5kW光伏离网发电系统方案.doc

合集下载

太阳能离网光伏发电站系统设计方案模版

太阳能离网光伏发电站系统设计方案模版

太阳能离网光伏发电站系统设计方案模版太阳能离网发电系统设计一、工程概述1、工程名称***离网系统2、地理位置(经度、纬度、环境状况、气候条件、风力状况、阳光资源等)3、气象资料二、方案设计(一)用户负载信息冰箱的耗能根据冰箱的使用模式和开关冰箱门的频率有关,目前普通冰箱的日耗电大约1度左右。

(二)系统方案设计根据用户要求,本方案为光伏离网系统本系统是一个离网系统,其原理如下图所示:1、太阳能电池板方阵的设计(查询安装地区逐月辐照强度随倾角变化规律、倾角计算、支架设计或选取、电池板容量计算、电池板型号选择及数量确定并列出基本技术参量表、布局)逐月辐照强度随倾角变化规律六月七月八月九月十月十一月十二月年平均所选电池板的基本技术参数如下所示:2、蓄电池组的设计(容量计算、安装地区户用电压情况、蓄电池型号选择、数量确定、布局)在系统中储能主要靠铅酸蓄电池,蓄电池的容量利用下下面公式计算:其中:C:蓄电池容量[kWh]D:最长无日照间用电时[h]F:蓄电池放电效率的修正系数(通常取1.05)Po:平均负荷容量[kW]L:蓄电池的维修保养率(通常取0.8)U:蓄电池的放电深度(通常取0.5)Ka:包括逆变器等交流回路的损失率(通常取0.7,如逆变器效率高可取0.8)所以此处的蓄电池的容量应该为:C=15×3×1.05/(0.7×0.5×0.8)=112.5KWh 由于系统设计的参考连续阴雨天数为3天,所以蓄电池放点深度选择为0.5。

根据福建福州的电力情况,户用电压为220V,蓄电池电压选择为24V,蓄电池组由12V的蓄电池串并而成,所以每串需要2块蓄电池串起来达到24V。

选用36块单体为12V150Ah的蓄电池,总共18串进行并联,蓄电池总容量为54000Ah,即129.6KWh。

电池型号选择双登的6-GFM-150。

3控制器的设计(型号及主要参数)控制器的输入路数不够,可使用三通连接器使两块组件并联后接入控制器。

毕业设计(论文)家用5kw离网型光伏发电系统的设计

毕业设计(论文)家用5kw离网型光伏发电系统的设计

摘要常规能源在消耗的过程中会产生多种有害气体,不但污染环境,而且无法长久稳定地提供能源,而核能源虽然属于新型能源,但是可使用量有限,其在消耗的过程中会产生放射性废料。

与现有的其他能源相比,太阳能可谓优势突出,来源充足、方便易得,光伏发电系统就是通过各种设备直接将其转换为电能的系统,因此开展针对光伏发电系统的研究对于合理高效利用资源、推动新型能源的开发、促进光伏发电系统的发展具有重要意义。

本文以研究离网型光伏发电系统为目标,以相关基本理论为基石,通过模块化设计,利用仿真工具进行模拟,实现了对该系统的深入研究。

以光伏电池、蓄电池、变换器、控制器等硬件模块和最大功率点跟踪原理及算法等理论作为研究基础,对系统的设计主要包括对太阳能电池板的配置和计算、蓄电池组的配置和计算、DC-DC变换器的设计、DC-AC逆变器的设计和控制器的设计等。

以负荷要求为根据,进行有关参量的计算,选取合适的先进硬件材料,确定光伏电池和蓄电池的串并联数目;考虑输入与输出的数量关系,考虑实际负荷要求,考虑各种因素的影响,选取合适的变换器;由于智能控制器能够完成对系统的自动控制,保证系统正常且高效运行,因此非常适合作为系统的控制环节。

借助MATLAB 的仿真功能,依据已知的对各个模块的工作原理、基本结构的分析与研究,实现了对5kW离网型光伏发电系统中多个模块的模拟仿真,仿真结果与理论结果相一致。

关键词:离网型光伏发电系统系统模块设计系统模拟仿真AbstractConventional energy would release a large number of harmful gas in the process of consumption, and it cannot be stable for a long time to provide energy. Nuclear fuel belongs to new energy source but non-renewable energy, and it would eject radioactive waste at work and damage to the environment, so solar energy resource has obvious advantages by comparison. Solar photovoltaic power generation system is able to convert solar energy into DC or AC power through a variety of equipment, thus, study of solar photovoltaic power generation system is of great significance to use resources efficiently and promote the development of photovoltaic power generation systems.Study of off-grid photovoltaic power generation system as the goal, through the design of off-grid photovoltaic power generation system modules, using simulation tools for simulation, the household 5 kw off-grid photovoltaic power generation system research is implemented in this paper. Hardware such as photovoltaic cells, battery, converter and maximum power point tracking principle and algorithm theory as a foundation for research, the household type 5 kw off-grid photovoltaic power generation system is designed, mainly including configuration and calculation for the solar panels, battery configuration and calculation, the design of DC-DC converter, DC-AC inverter and the design of controller. Based on load requirements, relevant parameters are calculated, suitable materials are selected and the number of series-parallel solar cells and battery is determined. Considering the relationship between input and output, actual load demand and the influence of various factors, appropriate converters are selected. Intelligent controller can realize the automatic control of the system and ensure the normal and efficient operation system, which is very suitable as the control link of the system. Using powerful simulation function of MATLAB/Simulink, on the basis of understanding of working principle and analysis and design for basic structure for each module, the simulation of photovoltaic cells, DC- DC converter and DC-AC inverter is realized and the simulation results are consistent with the theoretical results.Keywords:off-grid photovoltaic power generation system system module design system simulation目录摘要 (1)Abstract (2)图表目录 (6)第1章绪论 (1)1.1 课题的研究背景及意义 (1)1.2 研究现状 (3)1.2.1 我国太阳能光伏发电产业化现状与发展趋势 (3)1.2.2 国外太阳能光伏发电产业化现状与发展趋势 (6)1.3 本文研究内容 (8)1.3.1 课题研究内容和目标 (8)1.3.2 拟解决的关键性问题 (13)1.3.3 课题的创新性 (14)第2章太阳能光伏发电系统 (15)2.1光伏发电系统的组成 (15)2.1.1 光伏阵列 (15)2.1.2 逆变器 (15)2.1.3 蓄电池 (16)2.1.4 控制器 (16)2.2 光伏发电系统的分类 (18)2.3光伏电池 (20)2.3.1 光伏电池的分类 (20)2.3.2 太阳能电池的工作原理 (21)2.3.3 太阳能电池物理模型及基本特性 (21)2.4本章小结 (24)第3章最大功率点跟踪原理及算法 (25)3.1 最大功率点跟踪的意义 (25)3.2 最大功率点跟踪的原理 (25)3.3 最大功率点跟踪的方法 (28)3.3.1 恒定电压法 (28)3.3.2 干扰观测法 (29)3.3.3 三点重心比较法 (30)3.3.4 电导增量法 (32)3.4本章小结 (33)第4章家用5kW离网型光伏发电系统设计 (34)4.1太阳能电池板的配置与计算 (34)4.2 蓄电池组的配置与计算 (36)4.3 DC-DC变换器的设计 (38)4.4 DC-AC逆变器的设计 (40)4.4.1 逆变器的原理 (40)4.4.2 DC-AC逆变电路 (41)4.5 控制器的设计 (44)4.6 本章小结 (45)第5章家用5kW离网型光伏发电系统建模和模块仿真 (46)5.1仿真软件平台 (46)5.2光伏电池的仿真 (46)5.3DC-DC变换器软件仿真 (50)5.4DC-AC单相逆变器软件仿真 (54)5.5本章小结 (57)第6章结论与展望 (58)6.1结论 (58)6.2展望 (58)参考文献 (60)致谢 (63)图表目录图1-1 世界和我国常规能源耗尽年份图图1-2 世界和我国光伏电池的生产量图图1-3 全世界不同种类光伏电池的生产量图图1-4 家用4kW离网型光伏发电系统结构示意图图1-5 逆变电路基本电路构成图图1-6 多路光伏系统控制器的电路原理图图2-1 光伏发电系统示意图图2-2 直流负载直结型系统图图2-3 直流负载蓄电池使用型系统图图2-4 交流负载蓄电池使用型系统图图2-5 直、交流负载蓄电池使用型系统图图2-6 不考虑串并联电阻的PN同质结光伏电池等效电路图图2-7 考虑串并联电阻的PN同质结光伏电池等效电路图图2-8 光伏电池输出特性曲线图图2-9 太阳能电池光电转换过程中存在的各种类型的损耗图图3-1 光伏电池伏安特性曲线示意图-温度一定,光照强度变化图图3-2 光伏电池伏安特性曲线示意图-光照强度一定,温度变化图图3-3 光伏电池输出功率与端电压特性曲线-温度一定,光照强度变化图图3-4 光伏电池输出功率与端电压特性曲线-光照强度一定,温度变化图图3-5 光伏电池在不同光照强度下的特性曲线图图3-6 恒定电压法控制流程图图3-7 干扰观测法控制流程图图3-8 三点重心比较法可能情况汇总图图3-9 三点重心比较法流程图图3-10 电导增量法流程图图4-1 Buck-Boost变换电路原理图图4-2 开关管导通时Buck-Boost电路的等效电路图图4-3 开关管关断时Buck-Boost电路的等效电路图图4-4 Buck-Boost电路电感两端的电压及流过电感的电流波形图图4-5 单相桥式逆变电路图图4-6 工作电压波形图图4-7 单极性SPWM逆变电路的主电路原理图图4-8 SPWM调制电路原理图图4-9 SPWM调制波形图图4-10 单路旁路型过充放电控制器控制原理图图5-1 光伏电池模块仿真模型图图5-2 光伏电池模块的子系统图图5-3 光伏阵列输出电流曲线图图5-4 光伏阵列输出电压曲线图图5-5 光伏阵列输出功率曲线图图5-6 光伏阵列输出特性曲线图图5-7 光伏阵列伏安特性曲线图图5-8 DC-DC变换器模块仿真模型图图5-9 IGBT模块集电极电流和集射极电压波形图图5-10 二极管电流、电压波形图图5-11 系统变量波形图-占空比0.5图图5-12 系统变量波形图-占空比0.2图图5-13 系统变量波形图-占空比0.7图图5-14 DC-AC单相逆变器模块仿真模型图图5-15 逆变桥模块的输入电流波形图图5-16 逆变桥模块输入电流经过二阶模型高通滤波后的波形图图5-17 负载两端电压波形图图5-18 电压源两端电压波形图图5-19 负载与电源加和波形图表1-1 未来世界能源需求与再生能源可开发量表表1-2 最优光伏组件的成本分析表表1-3 全球光伏组件价格变化表表1-4 光伏电池发展阶段表表1-5 国家发改委通知规定的全国光伏电站标杆上网电价表表1-6 我国实现光伏电池组件成本和光伏发电电价降低的路线表表1-7 2006-2012年我国各年光伏发电系统累计装机容量及当年新增装机容量表表1-8 2000-2012年全球光伏发电系统累计装机容量及当年新增装机容量表表1-9 全球光伏发电系统累计装机容量前六名表表2-1 离网型光伏发电系统对逆变器的基本要求表表2-2 离网型光伏发电系统对逆蓄电池的基本要求表表2-3 离网型光伏发电系统对逆蓄电池的基本要求表表2-4 现阶段光伏发电系统控制器分类表表2-5 光伏电池分类表表4-1 蓄电池常用字母含义表第1章绪论1.1 课题的研究背景及意义常规能源在消耗的过程中会产生多种有害气体,不但污染环境,而且无法长久稳定地提供能源,而核能源虽然属于新型能源,但是可使用量有限,其在消耗的过程中会产生放射性废料。

离网型光伏发电系统技术方案

离网型光伏发电系统技术方案

离网型光伏发电系统技术方案一、系统基本原理离网型光伏发电系统广泛应用于偏僻山区、无电区、海岛、通讯阳能充放电控制器给负载供电,同时给蓄电池组充电;在无光照时,通过太阳能充放电控制器由蓄电池组给直流负载供电,同时蓄电池还要直接给独立逆变器供电,通过独立逆变器逆变成交流电,给交流负载供电。

图1 离网型光伏发电系统示意图(1)太阳电池组件是太阳能供电系统中的主要部分,也是太阳能供电系统中价值最高的部件,其作用是将太阳的辐射能量转换为直流电能;(2)太阳能充放电控制器温度补偿的功能。

(3)蓄电池组其主要任务是贮能,以便在夜间或阴雨天保证负载用电。

(4)离网型逆变器离网发电系统的核心部件,负责把直流电转换为交流电,供交流负荷使用。

为了提高光伏发电系统的整体性能,保证电站的长期稳定二、主要组成部件介绍2.1太阳电池组件介绍图2 硅太阳电池组件结构图太阳电池组件是将太阳光能直接转变为直流电能的阳光发电装置。

根据用户对功率和电压的不同要求,制成太阳电池组件单个使用,也可以数个太阳电池组件经过串联(以满足电压要求)和并联(以满足电流要求),形成供电阵列提供更大的电功率。

太阳电池组件具有高面积比功率,长寿命和高可靠性的特点,在20年使用期限内,输出功率下降一般不超过20%。

图3太阳电池伏安特性一般来说,太阳电池的发电量随着日照强度的增加而按比例增加。

随着组件表面的温度升高而略有下降。

太阳电池组件的峰值功率W p是指在日照强度为1000W/M2,AM为1.5,组件表面温度为25℃时的I max×U max的值(如上图所示)。

随着温度的变化,电池组件的电流、电压、功率也将发生变化,组件串联设计时必须考虑电压负温度系数。

2.2光伏控制器介绍光伏控制器主要是对太阳电池组件发出的直流电能进行调节和控制,并具有对蓄电池进行充电、放电智能管理功能,在温差较大的地方,光伏控制器应具备温度补偿的功能。

根据系统的直流电压等级和太阳电池组件的功率配置合适的光伏控制器。

新型离网光伏发电系统方案设计

新型离网光伏发电系统方案设计

新型离网光伏发电系统方案设计
一、研究背景
随着经济发展的加快,人们对能源的依赖也不断增加,其中电能的消
耗量不断增加,光伏发电作为可再生能源之一的优势越发凸显,越来越多
的人们开始重视这种可再生能源,认识到其能源的优势。

但是,传统的光
伏发电受电网接入限制,受地形和电网规划条件限制,导致很多人无法使
用这种技术,自给自足受到困扰,电力不足。

考虑到这个问题,研究开发
出离网光伏发电系统,从而解决用户的能源问题,真正实现自主发电,自
给自足,这是本文的研究背景。

二、研究内容
离网光伏发电系统是一种能够在电网外发电的能源系统。

它采用太阳
能转换成电能,利用电池存储电能,控制器调节发电,实现自主发电,解
决用户的电力不足问题。

本文针对此研究,主要是对其方案的设计,进行
如下研究内容:
1.在分析当地的气候条件,计算出需要的光伏发电系统容量,以便确
定所需的光伏发电系统组件的总容量;
2.确定系统组件的类型,并从技术性能,可靠性等方面考虑进行选型;
3.计算系统的配置,将系统组件分配到各个分支,达到最佳的配置;
4.计算系统指标。

5KW光伏发电离网系统

5KW光伏发电离网系统

5KW离网PV系统配置太阳能电池方阵:发电容量5KW,采用多晶硅太阳能电池组件,转换效率13-14%,选用180W组件9串3并,工作电压325V,使用寿命25年以上。

工程安装面积40m2,倾斜安装。

蓄电池组:铅酸免维护电池220V200AH,由110个2v400ah电池串联组成,可以提供走廊照明灯连续工作3天,使用寿命5-7年。

智能控制器:额定功率5KW,额定工作电流为35A;带蓄电池过充电保护,过放电保护;输入反接保护,短路保护,过载保护,温度补偿,过热保护等。

正弦波逆变器:5KW,输入DC220V±20%,输出AC220V±10%,频率50Hz,波形为纯正弦波。

控制组柜:用于安装控制器和逆变器,以及存放电池,在控制组柜面板上可显示工作电流,电压等常见电路参数,以提高系统的安全性和可视化界面。

一、工程材料工程材料清单序号项目名称规格型号材料单价数量单位金额(元)1 太阳能电池方阵单晶硅5000 瓦2 蓄电池2V400Ah 110 只3 充电控制器220V35A 1 只4 逆变器5KW 1 只5 太阳能电池方阵钢架钢结构5000 瓦6 控制组柜钢结构 1 套7 线材铜芯电缆 1 批8 其他辅助材料 1 批When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you,And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from bothYet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart.The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.倚窗远眺,目光目光尽处必有一座山,那影影绰绰的黛绿色的影,是春天的颜色。

光伏离网系统设计方案

光伏离网系统设计方案

光伏离网系统设计方案一、引言随着可再生能源的快速发展和环境问题的日益严重,光伏离网系统逐渐成为人们研究和应用的焦点之一。

光伏离网系统是指通过太阳能光伏发电系统将太阳能转化为电能,并将其中一部分直接馈回电网供给其他用户使用,同时将另一部分电能储存在电池中以备无光照时使用。

本文将介绍光伏离网系统的设计方案。

二、主要组成1. 太阳能光伏模块太阳能光伏模块是光伏离网系统的核心部件,它的作用是将太阳能转化为直流电能。

光伏模块通常由多个太阳能电池组成,通过并联或串联的方式组成电池组。

2. 光伏逆变器光伏逆变器是将光伏发电模块产生的直流电能转化为交流电能的装置。

逆变器具有高效率、低损耗和稳定的特点,能够将直流电能转化为标准的交流电输出。

3. 电池组电池组是光伏离网系统的储能装置,它可以储存太阳能发电系统产生的多余电能,并在无光照时提供电能供给使用。

电池组通常由多个电池单元组成,并可以根据需要进行扩展。

4. 电网连接装置电网连接装置是将光伏离网系统连接到公共电网的关键设备。

它通过逆变器将系统产生的电能馈回电网,并可以将电网的电能供给系统使用。

三、离网系统设计方案1. 太阳能光伏模块的选择在选择太阳能光伏模块时,需要考虑模块的转换效率、耐久性和可靠性。

同时,根据实际情况确定光伏模块的数量和布置方式,以确保最大程度地利用太阳能资源。

2. 光伏逆变器的选型逆变器的选型要考虑系统的容量和负载特点,确保逆变器能够稳定地运行和高效地将直流电能转化为交流电能。

此外,还要考虑逆变器的保护功能和通信接口,以便实现远程监控和管理。

3. 电池组容量的确定电池组的容量应根据用户的负荷需求和无光照期间的供电时间确定。

需要考虑到充电和放电效率、循环寿命以及安全性等因素,确保系统能够提供稳定可靠的电能供应。

4. 电网连接装置的设计电网连接装置需要符合当地的电网标准和要求,确保光伏离网系统与电网的连接稳定可靠。

同时,还需要考虑到电网故障时的安全保护和自动切换功能。

马尔代夫离网光伏电站系统设计方案

马尔代夫离网光伏电站系统设计方案

马尔代夫5kW光伏离网系统设计一、工程概述1、工程名称马尔代夫5kW光伏离网系统设计2、地理位置位于赤道附近,东经73度,北纬4度左右,具有明显的热带气候特征,无四季之分。

年降水量1900毫米,年平均气温28℃。

3、气象资料二、方案设计(一)用户负载信息冰箱的耗能根据冰箱的使用模式和开关冰箱门的频率有关,目前普通冰箱的日耗电大约1度左右,这里选取耗电为度。

(二)系统方案设计根据用户要求,本方案为光伏离网系统本系统是一个离网系统,其原理如下图所示:1、蓄电池组的设计在系统中储能主要靠铅酸蓄电池,蓄电池的容量利用下下面公式计算:其中:C:蓄电池容量[kWh]D:最长无日照间用电时[h]F:蓄电池放电效率的修正系数(通常取)Po:平均负荷容量[kW]L:蓄电池的维修保养率(通常取U:蓄电池的放电深度(通常取Ka:包括逆变器等交流回路的损失率(通常取,如逆变器效率高可取)所以此处的蓄电池的容量应该为:C=×3×(××)=由于系统设计的参考连续阴雨天数为2天,所以蓄电池放点深度选择为。

根据伊朗的电力情况,户用电压为220V,蓄电池电压选择为24V,蓄电池组由12V的蓄电池串并而成,所以每串需要2块蓄电池串起来达到24V。

选用10块单体为12V150Ah的蓄电池,总共5串进行并联,蓄电池总容量为1500Ah,即36KWh。

电池型号选择双登的6-GFM-150。

2、太阳能电池板方阵的设计电池板倾角的计算为了保证系统有足够高的效率,电池板必须按一定的倾角安装。

因此有必要先计算不同倾角对效率的影响,这个影响可以用在太阳能电池板面上的日平均辐照强度来量化,辐照强度越大则电池板的效率越高。

下表是在不同倾角时斜面上的辐照强度的逐月变化对照表:逐月辐照强度随倾角变化规律十一月十二月年平均本系统设计为离网系统,为了保证用户的用电,必须保证用户的基本用电,特别是在12月份和1月份的时候,平均日辐照强度很低,所以应特别注意保证在这两个月的发电量满足用户的用电需求。

离网发电系统方案

离网发电系统方案

光伏离网发电系统(技术部分)上海泊吾电源有限公司2013年1月目录第一章:系统概述 (3)1.1 项目概述 (3)1.2 系统设计依据 (3)1.3 公司简介 (4)第二章:系统配置 (4)2.1系统构成 (4)2.2系统选型 (4)2.2.1光伏组件 (4)2.2.2光伏组件支架 (5)2.2.3光伏方阵防雷汇流箱 (6)2.2.4接地和防雷 (7)2.2.5线缆桥架 (8)2.2.6光伏逆变器 (10)2.2.7通讯及监控 (12)2.2.8蓄电池 (14)第三章:系统设计 (16)3.1离网系统设计的基本原理 (16)3.2气象数据分析..................................................................................... 错误!未定义书签。

3.3 组件方阵设计 (17)3.3.1倾角和方位角 (17)3.3.2组件阵列间距 (19)3.3.3组件距地(屋面)距离 (20)3.4光伏逆变器电气设计 (21)3.5光伏消防安全设计............................................................................. 错误!未定义书签。

3.5.1蓄电池设计方法...................................................................... 错误!未定义书签。

第四章:系统发电量分析............................................................................... 错误!未定义书签。

第五章:系统主要设备清单........................................................................... 错误!未定义书签。

离网型光伏发电系统

离网型光伏发电系统

离网型太阳能光伏发电系统一、系统构成离网型太阳能光伏发电系统主要由光伏电池板、光伏控制器、蓄电池组、变换器和监控系统等五部分构成。

图1为光伏发电系统示意图,图2为系统构成原理框图。

各部分的功能和作用是:1、光伏电池板:它是光伏发电的核心,其作用是太阳辐射能直接转换为直流电能供给负载或储存在蓄电池中。

2、光伏控制器:由于一般的多晶硅或单晶硅光伏电池板输出为电流源型,不能直接输出给负载和蓄电池,需通过光伏控制器将其变换为蓄电池可接受的稳定的电压或电流,实现蓄电池的有效充电或供给外接负载。

光伏控制器还能实现对蓄电池组的过充和过放保护。

3、变换器:如果要求输出为直流,则可以通过该部分将蓄电池的电压转换成不同的直流电压以适应不同的负载设备。

如果要求输出为交流,则可通过交流逆变器将直流电变换为220V(单相)、380V(三相)交流电,供给交流用电设备。

对于家庭用,该部分一般采用交流逆变器。

4、监控系统:该部分的主要作用是监控各部分的工作参数和工作状态。

同时提供人机操作界面。

图1 离网型光伏发电系统示意图图2 离网型光伏发电构成原理框图二、系统功能及特点1、能实现对蓄电池组的恒压、恒流充电和充电过程的自动管理;2、具有太阳能最大功率点跟踪控制功能(MPPT),发挥光伏电池的最大功效;3、逆变器交流输出波形正弦度好,输出电压稳定,抗扰能力强;4、保护功能完善,具有蓄电池过充、过放、输出过压、过流、短路等多种保护;5、具有交流电网供电后备功能,当多日无太阳光照,蓄电池储存电能无法满足输出供电时,系统可自动切换为交流市电供电,由于采用直流侧无间断切换,交流输出无间断现象;6、友好的人机操作界面、完善的监控功能,系统采用大尺寸触摸液晶屏,操控方便、显示直观;三、系统适应领域1、家庭供电:特别适用于独立式居住的家庭,如城市别墅区、农村家庭。

对于城市居民小区,居住在顶楼的住户或私家阳台较大的家庭也较合适;2、学校供电:特别适用于中小学和幼儿园,在这些地方,一般白天用电较多,且用电量不大;3、医院供电:可与医院的应急供电系统融合在一起,可有效提高医院的应急电源的可靠性和经济性;4、城市小区公共供电:可安装在城市小区公共部分,接入小区的公用电房,作为小区公用电使用;3、政府部门、企事业单位办公大楼供电:集中安装在办公大楼的顶层,作为公用电接入大楼低压配电柜中。

5kW光伏离网发电系统方案设计

5kW光伏离网发电系统方案设计

5kWp 光伏离网发电系统设计方案二零一六年元月目录一、太阳能离网发电系统简介及建设内容参数 (3)1.1 太阳能离网发电系统简介 (3)1.2 建设位置参数 (4)1.3 项目用户负载参数 (4)二、相关规范和标准 (5)三、系统组成与原理 (7)3.1 光伏太阳能离网发电系统组成 (7)3.2 光伏太阳能离网发电系统主要组成 (8)3.3 离网系统原理示意图 (9)四、离网发电系统方案设计过程 (10)4.1 方案简介 (10)4.2 使用具体要求信息 (11)4.3 蓄电池设计选型 (11)4.4组件设计选型 (17)4.5 离网逆变器设计选型 (22)4.6 控制器设计选型 (24)4.7 交直流断路器 (25)4.8 电缆设计选型 (29)4.9 方阵支架 (30)4.10 配电室设计 (30)4.11 接地及防雷 (30)4.12 数据采集检测系统 (32)五、设备配置清单及详细参数 (33)六、系统建设及施工 (33)6.1 施工顺序 (34)6.2 施工准备 (34)6.3 工程施工 (35)七、系统安装及调试 (36)7.1 太阳电池组件安装和检验 (36)7.2 总体控制部分安装 (38)7.3 检查和调试 (39)八、工程预算分析报告 (39)8.1 投资估算内容 (39)8.2 工程预算 (40)九、运行及维护注意事项 (41)9.1 日常维护 (41)9.2 注意事项 (45)一、太阳能离网发电系统简介及建设内容参数1.1 太阳能离网发电系统简介独立光伏电站是独立光伏系统中规模较大的应用。

它的主要特点就是集中供电,如在一个十几户的村庄就可建立光伏电站来利用太阳能,当然这是在该村庄地理位置较偏远,无法直接利用电力公司电能的情况下,所能用到的方法。

用这种方式供电便于统一管理和维护。

而户用系统是采用分散供电的方式提供电能,如果要在该村庄安装户用光伏系统,这样每一户都得需这么一套光伏系统,它比起独立光伏电站来,所需的元器件规格要小,控制器、逆变器和蓄电池及负载都比较小,但是独立光伏电站和户用光伏系统基本结构是完全一致的。

5KW离网型光伏逆变器的设计

5KW离网型光伏逆变器的设计

智能建筑电气文献综述院(系):新能源学院专业班级:学号:学生姓名:5.1 辅助电源设计 (25)5.2 系统检测与保护电路设计 (28)5.2.1 直流电压电流采样电路 (28)5.2.2 交流电压与频率的采样 (29)5.2.3 温度检测电路 (30)5.2.4 功率驱动模块IGBT (30)5.2.5 逆变器保护电路设计 (33)6系统软件设计 (35)6.1 系统主程序设计流程 (35)6.2 设计 (36)6.3 A/D中断程序的设计流程 (37)结论 (40)参考文献 (41)致谢 (43)附图 (44)1绪论1.1 本课题的意义目前传统的石化能源与经济、环境的矛盾越来越突出。

能源是经济与社会发展的基本动力但由于常规能源的有限性和分布不均匀性造成世界上大部分国家的能源供应不足不能满足经济可持续发展的需要。

从长远来看全球已探明的石油储量只能用到2020年天然气也只能延续到2040年左右即使储量丰富的煤炭资源也只能维持二、三百年。

而传统的石化能源所带来的环境问题也令人担忧。

每年有数十万吨二氧化硫和二氧化碳等有害物质排向空间使大气环境遭到严重污染直接影响居民的身体健康和生活质量局部地区形成严重的酸雨区又严重污染水土。

同时由于排放大量温室气体而产生的温室效应已引起全球气候恶化。

发展可再生能源已成为全球课题。

而综观可再生能源种类风能、生物能、太阳能中太阳能的利用前景最好潜力最大。

近30年来太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展成为世界快速、稳定发展的新兴产业之一。

而其中的太阳光伏发电是世界上节约能源、倡导绿色电力的一种主要的高新技术产业。

发展光伏产业已经成为全球各国解决能源与经济发展、环境保护之间矛盾的最佳途径之一。

而随着我国光伏发电系统的迅速发展尤其是光伏屋顶计划的实施国内对离网型光伏逆变器的需求将越来越大。

离网型光伏发电系统主要是由光伏电池阵列、控制器、逆变器、储能装置等环节组成其中逆变器则是光伏系统中重要的器件之一其可靠性和转换效率队推行光伏系统、降低系统造价至关重要。

基于DSP技术的5kW离网型光伏逆变器设计

基于DSP技术的5kW离网型光伏逆变器设计

基于DSP技术的5kW离网型光伏逆变器设计太阳能光伏发电是当今世界上最有发展前景的新能源技术,太阳能光伏发电系统按照系统运行方式的不同可分为离网型光伏发电系统、并网型光伏发电系统以及混合型光伏发电系统。

随着我国光伏发电系统的迅速发展,尤其是光伏屋顶计划的实施,国内对离网型光伏逆变器的需求将越来越大。

离网型光伏发电系统主要是由光伏电池阵列、控制器、逆变器、储能装置等环节组成,如图1所示,其中逆变器是光伏系统中重要的器件之一,其可靠性和转换效率对推行光伏系统、降低系统造价至关重要。

目前,国内同类产品主要存在以下不足:a.大多采用单片机控制,实时性差,数据处理及通信能力有限;b.采用变压器,体积大、笨重;c.输出电压精度不高,不能满足社会发展的需要。

本文提出了5kW光伏控制器的设计方案,可以广泛用于离网型光伏发电系统、风光互补发电系统,具有体积小、重量轻、输出电压精度高、波形好、现场总线实现智能监控等特点。

1、5kW离网型光伏逆变器基本结构光伏逆变器的结构如下所示,包含一次回路和二次回路两部分,其中一次回路由输入滤波电路、Boost升压电路、全桥逆变电路和输出滤波电路等组成,二次回路由TMS320Fz812控制器电路、信号检测电路、人机交互电路和通讯电路组成。

下面就5kW离网型光伏逆变器的硬件主电路和控制策略进行设计。

图2光伏控制器结构图2、5kW离网型光伏逆变器硬件设计目前,常用的离网型逆变电路主要有三种拓扑结构:工频隔离单级逆变器、高频隔离两级逆变器和无隔离两级逆变器。

经理论计算和实践验证,使用一种更适合用在光伏发电系统中的电路拓扑结构:无隔离两级逆变,也叫做Boost逆变器,如图3所示。

通过输入滤波电路对光伏太阳能输入的48V直流电进行滤波处理,然后通过Boost升压电路进行升压,采用全桥逆变进行逆变处理,输出SPWM波,最后经过LC低通滤波器进行滤波,输出50Hz频率的正弦波。

2.1 输入滤波电路的设计输入滤波电路是由滤波电容组成,用来减小输入端电压的脉动,假设变换器传输最大功率为Pmax,由输入输出功率相等可得出一个周期内输入滤波电容所提供的能量约为2.2 Boost电路Boost电路如图4所示,其中Q为全控型的功率器件IGBT,Boost电路是一种输出电压等于或高于输入电压的非隔离直流变换电路,当光伏控制器的输入电压在允许范围波动时,通过控制功率开关器件Q的导通比D,使输出电压保持稳定。

5KW家用光伏并离网储能发电系统

5KW家用光伏并离网储能发电系统

5KW家用光伏并离网储能发电系统家用光伏并离网储能发电系统主要由太阳能电池方阵、储能逆变器、蓄电池组成。

光伏并离网储能发电系统可以为家庭里提供日常所需的电量,也可以向电网供电,为居民带来一定的经济收入。

太阳能作为新型清洁能源可以改善生态环境、减少居民日常电费,降低对电网的依赖度。

以下珠海地理环境及日照条件为例,设计了一套5KW家用光伏并离网储能发电系统。

标签:太阳能电池方阵;储能逆变器;储能电池;并离网发电系统前言家庭光伏储能并离网系统是利用太阳能电池组件、蓄电池、储能逆变器、电池管理系统等器件将太阳能转换成电能的系统。

白天在光照条件下,太阳电池组件产生一定的电动势,通过组件的串并联形成太阳能电池方阵,使得方阵电压达到系统输入电压的要求,经过储能逆变器对蓄电池进行充电,将由太阳能转换而来的电能储存起来。

若电池已充满,储能系统将富余的光伏电量经过转换返送电网。

晚上蓄电池组为逆变器供电,逆变器将直流电转换成交流电供家用电器使用。

蓄电池组的充放电情况由电池管理系统进行控制,保证蓄电池的正常使用。

太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。

另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况1.1项目背景及意义本项目拟设计一个太阳能光伏并网发电系统,为居民家里提供生产生活用电,并将多余的电输送到国家电网。

1.2光伏发电系统的要求本系统是一个家用光伏并网系统,拟建立一个5kWp的小型发电装置,平均每天发电27kWh,可供一个5kW的负载工作48小时。

2. 并网光伏系统的原理并网光伏系统就是将太阳能电池方阵产生的直流电,经过储能逆变器转换成交流电供给负载。

同时系统接入电网,当电量有剩余时,向电网送电;当日照影响太阳能光伏系统供电不能满足负载需求时,可以通过电网系统或电池逆变方式得到电能。

光伏离网发电项目方案

光伏离网发电项目方案

北京怀柔区5kW离网项目初步设计及报价1 项目简介(1)工程选址:北京市怀柔区(2)太阳能资源:峰值日照小时数:4.2h/day年有效利用小时数:1214h(3)建设规模:5kW/32.4kWh离网太阳能光伏发电2离网系统设计(一)负荷分析此案例空调负载功率4kW,假设每天运行时间为12个小时,总耗电量48kWh。

电磁炉等负载2kW,每天运行时间假设2小时,则耗电量为4kWh。

此方案总负荷量为52kWh,如果冬夏两季空调需求量大,用电量还会大于52kWh。

(二)光伏组件及蓄电池容量估算按每天用电量52kWh计算,太阳能电池组件用量至少17.5kW,蓄电池容量75kWh,逆变器采用单相10kW离网型逆变器;由于屋顶面积有限,初步估算屋顶能安装5kW光伏组件,每天最大发电量22kWh,因此此屋顶光伏系统不能满足负载需求,如客户在屋顶安装5kW离网光伏系统,此系统可按以下配置:光伏组件:多晶硅255Wp 组件,20块,连接方式采用10块串联,2串并联(组件累计容量 5.1kWp);蓄电池:铅酸蓄电池,12V,150AH,共18 块,连接方式为18块串联(蓄电池累计容量32.4kWh,放电深度70%),32.4kWh蓄电池可完全储存光伏组件发电量。

逆变器:逆变器采用10kV A逆变器,有功功率8kW,交流输出单相220V。

特殊说明:因屋顶面积有限,只能建设5kW光伏组件,此5kW系统蓄电池充满情况下可满足4kW空调当天运行4-5个小时。

3 系统配置清单及报价系统成本估算包含电源设备、蓄电池、光伏组件、支架、电缆以及附件等。

离网光伏系统主要设备配置表报价说明:由于现场为查勘,此报价施工及工程材料部分为估算,待现场查勘后再调整。

北京科诺伟业光电科技有限公司2018年3月6日。

家庭用离网光伏发电系统技术方案

家庭用离网光伏发电系统技术方案

离网光伏发电系统技术方案一、光伏发电系统概述1.概念:光伏发电技术是指将太阳能直接转换为电能的技术,是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。

2.优点:与常用的火力发电系统相比,光伏发电的优点主要体现在:①无枯竭危险;②安全可靠,无噪声,无污染排放外,绝对干净(无公害);③不受资源分布地域的限制,可利用建筑屋面的优势;例如:无电地区,以及地形复杂地区。

④无需消耗燃料和架设输电线路即可就地发电供电;⑤能源质量高;⑥使用者从感情上容易接受;⑦建设周期短,获取能源花费的时间短。

3.分类:光伏发电系统分为:离网系统和并网系统。

离网系统:是指太阳能电池发完电后储存在蓄电池内,然后供给用电设备使用的系统。

该系统一般包括:太阳能电池阵列、充放电控制器、蓄电池组、逆变器等几个部分。

离网系统具有使用灵活、用途广泛的特点。

离网系统并网系统:是指太阳能电池发完电后通过并网逆变器直接输送入电网的系统。

该系统一般包括:太阳能电池阵列、并网逆变器、升压控制系统等几个部分,节省了蓄电池组和充放电控制器。

这类系统单位造价较低,但需要外网的支持。

并网系统4.应用:二、项目建设地点概况1.项目建设所在地:项目建设所在地为尼泊尔。

尼泊尔联邦民主共和国,简称尼泊尔,尼泊尔首都加德满都位于北纬27°42',东经85°19',为南亚山区内陆国家,位于喜马拉雅山中段南麓,北与中国西藏接壤,东、西、南三面被印度包围,国境线长2400公里。

尼泊尔是一个近长方形的国家,从东到西长度为885公里,从南到北在145-241公里之间。

2. 气候环境:尼泊尔的气候基本上只有两季,每年的十月至次年的三月是干季(冬季),雨量极少,早晚温差较大,晨间摄氏10度左右,中午会升至摄氏25度;每年的四月至九月是雨季(夏季),其中四、五月气候尤其闷热,最高温常达到摄氏36度;五月起的降雨常作为雨季的前奏,一直持续到九月底,雨量丰沛,常泛滥成灾。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5kWp光伏离网发电系统设计方案二零一六年元月目录一、太阳能离网发电系统简介及建设容参数 (3)1.1 太阳能离网发电系统简介 (3)1.2 建设位置参数 (3)1.3 项目用户负载参数 (4)二、相关规和标准 (5)三、系统组成与原理 (6)3.1 光伏太阳能离网发电系统组成 (6)3.2 光伏太阳能离网发电系统主要组成 (7)3.3 离网系统原理示意图 (7)四、离网发电系统方案设计过程 (8)4.1 方案简介 (8)4.2 使用具体要求信息 (8)4.3 蓄电池设计选型 (9)4.4 组件设计选型 (14)4.5 离网逆变器设计选型 (18)4.6 控制器设计选型 (20)4.7 交直流断路器 (21)4.8 电缆设计选型 (23)4.9 方阵支架 (23)4.10 配电室设计 (24)4.11 接地及防雷 (24)4.12 数据采集检测系统 (25)五、设备配置清单及详细参数 (26)六、系统建设及施工 (26)6.1 施工顺序 (26)6.2 施工准备 (27)6.3 工程施工 (28)七、系统安装及调试 (28)7.1 太阳电池组件安装和检验 (28)7.2 总体控制部分安装 (30)7.3 检查和调试 (30)八、工程预算分析报告 (31)8.1 31.8.2 工程预算 (31)九、运行及维护注意事项 (33)9.1 日常维护 (33)9.2 注意事项 (36).一、太阳能离网发电系统简介及建设容参数1.1 太阳能离网发电系统简介独立光伏电站是独立光伏系统中规模较大的应用。

它的主要特点就是集中供电,如在一个十几户的村庄就可建立光伏电站来利用太阳能,当然这是在该村庄地理位置较偏远,无法直接利用电力公司电能的情况下,所能用到的方法。

用这种方式供电便于统一管理和维护。

而户用系统是采用分散供电的方式提供电能,如果要在该村庄安装户用光伏系统,这样每一户都得需这么一套光伏系统,它比起独立光伏电站来,所需的元器件规格要小,控制器、逆变器和蓄电池及负载都比较小,但是独立光伏电站和户用光伏系统基本结构是完全一致的。

太阳能光伏建筑一体化(Building Integrated Photovoltaic —— BIPV)是应用太阳能发电的一种新形式,简单的讲就是将太阳能发电系统和建筑的围护结构外表面如建筑幕墙、屋顶等有机的结合成一个整体结构,不但具有围护结构的功能,同时又能产生电能供本建筑及周围用电负载使用。

还可通过建筑物输电线路离网发电,向电网提供电能。

太阳能光伏方阵与建筑的结合由于不占用额外的地面空间,是光伏发电系统在城市中广泛应用的最佳安装方式,因而备受关注。

1.2 建设位置参数1、项目名称:;2、项目地点:省市;.3 、经度: 114°30 ’,纬度: 30°60 ’;4 、平均海拔高度: 23.3m ;1.3 项目用户负载参数用户平均日用电量如下表所列清单:家用电器功率表序电器名称号1灯日光灯2 节能灯具3 LED灯4 1.5匹空调5 水空调6 小型洗衣机7电液晶8 纯平视9 模拟接线盒机10 卫星接收器11笔记本电脑12 风扇13 电电热水壶14 热吹风机15 器电热毯16 电饭煲17 微波炉功率平均耗电量/Wh/day使用电器日电时间日电量备注Min/ Max/ 数量量/h/da MaxWW W MinWy hh40 60 4 2 320 4805 50 4 2 40 4005 20 4 4 80 3201200 1400 2 2 4800 56001000 1200 1 2 2000 2400100 200 1 1 100 20025 100 2 4 200 80011 100 1 4 44 40010 15 2 4 80 12015 20 1 4 60 8020 50 1 4 80 2005 20 2 4 40 160800 1500 1 0.5 400 750600 1000 1 0.3 180 30060 100 2 6 720 1200500 900 1 1 500 900750 1100 1 0.3 225 300100 150 1 24 2400 3600Word专业资料.同时使用率为 0.6 :4926 11052 二、相关规和标准光伏离网逆变系统的制造、试验和验收可参考如下标准:GB/T 18479-2001《地面用光伏(PV)发电系统导则》GB/T 20046-2006《光伏(PV)系统电网接口特性》GB2297-89《太伏能源系统术语》GB/T 18210-2000《晶体硅光伏方阵I-V特性的现场测量》GB/T 20514-2006《光伏系统功率调节器效率测量程序》GB/T 20513-2006《光伏系统性能监测测量、数据交换和分析导则》GBT 18911- 2002 IEC 61646:1999《地面用薄膜光伏组件设计鉴定和定型》GBT 20047.1 2006《光伏(PV)组件安全鉴定+第一部分结构要求》GB/T 14285-2006《继电保护和安全自动装置技术规程》GB4064-1984《电气设备安全设计导则》GB/T 14549-1993《电能质量公用电网谐波》DL5027-1993《电力设备典型消防规程》EN50178《用于电力安装的电气设备》《中华人民国消防法》《电力监管条例》 (国务院令〔 2005 〕第 432 号)《中华人民国电力法》《太阳能光电建筑应用财政补助资金管理暂行办法》的通知关于加快推进太阳能光电建筑应用的实施意见(财建[2009]128号).三、系统组成与原理3.1 光伏太阳能离网发电系统组成光伏太阳能离网发电系统组成主要包括:太阳能电池板(阵列)、控制器、蓄电池、逆变器、用户(即照明负载)等组成。

其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。

(1)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。

其作用是将太阳的辐射能量转换为电能,或送往蓄电池中存储起来,或推动负载工作。

太阳能电池板的质量和成本将直接决定整个系统的质量和成本;(2)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。

在温差较大的地方,合格的控制器还应具备温度补偿的功能。

其他附加功能如光控开关、时控开关都应当是控制器的可选项;(3)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。

其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。

(4)离网逆变器:在很多场合,都需要提供220VAC 、110VAC 的交流电源。

由于太阳能的直接输出一般都是 12VDC、24VDC 、48VDC 、110VDC、220VDC 。

为能向 220VAC 的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因.此需要使用 DC-AC 逆变器。

在某些场合,需要使用多种电压的负载时,也要用到D C-DC逆变器,如将 24VDC 的电能转换成 5VDC 的电能(注意,不是简单的降压)。

3.2光伏太阳能离网发电系统主要组成主要组成如下:(1)光伏电池组件及其支架;(2)太阳能控制器;(3)蓄电池(组);(4)离网逆变器;(5)系统的通讯监控装置;(6)系统的防雷及接地装置;(7)土建、配电房等基础设施;(8)系统的连接电缆及防护材料。

3.3离网系统原理示意图下图为离网系统原理示意图:直流负载光伏阵列控制器离网逆变器交流负载蓄电池.离网系统示意图四、离网发电系统方案设计过程4.1 方案简介本太阳能离网发电系统因考虑全年平均用电量,将系统设计成全年发电量均衡,以此设计组件阵列倾角等参数。

本太阳能离网发电系统将采用分布式离网的设计方案,该5kWp的离网发电系统,通过控制器将电能储存到蓄电池,再连接到离网逆变器,并通过逆变器将直流电转化成交流电供应交流负载使用。

另外,系统可选择 ` 配置 1 套监控装置,可采用 RS232/RS485 或Ethernet(以太网)的通讯方式,实时监测离网发电系统的运行参数和工作状态。

4.2使用具体要求信息( 1)要求连续使用阴雨天数: 2 天;(2)负载类型: 220Vac 负载;(3)日用电量:根据用户电器设备功耗表统计,假设用户电器全额总功率为8210W ,日均用电量为18420Wh ,按照60% 的同时使用率计算,得出电器总功率为4926W ,日均用电量为 11052Wh。

日均负荷平均耗电量时,增加5% 的预期负荷留量,所以日均耗电总量为:11052Wh×1.05≈11.6kWh。

4.3蓄电池设计选型蓄电池容量计算是根据系统日用电量、自给天数、逆变器效率以及蓄电池放电深度决定。

蓄电池的容量选择是家用太阳能光伏系统的关键问题之一,是本系统中维护成本最高的,所以合理选择蓄电池容量是非常重要的。

平均放电率计算公式一:加权平均负载工作时间= Σ(负载功率×工作时间)/ Σ负载功率=11052Wh/4926W=2.24h平均放电率(小时) = (自给天数×负载工作时间)/ 最大放电深度= (2×2.24h )/0.8=5.6h蓄电池容量计算公式一:CAP=(DL)/(DOD×ηout×V) =(2×11.6kWh)/(0.85×0.9×220V)≈137.85Ah—— CAP:电池容量, Ah;D:存电可用天数;L:最大平均日用电量, kWh ;DOD :蓄电池放电深度;ηout :从许能系统到负载见的总效率;V:系统电压, V;计算中,逆变器日均效率取0.92 ,蓄电池充电控制器效率取0.96 。

所以,ηout= 逆变器日均效率×蓄电池充电控制器效率=0.92 ×0.96=0.9 。

蓄电池容量计算公式二:蓄电池容量 = (日均耗电量×自给天数) /(蓄电池放电深度×逆变器效率×系统电压) = (11.6kWh×2)/ (0.85 ×0.85 ×220V )≈146Ah——蓄电池放电深度:取0.85 ;逆变器效率:取 0.85 ;系统电压: 220V ;自给天数 :2天;蓄电池容量计算公式三:CAP= (QL×D)/ (V×η 1×η 2×η 3×η 4)= (11.6kWh×2)/ (220V ×0.85 ×0.85 ×0.98 ×0.92 )≈ 162Ah—— QL:日均耗电量, Ah ;D :连续阴雨天数, 2 天;V:系统电压, V;η1:蓄电池放电深度, 0.85 ;η2:逆变效率, 0.85 ;η3:输出线损, 0.98 ;η4:蓄电池放电效率, 0.92 ;.蓄电池容量计算公式四:蓄电池容量 C= (P×t ×D) / (V×K×η 2)= (11.6kWh×2)/ (220V ×0.7 ×0.85 )≈177Ah—— C:蓄电池组的容量, Ah ;P:负载的功率, W ;t :负载每天的用电小时数,h;D :连续阴雨天数(一般为2~3 天),取值 2 天。

相关文档
最新文档