12月月考九年级数学试卷

合集下载

江苏省盐城市大丰区2023-2024学年九年级上学期12月月考数学试题

江苏省盐城市大丰区2023-2024学年九年级上学期12月月考数学试题

江苏省盐城市大丰区2023-2024学年九年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.20°B.3A .B .C .D .7.将一条抛物线向左平移5个单位后得到了23y x =的函数图象,则这条抛物线是()A .235y x =+B .235y x =--C .()235y x =-D .()235y x =+8.若二次函数y =(x -m )2-1,当x ≤3时,y 随x 的增大而减小,则m 的取值范围是()A .m =3B .m >3C .m ≥3D .m ≤3二、填空题13.抛物线2y x =-14.如图,在Rt ABC △中,斜边AB 的中点,则OD 长是15.已知二次函数2y ax =+值为.16.在矩形ABCD 中,AB =的中点,点M 运动过程中线段三、解答题17.(1)解方程:22510x x --=;(2)()()23430x x x -+-=18.如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,AC =CD ,∠ACD =120°.(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为4,求图中阴影部分(弧BC 、线段BD 及CD 围成的图形)的面积.19.如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及111A B C △及222A B C △;点A 、C 的坐标分别为(30)(23)--,,,(1)画出ABC 关于y 轴对称再向上平移(2)以图中的点D 为位似中心,将11A B △222A B C △.20.如图,用18米长的木方条做一个有一条横档的矩形窗子,窗子的宽米.为使透进的光线最多,求:(1)则窗子的长多少米?(2)并求出最大透光面积.(横柱遮光忽略)21.如图1,Rt ABC △两直角边的边长为(1)如图2,O 与Rt ABC △的边AB 相切于点X ,出并标明O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt ABC △上和其内部的动点,以P 为圆心的AB BC 、相切.设P 的面积为S ,能否求出最大值是多少?22.三(1)班为奖励期中考试的优秀学生,派小明到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1600元买回了奖品,求小明购买该奖品的件数.购买件数销售价格不超过30件单价50元(1)求证:ABD ECA ∽△△(2)若86AC CE ==,,求24.如图,已知抛物线y (1)求抛物线的解析式和顶点坐标;(2)点P 为抛物线上一点,若S 25.如图,在平面直角坐标系中,点Q 从点O 、动点P 从点A 同时出发,分别沿着秒和1个单位长度/秒的速度匀速运动,长为半径的P 与AB OA 、的另一个交点分别为点(1)设QCD 的面积为S ,试求(2)若P 与线段QC 只有一个交点,请写出26.如图,已知二次函数y =-交于点4(0)C ,.(1)求该二次函数的解析式;(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P .①连接AP CP ,,当三角形ACP 的面积最大时,求此时点P 的坐标;②探究是否存在点P 使得以点P ,C ,Q 为顶点的三角形与ADQ △相似?若存在,求出点P 的坐标;若不存在,说明理由.27.有一副直角三角板,在三角板ABC 中,907BAC AB AC Ð=°==,,在三角板DEF 中,9068FDE DF DE Ð=°==,,,将这副直角三角板按如图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC ,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如图(2),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长;(2)在三角板DEF 运动过程中,当D 在BA 的延长线上时,设BF x ,两块三角板重叠部分的面积为y .求:y 与x 的函数关系式,并求出对应的x 取值范围.。

江苏省南京市2023~2024学年九年级上学期12月月考数学试卷

江苏省南京市2023~2024学年九年级上学期12月月考数学试卷

数学(满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每个小题所给出的四个选项中,恰有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.一元二次方程x (x -1)=0的根是A .x =1B .x =0C .x 1=2,x 2=1D .x 1=0,x 2=12.平面内,若⊙O 的半径为2,OPP 在⊙OA .内B .上C .外D .内或外3.若二次函数y =ax 2的图象经过点P (-2,4),则该图象必经过点A .(-4,2)B .(-2,-4)C .(2,4)D .(4,-2)4.某班9名学生参加定点投篮测试,每人投篮10次,投中的次数统计如下:3,6,4,6,4,3,6,5,7.这组数据的中位数和众数分别是A .5,4B .5,6C .6,5D .6,65.如图,二次函数y =ax 2+bx +c 的图象经过A (1,0),B (5,0),下列说法正确的是A .c <0B .b 2-4ac <0C .a -b +c <0D .图象的对称轴是直线x =36.如图,已知点C 为圆锥母线SB 的中点,AB 为底面圆的直径,SB =6,AB =4.一只蚂蚁沿着圆锥的侧面从A 点爬到C 点,则蚂蚁爬行的最短路程为A .5B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)7.二次函数y =(x +1)2+2图象的顶点坐标为▲.8.一组数据:2,3,-1,5的极差为▲.9.已知x 1、x 2是方程x 2-2x -4=0的两个根,则x 1+x 2-x 1x 2的值为▲.10.在平面直角坐标系中,将二次函数y =2x 2的图象向右平移3个单位,再向上平移1个单位,则平移后的图象所对应的函数表达式为▲.(第5题)(第6题)11.如图,若甲、乙比赛成绩平均数相等,则2S 甲▲2S 乙(填“>”、“<”或“=”).12.已知圆锥的底面半径为6cm ,母线长为8cm ,它的侧面积为▲2cm .13.某产品原来每件成本是100元,连续两次降低成本后,现在成本是81元,设平均每次降低成本的百分率为x ,可得方程▲.14.如图,四边形ABCD 内接于⊙O ,延长AD 至点E ,已知∠AOC =140°,那么∠CDE=▲°.15.如图,点E 在y 轴上,⊙E 与x 轴交于点A 、B ,与y 轴交于点C 、D ,若C (0,9),D (0,-1),则线段AB 的长度为▲.16.如图,△ABC 为等腰直角三角形,∠BAC =90°,AB =AC =22,点D 为平面内一点,且∠BDC =90°,以AC 、CD 为边作□ACDE ,则CE 的最小值为▲.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x 2+4x -1=0;(2)2x (x -3)=x -3.(第11题)(第14题)(第15题)(第16题)18.(8分)为了从甲、乙两人中选拔一人参加射击比赛,现对他们的射击成绩进行了测试,5次打靶命中的环数如下:甲:8,7,10,7,8;乙:9,5,10,9,7(1)将下表填写完整:平均数极差方差甲▲3▲乙8▲ 3.2(2)根据以上信息,若你是教练,你会选择谁参加射击比赛,理由是什么?(3)若乙再射击一次,命中8环,则乙这六次射击成绩的方差会▲(填“变大”或“变小”或“不变”).19.(8分)已知一个二次函数图象上部分点的横坐标x与纵坐标y的对应值如表所示:x…-3-2-101…y…0-3-4-30…(1)这个二次函数的表达式是▲;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)观察图象,当-4<x<0时,y的取值范围为▲.20.(7分)如图,在⊙O 中,AB =AC .(1)若∠BOC =100°,则⌒AB 的度数为▲°;(2)若AB =13,BC =10,求⊙O 的半径.21.(6分)如图,已知线段a 及∠ACB .请仅用直尺..和.圆规..作⊙O ,使⊙O 在∠ACB 的内部,CO =a ,且⊙O 与∠ACB 的两边分别相切.(不写作法,保留.......作.图痕迹...).22.(8分)若关于x 的方程x 2+bx +c =0有两个实数根,且其中一个根比另一个根大2,那么称这样的方程为“隔根方程”.例如,方程x 2+2x =0的两个根是x 1=0,x 2=-2,则方程x 2+2x =0是“隔根方程”.(1)方程x 2-x -20=0是“隔根方程”吗?判断并说明理由;(2)若关于x 的方程x 2+mx +m -1=0是“隔根方程”,求m 的值.23.(8分)如图,四边形ABCD是⊙O的内接四边形,AB是直径,C是⌒BD的中点,过点C 作CE⊥AD交AD的延长线于点E.(1)求证:CE是⊙O的切线;(2)若BC=6,AC=8,求CE、DE的长.24.(9分)某淘宝网店销售台灯,成本为每个30元.销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)若售价下降1元,每月能售出▲个台灯,若售价下降x元(x>0),每月能售出▲个台灯;(2)为迎接“双十一”,该网店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.25.(8分)已知二次函数y=(x-m)2-1(m为常数).(1)求证:不论m为何值,该函数图象与x轴总有两个公共点;(2)当-1≤x≤3时,y的最小值为3,求m的值.26.(8分)掷实心球是南京市高中阶段学校招生体育考试的选考项目.如图1,一名女生投掷实心球,实心球行进路线是一条抛物线,行进高度y (m )与水平距离x (m )之间的函数关系如图2所示,已知掷出时起点处高度为35m ,当水平距离为3m 时,实心球行进至最高点3m 处.(1)求y 关于x 的函数表达式;(2)根据南京市高中阶段学校招生体育考试评分标准(女生),投掷过程中,实心球从起点到落地点的水平距离大于等于6.9m ,此项考试得分为满分.该女生在此项考试中是否得满分,请说明理由.27.(10分)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请运用..此结论...,解决以下问题:如图1,△ABC 中,AB =AC ,∠BAC =α(60°<α<180°).点D 是BC 边上的一动点(点D 不与B 、C 重合),将线段AD 绕点A 顺时针旋转α到线段AE ,连接BE .(1)求证:A 、E 、B 、D 四点共圆;(2)如图2,当AD =CD 时,⊙O 是四边形AEBD 的外接圆,求证:AC 是⊙O 的切线;(3)已知α=120°,BC =6,点M 是边BC 的中点,此时⊙P 是四边形AEBD 的外接圆,直接写出圆心P 与点M 距离的最小值.图1图2图1图2备用图。

山东省济宁市任城区济宁学院附属中学2023-2024学年九年级上学期12月月考数学试题

山东省济宁市任城区济宁学院附属中学2023-2024学年九年级上学期12月月考数学试题

山东省济宁市任城区济宁学院附属中学2023-2024学年九年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题.....抛物线()22y x =++.()2,1()2,1-.已知O 的半径为3d ,若直线m 与d 可取().0 3.5.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以径的圆经过点C ,D ,则A .21313B .313135.如图,ABC 的内切圆O 与17BC =,15CA =,则阴影部分(即四边形A .4B .6.256.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是()A .0.71sB .0.70s 7.如图,河岸AD 、BC 互相平行,桥AB 角50BCA ∠=︒,测得40m BC =,则桥长A .40cos 50︒B .40cos50⋅︒8.如图,已知点E 是圆O 上的点,B 、C 则∠AED 的度数为()A .138°B .46°9.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙位置留2m 宽的门.已知计划中的建筑材料可建围墙养室长为()x m ,占地面积为A .250y x x=-+C .21252y x x =-+10.如图,把一个量角器与一个直角三角形拼在一起,三角形的斜边圆的直径重合,现有点P 恰好是量角器的半圆弧的中点,连接直径为10,6BC =,则CP 的长为(A .26B .7二、填空题11.如图,AB 是O 的直径,12.在ABC 中,若sin 2A -三角形.13.如图,是一个圆锥形状的生日帽,若该圆锥形状帽子的母线长为为7cm ,将该帽子沿母线剪开,则其侧面展开扇形的圆心角为14.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形来确定圆周率.设⊙O的半径为R,圆内接正n边形的边长、面积分别为长、面积分别为a2n,S2n.刘徽用以下公式求出S2n.222221122n n na a R R a⎛⎫⎛⎫⎛⎫⎪=+--⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,2nS则⊙O的内接正八边形AEBFCGDH的面积为(1)请补画出它的俯视图,并标出相关数据.(2)根据图中所标的尺寸(单似:18.为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷面的夹角为16︒,且靠墙端离地高(1)据研究,当一个人从遮阳棚进出时,如果遮阳棚外端(即图中A )到地面的距离小于2.3m 时,则人进出时总会觉得没有安全感,就会不自觉的低下头或者用手护着头,请你通过计算,判断人进出此遮阳棚时________(填“有”或“没有”)安全感;(2)求阴影CD 的长.(结果精确到0.1米;参考数据:sin160.28︒≈,cos160.96︒≈,tan160.29︒≈)19.如图,ABC 内接于O ,60C ∠=︒,点E 在直径BD 的延长线上,且AE AB =.(1)求证:AE 是O 的切线;(2)若6AB =,求阴影部分的面积.20.如图,一位足球运动员在一次训练中,从球门正前方8m 的A 处射门,已知球门高OB 为2.44m ,球射向球门的路线可以看作是抛物线的一部分.当球飞行的水平距离为6m 时,球达到最高点,此时球的竖直高度为3m .现以O 为原点,如图建立平面直角(1)求抛物线表示的二次函数解析式;(2)通过计算判断球能否射进球门(忽略其他因素)(3)若运动员射门路线的形状、最大高度均保持不变,则他应该带球向正后方移动门,才能让足球经过点O正上方2.25m处.21.[发现]的一条弦,点C在弦如图(1),AB为O∠的度数_______(填“变”或“不变知道ACB爱动脑筋的小明猜想,如果平面内线段AB是不是在某一个确定的圆上运动呢?P的坐标;。

甘肃武威市凉州区武威第二十七中学2024-2025学年九年级上学期12月第二次月考数学试题(无答案)

甘肃武威市凉州区武威第二十七中学2024-2025学年九年级上学期12月第二次月考数学试题(无答案)

2024—2025学年第一学期第二次月考试卷九年级数学一、选择题(每小题3分,共30分)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A. B. C. D.2.关于的方程是一元二次方程,则值是( )A. B. C.或 D.为任意实数3.已知二次函数的图象与轴一个交点的坐标为,则与轴的另一个交点的坐标是( )A. B. C. D.4.已知正六边形的半径为4,则这个正六边形的边心距为( )A.2B.D.45.凉州区某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月率为,则由题意列方程应为( )A. B.C. D.6.如图,四边形内接于,是直径,,则的度数为( )A.90°B.100°C.110°D.120°7.在同一平面直角坐标系内,二次函数与一次函数的图象可能是( )A. B. C. D.x 22(1)20a x x ---=a 1a ≠1a ≠-1a ≠1-26y x x c =++x (1,0)-(3,0)-(3,0)(5,0)-(5,0)x 3200(1)1000x +=20020021000x +=⨯20020031000x +=⨯2200200(1)200(1)1000x x ++++=ABCD O e AB O e 20ABD ∠=︒C ∠2(0)y ax bx b a +≠=+y ax b =+8.已知点,,在抛物线上,则、、的大小关系是( )A. B. C. D.9.如图,是等边的内切圆,分别切,,于点,,,是弧上一点(不与点重合),则的度数是( )A.65°B.60°C.58°D.50°10.如图1,中,,为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为( )图1图2A.3 B.4 C.5 D.6二、填空题(每小题3分,共18分)11.已知圆锥的底面的半径为,高为,则它的侧面积是________.12.在实数范围内定义运算“★”,其法则为:,则方程的解为________.13.如图,过点且平行于轴的直线与二次函数图象的交点坐标为,,则不等式的解集为________.14.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大1(3,)A y -2(2,)B y 3(3,)C y 224y x x c =-+1y 2y 3y 123y y y >>132y y y >>321y y y >>231y y y >>O e ABC △AB BC AC E F D P DF F EPF ∠Rt ABC △90B ∠=︒E BC P BC B C B P x PA PE y -=P y x BC 3cm 4cm 22a b b a =-★(43)24x =★★(0,1)x 2(0)y ax bx c a =++>(1,1)(3,1)210ax bx c ++->小,以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深寸,锯道长尺(1尺寸).问这根圆形木材的直径是________寸.15.如图,已知抛物线与轴交于、两点,顶点的纵坐标为,现将抛物线向右平移2个单位,得到抛物线,则下列结论正确的是________(写出所有正确结论的序号)①;②;③阴影部分的面积为4;④若,则.16.如图,在平面直角坐标系中,点的坐标为,将线段绕点按顺时针方向旋转45°,再将其长度伸长为的2倍,得到线段;又将线段绕点按顺时针方向旋转45°,长度伸长为的2倍,得到线段;如此下去,得到线段、…,(为正整数),则点的坐标是________.三、解答题(一)(本大题共6小题,共33分,解答应写出必要的文字说明,证明过程或演算步骤)17.解方程(6分)(1);(2).18.(4分)通过配方变形,将二次函数化为的形式,并指出顶点坐标1ED =1AB =10=2y ax bx c =++x A B C 2-2111y a x b x c =++240b ac ->0a b c -+<1c =-24b a =1P 1OPO 1OP 2OP 2OP O 2OP 3OP 4OP 5OP n OP n 2024P 2610x x --=2(21)4(21)30x x ++++=241y x x =-+-2()y a x h k =-+及取何值时,随的增大而减小.19.(5分)关于的一元二次方程.(1)求证:对于任意实数,方程总有两个不相等的实数根;(2)若方程的一个根是2,求的值及方程的另一个根.20.(6分)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上.(1)以为原点建立直角坐标系,点的坐标为,则点的坐标为________;(2)画出绕点顺时针旋转90°后的,并求点旋转到所经过的路线的长.21.(6分)如图:要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成三个大小相同的矩形羊圈.(1)若设米,矩形的面积为平方米,写出与的函数关系式及自变量的取值范围;(2)若矩形的面积为400平方米,求羊圈的边长的长.22.(6分)小慧爷爷家的的房前有一块矩形的空地,空地上有三棵树、、.为了响应“建设美丽乡村,共建美好家园”的号召,小慧爷爷想要修建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小慧爷爷把花坛的位置画出来;(尺规作图,不写作法,保留作图痕迹)(2)若中米,米,,试求这个圆形花坛的面积.四、解答题(一)(本大题共5小题,共39分,解答应写出必要的文字说明,证明过程或演算步骤)x y x x 2(1)60x k x -+-=k k ABO △O B (3,1)-A ABO △O 11OA B △B 1B AB x =ABCD y y x ABCD BC A B C ABC △16AB =12AC =90BAC ∠=︒23.(6分)某商品进价每个为10元,当售价为每个12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请解答以下问题:(1)为了让利给顾客,并同时获得840元利润,应涨价多少元?(2)当售价定为多少时,获得利润最大,最大利润是多少?24.(7分)某游乐场的圆形喷水池中心有一雕塑,从点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为轴,点为原点建立直角坐标系,点在轴上,轴上的点,为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为.(1)求雕塑高;(2分)(2)求落水点,之间的距离;(2分)(3)若需要在上的点处竖立雕塑,,,.问:顶部是否会碰到水柱?请通过计算说明.(3分)25.(共8分)如图,是的外接圆,是直径,过点作直线,过点作直线,两直线交于点,如果,的半径是.(1)求证:是的切线.(2)求图中阴影部分的面积(结果用表示).26.(8分)【问题情境】数学活动课上,老师和同学们一起玩旋转,如图1,四边形是正方形,绕点顺时针旋转后与重合.图1图2【解决问题】O OA A x O A y x C D 21(5)66y x =--+OA C D OD E EF 10m OE = 1.8m EF =EF OD ⊥F O e ACD △AB D //DE AB B //BE AD E 45ACD ∠=︒O e 2cm DE O e πABCD ADE △A ABF △(1)连接,若,求的长;【类比迁移】(2)用上述思想或其他方法证明:如图2,在正方形中,点、分别在、上,且.求证:.27.(10分)如图,抛物线交轴于点和点,交轴于点.图1 图2(1)求抛物线的函数解析式;(3分)(2)如图1,若点是抛物线上一动点(不与点重合),且,求点的坐标;(3分)(3)如图2,设点是线段上的一动点,作轴,交抛物线于点,求线段长度的最大值及此时点的坐标.(4分)EF BC =2BF =EF ABCD E F DC BC 45EAF ∠=︒EF BE DF =+2y x bx c =-++x (3,0)A -B y (0,3)C P C ABP ABC S S =△△P Q AC DQ x ⊥D DQ D。

山东省济南市市中区济南育秀中学2023-2024学年九年级上学期12月月考数学试题

山东省济南市市中区济南育秀中学2023-2024学年九年级上学期12月月考数学试题

山东省济南市市中区济南育秀中学2023-2024学年九年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A ....2.已知43a b=,则a b-的值是(A .34.433133.已知反比例函数y =图象经过点(2,-,则下列点中不在此函数图象上的是(A .()3,2-()1,6-(1,6-4.将抛物线2y x =向右平移A .2(3)4y x =-+C .2(3)4y x =+-5.一个不透明的袋子中装有次试验发现,摸出红球的频率稳定在A .12A .()1,5B .()4,28.如图,点A ,B ,C 均在O 上,若A .120°B .130°9.一次函数()0,0y ax b a b =+≠≠和反比例函数能是()A ..C .D .二、填空题13.如图,在平面直角坐标系中心,在第三象限内作与是.14.如图,B、C分别是反比例函数轴,过点C作BC的垂线交于15.如图,用10m 长的篱笆围成一个一面靠墙的矩形场地,墙的最大长度为场地的最大面积为m 2.16.如图,等边ABC 中,10AB =,点连接DF ,CF ,则FB FD +的最小值为三、解答题17.计算:()20232sin 60121︒-+-18.已知:如图,在ABC 中,D 求AC 的长.19.如图,已知小华、小强的身高都是在同一盏路灯下,小华的影长AB20.某校在举行运动会时成立了志愿者服务队,设立四个服务监督岗:A .安全监督岗;B .卫生监督岗;C .文明监督岗;D .检录服务岗.小明和小丽报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)小明被分配到文明监督岗的概率为___________;(2)用列表法或画树状图法,求小明和小丽被分配到同一个服务监督岗的概率.21.如图,某电影院的观众席成“阶梯状”,每一级台阶的水平宽度都为1m ,垂直高度都为0.3m .测得在C 点的仰角42ACE ∠=︒,测得在D 点的仰角35ADF ∠=︒.求银幕A 的高度.(参考数据:sin 350.57︒≈,cos350.82︒≈,tan 350.7︒≈,sin 420.67︒≈,cos 420.74︒≈,tan 420.9︒≈)22.某工厂生产地方特色手工老棉鞋,它的成本价为20元/双.该工厂利用网络平台销售某一批老棉鞋,每天销售量y (双)与销售单价x (元)之间的函数图象如图,已知图象是直线的一部分.(1)求y 与x 之间的函数表达式;(2)若该工厂要求每天销售量不低于320双,当销售单价为多少元时,每天获得的利润最大,最大利润是多少元?(1)计算:sad60︒=______;sad90︒=______;(2)对于0180A <<︒︒,则A ∠的正对值sad A 的取值范围是(3)如图②在直角三角形ABC 中AC BC ⊥,已知24.如图,在矩形OABC 中,6OA =,4OC =,分别以y 轴建立平面直角坐标系.反比例函数(k y x x=>4BE =.(1)求k 的值与点F 的坐标;(2)在x 轴上找一点M ,使EMF V 的周长最小,请求出点(3)在(2)的条件下,若点P 是x 轴上的一个动点,点是否存在这样的点P ,Q ,使得以点P ,Q ,M ,直接写出符合条件的点P 坐标;若不存在,请说明理由.25.【问题情境】:(1)如图1,四边形ABCD 是正方形,点E 是AD 右侧作正方形CEFG ,连接DG BE 、,则DG 与【类比探究】:(2)如图2,四边形ABCD 是矩形,3AB =,6BC =,点E 是AD 边上的一个动点,以CE 为边在CE 的右侧作矩形CEFG ,且:1:2CG CE =,连接DG 、BE .判断线段DG 与BE 有怎样的数量关系,并说明理由:【拓展提升】:(3)如图3,在(2)的条件下,连接BG ,求2BG BE +的最小值.26.如图1,若二次函数24y ax bx =++的图像与x 轴交于点()10A -,、(40)B ,,与y 轴交于点C ,连接AC BC 、.(1)求二次函数的解析式;(2)若点P 是抛物线在第一象限上一动点,连接PB PC 、,当PBC 的面积最大时,求出点P 的坐标;(3)如图2,若点Q 是抛物线上一动点,且满足45QBC ACO ∠︒∠=-,请直接写出点Q 坐标.。

上海市浦东模范中学2023-2024学年九年级上学期月考数学试题(12月)

上海市浦东模范中学2023-2024学年九年级上学期月考数学试题(12月)

上海市浦东模范中学2023-2024学年九年级上学期月考数学试题(12月)一、单选题1.下列函数中,属于二次函数的是( )A .12y x = B .211y x =+ C .()224y x x =+- D .21y x =-2.在Rt △ABC 中,∠C =90°,BC =4,sin A =45,则AC =( ) A .3 B .4 C .5 D .63.一段公路路面的坡度为i =1:2.4.如果某人沿着这段公路向上行走了260m ,那么此人升高了( )A .50mB .100mC .150mD .200m4.若,4AB e CD e ==-u u u r u u u r r r ,且AD BC =u u u r u u u r ,则四边形ABCD 是( )A .等腰梯形B .不等腰梯形C .平行四边形D .菱形5.已知抛物线y =ax 2+3x +(a ﹣2),a 是常数且a <0,下列选项中可能是它大致图像的是( )A .B .C .D .6.如图,在正方形ABCD 中,BPC V 是等边三角形,,BP CP 的延长线分别交AD 于点E 、F ,连接,BD DP ,BD 与CF 相交于点H ,给出下列结论:①2BE AE =;②DFP BPH ∽△△;③PFD PDB ∽△△;④2DP PH PC =⋅;其中正确的有( )A .①②③④B .②③C .①②④D .①③二、填空题7.二次函数2(1)1y x =-+的图像与y 轴的交点坐标是.8.如果两个相似三角形的面积比是1:2,那么它们的相似比是.9.已知点P 是线段AB 上的一点,且2BP AP AB =⋅,如果AB =10cm ,那么BP =cm 10.如果点A (﹣3,y 1)和点B (﹣2,y 2)是抛物线y =x 2+a 上的两点,那么y 1y 2.(填“>”、“=”、“<”).11.在Rt ABC △中,90A ∠=︒,若sin B =cot C =. 12.如果抛物线()22y m x =-的开口向下,且直线45y x m =+-不经过第四象限,那么m 的取值范围是.13.在南海阅兵式上,某架“直-8”型直升飞机在海平面上方1200米的点A 处,测得其到海平面观摩点B 的俯角为60°,此时点A 、B 之间的距离是米.14.如图,在ABC V 中,3BC =,点G 是ABC V 的重心,如果//DG BC ,那么DG =.15.在△ABC 中, AB=12,AC=9,点D 、E 分别在边AB 、AC 上,且△ADE 与△ABC 与相似,如果AE=6,那么线段AD 的长是.16.二次函数2y ax bx c =++的变量x 与y 部分对应值如下表:那么4x =时,对应的函数值y =.17.如果矩形一边的两个端点与它对边上的一点所构成的角是直角,那么我们就把这个点叫做矩形的“直角点”,如图,如果E 是矩形ABCD 的一个“直角点”,且3C D E C =,那么:AD AB的值是.18.如图所示,在ABC V 中,5,AB AC BC ===点D 为边AC 上一点,(点D 与点A 、C 不重合).将ABC V 沿直线BD 翻折,使点A 落在点E 处,联结CE ,如果CE AB ∥,那么˙AD CD :的值为.三、解答题19.计算:3|tan30°﹣1|+222sin 60cot 301cos 45︒-︒-︒. 20.如图,在ABC V 中.58AB AC BC ===,.D 是边AB 上一点,且1tan 4BCD ∠=.(1)求cos B 的值;(2)求BCD △的面积.21.如图,在梯形ABCD 中,AB //CD ,90ABC ∠=o ,45BAD o ∠=,2DC =,6AB =,AE BD ⊥,垂足为点F .(1)求DAE ∠的余弦值;(2)设DC a =u u u r r ,BC b =u u u r r ,用向量a v 、b v 表示AE u u u r .22.如图,A 点、B 点分别表示小岛码头、海岸码头的位置,离B 点正东方向的7.00km 处有一海岸瞭望塔C ,又用经纬仪测出:A 点分别在B 点的北偏东57︒处、在C 点的东北方向.(1)试求出小岛码头A 点到海岸线BC 的距离;(2)有一观光客轮K 从B 至A 方向沿直线航行,某瞭望员在C 处发现,客轮K 刚好在正北方向的D 处,当客轮航行至E 处时,发现E 点在C 的北偏东27︒处,请求出E 点到C 点的距离;(注:tan330.65,sin330.54,cos330.84︒≈︒≈︒≈,两题结果都精确到0.01km )23.已知:如图,在ABC V 中,90BAC ∠=o ,3,4AB AC ==,点D 是边AC 上的一个动点(不与,A C 重合),且CBE ABD ∠=∠,AB BE BC BD ⋅=⋅,连接,DE EC .(1)求证:90BDE ∠=o ;(2)设()04AD m m =<<,求DCE S V (用m 表示).24.如图,在平面直角坐标系中,已知抛物线214y x bx c =-++与直线132y x =-分别交于x 轴、y 轴上的,B C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .(1)求该抛物线的解析式及顶点D 的坐标;(2)求DCB △的面积:(3)如果点F 在y 轴上,且FBC DBA DCB ∠=∠+∠,求点F 的坐标. 25.已知在ABC V 中,490,8,cos 5C BC B ∠===o ,(点D 是边BC 上一点,不与,C B 重合,过点D 作DE AB ⊥,垂足为点E ,点F 是边AC 上一点,连接,DF EF ,以,DF EF 为邻边作平行四边形EFDG .(1)如图1,如果2CD =,点G 恰好在边BC 上,求CDF ∠的余切值;(2)如图2,如果AF AE =,点G 在ABC V 内,设,CD x DG y ==,求y 与x 的函数关系式,并写出定义域:(3)在第(2)小题的条件下,如果平行四边形EFDG 是矩形,求x 的值.。

广州执信中学2023-2024学年九年级上学期月考数学试题(原卷版)

广州执信中学2023-2024学年九年级上学期月考数学试题(原卷版)

2023——2024学年度第一学期初三级数学科12月阶段性检测试卷本试卷分选择题和非选择题两部分,共4页,满分120分.考试用时120分钟,注意事项:1.答卷前,考生务必用黑色字迹的钢笔或者签字笔将自己的姓名和学号填写在答题卡相应的位置上,用2B 铅笔将字迹的学号填涂在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能各在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.第一部分选择题(共30分)一、单选题(本题共10小题,每小题3分,共30分)1. 下列美术字中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.2. 下列说法正确的是( )A. 一颗质地均匀的骰子已连续掷了2018次,其中掷出5点的次数最少,则第2019次一定掷出5点B. 某种彩票中奖的概率是1%,因此买100张该彩票一定会中奖C. 天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D. “任意画一个三角形,其内角和是180°”是必然事件3. 把抛物线2y x =−向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A. 2(1)3y x =−−−B. 2(1)3y x =−+−C. 2(1)3y x =−−+D. 2(1)3y x =−++4. 如图,正六边形ABCDEF 内接于O ,半径为6,则这个正六边形的边心距OM 的长为( )A. 4B.C. D. 35. 在平面直角坐标系xOy 中,以点(-3,4)为圆心,4为半径圆( )A. 与x 轴相交,与y 轴相切B. 与x 轴相离,与y 轴相交C. 与x 轴相切,与y 轴相交D. 与x 轴相切,与y 轴相离6. 设a ,b 是方程220230x x +−=的两个实数根,则22a a b ++的值为( )A. 2024B. 2021C. 2023D. 20227. 半径为6的圆中,垂直平分半径的弦长为( )A.B.C.D. 8. 如图,直径为10的A 经过点C 和点O ,点B 是y 轴右侧A 优弧上一点,30OBC ∠=°,则点C 的坐标为( ).A. ()0,5B. (C.D. 9. 如图,在平行四边形ABCD 中,E 为CD 上一点,:2:3DE EC =,连接AE BE BD 、、,且AE BD 、交于点F ,则:DEF ABF S S 等于( )A. 23:B. 25:C. 49:D. 425:10. 如图,等腰直角ACB △,AC BC =,点P 在ACB △内,2PC =,3PA =,PAD ACP ∠=∠则PB 的长为( )的A.B.D. 5第二部分非选择题(共90分)二、填空题(本题共6小题,每小题3分,共18分)11. 在平面直角坐标系中,点()3,2A −关于原点对称的点的坐标为_____________.12. 在一个不透明盒子有7枚黑棋子和若干枚白棋子,这些棋子除颜色外无其他差别.从盒子随机取出一枚棋子,记下颜色后再放回盒中.不断重复上述过程,一共取了300次,其中有100次取到黑棋子,由此估计盒中有______枚白棋子.13. 已知二次函数()2253y x =−+,当x 分别取()1212,x x x x ≠时,函数值相等,则当122x x x +=时,函数值为__________.14. 如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =−++,则铅球推出的水平距离OA 的长是_____m .15. 若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为_____. 16. 如图,点C 在以AB 为直径的半圆上,430AB CBA =∠=°,,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF DE ⊥于点D ,并交EC 的延长线于点F .下列结论:①30F ∠=°;②CE CF =;③线段EF最小值为④当1AD =时,EF 与半圆相切;⑤当点D 从点A 运动到点B 时,线段EF扫过的面积是其中正确的结论的序号为______.的的三、解答题(本题共9小题,满分72分,解答题需写出必要的文字说明,推理过程和演算步骤)17. 解方程:()45x x −=. 18. 如图,在ABC 中,90C ∠=°,30B ∠=°,将ABC 绕点A 顺时针旋转30°得到AED △,AE 交BC 于点F .若3AD =,求AF 长.19. 如图,在边长为1正方形组成的网格中,OAB 的顶点均在格点上,点A 、B 的坐标分别是()4,1A ,()2,2B .OAB 绕点O 逆时针旋转90°后得到OCD (C 与A 对应).(1)画出旋转后的图形;(2)点C 的坐标为__________;(3)求旋转过程中点A 所经过的路径长(结果保留π). 20. 2023年9月23日至10月8日在杭州举办第19届亚运会,吉祥物为“宸宸、琮琮、莲莲”.我校举办了“第19届亚运会”知识竞赛活动,拟将一些吉祥物“A 宸宸、B 琮琮、C 莲莲”作为竞赛奖品.主持人在3张完全相同的卡片上分别写上“、、A B C ”后放入一个盒子里.的的(1)某获奖者随机从盒子里抽取一张卡片恰好抽到“A宸宸”的概率为;(2)某获奖者随机从盒子里抽取一张卡片后放回,再随机抽取一张卡片.请借助列表法或树状图求“两次抽取卡片上字母相同”的概率.沿AE翻折,使点D恰好落在BC边上的点F.21. 在矩形ABCD中,E为DC边上一点,把ADE(1)求证:△∽△;ABF FCEAD=,求EC的长;(2)若AB=1622. 园林部门计划在某公园建一个长方形苗圃ABCD.苗圃的一面靠墙(墙最大可用长度为14米).另三边用木栏围成,中间也用垂直于墙的木栏隔开,分成两个区域,并在如图所示的两处各留2米宽的门(门不用木栏),建成后所用木栏总长32米,设苗圃ABCD的一边CD长为x米.(1)BC长为________米(包含门宽,用含x的代数式表示);(2)若苗圃ABCD的面积为296m,求x的值;(3)当x为何值时,苗圃ABCD的面积最大,最大面积为多少?23. 如图,在ABC 中,AB BC =,O 是ABC 的外接圆,过点C 作ACD ACB ∠=∠,且交O 于点D .连接BD 交AC 于点E ,延长DC 到F ,使得CF CB =,连接BF .(1)求证:ED EC =.(2)求证:BF 是O 的切线.(3)若点G 为BCD △的内心,10AE AC ⋅=.①利用无刻度的直尺在图中画出点G 的位置.(保留作图痕迹,不写作法) ②求AG 的长.24. 如图,直线122y x =−+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c =−++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出:点A 坐标________,点B 坐标________;抛物线的解析式是________;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标; (3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A ′′,若线段O A ′′与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.25. 已知O 的直径是4,弦BD =,点F 是弦BD 上一动点,过点F 作BD 的垂线,交优弧BD 于点A 、交劣弧BD 于点E ,连接AD ,过点B 作BG AD ⊥分别交AF 于点G 、交AD 于点H 、交O 于点C .(1)当点F 在弦BD 的中点处时,在图1补全图,DAF ∠=__________°,AG =__________; (2)如图2,当点F 在弦BD 上运动时,线段AG 的长度是否发生变化?若变化,请说明理由;若不变,求出AG 的长度并说明理由.(3)如图3,若BD 的中点为点P ,求线段PG 长度的最小值.。

苏州新区实验初中2023-2024学年上学期12月月考九年级数学试题及参考答案

苏州新区实验初中2023-2024学年上学期12月月考九年级数学试题及参考答案

2023-2024学年新区实验学校初三年级12月份月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.下列方程中是关于x 的一元二次方程的是()A.x +1x=0 B.2x 2-x =0C.3x 2=1D.ax 2-4x =02.将抛物线y =x 2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y =(x -2)2-1B.y =(x -2)2+1C.y =(x +2)2-1D.y =(x +2)2+13.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是()A.36(1-x )2=-25B.36(1-2x )=25C.36(1-x )2=25D.36(1-x 2)=254.二次函数y =x 2-2x -3的图象如图所示.当y <0时,自变量x 的取值范围是()A.-1<x <3B.x <-1C.x >3D.x <-1或x >35.已知线段AB ,按如下步骤作图:①作射线AC ,使AC ⊥AB ;②作∠BAC 的平分线AD ;③以点A 为圆心,AB 长为半径作弧,交AD 于点E ;④过点E 作EP ⊥AB 于点P ,则AP :AB =()A.1:5B.1:2C.1:3D.1:26.下列说法正确的是()A.平分弦的直径垂直于弦,并且平分弦所对的两条弧B.长度相等的弧是等弧C.三角形的外心到三角形三边的距离相等D.90°的圆周角所对的弦是圆的直径7.如图,⊙O 的直径为AB ,弦AC 长为6,BC 长为8,∠ACB 的平分线交⊙O 于D ,则弦AD 的长为()A.52B.7C.82D.98.如图是二次函数y =ax 2+bx +c 的图象,下列结论:①y 最大值为4;②4a +2b +c >0;③一元二次方程ax 2+bx +c =-1的两根为m ,n (m <n ),则-3<m <n <1;④使y ≤3成立的x 的取值范围是x ≥0.其中正确的个数有()A.4个B.3个C.2个D.1个二、填空题(本大题共有8小题,每小题3分,共24分)2第7题图(第4题图)第5题图第8题图10.甲、乙两同学最近的5次数学测验中数学成绩的方差分别是S 2甲=2.17,S 2乙=3.45,则数学成绩比较稳定的同学是.11.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形均全等,两条直角边之比均为1:2.若向该图形内随机投掷一枚小针,则针尖落在阴影区域的概率为.第11题图12.如图,四边形ABCD 为⊙O 的内接四边形,∠AOC =110°,则∠ADC =.13.一条上山直道的坡度为1:7,沿这条直道上山,则前进100米所上升的高度为米.14.如图,在正方形网格中,每个小正方形的边长都是1,⊙O 是ΔABC 的外接圆,点A ,B ,O 在网格线的交点上,则sin ∠ACB 的值是.15.直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径为16.如图,在矩形ABCD 中,AB =8,BC =5,E 是矩形ABCD 内一点,∠BCE =∠CDE ,点F 是AD 边上的动点,则BF +EF 的最小值为.三、解答题(本大题共有11小题,共82分)17.计算:(-1)2021+8-4sin45°+|-2|;18.解方程:-x (4-x )-3=0.19.先化简,再求值:1-3a +2 ÷a 2-1a +2.其中,a 是方程a 2-2a -3=0.第14题图第12题图A B C DEF第16题图20.(1)在图中画出经过A、B、C三点的圆弧所在圆的圆心M的坐标为;(2)这个圆的半径为;(3)直接判断点D(5,-3)与⊙M有何位置关系,点D(5,-3)在⊙M(填内、外、上).21.为了响应“全民全运,同心同行”的号召,某学校要求学生积极加强体育锻炼,坚持做跳绳运动,跳绳可以让全身肌肉匀称有力,同时会让呼吸系统、心脏、心血管系统得到充分锻炼.学校为了了解学生的跳绳情况,在七年级随机抽取了10名男生和10名女生,测试了这些学生一分钟跳绳的个数,测试结果统计如下:请你根据统计图提供的信息,回答下列问题:(1)所测学生一分钟跳绳个数的众数是,中位数是;(2)求这20名学生一分钟跳绳个数的平均数;(3)若该校七年级共有学生960人,若一分钟跳绳个数在160个以上(含160)为优秀,则该校七年级学生跳绳成绩优秀的大约有多少人?22.从起点站新区实验金山路校区(记作J站)开往终点站新区实验马云路校区(记作M站)的某接送车,中途停靠A站和B站,甲、乙两名互不相识的学生同时从金山路校区上车(1)甲同学从M站下车的的概率为.(2)甲、乙两名同学在同一个车站下车的概率是多少?(要求:列表或画树状图求解)23.如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.24.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上.图2是其侧面结构示意图,量得托板长AB=120mm,支撑板长CD=80mm,底座长DE=90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上,求CD旋转的角度.(参考数据,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin26.6°≈0.44,cos26.6°≈0.89,tan26.6°≈0.50,3≈1.73)25.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为元;(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?26.关于x的方程ax2+2cx+b=0,如果a、b、c满足a2+b2=c2且c≠0,那么我们把这样的方程称为“顾神方程”.请解决下列问题:(1)请写出一个“顾神方程”:;(2)求证:关于x的“顾神方程”ax2+2cx+b=0必有实数根;(3)如图,已知AB、CD是半径为6的⊙O的两条平行弦,AB=2a,CD=2b,且关于x的方程ax2+62x+b=0是“顾神方程”,求∠BAC的度数.27.如图,抛物线y=ax2+bx+c经过点A(-2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线BC经过B,C两点.(1)求抛物线的函数表达式;(2)点F是线段OC上一个动点,连接EF,当5EF+CF的值最小时,点F坐标为;(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E为直角顶点的RtΔPEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.2023-2024学年新区实验学校初三年级12月份月考数学试卷参考答案和解析一、选择题(本大题共有8小题,每小题3分,共24分)1.下列方程中是关于x的一元二次方程的是()A.x+1x=0B.2x2-x=0C.3x3=1D.ax2-4x=0【答案】B【解析】解:A.是分式方程,故本选项不符合题意;B.是一元二次方程,故本选项不符合题意;C.是一元三次方程,故本选项不符合题意;D.是否是一元二次方程,与a的值有关,故本选项不符合题意.故选:B.2.将抛物线y=x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=(x-2)2-1B.y=(x-2)2+1C.y=(x+2)2-1D.y=(x+2)2+1【答案】C【解析】解:原抛物线的顶点为(0,0),向左平移2个单位,再向下平移1个单位,那么新抛物线的顶点为(-2,-1).可设新抛物线的解析式为:y=(x-h)2+k,代入得:y=(x+2)2-1,故选:C.3.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是()A.36(1-x)2=-25B.36(1-2x)=25C.36(1-x)2=25D.36(1-x2)=25【答案】C【解析】解:第一次降价后的价格为36×(1-x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1-x)×(1-x),则列出的方程是36×(1-x)2=25.故选:C.4.二次函数y=x2-2x-3的图象如图所示.当y<0时,自变量x的取值范围是()A.-1<x<3B.x<-1C.x>3D.x<-1或x>3【答案】A【解析】解:当y=0时,x2-2x-3=0,解得x1=-1,x2=3.结合图象可见,-1<x<3时,y<0.5.已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;②作∠BAC的平分线AD;③以点A为圆心,AB长为半径作弧,交AD于点E;④过点E作EP⊥AB于点P,则AP:AB=() A.1:5 B.1:2 C.1:3 D.1:2【答案】D【解析】解:∵AC⊥AB,∴∠CAB=90°,∵AD平分∠BAC,∴∠EAB=12×90°=45°,∵EP⊥AB,∴∠APE=90°,∴∠EAP=∠AEP=45°,∴AP=PE,∴设AP=PE=x,故AE=AB=2x,∴AP:AB=x:2x=1:2.故选:D.6.下列说法正确的是()A.平分弦的直径垂直于弦,并且平分弦所对的两条弧B.长度相等的弧是等弧C.三角形的外心到三角形三边的距离相等D.90°的圆周角所对的弦是圆的直径【答案】D【解析】解:A、平分弦(不是直径的直径垂直于弦,并且平分弦所对的两条弧,故本选项说法错误,不符合题意;B、等弧是在同圆或等圆中,故本选项说法错误,不符合题意;C、三角形的外心到三角形三个顶点的距离相等,故本选项说法错误,不符合题意;D、90°的圆周角所对的弦是圆的直径,本选项说法正确,符合题意;故选:D.7.如图,⊙O的直径为AB,弦AC长为6,BC长为8,∠ACB的平分线交⊙O于D,则弦AD的长为()A.52B.7C.82D.9【答案】A【解析】解:∵⊙O的直径为AB,∴∠ACB=90°.∵AC=6,BC=8⇒AB=AC2+BC2=62+82=10.连接BD,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵CD是∠ACB的平分线,∴∠ACD=12∠ACB=45°,∴∠ABD=∠ACD=45°,∴AD=BD,∵AB=10⇒AD=AB∙sin45°=52.8.如图是二次函数y =ax 2+bx +c 的图象,下列结论:①y 最大值为4;②4a +2b +c >0;③一元二次方程ax 2+bx +c =-1的两根为m ,n (m <n ),则-3<m <n <1;④使y ≤3成立的x 的取值范围是x ≥0.其中正确的个数有()A.4个B.3个C.2个D.1个【答案】D【解析】解:∵抛物线的顶点坐标为(-1,4),∴二次三项式ax 2+bx +c 的最大值为4,①正确;∵x =2时,y <0,∴4a +2b +c <0,②错误;根据抛物线的对称性可知,一元二次方程ax 2+bx +c =-1的两根m ,n 是y =ax 2+bx +cy =-1的两个交点的横坐标,在-3的左边,或1的右边。

江苏省苏州市2023~2024学年九年级上学期12月月考数学试卷

江苏省苏州市2023~2024学年九年级上学期12月月考数学试卷

数学试卷,第1页,共7页数学试卷一.选择题(共8小题,每题3分,共计24分)1.如图,点C 是⊙O 的优弧AB 上一点,∠AOB =80°,则∠ACB 的度数为()A .40°B .140°C .80°D .60°(第1题图)(第2题图)(第4题图)2.如图,四边形ABCD 内接于⊙O ,∠BDC =135°.则∠BAC 的度数是()A .35°B .45°C .55°D .60°3.在Rt △ABC 中,∠ACB =90°,AC =6,AB =10,以C 为圆心,BC 为半径作⊙C ,则点A 与⊙C 的位置关系是()A .点A 在⊙C 内B .点A 在⊙C 上C .点A 在⊙C 外D .无法确定4.如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D ,若⊙O 的半径为2,则弦AB 的长等于()A .3B .5C .23D .255.下列结论中,正确的是()A .长度相等的两条弧是等弧B .相等的圆心角所对的弧相等C .平分弦的直径垂直于弦D .圆是中心对称图形6.如图,AB 是⊙O 的直径,D ,C 是⊙O 上的点,∠ADC =115°,则∠BAC 的度数是()A .25B .30°C .35°D .40°数学试卷,第2页,共7页7.如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是()A .3B.CD(第7题图)(第8题图)8.如图,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,使∠EAF =90°,tan ∠AEF =,则点F 与点C 的最小距离为()A .310−1B .37C .37−1D二.填空题(共8小题,每题3分,共计24分)9.⊙O 的半径为2,圆心O 到直线l 的距离为4,则直线l 和⊙O 的位置关系是.10.如图,在△ABC 中,点O 为△ABC 的内心,则∠OAC +∠OCB +∠OBA 的度数为.(第10题图)(第11题图)(第13题图)11.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线,EF 是AC 的垂直平分线,交AD 于点O .若OA =3,则△ABC 外接圆的面积为.12.已知Rt △ABC 的两直角边分别是5、12,则Rt △ABC 的内切圆的半径为.13.如图,四边形ABCD 内接于⊙O ,AD 、BC 的延长线相交于点E ,AB 、DC 的延长线数学试卷,第3页,共7页相交于点F ,且∠E =55°,∠F =25°,则∠A =°.14.已知点M (2.0),⊙M 的半径为1,OA 切⊙M 于点A ,点P 为⊙M 上的动点,当P 的坐标为时,△POA 是等腰三角形.(第14题图)(第15题图)15.如图,在矩形ABCD 中,AB =10,BC =8,以CD 为直径作⊙O .将矩形ABCD 绕点C 旋转,使所得矩形A ′B ′C ′D ′的边A ′B ′与⊙O 相切,切点为E ,边CD ′与⊙O 相交于点F ,则D ′F 的长为.16.如图,点E 是△ABC 的内心,AE 的延长线和△ABC 的外接圆相交于点D ,与BC 相交于点G ,则下列结论:①∠BAD =∠CAD ;②若∠BAC =50°,则∠BEC =130°;③若点G 为BC 的中点,则∠BGD =90°;④BD =DE .其中一定正确的选项是.三.解答题(共11小题)17.(本题6分)如图,在平面直角坐标系中,A (2,5),B (4,5),C (6,3).⊙M 经过A ,B ,C 三点.(1)在网格图中画出圆M (包括圆心),并且点M 的坐标:;(2)判断⊙M 与y 轴的位置关系:.18.(本题5分)如图,四边形ABCD内接于⊙O,E为AB延长线上一点,若∠AOC=150°,求∠EBC的度数.19.(本题5分)如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD =OA,CD的延长线交⊙O于点E,若∠C=20°,求∠BOE的度数.20.(本题8分)如图,AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)试说明:∠BCO=∠ACD;(2)若AE=4cm,BE=16cm,求弦CD的长.21.(本题8分)PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.数学试卷,第4页,共7页数学试卷,第5页,共7页22.(本题8分)如图,AB 为⊙O 的直径,OD 为⊙O 的半径,⊙O 的弦CD 与AB 相交于点F ,⊙O 的切线CE 交AB 的延长线于点E ,EF =EC .(1)求证:OD 垂直平分AB ;(2)若⊙O 的半径长为3,且BF =BE ,求OF 的长.23.(本题8分)已知:如图△ABC 中,∠ACB =90°,以AC 为直径的⊙O 交AB 于D ,过D 作⊙O 的切线交BC 于点E ,EF ⊥AB ,垂足为F .(1)求证:DE =12BC ;(2)若AC =6,BC =8,求S △ACD :S △EDF 的值.24.(本题8分)如图,在Rt △ABC 中,∠C =90°,BD 是角平分线,点O 在AB 上,以点O 为圆心,经过点B ,D 的圆与BC 交于点E .(1)求证:AC 是⊙O 的切线.(2)若四边形ODEB是菱形,时,求⊙O的半径.数学试卷,第6页,共7页25.(本题8分)如图,AB 是⊙O 直径,E ,C 是⊙O 上的两点,DC 是⊙O 的切线,AD ⊥CD 于点D ,BG ⊥DC ,交DC 的延长线于点G .(1)①若AD =3,BG =1,求直径AB 的长;②猜想AD ,BG ,AB 三者之间的数量关系,并证明你的结论.(2)若AB =10,当点C 在半圆上运动时,请直接写出四边形BADG 的面积的最大值:.26.(本题8分)阅读材料:已知,如图①,在面积为S 的△ABC 中,BC =a ,AC =b ,AB =c ,内切圆O 的半径为r .连接OA 、OB 、OC ,△ABC被划分为三个小三角形.图①图②图③∵S =S △OBC +S △OAC +S △OAB =BC •r +AC •r+AB •r =(a +b +c )r .∴r =.(1)类比推理:若面积为S 的四边形ABCD 存在内切圆(与各边都相切),如图②,各边长分别为AB =a ,BC =b ,CD =c ,AD =d ,求四边形的内切圆半径r ;(2)理解应用:如图③,在四边形ABCD 中,⊙O 1与⊙O 2分别为△ABD 与△BCD 的内切圆,⊙O 1与△ABD 切点分别为E 、F 、G ,设它们的半径分别为r 1和r 2,若∠ADB =90°,AE =4,BC +CD =10,S △DBC =9,r 2=1,求r 1的值.数学试卷,第7页,共7页27.(本题10分)阅读理解:(1)【学习心得】小赵同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.我们把这个过程称为“化隐圆为显圆”.这类题目主要是两种类型.①类型一,“定点+定长”:如图1,在△ABC 中,AB =AC ,∠BAC =44°,D 是△ABC 外一点,且AD =AC ,求∠BDC 的度数.解:若以点A (定点)为圆心,AB (定长)为半径作辅助圆⊙A ,(请你在图1上画圆)则点C 、D 必在⊙A 上,∠BAC 是⊙A 的圆心角,而∠BDC 是圆周角,从而可容易得到∠BDC =°.②类型二,“定角+定弦”:如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠PAB =∠PBC ,求线段CP 长的最小值.解:∵∠ABC =90°,∴∠ABP +∠PBC =90°,∵∠PAB =∠PBC ,∴∠BAP +∠ABP =90°,∴∠APB =,(定角)∴点P 在以AB (定弦)为直径的⊙O 上,请完成后面的过程.(2)【问题解决】如图3,在矩形ABCD 中,已知AB =3,BC =4,点P 是BC 边上一动点(点P 不与B ,C 重合),连接AP ,作点B 关于直线AP 的对称点M ,则线段MC 的最小值为.(3)【问题拓展】如图4,在正方形ABCD 中,AD =4,动点E ,F 分别在边DC ,CB 上移动,且满足DE =CF .连接AE 和DF ,交于点P .①请你写出AE 与DF 的数量关系和位置关系,并说明理由;②点E 从点D 开始运动到点C 时,点P 也随之运动,请求出点P的运动路径长.。

江苏省苏州市苏州工业园区星湾学校2023-2024学年九年级上册12月月考数学试题(含解析)

江苏省苏州市苏州工业园区星湾学校2023-2024学年九年级上册12月月考数学试题(含解析)

A .4B .108.二次函数中,自变量0()20y ax bx c a =++≠x L 2-1-yL4.5m -2m -0.5m -A .二、填空题(本大题共11.若是关于12.若方程13.如图,四边形322x =x 2ax bx ++ABCO16.如图,在网格中,每个小正方形的边长均为则.17.如图,在中,作交于点则折叠后所得到的四边形18.如图,二次函数点B 的横坐标为2,二次函数图象的对称轴是直线的两根为三、解答题(本大题共10小题,共19.计算:20.解方程:.21.如图,在6×6的正方形网格中,sin ABC ∠=Rt ABC △D DE BC ⊥AB E AEDF 2y ax bx =+2ax bx c kx ++=13x =-114sin6023-⎛⎫︒++- ⎪⎝⎭2890x x -+=(1)在图1中以线段AB 为边画一个,使其与(2)在图2中画一个,使其与相似,且面积为22.已知关于的方程.(1)求证:无论取何值,这个方程总有实数根;(2)若等腰三角形的一边长,另两边、恰好是这个方程的两个根,求(1)求线段的长;(2)求的值.24.如图,在中,分.(1)判断与的位置关系,并说明理由;(2)若,,求25.根据素材解决问题.ABD △ABC EFG ABC x ()2121402x k x k ⎛⎫-++-= ⎪⎝⎭k ABC 4a =b c CD cos BDE ∠ABC CAD ∠BC O 10AC =8DC =.(1)求抛物线的解析式;(2)是线段上的一个动点,过点坐标;(3)在轴上是否存在一点,使得E AC y P参考答案与解析1.C【分析】根据特殊角的三角函数值进行解答即可.3∵,∴.∵,,∴.在中,故最小值为90APB ∠=︒132PD AB ==3BD =4BC =22345CD =+=PCD PC DC ≥PC 53-∵正三角形顶点离圆柱边缘不少于∴当正三角形边长最大时,则∵半径为10cm ,∴cm ,5OB =,又点是的中点,,221310,AC BC =+= AC BC ∴= D AB CD AB ∴⊥②时,点在的延长线上...又,90EAF ∠=︒F BC 30EFA ∴∠=︒EFD EFA ∴∠=∠,ED BF EA AF ⊥⊥(2)如图,△EFG即为所求.【点睛】本题考查作图-相似变换,想解决问题,属于中考常考题型.22.(1)见解析10(2)【分析】(1)运用根的判别式,根与系数的关系,平方数的非负性进行判断即可求证;∵是的平分线,∴,又∵,AB CAD ∠BAD BAO ∠=∠OB OA =如图,过点作于点,,P PG AC ⊥60OAP OAC ∠︒∠+= 160,2PAG AG PA ︒∴∠==221322PG PA PA ⎛⎫∴=-= ⎪⎝⎭2224,42PA n AC =+=+由图可知,,一次函数图象的∴当直线经过点时,时,,此时图象的()()2,2,2,2C D - 41y ax a =-+()2,2C -122412a a a =-+⇒=-,当点运动到点处时,设,将代入,得,解得:,,,在中,,当点运动到点处时,22622,1832BC BD CD AD ∴=-=-===∴P B 2t =()242S a t =-+()2,6426a +=1a =()2242818S t t t ∴=-+=-+32242AC AD CD ∴=+=+=Rt ABC △()22224226AB AC BC =+=+=∴P A 268t =+=。

山东省泰安市泰山区泰安东岳中学2023-2024学年九年级上学期12月月考数学试题

山东省泰安市泰山区泰安东岳中学2023-2024学年九年级上学期12月月考数学试题

山东省泰安市泰山区泰安东岳中学2023-2024学年九年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....A .59A .43B .35.将抛物线223y x x =-+向左平移过()A.33y=-B.x的内切圆7.如图,ABCAB=,86BC=,则ABCA.4B.8.如图,△ABC、△FED区域为驾驶员的盲区,=43°,视线PE与地面BE的夹角∠AC⊥BE,FD⊥BE.若A点到考数据:sin43°≈0.7,tan43°≈0.9A.2.6m B.9.如图,四边形ABCD内接于⊙延长线上,则∠CDE的度数为(A.56°B.A .112.新定义:在平面直角坐标系中,对于点时,n ′=n -4;m <0时,P 1(2,5)的限变点是n )在二次函数y =-x 2+4围是()A .22n '-≤≤二、填空题13.已知在Rt △ABC 中,∠16.如图,在正方形ABCD 中,分别以点于点E ,连接DE ,则CDE ∠=17.如图,在平面直角坐标系中,点标为()m,2.连接,,OA OB AB .若18.如图,点()111,P x y ,点(22,P x 11212323,,,,n POA P A A P A A P A △△△△112231,,,,n n OA A A A A A A - 都在x 轴上(是.x(1)求证:EF与O相切;(2)若41sin5 BF AFE=∠=,21.某商场将进价为30元的书包以种书包的售价每上涨1元,其销售量就减少(1)请写出每月售出书包的利润(2)设每月10000元的利润是否为该月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元.22.如图,市民甲在C处看见飞机(1)两位市民甲、乙之间的距离CD ;(2)此时飞机的高度AB .(结果保留根号)23.已知在等腰直角三角形ABC 中,(1)如图1,请直接写出点C 的坐标1k =______;(2)如图2,若将ABC 延x 轴向右平移得到比例函数2(0)k y x x=>上时,求2k ,(3)如图3,在(2)的条件下,在y 积的一半.若存在,请求出点P ;若不存在,请说明理由.24.如图,点D 在以AB 为直径的⊙O 于点E ,交⊙O 于点F ,连接AD ,(1)求证:DAE DAC ∠=∠;(2)求证:DF AC AD DC ⋅=⋅;(3)若1sin 4C ∠=,410AD =,求25.如图①,抛物线29y ax bx =+-与x 轴交于点()30A -,,()6,0B ,与y 轴交于点C ,连接AC ,BC .点P 是x 轴上任意一点.(1)求抛物线的表达式;(2)点Q 在抛物线上,若以点A ,C ,P ,Q 为顶点,AC 为一边的四边形为平行四边形时,求点Q 的坐标;(3)如图②,当点(),0P m 从点A 出发沿x 轴向点B 运动时(点P 与点A ,B 不重合),自点P 分别作∥PE BC ,交AC 于点E ,作PD BC ⊥,垂足为点D .当m 为何值时,PED V 面积最大,并求出最大值.。

江苏省南通市部分学校2023-2024学年九年级上学期12月月考数学试题

江苏省南通市部分学校2023-2024学年九年级上学期12月月考数学试题

A. 7
B.3
C. 3 2
D.5
10.如图,在平面直角坐标系中,点 A,B 的坐标分别为 (3,0),(0,6) ,过 A、O、B 三点
作圆,点 C 在第一象限部分的圆上运动,连接 CO ,过点 O 作 CO 的垂线交 CB 的延长线
试卷第 2 页,共 7 页
于点 D,下列说法:① AOC BOD ;② tan ODB 1 ;③ CD 的最大值为 15.其中 2
对应点 D , E , F ),且 VABC 与 VDEF 的相似比为 2:1.其中点 B 坐标为 4, 2 .
(1)画出 VDEF ; (2)点 E 坐标为________;
(3)线段 AC 上一点 x, y 经过变换后对应的点的坐标为________.
试卷第 4 页,共 7 页
21.如图,一扇窗户垂直打开,即 OM OP , AC 是长度不变的滑动支架,其中一端 固定在窗户的点 A 处,另一端在 OP 上滑动,将窗户 OM 按图示方向向内旋转 45 到达 ON 位置,此时,点 A 、 C 的对应位置分别是点 B 、 D .测量出 ODB 为 30 ,点 D 到 点 O 的距离为 40cm .
B. 20
C. 22.5
D. 30
6.如图,点 P 是 VABC 的 AB 边上一点,下列条件不一定保证△ ACP ∽△ ABC 的是( )
A. ACP B B. APC ACB C. AC AP AB AC
D. PC AC BC AB
7.如图,两个相邻的直角三角形,恰好能组合得到四边形 OABC .若 AB BC 1,
(1)求 B 点到 OP 的距离; (2)求滑动支架 AC 的长.(结果保留根号). 22.如图, AB 与 e O 相切于点 A,半径 OC∥ AB , BC 与 e O 相交于点 D,连接 AD .

云南省保山市腾冲市第八中学2023-2024学年九年级上学期12月月考数学试题

云南省保山市腾冲市第八中学2023-2024学年九年级上学期12月月考数学试题

云南省保山市腾冲市第八中学2023-2024学年九年级上学期
12月月考数学试题
学校:___________姓名:___________班级:___________考号:___________
AD AE BF AD AD BF A.B.
C.
D.
A.B.
C.D.
二、填空题 13.如图,点A 、B 、C 在⊙O 上,若∠BAC =45°,OB =2,则图中阴影部分的面积为.
14.将抛物线y =x 2向下平移3个单位,再向右平移2个单位后,所得抛物线的解析式为.
15.若m 是方程2220230x x -+=的一个实数根,则2242024m m -+=. 16.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:
①b >0;②a ﹣b +c =0;③当x <﹣1或x >3时,y >0;④一元二次方程ax 2+bx +c +1
=0(a ≠0)有两个不相等的实数根.
上述结论中正确的是.(填上所有正确结论的序号)
三、解答题
17.不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个,蓝球1个.若从中任意摸出一个球,它是蓝球的概率为0.2
(1)直接写出袋中黄球的个数;
(2)从袋子中一次摸2个球,请用画树状图或列表格的方法,求“取出至少一个红球”的概率.
18.已知二次函数2y ax bx c =++的顶点坐标是()53-,
,且过点()41,. (1)求二次函数解析式.
(2)当26x <<时,求函数y 的取值范围.
19.解方程:2430x x --=.
k x。

河南省郑州市二七区京广实验中学2023-2024学年九年级上学期12月月考数学试题(含解析)

河南省郑州市二七区京广实验中学2023-2024学年九年级上学期12月月考数学试题(含解析)

2023-2024学年上学期九年级第三次学习比赛数学试卷一、单选题。

(每小题3分,共30分)....“天宫课堂23日在中国空间站开讲,包括六个项目:太空“冰雪”实验、液桥演示实验、水油分离实验、太空抛物实验、空间科学设施介绍与展示、天地互动环节.若随机选取一个项A .B .4.如图,在x 轴的上方,直角∠BOA 、的图象交于B 、A 两点,则A .逐渐变小B .逐渐变大5.温州是盛产瓯柑之乡,某超市将进价为每千克千克,为了减少库存且让利顾客,决定降价销售,超市发现当售价每千克下降就增加10千克,设售价下降20︒15︒1y x =-2y x=. . . ..如图,已知菱形的顶点,点轴的正半轴上.按以下步骤作:①以点为圆心,适当长度为半径作弧,分别交边、、;②分别以点为圆心,大于的长为半径作弧,两弧在内交于点作射线,交菱形的对角线A .9.如图,已知二次函数两点.下列结论的错误个数是(A .2(2,0)B -60ABC =︒B AB N 1MN ABC P BP ()1,3B C D二、填空题。

(每小题3分,共15分)12.已知点关于原点对称的点13.如图,在平面直角坐标系中,绕点A 逆时针旋转,每次旋转14.利用图形的分、和、移、补探索图形关系,是我国传统数学的一种重要方法.如图形ABCD 的对角线,将观察两图,若a =434,23A ⎛⎫ ⎪⎝⎭15.如图,在矩形中,痕与边相交于点E ,与矩形另一边相交于点三、解答题。

(本火题共8小题,共55分。

请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)16.计算:(1)2sin45°﹣tan30°﹣(1)松鼠经过第一道门时,从B (2)请用树状图或列表法表示松鼠走出笼子的所有可能路线(经过两道门)的概率.18.已知关于的方程ABCD AD 3x (2x k -(1)在平时训练完成一次跳水动作时,全红蝉的水平距离x 与竖直高度y 的几组数据如下:水平距离03 3.54 4.5竖直高度101010 6.25根据上述数据,直接写出k 的值为______,直接写出满足的函数关系式:______;(2)比赛当天的某一次跳水中,全红婵的竖直高度与水平距离x 近似满足函数关系,记她训练的入水点的水平距离为;比赛当天入水点的水平距离为,则(2)【类比迁移】/mx /m y k254068y x x =-+-1d 2d 1d d >=<(3)【拓展延伸】如图3,在中,,使得,请求线段Rt ABC △ACB ∠CD 3tan 4ACD ∠=【点睛】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,同位角相等.4.D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定及锐角三角函数的定义等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.5.B【分析】当售价下降x元时,每千克瓯柑的销售利润为(平均每天的销售量为(50+10x )千克,依题意得:(3-x )(50+10x )=120.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.D【详解】∵,∴对称轴为x =1,P 2(3,),P 3(5,)在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴,根据二次函数图象的对称性可知,P 1(﹣1,)与(3,)关于对称轴对称,故,故选:D .7.D【分析】根据一次函数的和二次函数的即可判断出二次函数的开口方向和一次函数经过轴正半轴,从而排除A 和C ,分情况探讨的情况,即可求出答案.【详解】解:二次函数为 ,,二次函数的开口方向向上,排除C 选项.一次函数,,一次函数经过轴正半轴,排除A 选项.当时,则,一次函数经过一、二、四象限,二次函数经过轴正半轴,22y x x c =-++2y 3y 23y y >1y 2y 123y y y =>1b =1a =y m 2y x m =+10a ∴=>∴∴ 1y mx =-+1>0b ∴= y ∴0m >0m -<2y x m =+y∵四边形ABC都是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,可知:,,则:每旋转4次则回到原位置,∵,即:第2023次旋转结束时,完成了∴当第2023次旋转结束时,点C 对应的坐标是故答案为:.()2,2C ()1,1C '-(0,C ''-202345053÷= ()3,1-根据折叠有:,∵,,∴,∵在矩形中,AF FM =BF x =22AB =AD 22AF FM x ==-AE ABCD EN ⊥根据折叠有:,∵,,∴,∵在矩形中,∴四边形是矩形,BF FG =BF x =22AB =AD BF FG x ==AE EM ==ABCD MH AHMB由树状图可知:松鼠走出笼子的所有可能路线结果数为=由旋转的性质可得:CB ED∵,∴.∵,∴,∴,90BAC DAE ∠=∠=︒CAE BAD ∠=∠9632AC AB AE AD ====,,,32AC AE AB AD ==CAE BAD ∽∵,∴.∴.∵,∴,∴,∴,∴.AP BC ∥90DAC ACB EAB ∠=∠=∠=︒CAE DAB ∠=∠3tan 4AD ACD AC ∠==34AD AB AC AE ==DAB CAE ∽△△34BD AD EC AC ==3BD EC =质,勾股定理,三角形三边关系的应用等知识.熟练掌握旋转的性质和三角形相似的判定定理,并正确的作出辅助线是解题关键.。

山东省青岛市李沧区青岛爱迪学校2023-2024学年九年级上学期12月月考数学试题

山东省青岛市李沧区青岛爱迪学校2023-2024学年九年级上学期12月月考数学试题

山东省青岛市李沧区青岛爱迪学校2023-2024学年九年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.x2<-C.x6<A.4B.5C.610.抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b 一平面直角坐标系内的图象大致为()A.B.C.D.14.如图,点A 是反比例函数点D 为线段AB 的中点.若点k =.15.某果园有100棵枇杷树.每棵平均产量为量,但是如果多种树,那么树与树之间的距离和每一棵树接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量若设增种x 棵枇杷树,投产后果园枇杷的总产量为为.16.二次函数224y x x =--下平移2个单位得到的,则17.如图,二次函数2y ax =+下列结论:①0abc >,②a -18.如图,11POA ,在反比例函数4y x=的图象上,斜边标是.21.心理学家研究发现,一般情况下,一节课变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散指标数y随时间x(分钟)的变化规律如图所示(其中曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达满2人,且当天房间支出不少于500元,问这天宾馆入住的游客有多少人?(3)设宾馆每天的利润为w 元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?25.【方法学习】如图1在边长为1的正方形网格中,连接格点D ,N 和E ,C ,DN 和EC 交于点P ,求tan CPN ∠的值.思考:求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现:CPN ∠不在直角三角形中,并且顶点不在格点处,我们可以利用网格画平行线等方法解决此类问题,比如连接格点M ,N ,可得MN EC ∥,则DNM CPN ∠=∠,连接DM ,那么CPN ∠就变换到格点处,并且恰好在Rt DMN △中,可以方便求出tan CPN ∠的值为______;【问题解决】(1)如图2,在边长为1的正方形网格中,AN 与CM 相交于点P ,则cos CPN ∠的值为______;(2)如图3,在边长为1的正方形网格中,AN 与CM 相交于点P ,则sin CPA ∠的值为______;【思维拓展】(3)如图4,若干个形状、大小完全相同的菱形组成网格,网格顶点称为格点,已知菱形的较小内角为60度,点A ,B ,C ,D 都在格点处,线段AB 与CD 相交于点P 求cos CPA ∠的值.。

河南省南阳市第十三中学校等校2023-2024学年九年级上学期12月月考数学试题

河南省南阳市第十三中学校等校2023-2024学年九年级上学期12月月考数学试题

河南省南阳市第十三中学校等校2023-2024学年九年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题7.已知点()13,A y -,()22,B y ,()33,C y 在抛物线224y x x c =-+上,则1y 、2y 、3y 的大小关系是()A .123y y y >>B .132y y y >>C .321y y y >>D .231y y y >>8.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是().A .B .C .D .9.若点()1,M a 、()1,N b -都在抛物线24y x =-上,则线段MN 的长为()A .a b+B .a b-C .4D .210.如图,正方形ABCD 的边长为2cm ,点P ,Q 同时从点A 出发,速度均为2/s cm ,若点P 沿A D C --向点C 运动,点Q 沿A B C --向点C 运动,则APQ △的面积()2cm S 与运动时间()s t 之间函数关系的大致图象是()A .B .C .D .二、填空题三、解答题16.计算:(1)272cos30⎛-︒+⎝17.如图,抛物线分别经过点18.已知二次函数y x=(1)直接写出二次函数y(3)当04x <<时,y 的取值范围是19.如图,在△ABC 中,AD 是BC AD=1.(1)求BC 的长;(2)求tan ∠DAE 的值.20.如图①,南阳光武大桥横跨白河两岸,是连接南阳中心城区和南阳机场及高铁站的重要交通要道,该桥为独塔斜拉桥.某数学的某组斜拉索最高点到桥面的距离方案设计:如图②,分别在A ,B 数据收集:A ,B 两点的距离为45CED ∠=︒;问题解决:求光武大桥某组斜拉索最高点数据:sin530.8︒≈,cos530.6︒≈(1)根据上述方案及数据,请你完成求解过程;(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点(3)若抛物线上有一动点P。

湖北省武汉市硚口区2023-2024学年九年级上学期12月月考数学试题(含答案)

湖北省武汉市硚口区2023-2024学年九年级上学期12月月考数学试题(含答案)

2023~2024学年度第一学期12月质量检测数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1. 已知的半径是4,,则点P 与的位置关系是( )A. 点P 在外B. 点P 在上C. 点P 在内D. 不能确定2. 如图,在中,,,则的大小是( )(第2题)A. B. C. D. 3. 如图,四边形ABCD 内接于,,则的大小是()(第3题)A. B. C. D. 4. 如图,已知的半径为4,则该圆内接正六边形ABCDEF 的边心距OG 的值是()(第4题)A. B.C.D. 35. 若圆锥的底面半径为4cm ,母线长为12cm ,则它的侧面展开图的圆心角的大小是( )A. B. C. D.BO 3OP =O O O O OAB AC =70B ∠=︒C ∠20︒40︒70︒110︒O 108B ∠=︒D ∠54︒62︒72︒82︒O 32240︒120︒180︒90︒6. 如图,在中,,过点A 作于点M ,交DE 于点N .若,则的值是()(第6题)A. B. C. D. 7. 如图,这是一个供滑板爱好者使用的U 形池,该U 形池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是弧长为12m 的半圆,其边缘(边缘的宽度忽略不计),点E 在CD 上,.一滑板爱好者从A 点滑到E 点,则他滑行的最短距离是()(第7题)A. 28mB. 24mC. 20mD. 18m8. 《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,.“会圆术”给出AB 的弧长l 的近似值计算公式:.当,时,则l 的值是( )(第8题)A. B. C. D. 9. 如图,在四边形ABCD 中,,以D 为圆心,AD 为半径的弧恰好与BC 相切,切点为E .若,则的值是( )BABC △DE BC ∥AM BC ⊥4:9ADE ABC S S =:△△:AN AM 4:93:23:42:320m AB CD ==4m CE =MN AB ⊥2MN l AB OA=+4OA =60AOB ∠=︒11-8-811-AB CD ∥AD AB ⊥13AB CD =ADCD(第9题)A.B.C.D.10. 已知抛物线和直线,若对于任意的x 的值,恒成立,则常数m 的值是( )A. 0B. 2C. -2D. -4二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解题过程,请将结果直接填写在答题卡指定位置.11. 如图,在中,圆周角,则的大小是______.(第11题),,,则CD 的长度是______.13. 如图,的内切圆与AB ,BC 分别相切于D ,E 两点,连接DE ,AO 的延长线交DE 于点F ,若,则的大小是______.(第13题)14. 如图,半圆O 的直径.,C ,D 是半圆上的三等分点,E 是OA 的中点,则阴影部分CED 面积是______.A2334()2122y x m x m =-++224y x =-12y y ≥O 30ACB ∠=︒AOB ∠:2:3AC EC =4BC =ABC △O 70ACB ∠=︒AFD ∠10AB =(第14题)15. 二次函数的图象如图所示,下列四个结论:①;②;③;④若方程有四个实数根,则这四个实数根的和为4.其中正确结论是______.(填写序号)(第15题)16. 如图,在中,,,,线段BC 绕点B 旋转,得到BD ,连接AD ,E 为AD 的中点,连接CE ,则CE 的最大值是______.(第16题)三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本小题8分)如图,在中,,求证:.18.(本小题8分)如图,已知,求证:.A ()20y ax bx c a =++≠0abc >23c b =()()1a b m am b m +>+≠21ax bx c ++=Rt ABC △90ACB ∠=︒30BAC ∠=︒4BC =O AD BC =DC AB =ABC ADE △∽△ABD ACE △∽△19.(本小题8分)如图,在中,,CD 是斜边AB 上的高.(1)求证:;(2)若,,求BD 的长.20.(本小题8分)如图,是的外接圆,AC 为直径,,交DC 的延长线于点E .(1)求证:BE 是的切线;(2)若,,求AD 的长.21.(本小题8分)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.经过A ,B 两个格点,C 是与格线的交点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示).(1)先画直径BG ,再画圆心O ;(2)在上画点M ,使,在上画点F ,连接AF ,使.22.(本小题10分)由于惯性的作用,行驶中的汽车在刹车后还要继续向前滑行一段距离才能停止,这段距离ARt ABC △90ACB ∠=︒ABC CBD △∽△4AC =3BC =O ABC △ BDAB =BE DC ⊥O 1EC =8CD =1010⨯O O BCBM MC = AC CAF CAB ∠=∠称为“刹车距离”.某公司设计了一款新型汽车,现在对它的刹车性能进行测试,刹车距离S (单位:m )与车速v (单位:km/h )之间存在二次函数关系,测得部分数据如表:车速v (km/h )0306090120刹车距离S (m )7.819.234.252.8(1)直接写出刹车距离S 与车速v 之间的函数关系;(2)某路段实际行车的最高限速为80km/h ,若要求该型汽车的安全车距要大于最高限速时刹车距离的2倍,求安全车距应超过多少米?(3)在某路段上,若要求该型汽车的刹车距离不超过40m ,请问车速应该控制在什么范围内?23.(本小题10分)在矩形ABCD中,,E 是对角线BD (端点除外)上的点,F ,G 在直线BC 上,满足,.(图1) (图2)(1)如图1,若,求证:;(2)如图2,连接AF ,求的值(用含m 的式子表示);(3)连接CE ,当,时,若,直接写出FG 的长.24.(本小题12分)将抛物线:平移,使其顶点为,得到抛物线,抛物线交x 轴的正半轴于A 点,交y 轴于C 点.(图1) (图2)(1)直接写出抛物线的表达式;(2)如图1,抛物线的对称轴与直线AC 相交于点B ,G 为直线AC 上的点,过点G 作交抛物线于点F ,当以B ,D ,G ,F 为顶点的四边形为平行四边形时,求点G 的横坐标;ABm BC=EF AE ⊥EG BE ⊥1m =ABE FGE △≌△EFAF12m =CE CD =4ED =1C 2y x =()1,4D -2C 2C 2C 2C GF BD ∥2C(3)如图2,的顶点M ,N 在抛物线上,点M 在点N 右边,两条直线ME ,NE 与抛物线均有唯一公共点,ME ,NE 均与y 轴不平行.若的面积为16,设M ,N 两点的横坐标分别为m ,n ,求m 与n 的数量关系.2023-2024学年度12月质量检测九年级数学参考答案12345678910C C CABDC DBA11.12. 613. 14.15. ②③④16. 617. 证明:∵,∴,……2分∴,……4分∴,……6分∴.……8分(也可用全等三角形解决)18. 证明:∵,∴,,……2分∴,,……4分∴,……6分∴.……8分19. 证明:(1)∵,∴,……1分∵,∴,……2分又∵,∴.……4分解:(2)∵,,,∴,……5分∵,∴,……7分∴.……8分20.(1)证明:连接OB .由圆内接四边形的性质可知,……1分又∵,∴,……2分∵,∴,∴,∴,……3分∵,∴,∴BE 是的切线.……4分(2)解:过点B 作于点F ,∵,∴,MNE △1C 1C MNE △60︒35︒256πAD BC =AD BC = AD AC BC AC +=+ AB CD=DC AB =ABC ADE △∽△AB ACAD AE =BAC DAE ∠=∠AB AD AC AE=BAC DAC DAE DAC ∠-∠=∠-∠BAD CAE ∠=∠ABD ACE △∽△CD AB ⊥90BDC ∠=︒90ACB ∠=︒ACB BDC ∠=∠B B ∠=∠ABC CBD △∽△90ACB ∠=︒4AC =3BC =5AB =ABC CBD △∽△AB BCBC CD=95BC BC BD AB ⋅==ECB BAD ∠=∠1BAD ∠=∠1ECB ∠=∠OC OB =1CBO ∠=∠CBO ECB ∠=∠EC OB ∥BE EC ⊥BE OB ⊥O BF AC ⊥ BDBA =BD BA =在与中,,∴.……5分∴.由(1)知,在和中,,∴,……6分∴,∴.……7分∵AC 为的直径,∴.在中,由勾股定理,得.……8分(还可以过O 作CD 垂线解决)21.(1)G 点正确,O 点正确(有多种画法)......各2分(2)M 点正确,F 点正确 (2)22. 解:(1);……3分(2)当车速为80km/h 时,刹车距离,∴,答:安全车距应超过57.6m ;……6分(3)当时,,解得,(舍去),……8分∴当时,,∴车速应该控制不超过100km/h 范围内.……10分23.(1)证明:∵在正方形ABCD 中,点E 是对角线BD 上一点,,,∴,,……1分,∴, (2)分ABF △DBE △BAF BDE AFB DEB AB DB ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABF DBE AAS △≌△189AF DE EC CD ==+=+=1ECB ∠=∠Rt BCE △Rt BCF △1BEC BFC ECB BC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()BCE BCF AAS △≌△1FC EC ==9110AC AF FC =+=+=O 90ADC ∠=︒Rt ADC△6AD ===20.0020.2s v v =+0.00264000.28028.8S =⨯+⨯=()28.8257.6m ⨯=40s =20.0020.240v v +=1100v =2200v =-40s ≤100v ≤GE BD ⊥AE EF ⊥90AEF GEB ∠=∠=︒90AEB BEF GEF ∠=︒-∠=∠45ABE EBG G ∠=∠=∠=︒BE EG =在和中,,∴;……3分(2)解:∵在矩形ABCD 中,E 是对角线BD 上点,,,∴,,∴,……4分∴,……5分∴.……6分可设,,∴.……7分(3)FG……10分(提示:由(2),可得,过C 作,求出)24. 解:(1);……3分(2)∵,∴,,∴AC :,∵,∴.……4分设,①当点G 在线段AC 上时,点F 在点G 下方,则,∵,∴,解得,或(舍去),则点G 的横坐标为2.……5分②当点G 在线段AC (或CA )延长线上时,点F 在点G 上方,则,∵,∴,解得或E综上可得满足条件的点E 的横坐标为2.……7分(3)设经过的直线解析式为,ABE △FGE △ABE G BE EG AEB FEG ∠=∠⎧⎪=⎨⎪∠=∠⎩ABE FGE △≌△GE BD ⊥AE EF ⊥90AEF GEB ∠=∠=︒90ABE EBG BGE ∠=︒-∠=∠90AEB BEF FEG ∠=︒-∠=∠ABE FGE △∽△EF EG DC ABm AE BE BC BC====EF m =1AE =AF =EF AF =ABE FGE △∽△12FG EF m AB AE ===CH BD ⊥CD =()214y x =--()214y x =--()3,0A ()0,3C -3y x =-()1,4D -()1,2B -(),3G x x -()2,23F x x x --GF DB =()2323242x x x --++=-+=2x =1x =()2,23F x x x --GF DB =()223(3)2x x x ----=x =x =()2,M m m 2()y k x m m =-+,则有,……8分∵直线ME 与有唯一公共点,∴,∴,直线ME 的解析式为,……9分同理可求直线NE 的解析式为,,∴,……10分如图3,过E 作直线轴,分别过M ,N 作l 的垂线,垂足为C ,D ,,∴,……11分∴,∴.……12分图322()y x y k x m m⎧=⎨=-+⎩220x kx km m -+-=2C 22244(2)0k km m k m ∆=-+=-=2k m =22y mx m =-22y nx n =-2222y mx m y nx n⎧=-⎨=-⎩,2m n E mn +⎛⎫⎪⎝⎭l x ∥16NDE MEC MNE MNDC S S S S --==△△△梯形()()()()2222111()22222m n m n n mn m mn m n n mn n m mn m ++⎛⎫⎛⎫⎡⎤-+-⨯---⨯---⨯- ⎪ ⎪⎣⎦⎝⎭⎝⎭16=()364m n -=4m n -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4题)
(2题)
林头中学—第一学期十二月测
初三数学试卷
考察用时:120分钟 全卷满分:120分
题号 一 二 三 四 五 六 总分 得分
一、选择题(每小题3分,共30分)。

1、一个袋子中装有6个黑球、3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的情况下,随机地从这个袋子中摸出一个球,摸到白球的概率为( )。

A 、
B 、
C 、
D 、
2、某闭合电路中,电源电压为定值,电流I (A )与电阻R (Ω)成反比例,如图表示的是该电
路中电流I 与电阻R 之间函数关系的图象,则用电阻R 表示电流I 的函数解析式为( ) (A )R I 3= (B )R I 2= (C )R
I 6
=
(D )R
I 6
-=
3、在Rt △ABC 中,∠A =090,AC =5,AB =12,那么B tan =( ) (A )
135 (B )512 (C )1213 (D )12
5 4、如图,⊿ABC 中,∠ACB =,BE 平分∠ABC ,DE ⊥AB , 垂足为D ,如果AC = 3cm ,那么AE + DE 的值为 ( ) (A )2cm (B )4cm (C )5cm (D )3cm
5、下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可
能是( )
6、顺次连结等腰梯形各边中点所得的四边形是( ) A 、平行四边形 B 、菱形 C 、矩形 D 、正方形
7、一元二次方程x x 32=的根为( )
A 、3=x
B 、01=x ,32=x
C 、3-=x
D 、31-=x ,02=x 8、等腰三角形的一个内角为120°,则这个等腰三角形的底角等于( )
A 、20°
B 、30°
C 、45°
D 、60° 9、已知点A( -2 ,y 1 ) , ( -1 ,y 2 ) , ( 3 ,y 3 )都在反比例函数x
y 4
=
的图象上,则( ) A. y 1<y 2<y 3 B. y 3<y 2<y 1 C. y 3 <y 1<y 2 D. y 2<y 1<y 3 10、若c (c ≠0)为关于x 的一元二次方程x 2
+bx+c=0的根,则c +b 的值为( ) A .1 B .-1 C .2 D .-2 二、填空题(每小题3分,共15分) 11、直线y=2x 与双曲线y=
k
x
的图象的一个交点为(2,4),则它们的另一个交点的坐标是 . 12、如图(1)中,ABCD 是一张正方形纸片,E ,F 分别为AB ,CD 的
中点,沿过点D 的折痕将A 角翻折,使得点A 落在图(2)中EF
上,折痕交AE 于点G ,那么∠ADG=
13 中,对角线相交于点O ,AC ⊥CD ,
AO = 6, BO = 10,则CD=______ ,AD =________
14、反比例函数x
m y 1
2-=的图象的两个分支分别位于第二、
四象限,则m 的取值范围是___________________ . 15、如图所示,某小区规划在一个长为40m 、宽为26 m 的矩形
场地ABCD 上修建三条同样宽的小路,使其中两条与AB 平行, 另一条与AD 平行,其余部分种草,若使每一块草坪的面积为 144 m 2
,求小路的宽度. 若设小路的宽度为x m ,则x 满足的
方程为 。

三、解答下列各题(每小题7分,共21分)
16、解方程:0122
=--x x
90班别: 姓名: 座号:


线





9
13
1
2
13
2O
R
I
3
2
A
E
C
D
B
A B
C
D
O
(第12题图)
(第13题图)
(第15题图)
E A
D
C
B
17、用配方法解方程:01422=+-x x
18、用适当方法解方程:0)1(4)2(92
2
=---x x
四、解答题(每小题7分,共14分)
19、今年我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均
上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分 率相同.
(1)求降低的百分率;
(2)若小红家有4人,明年小红家减少多少农业税?
(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税。

20、小英和小丽用两个转盘做“配紫色”游戏,若配成紫色小英获胜,否则 小丽获胜,这个游戏对双方公平吗?(红色+蓝色=紫色)
五、解答题(每小题8分,共24分)
21如图,在梯形ABCD 中,AB ∥DC , DB 平分∠ADC ,过点A 作AE ∥BD ,交CD 的延长线于点E ,且∠C =2∠E .求证:(1) 梯形ABCD 是等腰梯形; (2) 若∠BDC =30°,AD =5,求CD 的长。

红 黄


红 红 黄
A
B
C
D
E
F
22、已知:△ABC ,求作:点P ,使P 到∠BAC 的两边的距离相等,且使PB =PC (不写作法,保留作图
痕迹)。

23、如图,为测得峰顶A 到河面B 的高度h ,当游船行至C 处时测得峰顶A 的仰角为α,前进m 米至D 处时测得峰顶A 的仰角为β(此时C 、D 、B 三点在同一直线上) 。

(1)用含α、β和m 的式子表示h ;
(2)当α=30°,β=45°,m=50米时,求h 的值.(精确到1米) 。

六、解答下列各题(每小题8分,共16分)
24、如图所示,一次函数b kx y +=的图像与反比例函数x
n
y =
的图像交于M 、N 两点。

(1)求反比例函数和一次函数的解析式.
(2)根据图像写出使反比例函数的值大于一次函数的值的x 的取值范围.
25、如图,AB//CD ,090=∠ACB ,E 是AB 的中点, CE=CD ,DE 和AC 相交 于点F.求证:(1)AC DE ⊥;(2)ACE ACD ∠=∠.
A
B C
林头中学初三级数学12月测试卷 第6页( 共8页 ) M(4,m)
N (-1,-4)
x
y。

相关文档
最新文档