最新十道海量数据处理面试题 zz

合集下载

Hadoop面试题目及答案

Hadoop面试题目及答案

Hadoop面试题目及答案Hadoop面试45个题目及答案1.Hadoop集群可以运行的3个模式?单机(本地)模式伪分布式模式全分布式模式2. 单机(本地)模式中的注意点?在单机模式(standalone)中不会存在守护进程,所有东西都运行在一个JVM上。

这里同样没有DFS,使用的是本地文件系统。

单机模式适用于开发过程中运行MapReduce程序,这也是最少使用的一个模式。

3. 伪分布模式中的注意点?伪分布式(Pseudo)适用于开发和测试环境,在这个模式中,所有守护进程都在同一台机器上Hadoop被安装在cd/usr/lib/hadoop-0.20/。

8. Namenode、Job tracker和task tracker 的端口号是?Namenode,70;Job tracker,30;Task tracker,60。

9. Hadoop的核心配置是什么?Hadoop的核心配置通过两个xml文件来完成:1,hadoop-default.xml;2,hadoop-site.xml。

这些文件都使用xml格式,因此每个xml中都有一些属性,包括名称和值,但是当下这些文件都已不复存在。

10. 那当下又该如何配置?Hadoop现在拥有3个配置文件:1,core-site.xml;2,hdfs-site.xml;3,mapred-site.xml。

这些文件都保存在conf/子目录下。

11. RAM的溢出因子是?溢出因子(Spill factor)是临时文件中储存文件的大小,也就是Hadoop-temp目录。

12. fs.mapr.working.dir只是单一的目录?fs.mapr.working.dir只是一个目录。

13. hdfs-site.xml的3个主要属性?.dir决定的是元数据存储的路径以及DFS的存储方式(磁盘或是远端)dfs.data.dir决定的是数据存储的路径fs.checkpoint.dir用于第二Namenode 14. 如何退出输入模式?退出输入的方式有:1,按ESC;2,键入:q(如果你没有输入任何当下)或者键入:wq(如果你已经输入当下),并且按下Enter。

数据处理 面试题目及答案

数据处理 面试题目及答案

数据处理面试题目及答案一、问题:请简单介绍一下数据处理的概念。

答案:数据处理是指将原始数据进行整理、清洗、加工和分析,以获得有意义和有用的信息。

数据处理能够帮助我们从大量的数据中提取特定的信息,发现规律和趋势,为决策提供支持。

二、问题:请列举一些常用的数据处理技术。

答案:常用的数据处理技术包括数据清洗、数据转换、数据聚合、数据挖掘、数据可视化等。

数据清洗指的是处理原始数据中存在的错误、缺失或者冗余数据;数据转换是将数据从一种格式或结构转换为另一种格式或结构;数据聚合是将多个数据集合并为一个整体进行分析;数据挖掘是通过使用机器学习和统计分析方法,从大量的数据中发现隐藏的模式和关联规则;数据可视化将数据以图表、图形等形式呈现出来,使得数据更易于理解和分析。

三、问题:请解释一下数据清洗的步骤。

答案:数据清洗的步骤包括数据收集、数据评估、数据处理和数据验证。

首先,我们需要收集原始数据,可以来自不同的渠道,如数据库、文本文件、传感器等。

然后,对收集到的数据进行评估,观察数据是否存在错误、缺失或冗余。

接下来,进行数据处理,即去除错误、补充缺失、去除冗余等。

最后,对处理后的数据进行验证,确保数据的准确性和完整性。

四、问题:请描述一下数据挖掘的过程。

答案:数据挖掘的过程包括问题定义、数据收集、数据清洗、特征选择、模型构建、模型评估和模型应用。

首先,我们需要明确挖掘的问题是什么,比如预测用户购买行为、分类客户群体等。

然后,收集相关的数据,可以通过调查问卷、日志文件等方式获取。

接下来,对收集到的数据进行清洗,去除错误和缺失的数据。

在特征选择阶段,我们选择最具代表性和相关性的特征用于模型构建。

然后,构建模型,可以使用机器学习算法进行训练和预测。

在模型评估过程中,评估模型的性能和准确度。

最后,将训练好的模型应用到实际问题中,得出有意义的结论和预测结果。

五、问题:请提及一些常用的数据可视化工具。

答案:常用的数据可视化工具包括Tableau、Power BI、D3.js、matplotlib、ggplot等。

大数据方案面试题目及答案

大数据方案面试题目及答案

大数据方案面试题目及答案一、题目:请根据以下情景描述,设计一个大数据方案,提供可行的解决方案,并解释其实施步骤和相关技术工具。

情景描述:某互联网公司拥有海量用户,每天生成的数据量庞大,包括用户行为数据、服务器日志、社交网络数据等。

该公司希望通过对这些大数据进行挖掘,为产品改进、用户画像、市场营销等方面提供支持。

要求:1. 分析并说明如何收集、存储和处理这些大数据。

2. 提出针对以上数据的应用场景,并描述需要采用的技术工具。

3. 阐述如何保证数据安全和隐私保护。

二、解决方案:1. 数据收集、存储和处理针对大数据的收集,可以使用流式处理技术,如Apache Kafka,用于高吞吐量的实时数据流处理。

通过构建数据管道,将各种数据源的数据实时导入到数据湖中,例如Hadoop分布式文件系统(HDFS)。

对于大数据的存储,可以采用分布式存储系统,如Hadoop的HBase,用于高可靠性的海量数据存储和快速检索。

数据可以按照数据类型和业务需求进行合理划分和存储,提高查询效率。

大数据的处理可以采用Apache Spark进行分布式计算和数据处理。

Spark提供了强大的数据分析和机器学习库,可用于处理海量数据,实现复杂的数据挖掘任务。

2. 应用场景和技术工具场景一:用户行为数据分析通过收集用户行为数据,使用Spark的机器学习库进行用户画像分析。

可以运用聚类算法、关联规则挖掘等技术,发现用户的兴趣偏好和行为习惯,为产品改进和个性化推荐提供支持。

场景二:服务器日志监控使用Kafka实时收集服务器日志,并将数据导入HBase进行存储。

通过Spark Streaming技术对日志数据进行实时监控和异常检测,及时发现并解决服务器故障。

场景三:社交网络数据分析收集社交网络平台上的用户数据,使用GraphX图计算引擎进行社交网络分析。

通过建立用户关系图,分析用户社交圈子、影响力等,为精准的社交推荐和营销提供依据。

3. 数据安全和隐私保护为了保证数据的安全性和隐私保护,可以采取以下措施:- 数据加密:对敏感数据进行加密处理,确保数据在传输和存储过程中不被窃取。

大数据人才面试题目及答案

大数据人才面试题目及答案

大数据人才面试题目及答案随着大数据技术的迅猛发展,对于大数据人才的需求也越来越高。

而在求职过程中,面试是一个非常重要的环节,通过面试不仅可以了解候选人的专业知识和能力,还能对其适应能力和解决问题的能力进行评估。

以下是一些常见的大数据人才面试题目及其答案,希望能为您准备面试提供帮助。

1. 介绍一下大数据的概念和特点。

大数据是指规模庞大、结构复杂、难以通过传统的数据处理方法获取、存储、管理和分析的数据集合。

其特点包括以下几个方面:- 体量大:大数据的数据量很大,以TB、PB、EB为单位。

- 多样性:大数据来源多样,包括结构化数据、半结构化数据和非结构化数据。

- 时效性:大数据的生成速度快,需要及时处理和分析。

- 价值密度低:大数据中包含了很多无效信息,需要通过技术手段进行提取和筛选。

2. 请介绍一下Hadoop和Spark,它们在大数据处理中的作用是什么?Hadoop是一个分布式的计算框架,主要用于存储和处理大规模数据集。

它的核心组件包括HDFS(分布式文件系统)和MapReduce(分布式计算)。

Hadoop借助分布式存储和计算的特点,可以快速处理大规模的数据,适用于批处理场景。

Spark是一个快速、通用的大数据处理引擎,它提供了内存计算的能力,能够加速数据处理的速度。

相比于Hadoop的MapReduce模型,Spark使用了更高效的计算模型,可以在内存中进行数据操作,大大提高了处理效率。

Spark还提供了丰富的API,支持多种编程语言,并且支持实时流式数据处理。

3. 请说明大数据处理中的数据清洗和数据融合的过程。

数据清洗是指对原始数据进行筛选、去噪、去重、填充缺失值等预处理操作,以确保数据的准确性和完整性。

数据清洗的过程包括以下几个步骤:- 数据筛选:根据需求选择需要处理的数据。

- 数据去噪:删除异常、错误的数据,保留有效数据。

- 数据去重:去除重复的数据记录。

- 缺失值填充:对存在缺失值的数据进行填充,以保证数据的完整性。

大数据专员面试题目(3篇)

大数据专员面试题目(3篇)

第1篇一、基础知识与概念理解1. 题目:请简述大数据的基本概念及其与普通数据的主要区别。

解析:考察应聘者对大数据基本概念的理解。

应聘者应能够解释大数据的规模(大量、多样、快速)、价值密度低、处理和分析的技术和方法等特点,并说明大数据与普通数据在数据量、处理方式、分析目标等方面的区别。

2. 题目:大数据的五个V指的是什么?解析:考察应聘者对大数据特征的理解。

大数据的五个V分别是Volume(数据量)、Velocity(数据速度)、Variety(数据多样性)、Veracity(数据真实性)和Value(数据价值)。

应聘者应能够解释每个V的具体含义。

3. 题目:请简述Hadoop生态系统中的主要组件及其功能。

解析:考察应聘者对Hadoop生态系统的了解。

应聘者应能够列举Hadoop生态系统中的主要组件,如Hadoop分布式文件系统(HDFS)、Hadoop YARN、Hadoop MapReduce、Hive、Pig、HBase等,并解释每个组件的基本功能和作用。

4. 题目:请简述数据仓库和数据湖的区别。

解析:考察应聘者对数据仓库和数据湖的理解。

应聘者应能够解释数据仓库和数据湖在数据存储、处理、查询等方面的差异,以及它们在数据分析中的应用场景。

二、数据处理与分析5. 题目:请简述ETL(提取、转换、加载)过程在数据处理中的作用。

解析:考察应聘者对ETL过程的了解。

应聘者应能够解释ETL在数据预处理、数据清洗、数据转换等方面的作用,以及ETL工具在数据处理中的应用。

6. 题目:请描述数据切分、增量同步和全量同步的方法。

解析:考察应聘者对数据同步的理解。

应聘者应能够解释数据切分、增量同步和全量同步的概念,并举例说明在实际应用中的具体操作方法。

7. 题目:请简述数据挖掘中的分类、聚类和预测方法。

解析:考察应聘者对数据挖掘方法的了解。

应聘者应能够列举数据挖掘中的分类、聚类和预测方法,如决策树、K-means、支持向量机、神经网络等,并解释每种方法的基本原理和应用场景。

大数据开发工程师招聘面试题与参考回答(某大型集团公司)

大数据开发工程师招聘面试题与参考回答(某大型集团公司)

招聘大数据开发工程师面试题与参考回答(某大型集团公司)(答案在后面)面试问答题(总共10个问题)第一题题目:请简述大数据技术在现代企业中的应用及其对企业竞争力的影响。

第二题问题:您在过往的工作中,是否遇到过数据量极大,导致数据处理和分析效率低下的问题?如果是,您是如何解决这个问题的?第三题题目:请描述一下您在以往项目中使用大数据技术解决过的一个具体问题。

详细说明问题背景、您采用的大数据技术、实施过程以及最终取得的成果。

第四题题目:请解释什么是MapReduce,并描述一个场景,在这个场景中使用MapReduce可以极大地提高数据处理效率。

请同时指出在这个场景中Map和Reduce两个阶段是如何工作的,并说明这样做的优势。

第五题题目:请描述一下您在以往项目中遇到的大数据开发过程中最复杂的技术挑战,以及您是如何解决这个问题的。

第六题题目:请解释什么是MapReduce,并描述一个实际场景,在该场景中使用MapReduce可以有效地处理大数据集。

请同时指出MapReduce模型中的主要步骤,并简要说明每个步骤的作用。

第七题题目:请描述一次您在项目中遇到的大数据处理挑战,包括挑战的具体内容、您是如何分析问题的、以及您最终采取的解决方案和效果。

第八题题目:请解释什么是MapReduce,并且举例说明在一个大数据处理场景中如何使用MapReduce来解决实际问题。

在您的解释中,请务必涵盖MapReduce的主要组成部分及其工作流程。

1.Map(映射)阶段:在这个阶段,原始的大数据集被分成若干个小块分发到不同的节点上。

每个节点上的程序对分配给自己的数据进行处理,产生中间键值对。

这些键值对随后会被排序并且传递到下个阶段。

2.Reduce(规约)阶段:在这个阶段,来自Map阶段的数据被重新组织,使得相同键的所有值都被组合在一起。

接下来,reduce函数会处理这些键对应的多个值,并将它们转化为最终的结果输出。

1.Map阶段:首先,系统将整个购买记录数据集分割成多个片段,并将这些片段发送到不同的Map任务中。

大数据方向_面试题目(3篇)

大数据方向_面试题目(3篇)

第1篇一、基础知识与理论1. 请简述大数据的概念及其与传统数据处理的区别。

2. 请解释什么是Hadoop,并简要说明其组成部分。

3. 请简述MapReduce的核心思想及其在Hadoop中的应用。

4. 请描述HDFS(Hadoop分布式文件系统)的工作原理及其优势。

5. 请说明YARN(Yet Another Resource Negotiator)的作用及其在Hadoop中的地位。

6. 请解释什么是Spark,以及它与传统的大数据处理技术相比有哪些优势。

7. 请描述Spark的架构及其核心组件。

8. 请说明什么是Hive,并简要介绍其作用。

9. 请解释什么是HBase,以及它在大数据中的应用场景。

10. 请说明什么是NoSQL,并列举几种常见的NoSQL数据库及其特点。

二、Hadoop生态系统1. 请介绍Hadoop生态系统中常用的数据处理工具,如Hive、Pig、Spark等。

2. 请说明Hadoop生态系统中常用的数据分析工具,如Elasticsearch、Kafka、Flume等。

3. 请解释Hadoop生态系统中数据存储解决方案,如HDFS、HBase、Cassandra等。

4. 请描述Hadoop生态系统中常用的数据仓库解决方案,如Apache Hudi、Delta Lake等。

5. 请说明Hadoop生态系统中常用的数据可视化工具,如Tableau、Power BI、D3.js等。

三、大数据技术1. 请简述大数据技术中的数据清洗、数据集成、数据存储、数据挖掘等基本概念。

2. 请介绍大数据技术中的数据挖掘算法,如聚类、分类、关联规则等。

3. 请说明大数据技术中的数据可视化方法及其在数据分析中的应用。

4. 请描述大数据技术中的实时数据处理技术,如流处理、事件驱动等。

5. 请介绍大数据技术中的机器学习算法及其在数据分析中的应用。

四、大数据应用案例1. 请列举大数据技术在金融、医疗、电商、物联网等领域的应用案例。

史上最全的大数据面试题,大数据开发者必看

史上最全的大数据面试题,大数据开发者必看

史上最全的大数据面试题,大数据开发者必看在大数据领域,面试常常是求职者获取工作机会的重要环节。

面试官会针对各个方面提问,从技术知识到项目经验,从算法能力到数据处理能力,全方位考察候选人的综合素质。

为了帮助大数据开发者准备面试,本文整理了一份史上最全的大数据面试题,供参考使用。

一、Hadoop基础知识1·Hadoop的核心组件有哪些?分别简要介绍。

2·HDFS的特点和工作原理是什么?3·MapReduce的工作原理是什么?举例说明MapReduce的运行流程。

4·Hadoop集群的搭建步骤和注意事项是什么?5·Hadoop环境中如何进行数据备份和恢复操作?二、Hadoop生态系统1·Hive和HBase有什么区别?适用场景分别是什么?2·Pig和Hive的功能和使用场景有何异同?3·Sqoop和Flume的作用及使用场景有哪些?4·ZooKeeper的作用是什么?简要介绍其应用场景。

5·Spark和Hadoop的区别是什么?它们之间如何共同工作?三、大数据处理技术1·数据采集的方法有哪些?请简要说明每种方法的原理和适用场景。

2·数据清洗的过程和步骤有哪些?如何处理用户输入的脏数据?3·数据存储有哪些方式?请简要介绍每种方式的特点和适用场景。

4·数据挖掘常用的算法有哪些?请简要说明每种算法的原理和适用场景。

5·数据可视化的方法和工具都有哪些?请简要介绍每种方法和工具的特点和适用场景。

四、大数据实战项目1·请简要介绍你参与过的大数据项目,包括项目背景、使用的技术和取得的成果。

2·在项目中如何解决数据倾斜的问题?请具体描述解决方案。

3·在项目中如何保证数据的安全性和隐私性?4·在处理大规模数据时,如何优化性能和提高效率?5·请描述一个你在项目中遇到的难题,并介绍你是如何解决的。

大数据面试题及答案

大数据面试题及答案

大数据面试题及答案在大数据领域求职面试中,面试官通常会提问一系列与大数据相关的问题,以了解应聘者对于大数据概念、技术和应用的理解。

本文将列举一些常见的大数据面试题,并提供相应的答案,帮助读者更好地准备和应对大数据面试。

一、大数据的定义及特征1. 请简要解释什么是大数据?大数据指的是规模庞大、结构复杂、速度快速增长的数据集合。

这些数据量大到无法使用传统的数据处理工具进行存储、管理和分析。

2. 大数据有哪些特征?大数据的特征主要包括4个方面:数据量大、数据来源多样、数据处理速度快、数据结构复杂。

3. 大数据的应用领域有哪些?大数据在多个领域都有应用,包括但不限于金融、电子商务、物流、医疗、社交媒体、智能交通、城市管理等。

二、大数据处理及存储技术4. 大数据的处理流程是怎样的?大数据的处理流程通常包括数据获取、数据存储、数据清洗、数据分析和数据可视化等环节。

5. 大数据存储有哪些技术?常见的大数据存储技术包括关系型数据库、NoSQL数据库、分布式文件系统如Hadoop HDFS等。

6. 请简要介绍Hadoop框架。

Hadoop是一个开源的分布式计算框架,它包括Hadoop Distributed File System(HDFS)和MapReduce计算模型。

HDFS用于大规模数据的存储,而MapReduce用于数据的处理和计算。

三、大数据分析与挖掘7. 大数据分析的流程是怎样的?大数据分析的流程通常包括数据预处理、数据挖掘、模型建立、模型评估和结果应用等环节。

8. 大数据分析常用的算法有哪些?大数据分析常用的算法包括关联规则挖掘、聚类分析、分类算法、回归算法、时序分析等。

9. 请简要介绍机器学习和深度学习在大数据分析中的应用。

机器学习和深度学习是大数据分析中常用的技术手段,它们可以通过训练模型从大数据中学习,并根据学习结果进行预测、分类和优化等任务。

四、大数据安全与隐私10. 大数据安全存在哪些风险?大数据安全面临的风险包括数据泄露、数据篡改、数据丢失、隐私保护等问题。

应用大数据面试题目(3篇)

应用大数据面试题目(3篇)

第1篇随着大数据技术的飞速发展,越来越多的企业开始重视大数据的应用,并将其作为提升企业竞争力的重要手段。

为了帮助求职者更好地准备应用大数据的面试,以下将提供一系列面试题目,涵盖大数据的核心概念、技术架构、数据处理、分析应用等多个方面。

一、大数据核心概念1. 请简要介绍大数据的五个V(Volume、Velocity、Variety、Veracity、Value)及其对大数据处理的影响。

2. 什么是Hadoop?请列举Hadoop的主要组件及其功能。

3. 解释MapReduce编程模型的工作原理,并说明其在处理大数据时的优势。

4. 什么是数据仓库?请描述数据仓库的基本架构和功能。

5. 什么是数据湖?它与数据仓库有什么区别?二、大数据技术架构1. 请列举大数据技术栈中常用的开源框架,并简要介绍它们的作用。

2. 什么是Spark?请说明Spark的架构和主要特性。

3. 什么是Flink?请描述Flink与Spark的主要区别。

4. 什么是Hive?请介绍Hive的架构和功能。

5. 什么是Kafka?请说明Kafka在数据处理中的作用。

三、数据处理与分析1. 请描述数据清洗的步骤和常见方法。

2. 什么是数据脱敏?请列举几种数据脱敏技术。

3. 什么是数据压缩?请介绍几种常用的数据压缩算法。

4. 什么是数据挖掘?请列举几种常见的数据挖掘算法。

5. 什么是机器学习?请介绍几种常见的机器学习算法。

四、大数据应用场景1. 请举例说明大数据在金融行业的应用场景。

2. 请举例说明大数据在医疗行业的应用场景。

3. 请举例说明大数据在零售行业的应用场景。

4. 请举例说明大数据在交通行业的应用场景。

5. 请举例说明大数据在政府领域的应用场景。

五、大数据项目经验1. 请描述你参与过的最大规模的大数据项目,包括项目背景、目标、技术选型、实施过程和成果。

2. 请描述你在项目中遇到的技术难题及其解决方案。

3. 请描述你在项目中如何进行数据治理和质量管理。

数据处理面试题

数据处理面试题

数据处理面试题1. 数据处理的重要性和挑战数据处理在现代社会中扮演着至关重要的角色。

大量的数据被不断产生和积累,这包括来自各种来源的传感器数据、用户生成的数据、社交媒体数据、市场数据等。

这些数据对于企业和组织来说都具有巨大的潜力,可以用于洞察用户行为、优化业务流程、进行市场分析、发现模式和趋势等。

然而,要从庞大的数据中提取出有用的信息并进行准确、有效的处理是一个巨大挑战。

因此,数据处理在招聘过程中经常成为面试的焦点之一。

在下面的文章中,我们将讨论一些常见的数据处理面试题及其解决方案。

2. 数据清洗与预处理数据清洗和预处理是数据处理过程中的关键步骤。

以下是一些可能出现在面试中的与数据清洗和预处理相关的问题:问题1:什么是数据清洗?为什么它在数据处理中如此重要?问题2:在清洗数据时,你可能遇到什么问题?你如何解决它们?问题3:如何处理缺失值和异常值?用合同的格式来回答这些问题可能不太符合要求,因此我将以段落的形式来回答这些问题。

数据清洗是指在数据处理过程中去除不准确、不完整、重复或无效的数据。

它在数据处理中至关重要,因为不干净的数据可能会导致误导性的结果和分析。

数据清洗的过程包括删除重复数据、处理缺失值和异常值,并对数据进行标准化和规范化。

在清洗数据时,可能会遇到各种问题。

例如,缺失值是指数据集中存在一些缺失的数据点。

处理缺失值的方法可以是删除包含缺失值的行或列,或者使用插补方法来填补这些缺失值。

异常值是指与其他观测值显著不同的数据点。

可以使用统计方法,如均值、中位数和标准差来检测和处理异常值。

3. 数据转换与特征工程数据转换和特征工程是将原始数据转化为适用于机器学习和数据分析的格式的常用技术。

以下是一些可能出现在面试中的与数据转换和特征工程相关的问题:问题1:什么是数据转换?为什么它在数据处理中如此重要?问题2:请谈谈常见的数据转换方法和技术。

问题3:特征工程在机器学习中的作用是什么?你可以举一个例子吗?对于这些问题,我将采用合适的形式来回答。

十道海量数据处理面试题

十道海量数据处理面试题

海量数据处理面试题Table of Contents海量数据处理面试题 (1)第一部分:十道海量数据处理面试题 (1)1、海量日志数据,提取出某日访问百度次数最多的那个IP。

(1)2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。

(2)3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。

返回频数最高的100个词。

(2)4、有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。

要求你按照query的频度排序。

(2)5、给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url? (3)6、在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数。

(3)7、腾讯面试题:给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中? (4)8、怎么在海量数据中找出重复次数最多的一个? (4)9、上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。

(4)10、一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。

(5)附、100w个数中找出最大的100个数。

(5)第二部分、十个海量数据处理方法大总结 (5)一、Bloom filter (5)二、Hashing (6)三、bit-map (6)四、堆 (7)五、双层桶划分----其实本质上就是【分而治之】的思想,重在“分”的技巧上! (7)六、数据库索引 (7)七、倒排索引(Inverted index) (7)八、外排序 (8)九、trie树 (8)十、分布式处理mapreduce (9)经典问题分析 (9)第一部分:十道海量数据处理面试题1、海量日志数据,提取出某日访问百度次数最多的那个IP。

大数据面试题及答案

大数据面试题及答案

大数据面试题及答案一、概述在当今信息时代,数据无处不在,大数据已经成为各个行业的热门话题。

因此,面对大数据的挑战和机遇,各企业纷纷开始招聘大数据人才。

而面试则是评估求职者技能水平的重要环节。

本文将介绍一些常见的大数据面试题及其答案,旨在帮助求职者更好地准备面试。

二、大数据面试题1. 请介绍一下大数据的概念。

答:大数据是指在传统数据处理软件和硬件工具无法处理的规模和复杂性下,利用现代技术手段进行获取、管理和分析的数据集合。

大数据具有高维度、高速度、高价值和多样性等特点。

2. 请解释什么是Hadoop?答:Hadoop是一种开源的分布式计算平台,可用于存储和处理大规模数据集。

它包括Hadoop Distributed File System(HDFS)和MapReduce计算模型。

HDFS负责数据的存储,而MapReduce则负责数据的处理和分析。

3. 请说明Hadoop中的NameNode和DataNode的作用。

答:NameNode是HDFS的主节点,负责管理文件的命名空间、数据块的映射以及数据块的复制。

DataNode是HDFS的工作节点,负责存储实际的数据块,并向NameNode汇报其存储的数据块信息。

4. 请解释一下MapReduce的工作原理。

答:MapReduce是一种分布式计算模型,其工作原理主要分为两个阶段:Map和Reduce。

在Map阶段,数据被划分成一系列的键值对,并由多个Mapper进行并行处理。

在Reduce阶段,Mapper输出的键值对会根据键进行分组,并由多个Reducer进行处理和聚合,最终得到最终的结果。

5. 如何在Hadoop集群中进行数据的备份和容错处理?答:Hadoop通过HDFS进行数据的备份和容错处理。

在HDFS中,数据会被分割成块进行存储,并在集群中的多个DataNode上复制备份。

这样即使某个节点出现故障,数据仍然可以从其他节点上恢复。

三、大数据面试题答案1. 大数据的概念:大数据是指在传统数据处理软件和硬件工具无法处理的规模和复杂性下,利用现代技术手段进行获取、管理和分析的数据集合。

大数据工程师面试题及答案

大数据工程师面试题及答案

大数据工程师面试题及答案在当今数字化时代,大数据工程师成为了热门职业之一。

为了帮助求职者更好地准备面试,以下是一些常见的大数据工程师面试题及答案。

一、基础知识1、什么是大数据?答:大数据是指无法在一定时间内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

2、列举一些常见的大数据处理框架。

答:常见的大数据处理框架包括Hadoop、Spark、Flink、Kafka 等。

Hadoop 是一个分布式系统基础架构,用于大规模数据存储和处理;Spark 是一个快速通用的大数据计算引擎;Flink 是一个分布式流处理框架;Kafka 是一种高吞吐量的分布式发布订阅消息系统。

3、解释 Hadoop 的核心组件。

答:Hadoop 的核心组件包括 HDFS(Hadoop 分布式文件系统)、MapReduce(分布式计算框架)和 YARN(资源管理框架)。

HDFS 用于存储大规模数据,具有高容错性和可扩展性;MapReduce 用于大规模数据的并行处理;YARN 负责管理集群资源的分配和调度。

二、数据存储1、介绍一下 HBase 的特点和适用场景。

答:HBase 是一个基于 Hadoop 的分布式列式数据库,具有高可靠性、高性能、可扩展性强等特点。

适用于需要随机读写、海量数据存储和实时查询的场景,比如物联网数据、用户行为数据等。

2、对比 Hive 和 MySQL 的区别。

答:Hive 是基于 Hadoop 的数据仓库工具,适合处理大规模数据的批处理操作,查询延迟较高;MySQL 是传统的关系型数据库,适用于事务处理和对实时性要求较高的查询操作。

Hive 数据存储在HDFS 上,而 MySQL 数据通常存储在本地磁盘。

3、什么是数据分区?为什么要进行数据分区?答:数据分区是将数据按照一定的规则划分成多个区域存储的技术。

这样做可以提高数据查询和处理的效率,减少数据扫描的范围,便于数据管理和维护。

海量数据 面试题

海量数据 面试题

海量数据面试题随着互联网的快速发展,数据量也在不断增加,我们正面临处理海量数据的挑战。

而在面试中,针对海量数据的问题经常会被提及。

本文将针对海量数据面试题展开讨论,探究如何高效处理海量数据。

一、海量数据的定义及挑战海量数据,顾名思义就是数据量非常大的数据集合。

在面试中,常常被用来考察面试者对于大数据处理的能力以及相关算法的理解。

处理海量数据的挑战主要体现在以下几个方面:1. 存储空间的限制:海量数据需要巨大的存储空间,如何高效地存储这些数据是一个难题。

2. 计算效率的要求:海量数据的计算速度通常要求非常高,需要使用高效的算法和计算模型。

3. 数据的处理:如何对海量数据进行有效的处理,从中提取出有用的信息,是一个关键问题。

二、常见的海量数据面试题及解决方案1. 确定一个文件中出现次数最多的单词。

在解决这个问题时,我们可以采用“分而治之”的思想,将大文件划分为多个小文件,然后分别统计每个小文件中出现次数最多的单词,最后再比较得出结果。

2. 求海量数据中的中位数。

对于海量数据,直接将其全部加载到内存中是不现实的。

解决这个问题可以采用“分治算法”。

具体操作步骤如下:a. 将海量数据分成多个小的数据块,每个数据块的大小可以装在内存中;b. 对每个数据块进行排序;c. 取出每个数据块的中位数,并找出这些中位数的中位数,即为所求中位数。

3. 找出海量数据中出现次数最多的前K个元素。

解决这个问题可以采用“堆”的数据结构。

具体操作步骤如下:a. 遍历整个海量数据集,将前K个元素放入到一个小根堆中;b. 对于剩余的元素,如果其出现次数大于堆顶元素的出现次数,则将堆顶元素弹出,再将该元素加入堆中;c. 最后堆中剩余的就是出现次数最多的前K个元素。

4. 判断一个数是否在海量数据中存在。

对于单个数字的查找,可以使用布隆过滤器(Bloom Filter)进行快速检索。

布隆过滤器是一种数据结构,用于判断一个元素是否存在于一个集合中。

大数据专业面试题目(3篇)

大数据专业面试题目(3篇)

第1篇一、基础知识与概念理解1. 请简述大数据的概念及其与传统数据处理的区别。

2. 大数据通常具有哪些特征?请用“5V”模型进行解释。

3. 什么是Hadoop?它在大数据处理中扮演什么角色?4. HDFS(Hadoop Distributed File System)的主要功能和特点是什么?5. 请解释MapReduce的工作原理及其在Hadoop中的作用。

6. 什么是数据挖掘?它与数据分析有何区别?7. 什么是数据仓库?它与数据库有何不同?8. 请简述数据流处理的原理及其在实时数据分析中的应用。

9. 什么是机器学习?它在大数据分析中有什么应用?10. 什么是数据可视化?它在大数据分析中有什么重要性?二、Hadoop生态系统与工具11. Hadoop生态系统包含哪些主要组件?请分别简述其功能。

12. 请解释YARN(Yet Another Resource Negotiator)的作用和工作原理。

13. Hive和Pig在Hadoop中分别用于什么目的?14. 什么是HBase?它在Hadoop生态系统中的定位是什么?15. 请解释HDFS的命名空间管理。

16. Hadoop的容错机制有哪些?请举例说明。

17. Hadoop集群的常见故障有哪些?如何进行故障排查和解决?18. 请简述Hadoop的集群部署和维护过程。

三、数据存储与处理19. HDFS的数据块大小是多少?为什么选择这个大小?20. HDFS中数据副本的数量通常是多少?为什么需要副本?21. 请解释HDFS的垃圾回收机制。

22. HDFS支持哪些数据压缩格式?请介绍其中一种的压缩和解压缩过程。

23. Hadoop中的小文件问题有哪些?如何解决?24. 请解释Hadoop中的纠删码原理及其优势。

25. HDFS如何实现机架感知?取消机架感知可能带来哪些问题?26. HDFS常见的运维操作有哪些?哪些操作是高危的?如果高危操作出现问题,如何解决?27. HDFS常见的故障有哪些?如何处理?请给出三种预案来防范大部分常见故障。

大数据的面试题

大数据的面试题

大数据的面试题大数据已经成为当今科技领域中极为热门的话题之一。

在越来越数字化的时代,大数据分析和处理的重要性不容忽视。

随着对大数据人才的需求日益增长,越来越多的企业开始关注大数据面试题的准备。

下面是一些常见的大数据面试题,希望对你在应聘和面试中有所帮助。

1. 请解释什么是大数据?大数据是指规模巨大、复杂度高、处理速度快的数据集合。

它通常涉及到大量的结构化和非结构化数据,无法使用传统的数据库管理工具进行处理。

大数据具有4个特点,即数据量大、数据速度快、数据种类多样、数据价值高。

2. 请介绍一下大数据的处理框架。

大数据的处理通常采用分布式计算框架,最常用的是Apache Hadoop和Spark。

Hadoop主要用于分布式存储和批处理,而Spark则更适用于实时数据处理和交互式查询。

这两个框架都有自己的优势和适用场景,根据具体业务需求来选择合适的框架。

3. 请列举一些大数据处理的常用工具。

除了Hadoop和Spark之外,还有很多常用的大数据处理工具。

例如:- Apache Kafka:用于实时流数据处理和消息队列。

- Apache Hive:用于将结构化数据映射到Hadoop上,以便进行查询和分析。

- Apache Pig:用于编写数据流程脚本,简化数据处理过程。

- Apache Storm:用于实时流数据处理,具有高吞吐量和低延迟的特点。

- Elasticsearch:用于构建实时搜索和分析引擎,支持大规模数据处理和检索。

4. 请解释一下什么是MapReduce?MapReduce是一种用于大数据处理的编程模型。

它包含两个基本操作:Map(映射)和Reduce(约简)。

Map操作将输入数据分割成若干部分,并进行映射处理,生成键值对。

Reduce操作将相同键的映射结果汇总并输出最终结果。

MapReduce模型适用于海量数据的并行处理,并具有较好的可扩展性和容错性。

5. 请解释一下什么是数据挖掘?数据挖掘是从大规模数据中提取出有意义的模式、信息和知识的过程。

数据专员面试题目(3篇)

数据专员面试题目(3篇)

第1篇一、基础知识部分1. 题目:请简述数据专员在日常工作中需要掌握的数据处理工具和技术。

解析:此题考察应聘者对数据处理工具和技术的了解程度。

应聘者应能够列举出至少三种数据处理工具(如Excel、SQL、Python等)及其基本功能,并简要说明其在数据分析和处理中的应用。

2. 题目:什么是数据清洗?请列举三种常见的数据清洗方法。

解析:此题考察应聘者对数据清洗概念的理解和实际操作能力。

数据清洗是指对原始数据进行预处理,消除数据中的错误、缺失和不一致等问题。

应聘者应能够列举出至少三种数据清洗方法,如删除重复数据、填补缺失值、处理异常值等。

3. 题目:简述数据可视化在数据分析中的作用。

解析:此题考察应聘者对数据可视化概念的理解。

数据可视化是将数据以图形、图像等形式呈现,有助于人们更好地理解数据背后的信息。

应聘者应能够说明数据可视化在数据分析中的作用,如直观展示数据趋势、发现数据规律、辅助决策等。

4. 题目:什么是数据挖掘?请列举三种常用的数据挖掘方法。

解析:此题考察应聘者对数据挖掘概念的理解。

数据挖掘是指从大量数据中提取有价值的信息和知识的过程。

应聘者应能够列举出至少三种常用的数据挖掘方法,如分类、聚类、关联规则挖掘等。

5. 题目:什么是数据仓库?请简述其作用。

解析:此题考察应聘者对数据仓库概念的理解。

数据仓库是一个集中存储和管理企业数据的系统,用于支持数据分析和决策。

应聘者应能够说明数据仓库的作用,如数据整合、数据质量管理、数据挖掘等。

二、实际应用部分1. 题目:请结合实际案例,阐述数据专员在数据采集、数据清洗、数据分析、数据可视化和数据挖掘等方面的具体工作内容。

解析:此题考察应聘者对数据专员实际工作内容的了解。

应聘者应结合自身经验或实际案例,详细描述在数据采集、数据清洗、数据分析、数据可视化和数据挖掘等方面的具体工作内容,如数据来源、数据清洗方法、数据分析工具、可视化方法等。

2. 题目:假设您所在的公司需要分析用户购买行为,请您提出一个数据分析方案,并简要说明您将使用哪些工具和技术。

大数据的面试题及答案

大数据的面试题及答案

大数据的面试题及答案在大数据时代,大数据领域的专业人才需求越来越大。

而在求职大数据相关领域时,面试则是必不可少的环节。

为了帮助大家更好地准备面试,本文将列举一些常见的大数据面试题及对应的答案,以供参考。

问题一:请解释什么是大数据?答案:大数据是指规模庞大、无法仅依靠传统的数据处理工具进行捕捉、管理、处理和分析的数据集合。

这些数据集合通常具有高度的复杂性和多样性,并且以高速率产生。

大数据的特点主要体现在三个方面,即数据量大、数据种类多和数据速度快。

问题二:请谈一谈大数据技术的优势与挑战。

答案:大数据技术的优势主要包括:1. 帮助企业更好地了解客户,提供个性化的服务。

2. 可以分析和预测市场趋势,为企业决策提供依据。

3. 提高企业的运营效率,降低成本。

4. 促进科学研究、医疗健康等领域的发展。

大数据技术面临的挑战主要包括:1. 数据质量的问题,包括数据的准确性、完整性等。

2. 隐私保护与数据安全问题。

3. 大数据分析技术与算法的不断更新与发展。

4. 数据治理与管理的难题。

问题三:请简要介绍一下Hadoop。

答案:Hadoop是一个开源的分布式计算平台,用于处理大规模数据。

它的核心组件包括Hadoop分布式文件系统(HDFS)和MapReduce计算模型。

HDFS用于将数据分布式存储在多台机器上,而MapReduce则用于将数据分布式处理和计算。

Hadoop具有高容错性、高可扩展性和低成本等特点,被广泛应用于大数据处理领域。

问题四:请解释一下MapReduce。

答案:MapReduce是一种用于对大规模数据集进行并行处理的编程模型。

它将计算任务分解为两个独立的阶段:Map阶段和Reduce阶段。

在Map阶段,输入数据会被分割成多个小的子问题,然后分发给不同的计算节点并行处理。

在Reduce阶段,处理结果会被汇总起来以得到最终的输出结果。

MapReduce模型的核心思想是将问题分解为多个可并行处理的子问题,以提高处理效率。

大数据测试面试题目(3篇)

大数据测试面试题目(3篇)

第1篇一、基础知识1. 请简要介绍大数据测试的概念和作用。

2. 请列举大数据测试的主要类型。

3. 请解释什么是ETL测试,它在大数据测试中扮演什么角色?4. 请说明大数据测试中,数据清洗和数据质量保障的重要性。

5. 请简述大数据测试中,数据仓库测试的主要任务。

6. 请描述大数据测试中,数据挖掘测试的基本流程。

7. 请解释大数据测试中,性能测试、压力测试和负载测试的区别。

8. 请说明大数据测试中,数据可视化测试的目的和意义。

9. 请列举大数据测试中,常见的数据源类型。

10. 请简述大数据测试中,数据同步和增量同步的概念。

二、测试设计1. 请说明大数据测试中,测试用例设计的基本原则。

2. 请简述大数据测试中,如何设计数据一致性测试用例。

3. 请说明大数据测试中,如何设计数据完整性测试用例。

4. 请简述大数据测试中,如何设计数据质量测试用例。

5. 请说明大数据测试中,如何设计数据迁移测试用例。

6. 请简述大数据测试中,如何设计数据同步测试用例。

7. 请说明大数据测试中,如何设计数据挖掘测试用例。

8. 请简述大数据测试中,如何设计数据可视化测试用例。

9. 请说明大数据测试中,如何设计性能测试用例。

10. 请简述大数据测试中,如何设计压力测试用例。

三、测试执行1. 请简述大数据测试中,测试执行的基本流程。

2. 请说明大数据测试中,如何进行数据清洗和数据质量保障。

3. 请简述大数据测试中,如何进行数据一致性测试。

4. 请说明大数据测试中,如何进行数据完整性测试。

5. 请简述大数据测试中,如何进行数据质量测试。

6. 请说明大数据测试中,如何进行数据迁移测试。

7. 请简述大数据测试中,如何进行数据同步测试。

8. 请说明大数据测试中,如何进行数据挖掘测试。

9. 请简述大数据测试中,如何进行数据可视化测试。

10. 请说明大数据测试中,如何进行性能测试、压力测试和负载测试。

四、测试工具与平台1. 请列举大数据测试中,常用的测试工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十道海量数据处理面试题z z十道海量数据处理面试题 zz十道海量数据处理面试题(zz)2011-06-07 09:07作者:July、youwang、yanxionglu。

时间:二零一一年三月二十六日说明:本文分为俩部分,第一部分为10道海量数据处理的面试题,第二部分为10个海量数据处理的方法总结。

有任何问题,欢迎交流、指正。

出处:第一部分、十道海量数据处理面试题1、海量日志数据,提取出某日访问百度次数最多的那个IP。

首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。

注意到IP是32位的,最多有个2^32个IP。

同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。

然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

或者如下阐述(雪域之鹰):算法思想:分而治之+Hash 1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理;2.可以考虑采用"分而治之"的思想,按照IP地址的Hash(IP)%1024值,把海量IP日志分别存储到1024个小文件中。

这样,每个小文件最多包含4MB 个IP地址;3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址;4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP;2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。

假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。

一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。

),请你统计最热门的10个查询串,要求使用的内存不能超过1G。

典型的Top K算法,还是在这篇文章里头有所阐述,详情请参见:十一、从头到尾彻底解析Hash表算法。

文中,给出的最终算法是:第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。

July、2011.04.27);第二步、借助堆这个数据结构,找出Top K,时间复杂度为N'logK。

即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。

因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:O(N)+N'*O(logK),(N 为1000万,N'为300万)。

ok,更多,详情,请参考原文。

或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。

最后用10个元素的最小推来对出现频率进行排序。

3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。

返回频数最高的100个词。

方案:顺序读文件中,对于每个词x,取hash(x)%5000,然后按照该值存到5000个小文件(记为x0,x1,.x4999)中。

这样每个文件大概是200k左右。

如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。

对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie 树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。

下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。

4、有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。

要求你按照query的频度排序。

还是典型的TOP K算法,解决方案如下:方案1:顺序读取10个文件,按照hash(query)%10的结果将query写入到另外10个文件(记为)中。

这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。

找一台内存在2G左右的机器,依次对用hash_map(query,query_count)来统计每个query出现的次数。

利用快速/堆/归并排序按照出现次数进行排序。

将排序好的query和对应的query_cout输出到文件中。

这样得到了10个排好序的文件(记为)。

对这10个文件进行归并排序(内排序与外排序相结合)。

方案2:一般query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。

这样,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。

方案3:与方案1类似,但在做完hash,分成多个文件后,可以交给多个文件来处理,采用分布式的架构来处理(比如MapReduce),最后再进行合并。

5、给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?方案1:可以估计每个文件安的大小为5G×64=320G,远远大于内存限制的4G。

所以不可能将其完全加载到内存中处理。

考虑采取分而治之的方法。

遍历文件a,对每个url求取hash(url)%1000,然后根据所取得的值将url分别存储到1000个小文件(记为a0,a1,.,a999)中。

这样每个小文件的大约为300M。

遍历文件b,采取和a相同的方式将url分别存储到1000小文件(记为b0,b1,.,b999)。

这样处理后,所有可能相同的url都在对应的小文件(a0vsb0,a1vsb1,.,a999vsb999)中,不对应的小文件不可能有相同的url。

然后我们只要求出1000对小文件中相同的url即可。

求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_set中。

然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

方案2:如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿bit。

将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的url(注意会有一定的错误率)。

Bloom filter日后会在本BLOG内详细阐述。

6、在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数。

方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^32*2 bit=1 GB内存,还可以接受。

然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。

所描完事后,查看bitmap,把对应位是01的整数输出即可。

方案2:也可采用与第1题类似的方法,进行划分小文件的方法。

然后在小文件中找出不重复的整数,并排序。

然后再进行归并,注意去除重复的元素。

7、腾讯面试题:给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中?与上第6题类似,我的第一反应时快速排序+二分查找。

以下是其它更好的方法:方案1:oo,申请512M的内存,一个bit位代表一个unsigned int值。

读入40亿个数,设置相应的bit位,读入要查询的数,查看相应bit位是否为1,为1表示存在,为0表示不存在。

dizengrong:方案2:这个问题在《编程珠玑》里有很好的描述,大家可以参考下面的思路,探讨一下:又因为2^32为40亿多,所以给定一个数可能在,也可能不在其中;这里我们把40亿个数中的每一个用32位的二进制来表示假设这40亿个数开始放在一个文件中。

然后将这40亿个数分成两类:1.最高位为02.最高位为1并将这两类分别写入到两个文件中,其中一个文件中数的个数=20亿,而另一个=20亿(这相当于折半了);与要查找的数的最高位比较并接着进入相应的文件再查找再然后把这个文件为又分成两类:1.次最高位为02.次最高位为1并将这两类分别写入到两个文件中,其中一个文件中数的个数=10亿,而另一个=10亿(这相当于折半了);与要查找的数的次最高位比较并接着进入相应的文件再查找。

以此类推,就可以找到了,而且时间复杂度为O(logn),方案2完。

附:这里,再简单介绍下,位图方法:使用位图法判断整形数组是否存在重复判断集合中存在重复是常见编程任务之一,当集合中数据量比较大时我们通常希望少进行几次扫描,这时双重循环法就不可取了。

位图法比较适合于这种情况,它的做法是按照集合中最大元素max创建一个长度为max+1的新数组,然后再次扫描原数组,遇到几就给新数组的第几位置上1,如遇到5就给新数组的第六个元素置1,这样下次再遇到5想置位时发现新数组的第六个元素已经是1了,这说明这次的数据肯定和以前的数据存在着重复。

这种给新数组初始化时置零其后置一的做法类似于位图的处理方法故称位图法。

它的运算次数最坏的情况为2N。

如果已知数组的最大值即能事先给新数组定长的话效率还能提高一倍。

欢迎,有更好的思路,或方法,共同交流。

8、怎么在海量数据中找出重复次数最多的一个?方案1:先做hash,然后求模映射为小文件,求出每个小文件中重复次数最多的一个,并记录重复次数。

然后找出上一步求出的数据中重复次数最多的一个就是所求(具体参考前面的题)。

9、上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。

方案1:上千万或上亿的数据,现在的机器的内存应该能存下。

所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计次数。

然后就是取出前N个出现次数最多的数据了,可以用第2题提到的堆机制完成。

10、一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。

方案1:这题是考虑时间效率。

用trie树统计每个词出现的次数,时间复杂度是O(n*le)(le表示单词的平准长度)。

然后是找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(n*lg10)。

所以总的时间复杂度,是O(n*le)与O(n*lg10)中较大的哪一个。

附、100w个数中找出最大的100个数。

方案1:在前面的题中,我们已经提到了,用一个含100个元素的最小堆完成。

相关文档
最新文档