插值法(lagrange插值,牛顿插值)
拉格朗日插值牛顿插值
![拉格朗日插值牛顿插值](https://img.taocdn.com/s3/m/bd14810c3169a4517723a376.png)
杜丁坤 20171506003 自动化1班实验二 插值法一、实验目的和要求(1)学会Langrange 插值、Newton 插值和Hermite 插值等基本插值方法.(2)学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题(3) 按照题目要求完成实验内容、写出相应的Matlab 程序给出实验结果.(4)对实验结果进行分析讨论.(5)写出相应的实验报告.一、 实验内容1. Lagrange 插值公式.练习11=2=3=,利用Lagrange 拉格朗日插值的函数%%%%%%%%%function yi=Lagrange(x,y,xi)n=length(x);m=length(y);if n~=merror('The length of X must be equal!');endp=zeros(1,n);for k=1:nt=ones(1,n);for j=1:nif j~=kif abs(x(k)-x(j))<epserror('the DATA is error');return;endt(j)=(xi-x(j))/(x(k)-x(j));endendp(k)=prod(t);endyi=sum(y.*p);%%%%%主函数是:%%%%%X=[1 3 9];Y=[1 2 3];Xi=5;Lagrange(X,Y,xi)练习21=2=3=,利用Newton 进行比较。
牛顿插值函数%%%%%%%%function yi=Newton(x,y,xi)n=length(x);m=length(y);if n~=merror('The length of X must be equal!');endA=zeros(n,n);A(:,1)=y;for j=2:nfor i=1:n-j+1A(i,j)=(A(i+1,j-1)-A(i,j-1))/(x(i+j-1)-x(i));endendX1=xi*ones(1,n)-x;X=ones(1,n);for p=2:nfor q=1:p-1X(p)=X(p)*X1(q);endendY=zeros(1,n);for r=1:nY(r)=A(1,r)*X(r);endyi=sum(Y);%%%%%%%%%%主函数:X=[1 3 9];Y=[1 2 3];Xi=5;Newton(X,Y,xi)三、实验要求要求在实验前必须预习,将实验内容事先准备好,否则不允许上机。
牛顿插值法
![牛顿插值法](https://img.taocdn.com/s3/m/59a8a3cfad51f01dc281f1e0.png)
f [ x, x0 , x1 ,, xk 1 ] f [ x0 , x1,, xk ] f [ x, x0 , x1 ,, xk ](x xk )
因此可得
f ( x) f0 f [ x, x0 ](x x0 )
f0 ( f [ x0 , x1 ] f [ x, x0 , x1 ](x x1 ))(x x0 ) f0 f [ x0 , x1 ](x x0 ) f [ x, x0 , x1 ](x x0 )(x x1 )
为f ( x)关于xi , x j , xk的二阶差商
依此类推
5
f [ xi0 , xi1 ,, xik 1 , xik ]
f [ xi0 , xi1 ,, xik ] f [ xi0 , xi1 ,, xik 2 , xik 1 ] xik xik 1
为f ( x)关于节点 xi0 , xi1 ,, xik1 , xik 的k阶差商
2 f i 2 f i 1 3 2h3 3 f i 3!h 3
20
3 fi 3 2 fi 2 2 fxi 3 3 3!h 3 3 2h
k ( x) ( x x j )
j 0
k 1
f0 f [ x0 , x1 ,, xk ]( x x j )
k 1
n
n
k 1 j 0
为k次多项式
f 0 f [ x0 , x1 ,, xk ] k ( x)
k 1
为f ( x)关于节点 xi 的n次Newton插值多项式
f 0
f 1
f 1 f 2
f 3
2 f0
2 f2
2 f3
3 f0
几种插值法简介[整理版]
![几种插值法简介[整理版]](https://img.taocdn.com/s3/m/4e1c5f93ed3a87c24028915f804d2b160b4e8679.png)
举例来看:可以认为某水文要素T随时间t的变化是连续的,某一个测点的水文要素T可以看作时间的函数T=f(t),这样在实际水文观测中,对测得的(n+1)个有序值进行插值计算来获取任意时间上的要素值。
①平均值法:若求Ti 和Ti+1之间任一点T,则直接取T为Ti和Ti+1的平均值。
插值公式为:T=Ti+Ti+1 2②拉格朗日(Lagrange)插值法:若求Ti 和Ti+1之间任一点T,则可用T i-1、T1、T i+1三个点来求得,也可用T i、T i+1、T i+2这三个点来求得。
前三点内插公式为:T=(t-t i)(t-t i+1)(t i-1-t i)(t i-1-t i+1)T i-1+(t-t i-1)(t-t i+1)(t-t i-1)(t-t i+1)T i+(t-t i)(t-t i-1)(t i+1-t i)(t i+1-t i-1)T i+1后三点内插公式为:T=(t-t i+1)(t-t i+2)(t i-t i+1)(t i-t i+2)T i+(t-t i)(t-t i+2)(ti-t i)(t i-t i+2)T i+1+(t-t i)(t-t i+1)(t i+2-t i)(t i+2-t i+1)T i+2为提高插值结果可靠性,可将前后3点内插值再进一步平均。
③阿基玛(Akima)插值法:对函数T=f(t)的n+1个有序型值中任意两点T i和T i+1满足:f(t i)=T i dfdt|t-ti=k i f’(t i+1)=T’idfdt|t-ti+1=k i+1式中k i,k i+1为曲线f(t)在这两点的斜率,而每点的斜率和周围4个点有关,插值公式为:T=P0+P1(t-t i)+P2(t-t i)2+P3(t-t i)3,来对T i和T i+1之间的一点T进行内差。
④牛顿(Newton)插值法:若求Ti 和Ti+1之间任一点T,插值公式为:T=f(x0)+(x-x0)f(x0,x1)+ (x-x0)(x-x1)f(x0,x1,x2)+…+(x-x0)(x-x1)…(x-x n-2)f(x0,x1,…,x n-1)式中,f(x0,x1),f(x0,x1,x2),…f(x0,x1,…,x n-1)是函数f(x)的1到第n-1阶差商。
Matlab插值方法学习Hermite,lagrange,Newton
![Matlab插值方法学习Hermite,lagrange,Newton](https://img.taocdn.com/s3/m/c5c1c14dc850ad02de80416d.png)
大家都知道插值在数学建模中很重要,现在介绍几种常用插值下面介绍几种基本的、常用的插值:拉格朗日多项式插值、牛顿插值、分段线性插值、Hermite插值和三次样条插值。
1.拉格朗日多项式插值拉格朗日插值就是给定n个数,让你用不超过n-1次的多项式你逼近它,当然这n个点要能满足多项式。
这是一种最基本的思想,计算很简单,先计算n个基函数,基函数可以自己上网搜一下,因为这里打出公式有点麻烦。
然后就是把每个点的y值乘以他的基函数,把这n个式子相加,最后化简就ok了。
下面我把代码写出来,我这些代码全是自己写的,注释比较详细,这里只以lagrange为例,其余都放在附件里了。
%定义myLagrange函数,参数为向量x,y,由用户调用该函数时输入function L=myLagrange (x,y)%n 插值结点的个数n=length(x);%L myLagrange函数计算的多项式系数行列式L=zeros(1,n);%%使用双重for循环,第一个for循环是fori=1:n%aa=1;%ww=1;%for循环for j=1:n%如果i不等于jif j~=i%累加法计算aa=a*(x(i)-x(j));%用向量乘法函数conv计算ww=conv(w,[1,-x(j)]);%if语句结束符end%第二个for循环结束符end%递归法计算L,其中y(i)/a*w表示第i个元素L=y(i)/a*w+L;%第一个for结束符end没错,就这么几句代码,所以很简单的。
2.牛顿插值牛顿插值其实是为了解决拉格朗日插值不能增加新的点来说的。
拉格朗日插值只能接受给定的那么多点,了然后插值。
如果你想再加一个点,它会重新开始计算,这个很费时间和内存。
因此牛顿插值就诞生了。
了解牛顿插值前要学习下差商和差分两个简单的概念。
Newton 插值的优点是:每增加一个节点,插值多项式只增加一项,即因而便于递推运算。
而且Newton 插值的计算量小于Lagrange 插值。
拉格朗日插值法与牛顿插值法
![拉格朗日插值法与牛顿插值法](https://img.taocdn.com/s3/m/6267a81afc4ffe473368ab14.png)
printf("请输入y\n");
for(i=0;i<N;i++)
{
scanf("%f",&y[i]);
}
printf("请输入要计算的点\n");
scanf("%f",&n);
s=y[0];
p=1;
for(i=1;i<N;i++)
{
for(j=1;j<N-i;j++)
{
y[j-1]=(y[j]-y[j-1])/(x[j+i-1]-x[j-1]);
}
p=p*(n-x[i-1]);
s=s+y[0]*p;
}
printf("%f\n",s);
}
变成中关键是要计算出插商,才能使计算结果准确无误。
程序代码
#include <stdio.h>
#define N 3
void main()
{
float x[N],y[N],s,p,n;
int i,j;
printf("请输入x\n");
for(i=0;i<N;i++)
{
scanf("%f",&x[i]);
程序代码:
#include <stdio.h>
#define N 3
void main()
{
float x[N],y[N],l[N],m,s,t,n;
int i,j,k;
printf("请输入x\n");
for(i=0;i<N;i++)
常见的插值方法及其原理
![常见的插值方法及其原理](https://img.taocdn.com/s3/m/c898aacb690203d8ce2f0066f5335a8102d26690.png)
常见的插值方法及其原理1. 拉格朗日插值法(Lagrange Interpolation)拉格朗日插值法是一种基于多项式的插值方法,通过n+1个已知点的函数值来构造一个n次多项式。
具体的计算公式如下:L(x) = Σ[yk * lk(x)], k=0 to n其中yk为已知点(xi, yi)的函数值,lk(x)为拉格朗日基函数,定义为:lk(x) = Π[(x - xj)/(xi - xj)], j=0 to n, j≠k拉格朗日插值法的原理是通过构造一个通过已知点的n次多项式,来代替未知函数的近似值。
利用拉格朗日基函数的性质,可以保证插值多项式通过已知点。
2. 牛顿插值法(Newton Interpolation)牛顿插值法是一种递推的插值方法,通过已知点的函数值和差商来逐步构造插值多项式。
差商的定义如下:f[x0]=y0f[x1]=(f[x1]-f[x0])/(x1-x0)f[x2]=(f[x2]-f[x1])/(x2-x1)...f[xn] = (f[xn] - f[xn-1]) / (xn - xn-1)利用差商的定义,可以得到牛顿插值多项式的表达式:N(x) = f[x0] + f[x0, x1](x-x0) + f[x0, x1, x2](x-x0)(x-x1) + ... + f[x0, x1, ..., xn](x-x0)(x-x1)...(x-xn)牛顿插值法的原理是通过递推计算差商来得到插值多项式。
通过使用差商来处理已知点的函数值差异,可以得到更高次的插值多项式。
3. 样条插值法(Spline Interpolation)样条插值法是一种基于分段低次插值函数的插值方法,常用的是三次样条插值。
样条插值法通过寻找一组分段函数,使得满足原函数的插值条件,并要求函数在每个插值点处的函数值、一阶导数和二阶导数连续。
这样可以保证插值函数在每个插值点处的平滑性。
三次样条插值法的原理是将整个插值区间划分为多个小区间,在每个小区间内使用三次多项式进行插值。
数值计算中的插值方法与误差分析
![数值计算中的插值方法与误差分析](https://img.taocdn.com/s3/m/5176584630b765ce0508763231126edb6f1a76f7.png)
数值计算中的插值方法与误差分析数值计算是一门应用数学学科,广泛应用于科学与工程领域。
在实际问题中,我们常常需要通过已知的离散数据点来估计未知的数值。
插值方法就是为了解决这个问题而设计的。
插值方法是一种基于已知数据点,推断出未知数据点的数值计算方法。
常见的插值方法有拉格朗日插值、牛顿插值等。
下面我们将重点介绍这两种方法。
1. 拉格朗日插值法拉格朗日插值法是插值方法中最常见的一种。
它是基于拉格朗日多项式的思想。
假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。
拉格朗日插值法的基本思想是通过插值多项式来逼近原函数。
具体步骤如下:(1)根据已知数据点构造Lagrange插值多项式:L(x) = Σ(yi * Li(x)), i = 0, 1, ..., n其中,Li(x) = Π((x-xj)/(xi-xj)), j ≠ i(2)计算未知点x对应的函数值y:y = L(x)拉格朗日插值法的优点是简单易懂,计算方便。
然而,它也存在着一些问题,比如插值多项式的次数较高时,多项式在插值区间外的振荡现象明显,容易引起插值误差。
2. 牛顿插值法牛顿插值法是另一种常见的插值方法。
它是基于差商的思想。
假设我们有一组已知的数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要估计一个未知点x的函数值y。
牛顿插值法的基本思想是通过插值多项式来逼近原函数。
具体步骤如下:(1)计算差商:f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ..., xi+k-1]) / (xi+k - xi)(2)根据已知数据点构造Newton插值多项式:N(x) = f[x0] + Σ(f[x0, x1, ..., xi] * Π(x - xj)), i = 0, 1, ..., n-1(3)计算未知点x对应的函数值y:y = N(x)牛顿插值法的优点是适用范围广,可以方便地添加新的数据点进行插值。
插值法公式简单记忆方法
![插值法公式简单记忆方法](https://img.taocdn.com/s3/m/bb93f630e97101f69e3143323968011ca200f75c.png)
插值法公式简单记忆方法插值法是一种求取某些数据点之间数值的方法,其公式可以根据不同的情况而有所不同。
以下是一些简单记忆插值法公式的方法:1. 拉格朗日插值法:根据已知数据点的函数值构造一个多项式函数,并使用该函数进行插值计算。
公式为:$$f(x) = sum_{i=0}^n y_i L_i(x)$$其中,$L_i(x)$ 是拉格朗日基函数,表示为:$$L_i(x) = prod_{jeq i} frac{x-x_j}{x_i-x_j}$$2. 牛顿插值法:通过已知数据点的差商来构造一个插值多项式。
公式为:$$f(x) = f[x_0] + (x-x_0)f[x_0,x_1] +(x-x_0)(x-x_1)f[x_0,x_1,x_2] + cdots +(x-x_0)cdots(x-x_{n-1})f[x_0,cdots,x_n]$$其中,$f[x_i]$ 表示 $i$ 阶差商,$f[x_i,x_{i+1},cdots,x_{i+j}]$ 表示 $i$ 到 $i+j$ 阶差商。
3. 分段线性插值法:将插值区间分成若干个小区间,每个小区间内用一条直线来近似表示函数。
公式为:$$f(x) = begin{cases}frac{x-x_0}{x_1-x_0}y_1 + frac{x_1-x}{x_1-x_0}y_0, &x_0leq x leq x_1frac{x-x_1}{x_2-x_1}y_2 + frac{x_2-x}{x_2-x_1}y_1, &x_1leq x leq x_2cdots & cdotsfrac{x-x_{n-1}}{x_n-x_{n-1}}y_n +frac{x_n-x}{x_n-x_{n-1}}y_{n-1}, & x_{n-1}leq x leq x_nend{cases}$$其中,$x_i$ 和 $y_i$ 分别表示已知数据点的自变量和因变量。
插值法(lagrange插值,牛顿插值)概要
![插值法(lagrange插值,牛顿插值)概要](https://img.taocdn.com/s3/m/b9549786f524ccbff1218468.png)
对n=1及n=2时的情况前面已经讨论,用类
似的推导方法,可得到n次插值基函数为:
( x x0 )(x x1 ) ( x xk 1 )(x xk 1 ) ( x xn ) lk ( x ) ( xk x0 )(xk x1 ) ( xk xk 1 )(xk xk 1 ) ( xk xn )
拉格朗日( Lagrange )插值公式 ( 以下统称 • 此插值问题可表述为如下: n 多项式 Lagrange 插值公式 ) 的基本思想是,把 Ln ( x) ,使满足条件 • 为 问题 求作次数 Ln xi yi , (i 0,1,, n) pn(x) 的构造问题转化为 n+1 个插值基函数
且满足
Pn ( xi ) yi
i 0,1,2 ,, n
其中 a i为实数,就称P(x)为插值多项式,相应的插值法 称为多项式插值;若P(x)为分段的多项式,就称为分段 插值;若P(x)为三角多项式,就称为三角插值。
本章只讨论多项式插值与分段插值
2018/10/23 10
§ 2.2
拉格朗日插值
本章主要介绍有关插值法的一些基本概念, 及多项式插值的基础理论和几个常用的插 值方法:拉格朗日插值、分段线性插值、 牛顿插值、埃尔米特插值和三次样条插值.
2018/10/23
3
§ 2.1 引言
一、插值问题
对函数f ( x),其函数形式可能很复杂 , 且不利于在计算机上
运算, 假如可以通过实验或测 量, 可以获得f ( x)在区间 [ a , b] 上的一组n 1个不同的点
--------(2) --------(3)
7
且满足
2018/10/23
拉格朗日插值法 牛顿插值法
![拉格朗日插值法 牛顿插值法](https://img.taocdn.com/s3/m/5ec6f17411661ed9ad51f01dc281e53a5902517b.png)
拉格朗日插值法牛顿插值法
摘要:
1.插值法的概念和作用
2.拉格朗日插值法原理和应用
3.牛顿插值法原理和应用
4.两种插值法的优缺点比较
正文:
一、插值法的概念和作用
插值法是一种数学方法,通过已知的数据点来预测未知数据点的一种技术。
在科学计算和工程应用中,常常需要根据有限个已知数据点,来估计某个函数在其他点上的值。
插值法正是为了解决这个问题而诞生的。
二、拉格朗日插值法原理和应用
拉格朗日插值法是一种基于拉格朗日基函数的插值方法。
它的基本原理是:在给定的区间[a, b] 上,选取一个基函数,然后通过求解一组线性方程,得到基函数在各数据点上的值,最后用这些值来近似函数在待求点上的值。
拉格朗日插值法广泛应用于数值分析、工程计算等领域。
三、牛顿插值法原理和应用
牛顿插值法,又称为牛顿前向差分法,是一种基于差分的插值方法。
它的基本原理是:通过对已知数据点的函数值进行差分,然后使用牛顿迭代公式来求解差分后的函数在待求点上的值。
牛顿插值法具有较高的精度,适用于各种函数,特别是对于单调函数和多项式函数,效果尤为显著。
四、两种插值法的优缺点比较
拉格朗日插值法和牛顿插值法各有优缺点。
拉格朗日插值法的优点是适用范围广,可以插值任意类型的函数,但计算过程较为复杂;牛顿插值法的优点是计算简便,精度高,但对于非线性函数或多峰函数,效果可能不佳。
因此,在实际应用中,需要根据具体情况选择合适的插值方法。
Lagrange插值及Newton插值
![Lagrange插值及Newton插值](https://img.taocdn.com/s3/m/3a62d438f7ec4afe05a1df1e.png)
实验项目
插值法
实验日期
2016/9/30
理论内容
Lagrange插值与Newton插值
授课日期
实验室名称
文理管203
微机编号
E1
实验目的及要求:
1、了解多项式差值公式的存在唯一性条件及其余项表达式的推导。
2、了解拉格朗日插值多项式的构造、计算及其基函数的特点,牛顿插值多项式的构造与应用,差商、差分的计算及基本性质。
实验内容:
编写Lagrange插值法及Newton插值法通用子程序,依据数据表
0.32
0.34
0.36
0.314567
0.333487
0.352274
构造一个抛物插值多项式 及 ,计算 的近似值并估计误差。
实验步骤及程序:
1、Lagrange插值公式算法流程图
Newton插值公式算法流程图
2、Lagrange插值源程序
int k=from.length;
int k2=to.length;
if(k!=k2){
System.out.println("the two vector's length is not equal!");
System.exit(0);
}
for(inti=0;i<k;i++){
to[i]=from[i];
}
public static void main(String[] args) {
/*输入插值点横纵坐标*/
System.out.println("Input number of interpolation point:");
double u = 1;
matlab 拉格朗日插值法和牛顿插值法
![matlab 拉格朗日插值法和牛顿插值法](https://img.taocdn.com/s3/m/2d737d67dc36a32d7375a417866fb84ae55cc342.png)
matlab 拉格朗日插值法和牛顿插值法题目:MATLAB中的拉格朗日插值法和牛顿插值法引言在实际问题中,我们常常需要通过一系列已知数据点来估计未知数据点的值。
这种问题很常见,例如用温度测量数据来预测未来某一天的温度。
为了解决这种插值问题,拉格朗日插值法和牛顿插值法是常用的方法之一。
在本文中,我们将介绍这两种插值方法并详细解释如何在MATLAB中使用它们。
一、拉格朗日插值法拉格朗日插值法是基于拉格朗日多项式的一种插值方法。
该方法使用已知数据点的值和位置来构造一个多项式,进而估计未知数据点的值。
其基本思想是通过多项式与每个数据点相等,并利用拉格朗日插值公式来得到插值多项式。
1. 拉格朗日插值公式拉格朗日插值公式可以表示为:P(x) = Σ(yi * li(x))其中P(x)是插值多项式,yi是第i个数据点的值,li(x)是拉格朗日基函数。
拉格朗日基函数li(x)定义为:li(x) = Π((x-xj)/(xi-xj)) (j ≠i)2. MATLAB实现要在MATLAB中实现拉格朗日插值法,我们可以按照以下步骤进行:(1)首先定义数据点的横坐标x和纵坐标y;(2)使用for循环遍历每个数据点,并计算插值多项式的每一项;(3)将每个数据点的插值多项式项相加,得到最终的插值多项式;(4)通过给定的x值,计算插值多项式的值。
该过程可以通过以下MATLAB代码实现:matlab定义已知数据点的横坐标和纵坐标x = [1, 2, 3, 4];y = [2, 4, 1, 6];计算插值多项式的每一项n = length(x); 数据点数量P = 0; 初始化插值多项式for i = 1:n计算每一项的拉格朗日基函数li = ones(size(x));for j = 1:nif j ~= ili = li .* (xs - x(j)) / (x(i) - x(j));endend计算每一项的插值多项式项Pi = yi * li;将每一项相加得到最终的插值多项式P = P + Pi;end给定x值,计算插值多项式的值x_val = 2.5;y_val = polyval(P, x_val);二、牛顿插值法牛顿插值法是一种使用差商的插值方法。
拉格朗日插值公式和牛顿插值公式
![拉格朗日插值公式和牛顿插值公式](https://img.taocdn.com/s3/m/add34bf764ce0508763231126edb6f1aff0071bb.png)
拉格朗日插值公式和牛顿插值公式拉格朗日插值公式和牛顿插值公式是数值分析中常用的插值方法,用于通过已知数据点推导出未知数据点的近似值。
本文将分别介绍这两个插值方法的原理和应用,并比较它们的特点和优劣。
一、拉格朗日插值公式拉格朗日插值公式是由法国数学家拉格朗日于18世纪提出的,它通过构造一个多项式来逼近给定的数据点集合。
具体而言,拉格朗日插值多项式的形式为:P(x) = Σ(yi * Li(x))其中,P(x)表示待求的多项式,yi表示已知数据点的函数值,Li(x)称为拉格朗日基函数,它代表了每个数据点的贡献度。
拉格朗日插值公式的优点在于其简单易懂,计算过程相对简单快速。
但是,该方法的缺点是对于较大规模的数据集合,计算量会变得很大,同时当数据点之间的间距不均匀时,插值结果可能出现较大误差。
二、牛顿插值公式牛顿插值公式是由英国数学家牛顿于17世纪提出的,它采用了多项式的差商形式进行插值。
具体而言,牛顿插值多项式的形式为:P(x) = f[x0] + (x - x0)f[x0, x1] + (x - x0)(x - x1)f[x0, x1,x2] + ...其中,f[x0]表示已知数据点的函数值,f[x0, x1]表示x0和x1两个点之间的差商,以此类推。
牛顿插值公式的优点在于可以通过递推的方式计算差商,避免了重复计算,因此对于较大规模的数据集合,计算效率较高。
此外,牛顿插值公式对于不均匀间距的数据点也能够较好地逼近。
然而,牛顿插值公式的缺点在于其计算过程较为繁琐,需要额外计算差商。
三、比较与应用拉格朗日插值公式和牛顿插值公式都是常见的插值方法,它们在实际应用中各有优劣。
下面将对它们进行比较和应用分析。
1. 计算复杂度从计算复杂度的角度来看,牛顿插值公式在计算差商时需要递推计算,每次计算需要O(n)的复杂度,因此总的计算复杂度为O(n^2)。
而拉格朗日插值公式直接计算每个基函数,每次计算都需要O(n)的复杂度,因此总的计算复杂度也为O(n^2)。
数值分析中常用的插值方法
![数值分析中常用的插值方法](https://img.taocdn.com/s3/m/0b13dd7b590216fc700abb68a98271fe910eaf85.png)
数值分析中常用的插值方法在数值计算中,许多问题都可以用插值方法来近似求解,比如曲线拟合、函数逼近和图像重建等。
插值方法是指在已知数据点的情况下,通过一些数值计算技巧,在每个数据点处构造一个多项式函数,使得该函数在每个数据点处都能通过数据点。
在数据点之间计算函数值时,就可以使用这个多项式函数进行估算。
接下来,我们就来详细介绍一些常见的插值方法。
一、拉格朗日插值法拉格朗日插值法是一个经典的插值方法,它的思想是通过给定的数据点,构造一个经过这些点的多项式函数进行逼近。
具体来讲,拉格朗日插值法会首先构造一个基函数,该函数满足只在其对应的数据点处等于1,其余的数据点处等于0。
然后,根据基函数和数据点,构造一个多项式函数,使得该函数在每个数据点处都能通过数据点。
最终得到的多项式函数就是插值函数。
优点:简单易懂,使用较为广泛。
缺点:多项式次数较高时造成的误差会较大,且在数据点密集的区域可以出现龙格现象,使得插值函数在某些区间内呈现大幅度振荡。
二、牛顿插值法牛顿插值法是一种递推式的插值方法,它通过利用已知的数据点和前面已经计算出来的差商,得到一个逐步逼近的插值函数。
具体来讲,牛顿插值法会先将已知的数据点连成一条曲线,然后逐个向这条曲线添加新的数据点,每次添加一个新的数据点后,将差商计算出来并加入到之前的差商序列中,最终得到一个多项式函数,它在每个数据点处都能通过数据点。
牛顿插值法的优缺点与拉格朗日插值法相似,但是由于牛顿插值法是递推式的,可以方便的添加新的数据点,因此在数据点多变的情况下,牛顿插值法具有很大的优势。
三、分段插值法分段插值法是一种将插值区间划分为多个子区间的插值方法,在每个子区间内使用插值方法进行插值,然后将所有子区间内的插值函数拼接起来,得到最终的插值函数。
分段插值法主要分为两种:线性分段插值和三次样条插值。
1.线性分段插值线性分段插值的思路很简单,即在每个数据点处构造两条直线,在数据点之间的区间内使用一条直线作为插值函数。
拉格朗日插值公式和牛顿插值公式
![拉格朗日插值公式和牛顿插值公式](https://img.taocdn.com/s3/m/fbab58e7d05abe23482fb4daa58da0116c171f3b.png)
拉格朗日插值公式和牛顿插值公式拉格朗日插值公式和牛顿插值公式是数值分析中常用的插值方法,用于根据给定的一些数据点,推断出未知点的近似值。
本文将分别介绍这两个插值方法的原理和应用。
一、拉格朗日插值公式拉格朗日插值公式是由法国数学家拉格朗日在18世纪提出的一种插值方法。
它的基本思想是通过一个多项式函数来拟合已知的数据点,从而推断出未知点的值。
具体来说,假设有n+1个数据点(x0, y0),(x1, y1),...,(xn, yn),其中x0,x1,...,xn是互不相同的实数,y0,y1,...,yn是对应的函数值。
拉格朗日插值公式的表达式如下:P(x) = ∑[i=0 to n] yi * Li(x)其中,P(x)表示通过插值得到的多项式函数,Li(x)是拉格朗日基函数,定义为:Li(x) = ∏[j=0 to n, j≠i] (x-xj) / (xi-xj)拉格朗日插值公式的优点是简单易懂,计算方便。
但是随着数据点的增多,计算量也会增大,且插值函数的阶数较高时容易产生龙格现象,导致插值结果不稳定。
二、牛顿插值公式牛顿插值公式是由英国数学家牛顿在17世纪提出的一种插值方法。
它的基本思想是通过差商的形式来表示插值多项式,从而推断出未知点的值。
具体来说,假设有n+1个数据点(x0, y0),(x1, y1),...,(xn, yn),其中x0,x1,...,xn是互不相同的实数,y0,y1,...,yn是对应的函数值。
牛顿插值公式的表达式如下:P(x) = ∑[i=0 to n] fi(x) * wi(x)其中,P(x)表示通过插值得到的多项式函数,fi(x)是牛顿插值基函数,定义为:fi(x) = ∏[j=0 to i-1] (x-xj)wi(x)是差商,定义为:wi(x) = ∏[j=0 to i-1] (x-xj) / (xi-xj)牛顿插值公式的优点是计算效率高,且插值函数的阶数较高时也能保持较好的精度。
实验1拉格朗日插值与牛顿插值
![实验1拉格朗日插值与牛顿插值](https://img.taocdn.com/s3/m/76f2dd14c281e53a5802ffa8.png)
西华数学与计算机学院上机实践报告课程名称:计算方法C年级:2011级上机实践成绩:指导教师:严常龙姓名:上机实践名称:拉格朗日插值和牛顿插值法学号:上机实践日期:2012.11.20上机实践编号:1上机实践时间:一、目的1.通过本实验加深对拉格朗日插值和牛顿插值法构造过程的理解;2.能对上述两种插值法提出正确的算法描述编程实现。
二、内容与设计思想自选插值问题,编制一个程序,分别用拉格朗日插值法和牛顿插值法求解某点的函数近似值。
(从课件或教材习题中选题)已知y=f(三、使用环境操作系统:Windows 7软件环境:Microsoft Visual C++ 6.0四、核心代码及调试过程牛顿插值法:#include<stdio.h>#include<iostream.h>void main(){double x[]={0.25,0.40,0.50,0.57,0.70,0.85,0.93,1.00};double y[]={0.904837,0.860708,0.778801,0.670320,0.606531,0.565525,0.496585,0.427415,0.394554,0.367879};double c[8][8],b[8],t=0.63,ft;int n,i,j,k;for(i=0;i<8;i++) c[i][0]=y[i];for(i=1;i<8;i++)for(j=1;j<=i;j++)c[i][j]=(c[i][j-1]-c[i-1][j-1])/(x[i]-x[i-j]);b[7]=c[7][7];for(k=7;k>=1;k--)b[k-1]=c[k-1][k-1]+b[k]*(t-x[k-1]);ft=b[0];cout<<ft<<endl;}运行结果:拉格朗日插值核心代码:double lagrange(double x[N],double y[N],double t,int n){double s,ft;int i,j,k,m;ft=0.0;if(n<1)exit(0);if(n==1){ft=y[0];exit(0);}if(n==2){ft=(t-x[1])*y[0]/(x[0]-x[1])+(t-x[0])*y[1]/(x[1]-x[0]);exit(0);}i=0;while((x[i]<t)&&(i<n))i++;k=i-4;if(k<0)k=0;m=i+3;if(m>n-1)m=n-1;for(i=k;i<=m;i++){s=1.0;for(j=k;j<=m;j++){if(j!=i)s=s*(t-x[j])/(x[i]-x[j]);}ft=ft+s*y[i];}return(ft);}运行结果:五、总结Lagrange插值与牛顿插值都是属n 次多项式插值,其插值条件也相同。
matlab 拉格朗日插值法和牛顿插值法 -回复
![matlab 拉格朗日插值法和牛顿插值法 -回复](https://img.taocdn.com/s3/m/f17f33700a4c2e3f5727a5e9856a561252d321f7.png)
matlab 拉格朗日插值法和牛顿插值法-回复问题:matlab中的拉格朗日插值法和牛顿插值法是什么?如何实现?引言:插值法是一种数值分析技术,用于找出一系列已知数据点之间的未知数据点的近似值。
在实际应用中,我们常常需要根据有限个离散数据点来推断出连续函数的性质,这就是插值的问题。
拉格朗日插值法和牛顿插值法是常用的插值方法之一,本文将一步一步地介绍这两种方法的原理及其在Matlab中的实现过程。
一、拉格朗日插值法拉格朗日插值法是通过一个多项式来逼近一组已知数据点,然后利用该多项式求解未知位置的近似值。
拉格朗日插值法的主要思想是利用Lagrange插值多项式来拟合给定的数据,具体步骤如下:1. 根据已知数据点的个数n,构造n次拉格朗日插值多项式。
多项式的一般形式如下:![拉格朗日插值多项式公式](其中,x为自变量,y为因变量,x[i]表示已知点的横坐标,y[i]表示已知点的纵坐标,L[i]表示Lagrange插值基函数。
具体计算Lagrange插值基函数的公式如下:![Lagrange插值基函数公式](2. 根据求出的拉格朗日插值多项式,代入未知位置的横坐标,计算出对应的纵坐标值。
这样就得到了近似值。
二、牛顿插值法牛顿插值法是通过一个低次的插值多项式来逼近一组已知数据点,并通过不断迭代来逐步提高插值多项式的次数。
牛顿插值法的主要思想是利用差商(divided difference)来拟合给定的数据,具体步骤如下:1. 根据已知数据点的个数n,构造n次牛顿插值多项式。
多项式的一般形式如下:![牛顿插值多项式公式](其中,x为自变量,y为因变量,x[i]表示已知点的横坐标,y[i]表示已知点的纵坐标,f[x0, x1]表示差商。
具体计算差商的公式如下:![差商公式](其中,Δy表示差商的分子部分,Δx表示差商的分母部分,Δx[j]表示x[j+1]和x[j]之间的差值,Δy[j]表示y[j+1]和y[j]之间的差值。
拉格朗日插值法和牛顿插值法的区别
![拉格朗日插值法和牛顿插值法的区别](https://img.taocdn.com/s3/m/c718385b8f9951e79b89680203d8ce2f006665c9.png)
拉格朗日插值法和牛顿插值法的区别
拉格朗日插值法和牛顿插值法都是多项式插值。
多项式插值是通
过在已知点求多项式表达来获得未知点的值的一种插值法。
其原理是
将插值点的函数插入已经确定的多项式中,以求得函数的值。
这两种
方法都能够利用已知的数据来预测未知数据,但它们的原理是不同的。
拉格朗日插值法是一种基于有限多项式的插值方法,旨在根据已
知的离散数据拟合出有限多项式函数。
它假设函数中的任何零点都可
以表示为有限多项式函数,从而得到点集中离散点的函数值。
拉格朗
日插值法可以给出比较精确的结果,但是其在插值程度上存在一定的
缺陷,比如畸变度大,计算量也相对较大。
牛顿插值法是基于牛顿插值多项式的插值方法,是一种基于差分
的插值方法,它旨在插入一组已知的点,并拟合出一个牛顿插值多项式。
此方法通过计算差商来逼近给定的数据点,这样每两个点之间的
函数值的变化率就可以给出,从而得出其中的未知函数值。
牛顿插值
法可以生成比较平滑的结果,但是计算量相对较大。
这种方法在处理
多点数据时很有效,而且对运算量要求比较小,同时插值精度也比较高。
总体而言,拉格朗日插值法与牛顿插值法都是多项式插值的一种。
从运算量、精度和拟合度三点来说,牛顿插值法更优于拉格朗日插值法;而拉格朗日插值法更能准确拟合离散点点集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数l0(x)及l`1(x)为线性插值基函数
2016/8/14 16
线性插值举例
例1: 已知 100 10 , 121 11,求 y 代入点斜式插值多项式
y1 y0 L1 ( x) y0 ( x x0 ) x1 x0
115
得 y=10.71428 精确值为 10.723805,故这个结果有3位有 效数字。
Ln ( x) yi li ( x)
i 0
n
满足
但
Ln ( xi ) f ( xi )
x [a, b]
i 0,1,, n Ln ( x) f ( x) 不会完全成立
因此,插值多项式存在着截断误差,那么我们怎样估 计这个截断误差呢?
2016/8/14 29
Ln ( x)
f ( n1) ( ) n1 ( x) Rn ( x) (n 1)!
(115–100)(115–144) (115–121)(115–144) L2(115) = + * 11 * 10 (121–100)(121–144) (100–121)(100–144) (115–100)(115–121) + * 12 (144–100)(144–121) = 10.7228
• 这就是所谓的拉格朗日(Lagrange)插值。
li(x)(i=0,1,…,n)的构造。
2016/8/14
11
2016/8/14
12
§ 2.2.1
线性插值与抛物插值
一、线性插值—点斜式 问题 已知函数y=f(x)在点x0,x1上的值为y0,y1,求 作一次式 L1 ( x),使满足条件
L1 ( x0 ) y0 , L1 ( x1 ) y1
(k 0,1,2,, n)
且
n1 ( x) Ln ( x) yk ' ( x x ) k 0 k n 1 ( xk )
n
2016/8/14
23
总 结
于是, y f ( x)在节点xi (i 0,1,, n)上, 以li ( x) (i 0,1,, n) 为插值基函数的插值多 项式(记为Ln ( x))为
2016/8/14 22
从而
( x x0 )(x x1 )( x xk 1 )(x xk 1 )( x xn ) lk ( x ) ( xk x0 )(xk x1 )( xk xk 1 )(xk xk 1 )( xk xn )
n1 ( x) 1 ( xk ) ( x xk )n
这就是插值问题,上式为插值条件
称函数P( x)为函数f ( x)的插值函数 如果P( x)为多项式函数 , 则称之为插值多项式
点 xi , i 0,1,2,, n, 称为插值节点
区间 [a, b]称为插值区间 如函数y sin x, 若给定 [0, ]上5个等分点
其插值函数的图象如下图
2016/8/14 5
其中 n 1 ( x) ( x xi ) , (a, b) , 且依赖于x.
i 0 n
2016/8/14
30
证明:假设在区间[a,b]上f(x)的插值多项式为 Ln ( x) 令
Rn ( x) f ( x) Ln ( x)
显然在插值节点为 xi (i 0,1,, n)上 Rn ( xi ) f ( xi ) Ln ( xi ) 0 , i 0,1,, n 因此Rn ( x)在[a, b]上至少有n 1个零点
由Cramer法则,线性方程组(4)有唯一解 定理1. 若插值节点 xi x j (i j ),
Pn ( xi ) yi i 0,1,2 ,, n
则满足插值条件
--------(3) --------(2)
的插值多项式 2 n P ( x ) a a x a x a x n 0 1 2 n 存在且唯一.
2016/8/14 17
二、抛物插值
问题 求作二次式 L2 ( x) ,使满足条件
L2 ( x j ) y j
( j k 1, k , k 1)
二次插值的几何解释是用通过三个点
的抛物线来近似考察曲线,故称为拋物插值。类似于线性 插值,构造基函数,要求满足下式:
L2(x) yk 1lk 1 ( x) yklk ( x) yk 1lk 1 ( x)
2016/8/14
和用线性插值相比,有效数字增加一位
20
2.2.2 拉格朗日n次插值多项式
为了构造 Ln ( x) ,我们先定义n次插值基函数。
定义: 若n次多项式 li ( x)
(i 0,1, n) 在n+1个节点
x0 x1 xn 上满足条件
就称这n 1个n次多项式l0 ( x), l1 ( x),, ln ( x) 为节点x0 ,x1, ,xn上的n次插值基函数。
2016/8/14 24
例3:求过点(2,0) (4,3) (6,5) (8,4) (10,1)的 拉格朗日插值多项式。
2016/8/14
25
2016/8/14
26
2016/8/14
27
2016/8/14
28
§ 2.2.3 插值余项与误差估计
一、插值余项
从上节可知 , y f ( x)的Lagrange 插值
Ln ( x) y0l0 ( x) y1l1 ( x) ynln ( x)
i 0 j 0 j i n n
(x x j ) ( xi x j )
yi
称 Ln ( x) 为y=f(x)的拉格朗日插值多项式 称 li ( x)(i 0,1,, n) 为n次拉格朗日插值基函数
2016/8/14 18
2016/8/14
19
抛物插值举例2
(x–x1)(x–x2) (x–x0)(x–x2) f ( x 0) + f(x1) L2(x)= (x0–x1)(x0–x2) (x1–x0)(x1–x2) (x–x0)(x–x1) + f(x2) (x2–x0)(x2–x1) x0=100, x1=121, x2=144 f(x0)=10, f(x1)=11, f(x2)=12
sinxµ IJ å Öµ
1
yy
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
0
0.5
1
1.5 1.5
2 2
2.5 2.5
3 3
3.5 3.5
x x x
对于被插函数 f ( x)和插值函数 P( x) 在节点xi处的函数值必然相等 但在节点外 P( x)的值可能就会偏离 f ( x) 因此P( x)近似代替 f ( x)必然存在着误差
2016/8/14 6
整体误差的大小反映了插值函数的好坏
为了使插值函数更方便在计算机上运算,一般插值函 数都使用代数多项式和有理函数 本章讨论的就是代数插值多项式
二、代数插值多项式的存在唯一性
设函数 y f ( x) 在区间 [a, b]上的代数插值多项式为
2 n P ( x ) a a x a x a x n 0 1 2 n
| x1 x0 |
很小时
2016பைடு நூலகம்8/14
15
也可表示为如下对称形式:
L1(x) y0l0 ( x) y1l1 ( x)
其中,
x x1 l0(x) x0 x1
x x0 l1 ( x) x1 x0
显然,
l0(x0 ) 1, l0(x1 ) 0; l1(x1 ) 1, l1(x0 ) 0;
Pn ( xi ) yi
i 0,1,2 ,, n
其中 a i为实数,就称P(x)为插值多项式,相应的插值法 称为多项式插值;若P(x)为分段的多项式,就称为分段 插值;若P(x)为三角多项式,就称为三角插值。
本章只讨论多项式插值与分段插值
2016/8/14 10
§ 2.2
拉格朗日插值
拉格朗日( Lagrange )插值公式 ( 以下统称 • 此插值问题可表述为如下: n 多项式 Lagrange 插值公式 ) 的基本思想是,把 Ln ( x) ,使满足条件 • 为 问题 求作次数 Ln xi yi , (i 0,1,, n) pn(x) 的构造问题转化为 n+1 个插值基函数
其几何意义,就是通过两点 A( x0 , y0 ), B( x1 , y1 ) 的 一条直线。
2016/8/14
13
L1
2016/8/14
14
由直线两点式可知,通过A,B的直线方程为
y1 y0 y y0 ( x x0 ) L1 ( x) x1 x0
称为线性插值(n=1的情况),分为内插与外推。 适用情况:
本章主要介绍有关插值法的一些基本概念, 及多项式插值的基础理论和几个常用的插 值方法:拉格朗日插值、分段线性插值、 牛顿插值、埃尔米特插值和三次样条插值.
2016/8/14
3
§ 2.1 引言
一、插值问题
对函数f ( x),其函数形式可能很复杂 , 且不利于在计算机上
运算, 假如可以通过实验或测 量, 可以获得f ( x)在区间 [ a , b] 上的一组n 1个不同的点
第二章 插值法
2016/8/14
1
第二章 插值法
§ 2.1 引言 § 2.2 拉格朗日插值 § 2.3 差商与牛顿插值公式 § 2.4 差分与等距节点插值 § 2.5 埃尔米特插值 § 2.6 分段低次插值 § 2.7 三次样条插值
2016/8/14 2
本章要点 用简单的函数(如多项式函数)作为一个 复杂函数的近似,最简单实用的方法就是 插值.