →对应的复数为(-3-i)-(5+i)=-8-2i.∴A ,B 两点间的距离为|-8-2i|=217.。

人教A版高中数学必修2第三章 直线与方程3.2 直线的方程导学案(4)

人教A版高中数学必修2第三章 直线与方程3.2 直线的方程导学案(4)

讲义:直线与方程内容讲解:1、直线的倾斜角和斜率:(1)设直线的倾斜角为α()0180α≤<,斜率为k ,则tan 2k παα⎛⎫=≠ ⎪⎝⎭.当2πα=时,斜率不存在.(2)当090α≤<时,0k ≥;当90180α<<时,0k <. (3)过111(,)P x y ,222(,)P x y 的直线斜率212121()y y k x x x x -=≠-.2、两直线的位置关系:两条直线111:l y k x b =+,222:l y k x b =+斜率都存在,则:(1)1l ∥2l ⇔12k k =且12b b ≠; (2)12121l l k k ⊥⇔⋅=-; (3)1l 与2l 重合⇔12k k =且12b b =3、直线方程的形式:(1)点斜式:()00y y k x x -=-(定点,斜率存在) (2)斜截式:y kx b =+(斜率存在,在y 轴上的截距)(3)两点式:1121212121(,)y y x x y y x x y y x x --=≠≠--(两点)(4)一般式:()2200x y C A B A +B += +≠(5)截距式:1x ya b+=(在x 轴上的截距,在y 轴上的截距)4、直线的交点坐标:设11112222:0,:0l A x B y c l A x B y c ++=++=,则: (1)1l 与2l 相交1122A B A B ⇔≠;(2)1l ∥2l 111222A B C A B C ⇔=≠;(3)1l 与2l 重合111222A B C A B C ⇔==. 5、两点111(,)P x y ,222(,)P x y间的距离公式12PP =原点()0,0O 与任一点(),x y P的距离OP =6、点000(,)P x y 到直线:0l x y C A +B +=的距离d =(1)点000(,)P x y 到直线:0l x C A +=的距离0Ax Cd A +=(2)点000(,)P x y 到直线:0l y C B +=的距离0By Cd B+=(3)点()0,0P 到直线:0l x y C A +B +=的距离d =7、两条平行直线10x y C A +B +=与20x y C A +B +=间的距离d =8、过直线1111:0l A x B y c ++=与2222:0l A x B y c ++=交点的直线方程为()111222()()0A x B y C A x B y c R λλ+++++=∈9、与直线:0l x y C A +B +=平行的直线方程为()0x y D C D A +B +=≠ 与直线:0l x y C A +B +=垂直的直线方程为0x y D B -A += 10、中心对称与轴对称:(1)中心对称:设点1122(,),(,)P x y E x y 关于点00(,)M x y 对称,则12012022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩(2)轴对称:设1122(,),(,)P x y E x y 关于直线:0l x y C A +B +=对称,则: a 、0B =时,有122x x C A +=-且12y y =; b 、0A =时,有122y y CB+=-且12x x =c 、0A B ⋅≠时,有12121212022y y Bx x Ax x y y A B C -⎧=⎪-⎪⎨++⎪⋅+⋅+=⎪⎩典型例题例1. 已知直线(2m 2+m -3)x +(m 2-m)y =4m -1. ① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-23.④ 当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点.变式训练1.(1)直线3y + 3 x +2=0的倾斜角是 ( )A .30° B .60° C .120° D .150°(2)设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( )A .-3,4B .2,-3C .4,-3D .4,3(3)直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( )A .7 B.-7 C.7D .-7 (4)直线l 经过两点(1,-2),(-3,4),则该直线的方程是 .例2. 已知三点A (1,-1),B (3,3),C (4,5).求证:A 、B 、C 三点在同一条直线上.变式训练2. 设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0.例3.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( ) (A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+例4.(全国Ⅰ文)若直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的倾斜角可以是①15 ②30 ③45 ④60 ⑤75其中正确答案的序号是 .(写出所有正确答案的序号)例5.已知三角形的顶点是A(-5,0)、B(3,-3)、C(0,2) ,求这个三角形三边所在的直线方程.例6.一条直线从点A(3,2)出发,经过x轴反射,通过点B(-1,6),求入射光线与反射光线所在的直线方程例7、已知点A(-3,5) 和B(2,15) , 在直线l:3x-4y+4=0上找一点P, 使|PA|+|PB|最小, 并求这个最小值.例8、在等腰直角三角形中,已知一条直角边所在直线的方程为2x-y=0,斜边的中点为A(4,2),求其它两边所在直线的方程.例9、求过点P(-5,-4)且与坐标轴围成的三角形面积为5的直线方程.例10、已知点A(2,5)与点B(4,-7),试在y轴上求一点P,使及PBPA+的值为最小.例11、过点A(0,1)做一直线l,使它夹在直线1l:x-3y+10=0和2l:2x+y-8=0间的线段被A点平分,试求直线l的方程.巩固训练1、直线(2m2-5m-3)x-(m2-9)y+4=0的倾斜角为π4,则m的值是()A、3B、2C、-2D、2与32、点(a,b)关于直线x+y=0对称的点是 ( )A、 (-a,-b) B 、 (a,-b) C、 (b,a) D、 (-b,-a)3、已知l 平行于直线3x+4y-5=0, 且l和两坐标轴在第一象限内所围成三角形面积是24,则直线l的方程是 ( )A、3x+4y-122=0B、 3x+4y+122=0C、 3x+4y-24=0D、3x+4y+24=04、若直线l经过点(1,1),且与两坐标轴所围成的三角形的面积为2,则直线l的条数为( )A、1B、2C、3D、45、已知菱形的三个顶点为(a,b )、(-b,a )、(0,0),那么这个菱形的第四个顶点为 ( )A 、(a -b,a +b)B 、(a +b, a -b)C 、(2a,0)D 、(0,2a)6、若点(4,a)到直线4x-3y=1的距离不大于3,则a 的取值范围是( )A 、[]010, B 、(0,10)C 、13313,⎡⎣⎢⎤⎦⎥ D 、(-∞,0] [10,+∞)7、过定点P(2,1)作直线l ,交x 轴和y 轴的正方向于A 、B ,使△ABC 的面积最小,那么l的方程为 ( )A 、x-2y-4=0B 、x-2y+4=0C 、2x-y+4=0D 、x+2y-4=08、若直线Ax +By +C=0与两坐标轴都相交,则有( )A 、A·B ≠0 B 、A ≠0或B ≠0C 、C ≠0D 、A 2+B 2=09、已知直线l 1:3x +4y=6和l 2:3x-4y=-6,则直线l 1和l 2的倾斜角是( )A 、互补B 、互余C 、相等D 、互为相反数10、直线(2m 2-5m-3)x-(m 2-9)y +4=0的倾斜角为π4,则m 的值是( )A 、3B 、2C 、-2D 、2与311、△ABC 的一个顶点是A(3,-1),∠B、∠C 的平分线分别是x=0,y=x ,则直线BC 的方程是 ( ) A 、y=2x+5 B 、y=2x+3 C 、y=3x+5 D 、y=-252x + 12、直线kx -y=k -1与ky -x=2k 的交点位于第二象限,那么k 的取值范围是( )A 、k >1B 、0<k <21C 、k <21D 、21<k <113、直线(m+2)x+m y m m 2)32(2=--在x 轴上的截距是3,则实数m 的值是( )A 、52B 、6C 、- 52D 、-614、若平行四边形三个顶点的坐标为(1,0),(5,8),(7,-4),则第四个顶点坐标为 。

人教A版高中数学必修二 3.2.2 直线的两点式方程 导学案

人教A版高中数学必修二 3.2.2 直线的两点式方程 导学案

3.2.2直线的两点式方程学习目标:1.掌握直线方程的两点的形式特点及适用范围;2.了解直线方程截距式的形式特点及适用范围重点:直线的两点式方程 难点:直线的截距式方程 学习过程 一、知识链接复习1:直线过点(2,3)-,斜率是1,则直线方程为 ;直线的倾斜角为60ο,纵截距为3-,则直线方程为 .2.与直线21y x =+垂直且过点(1,2)的直线方程为 . 3.方程()331--=+x y 表示过点______,斜率是______,倾斜角是______,在y 轴上的截距是______的直线.4.已知直线l 经过两点12(1,2),(3,5)P P ,求直线l 的方程.(预习教材P 95~ P 97,找出疑惑之处)二、自主学习(首先独立思考探究,然后合作交流展示)1:已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为 由于这个直线方程由两点确定,所以我们把它叫直线的 方程,简称两点式注意:哪些直线不能用两点式表示?2:已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程 叫做直线的截距式方程.注意:直线与x 轴交点(a ,0)的横坐标 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标 叫做直线在y 轴上的截距.3:a ,b 表示截距,是不是表示直线与坐标轴的两个交点到原点的距离?4:到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?例1、求过下列两点的直线的两点式方程,再化为截距式方程. ⑴(2,1),(0,3)A B -;⑵(4,5),(0,0)A B --.例2 、已知三角形的三个顶点(5,0),(3,3)A B --,(0,2)C ,求BC 边所在直线的方程,以及该边上中线所在直线的方程. 学习小结1.直线方程的各种形式总结为如下表格:2.中点坐标公式:已知1122(,),(,)A x y B x y ,则AB 的中点(,)M x y ,则2121,22y y x y +==当堂检测:1. 直线l 过点(1,1),(2,5)--两点,点(1002,)b 在l 上,则b 的值为( ). A .2003 B .2004 C .2005 D .20062. 若直线0Ax By C ++=通过第二、三、四象限,则系数,,A B C 需满足条件( )A. ,,A B C 同号B. 0,0AC BC <<C. 0,0C AB =<D. 0,0A BC =< 3. 直线y ax b =+(0a b +=)的图象是( )4. 在x 轴上的截距为2,在y 轴上的截距为3- 的直线方程 .5. 直线21y x =-关于x 轴对称的直线方程 ,关于y 轴对称的直线方程 关于原点对称的方程 .6、已知直线l 的斜率为6,且在两坐标轴上的截距之和为10,求此直线l 的方程.7.求斜率为34,且与两坐标轴围成的三角形的周长为12的直线l 的方程.8、.直线l 过定点A (-2,3),且与两坐标轴围成的三角形面积为4,求直线l 的方程.。

最新人教新课标A版高中数学必修二全册教案

最新人教新课标A版高中数学必修二全册教案

学设计③定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.④分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.表示:棱柱ABCDE-A’B’C’D’E’⑤讨论:埃及金字塔具有什么几何特征?⑥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高.→讨论:棱锥如何分类及表示?⑦讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 圆柱、圆锥的结构特征:①讨论:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→列举生活中的棱柱实例→结合图形认识:底面、轴、侧面、母线、高. →表示方法③讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→柱体、锥体.④观察书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体.3.教学棱台与圆台的结构特征:①讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.讨论:棱台的分类及表示?圆台的表示?圆台可如何旋转而得?2教教学内容教学环节与活动设计课题§1.2.3空间几何体的直观图教学目标知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图.(2)采用对比的方法了解在平行投影下面空间图形与在中心投影下面空间图形两种方法的各自特点.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图.情感态度价值观(1)提高空间想象力与直观感受.(2)体会对比在学习中的作用.(3)感受几何作图在生产活动中的应用.重点用斜二测面法画空间几何值的直观图. 难点用斜二测面法画空间几何值的直观图.教学设计教学内容教学环节与活动设计一、创设情景,揭开课题三视图用三个角度的正棱影图反映空间几何体的形状和大小,我们能否将空间图形用一个平面图形来表示呢?二、探索新知1.水平放置的平面图形的直观图的画法.(1)例1 用斜二测法画水平放置的正六边形的直观图.画法:(1)如图(1),在正方边开ABCDEF中,取AD所在直线为x轴,对称轴MN所在直线为y轴,两轴相交于点O′,使∠x′O′y′ = 45°.(2)在图(2)中,以O′为中点,在x′轴上取A′D′=AD,在y′轴上取M′N ′ =12MN. 以点N ′为中点,画B′C′平行于x′轴,并且等于BC;再以M ′为中点,画E′F′平行于x′轴,并且等于EF.(3)连接A′B′,C′D′,D′E′,F′A′,并擦去辅助线x′轴和y′轴,便获得正六边形ABCDEF水平放置的直观图A′B′C′D′E′F′(图(3))教教学内容教学环节与活动设计学设计2)斜二测画法基本步骤.(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平表示水平面.(2)已知图形中平行于x轴或y轴的线段,在直观图分别画成平行于x′轴或y′轴的线段.(3)已知图形中平行于x轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度为原来的一半.2.简单几何体的直观图画法例2 用斜二测画法画长、宽、高分别是4cm,3cm,2cm的长方体ABCD–A′B′C′D′的直观图.画法:(1)画轴. 如图,画x轴、y轴、z轴,三轴交于点O,使∠xOy = 45°,∠xOz = 90°(2)画底面. 以点O为中点,在x轴上取线段MN,使322教教学内容教学环节与活动设计学设计2.判断下列结论是否正确,正确的在括号内画“√”,错误的画“×”.(1)角的水平放置的直观图一定是角. (√)(2)相等的角在直观图中仍然相等. (×)(3)相等的线段在直观图中仍然相等. (×)(4)若两条线段平行,则在直观图中对应的两条线段仍然平行. (√)3.利用斜二测画法得到的①三角形的直观图是三角形.②平行四边形的直观图是平行四边形.③正方形的直观图是正方形.④菱形的直观图是菱形.以上结论,正确的是( A )A.①②B.①C.③④D.①②③④4.用斜二测画法画出五棱锥P–ABCDE的直观图,其中底面ABCDE是正五边形,点P在底面的投影是正五边形的中心O(尺寸自定).教学小结1.平面图形斜二测画法. 2.简单几何体斜二测画法. 3.简单组合斜二测画法. 4.注意事项.课后反思教教学内容教学环节与活动设计学设计点分别为A,B,C,D,四边形ABCD就是长方体的底面ABCD.(3)画侧棱. 过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别截取2 cm长的线段A′A,B′B,C′C,D′D.(4)成图,顺次连接A,B,C,D,并加以整理(去掉辅助线,将被挡的部分改为虚线),就得长方体的直观图.3.简单组合体画法例 3 已知几何体的三视图说出它的结构特征,并用斜二测画法画它的直观图.画法:(1)画轴.如图(1),画x轴、z轴,使∠xOz=90°.(2)画圆的柱的下底面. 在x轴上取A,B两点,使AB 的长度等于俯视图中圆的直径,且OA = OB. 选择椭圆模板中适当的椭圆过A,B两点,使它为圆柱下底面的作法作出圆柱的下底面.(3)在Oz上截取点O′,使OO′等于正视图中OO′的长度,过点O′作平行于轴Ox的轴O′x′,类似圆柱下底面的作法作出圆柱的上底面.(4)画圆锥的顶点. 在Oz上截取点P,使PO′等于正视图中相应的高度.(5)成图. 连接PA′、PB′,AA′,BB′,整理得到三视图表示的几何体的直观图.(如图(2))三、随堂练习1.用斜二测画法画出下列水平放置的平面图形的直观图(尺寸自定):(1)任意三角形;(2)平行四边形;(3)正八边形.33学设计给出锥体的体积计算公式:ShV31=锥(S为底面面积,h为高)⑤讨论:台体的上底面积S’,下底面积S,高h,由此如何计算切割前的锥体的高?→如何计算台体的体积?'x sx h s=+''h sxs s∴=-'11)33V S h x S x=+-台('111333Sh Sx S x=+-'11()33Sh S S x=+-'''11()33h sSh S Ss s=+--''11()33Sh s s h s=++''1()3h s ss s=++⑥给出台体的体积公式:''1()3V S S S S h=++台(S,'S分别上、下底面积,h为高)''2211()()33V S S S S h r rR R hπ=++=++圆台(r、R分别为圆台上底、下底半径)⑦比较与发现:柱、锥、台的体积计算公式有何关系?从锥、台、柱的形状可以看出,当台体上底缩为一点时,台成为锥;当台体上底放大为与下底相同时,台成为柱。

(新教材)人教A版高中数学必修第二册学案 立体几何导学案含含配套练习答案

(新教材)人教A版高中数学必修第二册学案   立体几何导学案含含配套练习答案

8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征考点学习目标核心素养棱柱的结构特征理解棱柱的定义,知道棱柱的结构特征,并能识别直观想象棱锥、棱台的结构特征理解棱锥、棱台的定义,知道棱锥、棱台的结构特征,并能识别直观想象应用几何体的平面展开图能将棱柱、棱锥、棱台的表面展开成平面图形直观想象问题导学预习教材P97-P100的内容,思考以下问题:1.空间几何体的定义是什么?2.空间几何体分为哪几类?3.常见的多面体有哪些?4.棱柱、棱锥、棱台有哪些结构特征?1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体类别定义图示多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点旋转体一条平面曲线(包括直线)绕它所在平面内的这条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体.这条定直线叫做旋转体的轴3.棱柱、棱锥、棱台的结构特征结构特征及分类图形及记法棱柱结构特征(1)有两个面(底面)互相平行(2)其余各面都是四边形(3)相邻两个四边形的公共边都互相平行记作棱柱ABCDEF­A′B′C′D′E′F′分类按底面多边形的边数分为三棱柱、四棱柱…续表结构特征及分类图形及记法棱锥结构特征(1)有一个面(底面)是多边形(2)其余各面(侧面)都是有一个公共顶点的三角形记作棱锥S-ABCD 分类按底面多边形的边数分为三棱锥、四棱锥……棱台结构特征(1)上下底面互相平行,且是相似图形(2)各侧棱延长线相交于一点(或用一个平行于棱锥底面的平面去截棱锥,底面与截面之间那部分多面体叫做棱台)记作棱台ABCD-A′B′C′D′分类由三棱锥、四棱锥、五棱锥……截得的棱台分别为三棱台、四棱台、五棱台……(1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系 ①棱柱的分类棱柱⎩⎪⎨⎪⎧直棱柱⎩⎪⎨⎪⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系判断(正确的打“√”,错误的打“×”) (1)棱柱的侧面都是平行四边形.( )(2)用一个平面去截棱锥,底面和截面之间的部分叫棱台. ( ) (3)将棱台的各侧棱延长可交于一点.( ) 答案:(1)√ (2)× (3)√下面多面体中,是棱柱的有( )A .1个B .2个C .3个D .4个解析:选D.根据棱柱的定义进行判定知,这4个都满足. 下面四个几何体中,是棱台的是( )解析:选C.A 项中的几何体是棱柱.B 项中的几何体是棱锥;D 项中的几何体的棱AA ′,BB′,CC′,DD′没有交于一点,则D项中的几何体不是棱台;很明显C项中的几何体是棱台.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为()A.1 B.2C.3 D.4解析:选D.每个面都可作为底面,有4个.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故②错,③对.因而正确的有①③.答案:①③棱柱的结构特征下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.1.下列命题中正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫棱柱的底面C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形解析:选D.由棱柱的定义可知,选D.2.如图所示的三棱柱ABC-A1B1C1,其中E,F,G,H是三棱柱对应边上的中点,过此四点作截面EFGH,把三棱柱分成两部分,各部分形成的几何体是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:截面以上的几何体是三棱柱AEF-A1HG,截面以下的几何体是四棱柱BEFC-B1HGC1.棱锥、棱台的结构特征下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点1.棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱长都相等D.侧棱延长后相交于一点解析:选C.由棱台的概念(棱台的产生过程)可知A,B,D都是棱台具有的性质,而侧棱长不一定相等.2.下列说法中,正确的是()①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.A.①②B.①③C.②③D.②④解析:选B.由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错;四面体就是由四个三角形所围成的封闭几何体,因此以四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错.空间几何体的平面展开图(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选 B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.1.某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为()解析:选A.其展开图是沿盒子的棱剪开,无论从哪条棱剪开,剪开的相邻面在展开图中可以不相邻,但未剪开的相邻面在展开图中一定相邻.相同的图案是盒子上相对的面,展开后不能相邻.2.根据如图所示的几何体的表面展开图,画出立体图形.解:如图是以四边形ABCD为底面,P为顶点的四棱锥.其图形如图所示.1.下面的几何体中是棱柱的有()A.3个B.4个C.5个D.6个解析:选C.棱柱有三个特征:(1)有两个面相互平行.(2)其余各面是四边形.(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.2.下面图形中,为棱锥的是()A.①③B.③④C.①②④D.①②解析:选C.根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥解析:选D.根据棱锥的定义可知该几何体是三棱锥.4.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为__________cm.解析:因为棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为60 5=12(cm).答案:125.画一个三棱台,再把它分成:(1)一个三棱柱和另一个多面体.(2)三个三棱锥,并用字母表示.解:画三棱台一定要利用三棱锥.(1)如图①所示,三棱柱是棱柱A′B′C′­AB″C″,另一个多面体是B′C′C″B″BC.(2)如图②所示,三个三棱锥分别是A′­ABC,B′­A′BC,C′­A′B′C.[A基础达标]1.下列说法正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱解析:选D.棱柱和棱锥的底面可以是任意多边形,故选项A、B均不正确;可沿棱锥的侧棱将其分割成两个棱锥,故C错误;用平行于棱柱底面的平面可将棱柱分割成两个棱柱.2.具备下列条件的多面体是棱台的是()A .两底面是相似多边形的多面体B .侧面是梯形的多面体C .两底面平行的多面体D .两底面平行,侧棱延长后交于一点的多面体解析:选D.由棱台的定义可知,棱台的两底面平行,侧棱延长后交于一点. 3.如图,能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C.根据棱台是由棱锥截成的进行判断.选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不正确;选项B 中B 1C 1BC ≠A 1C 1AC ,故B 不正确;选项C 中A 1B 1AB =B 1C 1BC =A 1C 1AC,故C 正确;选项D 中满足这个条件的可能是一个三棱柱,不是三棱台.故选C.4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( ) A .三棱锥 B .四棱锥 C .五棱锥D .六棱锥解析:选D.由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.5.下列图形中,不能折成三棱柱的是( )解析:选C.C 中,两个底面均在上面,因此不能折成三棱柱,其余均能折成三棱柱. 6.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得). 答案:4 87.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱. 解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱. 答案:5 6 98.在下面的四个平面图形中,是侧棱都相等的四面体的展开图的为__________.(填序号)解析:由于③④中的图组不成四面体,只有①②可以.答案:①②9.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.10.画出如图所示的几何体的表面展开图.解:表面展开图如图所示:(答案不唯一)[B能力提升]11.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线()A.20条B.15条C.12条D.10条解析:选D.如图,在五棱柱ABCDE A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共有2×5=10(条).12.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A.至多有一个是直角三角形B.至多有两个是直角三角形C.可能都是直角三角形D.必然都是非直角三角形解析:选C.注意到答案特征是研究侧面最多有几个直角三角形,这是一道开放性试题,需要研究在什么情况下侧面的直角三角形最多.在如图所示的长方体中,三棱锥A­A1C1D1的三个侧面都是直角三角形.13.长方体ABCD-A1B1C1D1的长、宽、高分别为3,2,1,从A到C1沿长方体的表面的最短距离为________.解析:结合长方体的三种展开图不难求得AC1的长分别是:32,25,26,显然最小值是3 2.答案:3 214.如图,已知长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分几何体的形状是什么?解:(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)各部分几何体都是棱柱,分别为棱柱BB1F­CC1E和棱柱ABF A1­DCED1.[C拓展探究]15.如图,在一个长方体的容器中装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中:(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,试着讨论水面和水的形状.解:(1)不对,水面的形状就是用一个与棱(倾斜时固定不动的棱)平行的平面截长方体时截面的形状,因而是矩形,不可能是其他非矩形的平行四边形.(2)不对,水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征考点学习目标核心素养圆柱、圆锥、圆台、球的概念理解圆柱、圆锥、圆台、球的定义,知道这四种几何体的结构特征,能够识别和区分这些几何体直观想象简单组合体的结构特征了解简单组合体的概念和基本形式直观想象旋转体中的计算问题会根据旋转体的几何体特征进行相关运算直观想象、数学运算问题导学预习教材P101-P104的内容,思考以下问题:1.常见的旋转体有哪些?是怎样形成的?2.这些旋转体有哪些结构特征?它们之间有什么关系?3.这些旋转体的侧面展开图和轴截面分别是什么图形?1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征定义以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆柱的轴底面:垂直于轴的边旋转而成的圆面侧面:平行于轴的边旋转而成的曲面母线:无论旋转到什么位置,平行于轴的边柱体:圆柱和棱柱统称为柱体■名师点拨(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征定义以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆锥的轴底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边锥体:圆锥和棱锥统称为锥体(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征定义用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分图示及相关概念轴:圆锥的轴底面:圆锥的底面和截面侧面:圆锥的侧面在底面和截面之间的部分母线:圆锥的母线在底面与截面之间的部分台体:圆台和棱台统称为台体■名师点拨(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征定义以半圆的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球图示及相关概念球心:半圆的圆心半径:半圆的半径直径:半圆的直径■名师点拨(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.判断(正确的打“√”,错误的打“×”)(1)直角三角形绕一边所在直线旋转得到的旋转体是圆锥.()(2)夹在圆柱的两个平行截面间的几何体是一圆柱.()(3)半圆绕其直径所在直线旋转一周形成球.()(4)圆柱、圆锥、圆台的底面都是圆面.()答案:(1)×(2)×(3)×(4)√下列几何体中不是旋转体的是()解析:选D.由旋转体的概念可知,选项D不是旋转体.过圆锥的轴作截面,则截面形状一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形答案:B可以旋转得到如图的图形的是()解析:选A.题图所示几何体上面是圆锥,下面是圆台,故平面图形应是由一个直角三角形和一个直角梯形构成.指出图中的几何体是由哪些简单几何体构成的.解:①是由一个圆锥和一个圆柱组合而成的;②是由一个圆柱和两个圆台组合而成的;③是由一个三棱柱和一个四棱柱组合而成的.圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.判断下列各命题是否正确.(1)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(2)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(3)到定点的距离等于定长的点的集合是球.解:(1)错误.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(2)正确.(3)错误.应为球面.简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】 A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.已知AB是直角梯形ABCD中与底边垂直的腰,如图所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.解:(1)以AB 边所在的直线为轴旋转所得旋转体是圆台,如图①所示.(2)以BC 边所在的直线为轴旋转所得旋转体是一个组合体:下部为圆柱,上部为圆锥,如图②所示.(3)以CD 边所在的直线为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥,如图③所示.(4)以AD 边所在的直线为轴旋转所得旋转体是一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.旋转体中的计算问题如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.【解】 设圆台的母线长为l cm ,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm ,4r cm.过轴SO 作截面,如图所示,则△SO ′A ′∽△SOA ,SA ′=3 cm. 所以SA ′SA =O ′A ′OA ,所以33+l =r 4r =14.解得l =9,即圆台O ′O 的母线长为9 cm.解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.。

人教A版数学必修二第二章第六课时导学案2.2.2

人教A版数学必修二第二章第六课时导学案2.2.2

§2.2. 2 平面与平面平行的判定学习目标1. 能借助于长方体模型讨论直线与平面、平面与平面的平行问题;2. 理解和掌握两个平面平行的判定定理及其运用;3. 进一步体会转化的数学思想.56~ P 57,找出疑惑之处)复习1:直线与平面平行的判定定理是__________________________________.复习2:两个平面的位置关系有___种,分别为_______和_______.讨论:两个平面平行的定义是两个平面没有公共点,怎样证明两个平面没有公共点呢?你觉得好证吗?二、新课导学※ 探索新知探究:两个平面平行的判定定理问题1:平面可以看作是由直线构成的.若一平面内的所有直线都与另一个平面平行,则这两个平面平行吗?由此你可以得到什么结论?结论:两个平面平行的问题可以转化为一个平面内的直线与另一个平面平行的问题.问题2:一个平面内所有直线都平行于另外一个平面好证明吗?能否只证明一个平面内若干条直线和另外一个平面平行,那么这两个平面就平行呢?试试:在长方体中,回答下列问题⑴如图6-1,AA AA B B '''⊂面,AA '∥面BB C C '',则面AA B B ''∥面BB C C ''吗?图6-1⑵如图6-2,AA '∥EF ,AA '∥DCC D ''面,EF ∥DCC D ''面,则A ADD ''面∥DCC D ''面吗?图6-2⑶如图6-3,直线A C ''和B D ''相交,且A C ''、B D ''都和平面ABCD 平行(为什么),则平面A B C D ''''∥平面ABCD 吗?图6-3反思:由以上3个问题,你得到了什么结论?新知:两个平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.如图6-4所示,α∥β.图6-4反思:⑴定理的实质是什么?⑵用符号语言把定理表示出来.⑶如果要证明定理,该怎么证明呢?※ 典型例题例1 已知正方体1111ABCD A B C D -,如图6-5,求证:平面11AB D ∥1CB D .图6-5例2 如图6-6,已知,a b是两条异面直线,平面α过a,与b平行,平面β过b,与a平行,求证:平面α∥平面β小结:证明面面平行,只需证明线面平行,而且这两条直线必须是相交直线.※动手试试'',B C'',C D''的中点,练. 如图6-7,正方体中,,,,M N E F分别是棱A B'',A D求证:平面AMN∥平面EFD B.三、总结提升※学习小结1. 平面与平面平行的判定定理及应用;2. 转化思想的运用.※知识拓展判定平面与平面平行通常有5种方法⑴根据两平面平行的定义(常用反证法);⑵根据两平面平行的判定定理;⑶垂直于同一条直线的两个平面平行(以后学习);⑷两个平面同时平行于第三个平面,则这两个平面平行(平行的传递性);⑸一个平面内的两条相交直线分别平行于另外一个平面内的两条直线,则这两个平面平行(判定定理的推论).学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 平面α与平面β平行的条件可以是( ).A. α内有无穷多条直线都与β平行B. 直线a 与,αβ都平行,且不在α和β内C. 直线a α⊂,直线b β⊂,且a ∥β,b ∥αD. α内的任何直线都与β平行2. 经过平面α外的一条直线a 且与平面α平行的平面( ).A. 有且只有一个B. 不存在C. 至多有一个D. 至少有一个3. 设有不同的直线,a b ,及不同的平面α、β,给出的三个命题中正确命题的个数是( ).①若a ∥α,b ∥α,则a ∥b②若a ∥α,α∥β,则a ∥β③若,a αα⊂∥β,则a ∥β.A. 0个B. 1个C. 2个D. 3个4. 如果两个平面分别经过两条平行线中的一条,则这两个平面的位置关系是__________.5. 若两个平面都平行于两条异面直线中的每一条,则这两平面的位置关系是___________. 课后作业1. 如图6-8,在几何体ABC A B C '''-中,1∠+2180∠=°,34180∠+∠=°,且'AA ∥'BB ∥'CC , 求证:平面ABC ∥平面A B C '''.图6-82. 如图6-9,A '、B '、C '分别是PBC ∆、PCA ∆、PAB ∆的重心.求证:面A B C '''∥ABC 面.图6-9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教A版高中数学必修二全册精品导学案高中数学必修导学案§1.1 空间几何体的结构【使用说明及学法指导】1.结合问题导学自已复习课本必修2的P2页至P4页,用红色笔勾画出疑惑点;独立完成探究题,并总结规律方法。

2.针对问题导学及小试牛刀找出的疑惑点,课上讨论交流,答疑解惑。

3. 感受空间实物及模型,增强学生直观感知;能根据几何结构特征对空间物体进行分类;4.理解多面体的有关概念;会用语言概述棱柱、棱锥、棱台的结构特征.5. 在科学上没有平坦的道路,只有不畏劳苦,敢于沿着陡峭山路攀登的人才有希望达到光辉的顶点。

【重点难点】重点是棱柱、棱锥、棱台结构特征.难点是棱柱、棱锥、棱台的结构特征一【问题导学】探索新知探究1:几何体的相关概念(1)预习课本第2页的观察部分,试着将所给出的16幅图片进行分类,并说明分类依据。

(2)空间几何体的概念:(3探究2新知1:(1)多面体:(2)多面体的面:(3)多面体的棱:(4 指出右侧几何体的面、棱、顶点探究2:旋转体的相关概念新知2:旋转体旋转体的轴 探究31、 棱柱:2、棱柱的分类:(1)按侧棱及底面垂直及否,分为:(2)按底面多边形的边数,分为:注:底面是正多边形的直棱柱叫做正棱柱。

3、棱柱的表示:4、补充:平行六面体——底面是平行四边形的四棱柱探究41、棱锥:2、棱锥的分类:注:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥是正棱锥.3、棱锥的表示:探究5:(三)棱台1、棱台:2、棱台的分类:3、棱台的表示:二【小试牛刀】1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成().A.棱锥 B.棱柱 C.平面 D.长方体2. 棱台不具有的性质是().A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点三【合作、探究、展示】例1、根据右边模型,回答下列问题:(1)观察长方体模型,有多少对平行平面?能作为棱柱底面的有多少对?(2) 如右图,长方体''''中被截去一部ABCD A B C D分,其中''EH A D。

问剩下的几何体是什么?截//去的几何体是什么(3)观察六棱柱模型,有多少对平行平面?能作为棱柱底面的有多少对?【规律方法总结】例2、下列几何体是不是棱台,为什么?(1)(2)【规律方法总结】例3、思考:棱柱、棱锥和棱台都是多面体,它们在结构上有那些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?【规律方法总结】四【达标训练】1、下列选项中不是正方体表面展开图的是()2下列关于简单几何体的说法中:(1)斜棱柱的侧面中不可能有矩形;(2)有两个面互相平行,其余各面都是平行四边形的多面体是棱柱;(3)侧面是等腰三角形的棱锥是正棱锥;(4)圆台也可看成是圆锥被平行于底面的平面所截得截面及底面之间的部分。

其中正确的是3、有两个面互相平行,其他面都是四边形,则这个几何体是()A、棱柱B、棱台C、棱柱或棱台D、以上答案都不对4、若棱锥的所有棱长均相等,则它一定不是()A、三棱锥B、四棱锥C、五棱锥D、六棱锥五【课后练笔】1.如图几何体,关于其结构特征,下列说法不正确的是()MD C AF E D 1C 1B 1A 1D C B A A.该几何体是由两个同底的四棱锥组成的几何体.B.该组合体有12条棱,6个顶点.C.该组合体有8个面,各面均为三角形.D.该组合体有9个面,其中一个面为四边形,其余8个面为三角形.2. 在边长a 为正方形中,E 、F 分别为、的中点,现在沿、及把△、△和△折起,使A 、B 、C 三点重合,重合后的点记为P .问折起后5.如图所示, 1B 1C 1D 1是长方体, (1)这个长方体是棱柱吗?如果是,是几棱柱?如果不是,说明理由.(2)用平面把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,说明理由.(3)11是棱台吗?如果是,是几棱台?如果不是,说明理由.六【本节小结】1. 多面体、旋转体的有关概念;2. 棱柱、棱锥、棱台的结构特征及简单的几何性质.1. 平行六面体:底面是平行四边形的四棱柱;2. 正棱柱:底面是正多边形的直棱柱;3. 正棱锥:底面是正多边形并且顶点在底面的射影是底面正多边形中心的棱锥;4. 正棱台:由正棱锥截得的棱台叫做正棱台.感悟:§1.1.1圆柱、圆锥、圆台、球的结构特征【使用说明及学法指导】1.结合问题导学自已复习课本必修2的P5页至P7页,用红色笔勾画出疑惑点;独立完成探究题,并总结规律方法。

2.针对问题导学及小试牛刀找出的疑惑点,课上讨论交流,答疑解惑。

3、会用语言叙述圆柱、圆锥、圆台、球的结构特征;能够利用几何体的结构特征认识简单组合体的结构特征4 灵感不过是“顽强的劳动而获得的奖赏” --列宾【学习目标】1. 感受空间实物及模型,增强学生的直观感知;2. 能根据几何结构特征对空间物体进行分类;3. 理解旋转体的有关概念;4. 会用语言概述圆柱、圆锥、圆台的结构特征.【重点难点】重点是圆柱、圆锥、圆台的结构特征;难点是旋转体的结构特征一【问题导学】探究11、圆柱:2、圆柱的结构特征:圆柱的轴:圆柱侧面的母线:3、圆柱的画法:4、圆柱的表示:5、棱柱和圆柱统称为6、在右边图中,指出圆柱的有关概念:轴、底面、侧面、母线,并画出轴截面。

探究2 (二)圆锥仿照圆柱的有关定义,你能定义什么是圆锥以及圆锥的轴、底面、侧面、母线吗?1、圆锥2、在右边图中,指出圆锥的有关概念:轴、底面、侧面、母线,并画出轴截面。

3、圆锥的表示:4、棱锥和圆锥统称为探究3:(三)圆台1、圆台:2、在右边图中,指出圆台的有关概念:轴、底面、侧面、母线,并画出轴截面。

3、圆台的表示:4、棱台和圆台统称为5.圆台,也是旋转体.它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?:探究4:(四)球1、球:2、在右边图中,指出球的有关概念:球心、半径、直径、大圆3、球的表示:思考:这四种几何体有什么共同特征?探究5 (五)简单组合体1、简单组合体;2、简单组合体的构成基本形式二【小试牛刀】旋转体的性质旋转体定义有关线轴母线三【合作、探究、展示】例1:下列叙述正确的有(1)以直角三角形的一边为轴旋转所得的旋转体是圆锥.(2)以直角梯形的一腰为轴旋转所得的的几何体是圆台.(3)圆柱、圆锥、圆台的底面都是圆.(4)用一个平面去截圆锥,得到一个圆锥和一个圆台.(5)在圆柱的上,下两底面的圆周上各取一点,这两点的连线是圆柱的母线.(6)圆锥的顶点及底面圆周上任一点的连线是圆锥的母线【规律方法总结】例2.右图绕虚线旋转一周后形成的立体图形,是由Array那些简单几何体构成的?【规律方法总结】变式训练:下图是由哪些简单几何体组合而成?四【达标训练】1、下列命题中正确的是().A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体是旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线2.如图所示的平面结构,绕中间轴旋转一周后,形成的几何体形状为()A.一个球体B.一个球体中间挖去一个圆柱C.一个球体中间挖去一个棱柱D.一个圆柱3.如图(1),是由右边哪个平面图形旋转得到的()4.下列命题:(1)过球面上任意两点只能作一个球大圆.(球大圆是以球心为圆心,球半径为半径的圆)(2)连接球的任意两个大圆的交点的线段是球的直径.(3)球面可以看成是到球心的距离等于球半径的所有点的集合. 其中正确的有( ) .5.以等腰三角形底边的垂直平分线为旋转轴,将各边绕轴旋转1800形成的曲面所围成的几何体是 . 五【课后练笔】 1.说出下列几何体的结构特征.(1)DC B A2.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右侧的平面图形,则标“▽”的面得方位是()A.南B.北C.西D.下六【本节小结】感悟:§1.2.1空间几何体的三视图【使用说明及学法指导】1.结合问题导学自已复习课本必修2的P11页至P14页,用红色笔勾画出疑惑点;独立完成探究题,并总结规律方法。

2.针对问题导学及小试牛刀找出的疑惑点,课上讨论交流,答疑解惑。

3、主要通过学生自己的亲身实践,动手作图,体会三视图的作用.4 学习数学的大道上荆棘丛生,这也是好事,常人望而却步,只有意志坚强的人例外雨果【学习目标】通过观察用两种方法(平行投影及中心投影)画出的视图及直观图,了解空间图形的不同表示形式;掌握画三视图的基本技能.【重点难点】重点是画出简单组合体的三视图;难点是识别三视图表示的空间几何体一【问题导学】1.投影的定义:由于光的照射,在物体后面的屏幕上可以留下这个物体的,这种现象叫做投影。

其中,叫做投影线,留下物体影子的叫做投影面。

2.投影的分类:(1)中心投影:光由向外扩散形成的投影,叫做中心投影。

中心投影的性质:①中心投影的投影线②点光源距离物体越近,投影形成的影子。

(2)平行投影:在一束光线照射下形成的投影,叫做平行投影。

在平行投影中,投影线投影面时,叫做正投影,否则叫做。

平行投影的性质:①平行投影的投影线是。

②在平行投影下,及平行的平面图形留下的影子及这个平面图形。

3.三视图的概念:1.空间几何体的三视图是指、、。

(1)正视图:光线从几何体的面向面投影,得到的投影图;(2)侧视图:光线从几何体的面向面投影,得到的投影图;(3)俯视图:光线从几何体的面向面投影,得到的投影图;2.三视图的画法要求:(1)先画,在正视图的右边,在正视图的下面。

(2)一个几何体的侧视图和正视图高度一样,俯视图和正视图长度一样,侧视图和俯视图宽度一样。

即“ , , 。

”(3)画几何体的的三视图时,能看见的轮廓线和棱用 表示,不能看见的轮廓线和棱用 表示。

二【小试牛刀】1.正方体1B 1C 1D 1中,分别是A 1A ,C 1C 的中点,则下列判断正确的有(1)四边形1E 在底面内的投影是正方形; (2)四边形1E 在面A 1D 1内的投影是菱形;(3)四边形1E 在面A 1D 1内的投影及在面1A 1内的投影是全等的平行四边形.2.画出圆柱、圆锥、圆台、球的三视图。

三【合作、探究、展示】 例 1.画出下列图形的三视图.FED 1C 1B 1A 1DCBA【规律方法总结】正视图反映了物体上下、左右的位置关系,即反映了物体的 ;侧视图反映了物体上下、前后的位置关系,即反映了物体的 ;俯视图反映了物体左右、前后的位置关系,即反映了物体的 .变式训练:画出如图所示的正六棱柱的三视图.例2.画出如图所示的组合体的三视图【规律方法总结】例3.根据下列图中所给的三视图,试画出该物体的形状.侧视图正视图侧视图正视图【规律方法总结】四【达标训练】1.如果一个空间几何体的正视图和侧视图均为全等的等边三角形,俯视图为一个圆及其圆心,那么这个几何体为()A.棱锥B.棱柱C.圆锥D.圆柱2.一图形的投影是一条线段,这个图形不可能是(1)线段(2)直线(3)圆(4)梯形(5)长方体3.下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④4.用平面截一个圆柱体,截面可能是。

相关文档
最新文档