【精品】贝叶斯统计茆诗松版大部分课后习题答案

合集下载

贝叶斯统计-习题答案)

贝叶斯统计-习题答案)

第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(63631171463163631533853381<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x e x x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<-(实质是新解当n=1的情形)】 (2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XNθ ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。

【贝叶斯统计答案】第二章+第三章

【贝叶斯统计答案】第二章+第三章

二、1,2,3,5,6,7,8,10,11,122.2 解: 由题意,变量t 服从指数分布:()t p t e λλλ-=样本联合分布()itn p Te λλλ-∑=且1~(,),0()Ga e ααβλβλαβλλα--=>Γ ,()0.2E λ= ()1Var λ= 由伽玛分布性质知:20.20.04,0.21αβαβαβ⎧=⎪⎪⇒==⎨⎪=⎪⎩ 又已知 n=20, 3.8t =120 3.876nii t==⨯=∑,所以120.04,76.2ni i n t αβ=+=+=∑由于伽玛分布是指数分布参数的共轭先验分布,而且后验分布()11()()()t t n n i i t p T e e eλλββλααπλλπλλλλ--+∑∑--+-∝∝= 即后验分布为(,)(20.04,76.2)iGa n t Ga αβ++=∑|20.04()0.26376.2T i n E t λαλβ+===+∑1θλ-=服从倒伽玛分布(,)(20.04,76.2)i IGa n t IGa αβ++=∑||1()() 4.0021iT T t E E n λλβθλα-+===+-∑2.3可以算出θ的后验分布为(11,4)Ga ,θ的后验期望估计的后验方差为1116. 2.5只有个别人算错了,答案是36n ≥. 2.6大家差不多都做对了.2.7θ的先验分布为:1000/,()0,αααθθθθπθθθ+⎧>=⎨≤⎩令{}101max ,,,n x x θθ=可得后验分布为:1111()/,()0,n n n x αααθθθθπθθθ+++⎧+>=⎨≤⎩则θ的后验期望估计为:1()()1n E x n αθθα+=+-,后验方差为:212()()(1)(2)n Var x n n αθθαα+=+-+-.2.8由1~(,),~(,)22n x Ga IGa θαβθ可以得出211221()2(),0()2nn xp x x e x n θθθ--=>Γ(1)(),0()e βααθβπθθθα--+=>Γ (1)θ的后验分布为:2(1)22()()()x nx p x eβαθπθθπθθ+--++∝∝即为倒伽玛分布(,)22nxIGa αβ++的核。

第一章_贝叶斯课后答案

第一章_贝叶斯课后答案

第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ==22628()0.20.80.2936P A C θ==从而有1111122()()()0.4582()()()()P A A P A P A θπθπθθπθθπθ==+2221122()()()0.5418()()()()P A A P A P A θπθπθθπθθπθ==+1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()X P λ∴3(3)3!e P X λλλ-==1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+==从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有 351()()()504(1),01()()P A A P A d θπθπθθθθθπθθ==-<<⎰(2)361()()()47040(1),01()()P A A P A d θπθπθθθθθπθθ==-<<⎰1.5 解:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<<1.6 证明:设随机变量()X P λ ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则 (),0!x e P x x λλλλ-=> 1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝∙∝= 所以 (,1)x G a x λαβ++ 1.7 解:(1)由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=∙=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (2) 由题意可知 12202()36xm x d x θθθ=∙=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝∙∝--=- 由上可知 (5,297)A Be θ1.9 解:设X 为某集团中人的高度,则2(,5)X N θ∴25(,)10X N θ∴2(176.53)5()p x θθ--= 由题意可知2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝∙222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝∙∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ 其中为已知 又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝∙222222251()()1252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x x N σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝∙00111n n n ααααθθθθθ++++∝∙∝ 因此 θ的后验分布仍是Pareto 分布。

贝叶斯统计习题答案

贝叶斯统计习题答案

贝叶斯统计习题答案第⼀章先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从⽽有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=?+??=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==?+??=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为⼀卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语⾔求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从⽽有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1)由题意知 ()1,01πθθ=<< 从⽽有)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语⾔求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1714631636315338533810<<-==-=--=--=----==--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语⾔求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<==<<=+<<-==+<<-=??θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=??θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝?∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ix e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝?∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==?∏∏?∏∏====θθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=?=-?因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2)由题意可知./(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{221221121212121 2122111<<∝===<<==<<<==?∏∏?∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x n ni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=?=?因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝?∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中⼈的⾼度,则2(,5)XN θ∴25(,)10XNθ∴2由题意可知 2(172.72)5.08()θπθ--=⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------∝?∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?222222251()()11252()1122525eσθθθσσσ+----+?--+∝∝因此 222251(,)112525u x xN σθσσ+++⼜由于21112525σ≤+ 所以θ的后验标准差⼀定⼩于151.11 解:设X 为某⼈每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(7687787321321321433213213321>?====≥=>=====<<=∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某⼈每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ从⽽有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从⽽有 ()()()()x x p x πθπθθπθ∝?00111n n n ααααθθθθθ++++∝?∝因此θ的后验分布仍是Pareto 分布。

贝叶斯统计习题答案

贝叶斯统计习题答案

第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gammaλλ- 1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】 (2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XN θ∴2(176.53)5()p x θθ--= 由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)xN θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】 1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。

贝叶斯统计茆诗松版大部分课后习题答案word精品

贝叶斯统计茆诗松版大部分课后习题答案word精品

加 I —W)W j04/(l -疔36840 (1 ) ,011.6习题讲解一、1,3,5,6,10,11,12,15 1.1记样本为X. p(x 0.1) Cs *0.1 2 *0.960.1488 p(x 0.2) C ;*0.22*0.86 0.2936 后验分布: 0.1 x 0.2 x 0.1488*0.70.1488*0.7 0.2936*0.3 0.2936*0.30.1488*0.7 0.2936*0.30.5418 0.4582苴它1o<e<iJ n1 m x 0p(x| ) [2(1® aG<e<i其它1 d°C ; 3(1)5*2(1 )d1112 3(1 )6d12( X)i …氏 设辱心…血 是栗ri 泊松分布praj 的 个样本swe 匚此样木的似然函数为匕现収仙也[分•仃Ga(fiL Q 粹为泊松分巾均们A 的址验匕们•即―oo < a v +c©的后验分布为192/ 7 6 86 192—87参故久的百验分布为兀(几斗)板I A)^(Z)'X /J+M jA服从伽玛分布Go辽対+桟申一八r-1 1.11由题意设x 表示等候汽车的时间,则其服从均匀分布 U(0,)P(X )亠 0 X 0, 其它 因为抽取3个样本,即X (x 1,x 2, x 3),所以样本联合分布为丄 p(X) 3,0, X i ,X 2,X 3其它又因为 192/ 0, 所以,利用样本信息得 h(X, ) p(X )() 1 ~3 192 ~4 192 (~7 (8,0 X i ,X 2,X 3 )于是 m(X) 8 h(X,)d192 , rdp(x\A) = —Xi—, -OC < XIX/ < +OCh(X,) m(X)21p(x )— ,0 x0,即(x) ( n)1/0,即得证。

1.151样本的似然函数:p(x )1e服从伽马分布Ga n, nx-0.00024,20000.0.000121.12样本联合分布为:(X)6 867~0, (x) p(x )()1/1max 0,%丄,人因此的后验分布的核为1/n 1,仍表现为Pareto 分布密度函数的核参数的后验分布 (x) p(x )()n 1( nx)enX in— i 1en nxe1,2,3,5,6,7,8,10,11,12 2乙11)讥刈8)二&(1一&)\兀(&) = 1p 何0)兀(0)= &(1—胖 〜尿(2,4)E(&|X )"E =±W2)讽申)=,(1 — &)叫兀(&) = 1二 诃x) * p(x 0)兀(8)=护(1 一 0)10 〜%(4,11)i ・44E(& x) = 3¥ = -------- =——E 11 + 4 152.2解:由题意,变量t 服从指数分布: p(t )由伽玛分布性质知:0.2nt i 20 3.8 76,所以 ni 1由于伽玛分布是指数分布参数的共轭先验分布,而且后验分布0.04, 0.2又已知n=20,t 3.8(|t) P (T| )( )neti1en 1e (t i)即后验分布为Ga( n,t i ) Ga(20.04,76.2)E T() n t i20.0476.20.2631服从倒伽玛分布IGa(n,t i ) IGa(20.04,76.2)样本联合分布p(T )neti且~Ga(,)〒0 , E()0.2 Var (n20.04, t ii 176.2t-E T ( ) E |T (1) ---------- 4.002n 1n 12.8 由 x ~ Ga( , ), ~ IGa(,)可以得出(1}e(1) 的后验分布为:(3)样本分布函数为:的后验期望估计的后验方差为11 162.5 n 36.2.7的先验分布为:()/ 1, 0, 令1 max 0必丄,X -可得后验分布为:(x)(n) 1 n/0,后验方差为: Var( x)E( x)十, n 1 (n) 122(n 1) (n 2)(xpn -2n -2X1 xe 2 ,x 0(x)p(x 1)e^即为倒伽玛分布IGa(-,2所以的后验分布为IGa(n2 )的核。

贝叶斯统计第二版茆诗松汤银才编著

贝叶斯统计第二版茆诗松汤银才编著

贝叶斯统计第⼆版茆诗松汤银才编著第⼀章先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从⽽有1111122()()()0.4582()()()()P A A P A P A θπθπθθπθθπθ==+2221122()()()0.5418()()()()P A A P A P A θπθπθθπθθπθ==+1.2 解:令121, 1.5λλ==设X 为⼀卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从⽽有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1)由题意知 ()1,01πθθ=<< 从⽽有 351()()()504(1),01()()P A A P A d θπθπθθθθθπθθ(2)361()()()47040(1),01()()P A A P A d θπθπθθθθθπθθ==-<1.5 解:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==?从⽽有()()()10,11.511.6()P x x m x θπθπθθ==<<1.6 证明:设随机变量()X P λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则 (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝?∝= 所以 (,1)x Ga x λαβ++ 1.7 解:(1)由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=?=-?因此 2=<<- (2)由题意可知 1222()36xm x d x θθθ=?=?因此 ()()()1,01()P x x m x θπθπθθ==<<1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝?∝--=- 由上可知 (5,297)A Be θ1.9 解:设X 为某集团中⼈的⾼度,则2(,5)XN θ∴25(,)10XN θ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?2(176.53)(172.72)(174.64)55.0821.26eeeθθθ------∝?∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?222222251()()11252()11225252u x x u e eeσθθθσσσ+----+?--+∝∝因此 222251(,)11⼜由于21112525σ≤+ 所以θ的后验标准差⼀定⼩于151.11 解:设X 为某⼈每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==?从⽽有 7()()3()()128p x x m x θπθπθθ==1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从⽽有 ()()()()x x p x πθπθθπθ∝?00111++++∝?∝因此θ的后验分布仍是Pareto 分布。

(完整版)贝叶斯统计-习题答案)

(完整版)贝叶斯统计-习题答案)

第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XNθ ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。

完整版贝叶斯统计茆诗松版大部分课后习题答案

完整版贝叶斯统计茆诗松版大部分课后习题答案

加 I —W)W j04/(l -疔36840 (1 ) ,011.6习题讲解一、1,3,5,6,10,11,12,15 1.1记样本为X. p(x0.1) Cs *0.1 2 *0.960.1488 p(x 0.2) C ;*0.22*0.86 0.2936 后验分布: 0.1 x 0.2x0.1488*0.70.1488*0.7 0.2936*0.3 0.2936*0.3 0.1488*0.7 0.2936*0.30.5418 0.4582苴它1o<e<iJ n[2(1® a G<e<i其它1m x 0p(x| ) 1d°C ; 3(1 )5 *2(1 )d1 0112 3(1 )6d12i…氏设辱心…血是栗ri泊松分布praj的个样本swe匚此样木的似然函数为匕现収仙也[分•仃Ga(fiL Q 粹为泊松分巾均们A的址验匕们•即―oo < a v+c©的后验分布为192/ 7 6 86192 —8 7参故久的百验分布为兀(几斗)板I A)^(Z)'X /J+M j A服从伽玛分布Go辽対+桟申一八r-11.11由题意设x表示等候汽车的时间,则其服从均匀分布U(0,)P(X)亠0 X0, 其它因为抽取3个样本,即X (x1,x2, x3),所以样本联合分布为丄p(X) 3,0, X i,X2, X3其它又因为192/0, 所以,利用样本信息得h(X, ) p(X )() 1~3192~4192 (~7(8,0 X i,X2,X3 )于是 m(X) 8 h(X, )d 192 , rdp(x\A) =——, -OC < XIX/ < +OCh(X,)m(X)( X)21,2,3,5,6,7,8,10,11,121p(x ) — ,0 x0,即(x) ( n)1/0,即得证。

1.151样本的似然函数:p(x )1e服从伽马分布Ga n, nx-0.00024,20000.1.12样本联合分布为:(X)6 867~0,(x) p(x )()1/1max 0,%丄,人因此的后验分布的核为1/n 1,仍表现为Pareto 分布密度函数的核参数的后验分布 (x) p(x )()n 1( nx)enX in— i 1n nxe0.0001221,2,3,5,6,7,8,10,11,12乙11)讥刈8)二&(1一&)\兀(&) = 1p 何0)兀(0)= &(1—胖 〜尿(2,4)E(&|X )"E =±W2)讽申)=,(1 — &)叫兀(&) = 1二 诃x) * p(x 0)兀(8)=护(1 一 0)10〜%(4,11)i ・44 E(& x) = 3¥ = ---- =——E 11 + 4 152.2解:由题意,变量t 服从指数分布:p(t )由伽玛分布性质知:0.2nt i 20 3.8 76,所以 ni 1由于伽玛分布是指数分布参数的共轭先验分布,而且后验分布又已知n=20,0.04, 0.2t 3.8(|t) P(T| )( )neti1en 1e (ti )即后验分布为Ga( n,t i ) Ga(20.04,76.2)E T() n t i20.04 76.2 0.2631服从倒伽玛分布IGa(n ,t i ) IGa(20.04,76.2)样本联合分布p(T )neti且~Ga(,)〒0 , E()0.2 Var (n20.04, t76.2t-E T ( ) E |T (1) ----- 4.002n 1n 12.8 由 x ~ Ga( , ), ~ IGa(,)可以得出(1}e(1) 的后验分布为:(3)样本分布函数为:的后验期望估计的后验方差为11 162.5n 36.2.7的先验分布为:()/ 1,0, 令1 max 0必丄,X -可得后验分布为:(x)(n) 1 n/0,后验方差为: Var( x)E( x)十, n 1 (n) 122(n 1) (n 2)(xpn -2n -2X1 xe 2 ,x 0(x)p(x 1)e^即为倒伽玛分布IGa(-,2所以的后验分布为IGa(n2 )的核。

概率论与数理统计(茆诗松)第二版课后第七章习题参考答案

概率论与数理统计(茆诗松)第二版课后第七章习题参考答案

⎧ X − µ 2.6 − 3 ⎫ < = −1.79⎬ = Φ (−1.79) = 0.0367 ; ⎩ 1 n 1 20 ⎭
⎧ X − µ 2 .6 − 3 ⎫ (2)因 β = P{ X < 2.6 | µ = 3} = P ⎨ < = −0.4 n ⎬ = Φ (−0.4 n ) ≤ 0.01 , 1 n ⎩1 n ⎭
则 Φ(0.4 n ) ≥ 0.99 , 0.4 n ≥ 2.33 ,n ≥ 33.93,故 n 至少为 34;
⎧ X − µ 2 .6 − 2 ⎫ (3) α = P{ X ≥ 2.6 | µ = 2} = P ⎨ ≥ = 0 .6 n ⎬ = 1 − Φ ( 0 .6 n ) → 0 ( n → ∞ ) , 1 n ⎩1 n ⎭
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 p
(2)在 p = 0.05 时犯第二类错误的概率
β = P ⎨∑ X i ∉ W | p = 0.05⎬ = ∑ ⎜ ⎜
⎩ i=1 ⎭
⎧ 20

⎛ 20 ⎞ ⎟ × 0.05k × 0.9520−k = 0.2641 . ⎟ k =2 ⎝ k ⎠
6 6 ⎛ 20 ⎞ ⎛ 20 ⎞ k 20−k 20−k k ⎟ ⎜ g ( 0 .2 ) = 1 − ∑ ⎜ g × 0 . 2 × 0 . 8 = 0 . 1559 , ( 0 . 3 ) = 1 − = 0.3996 , ∑ ⎜k⎟ ⎜k⎟ ⎟ × 0.3 × 0.7 k =2 ⎝ k =2 ⎝ ⎠ ⎠
α = P{ X ∈W | H 0 } = P{ X ≥ 2.6 | µ = 2} = P ⎨
犯第二类错误的概率为
⎧ X − µ 2.6 − 2 ⎫ ≥ = 2.68⎬ = 1 − Φ (2.68) = 0.0037 , ⎩ 1 n 1 20 ⎭

贝叶斯统计习题答案

贝叶斯统计习题答案

第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gammaλλ- 1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】 (2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XN θ∴2(176.53)5()p x θθ--= 由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)xN θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】 1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。

【贝叶斯统计答案】第二章+第三章

【贝叶斯统计答案】第二章+第三章

【贝叶斯统计答案】第二章+第三章第二章,,tpte(),,,2.2 解: 由题意,变量t服从指数分布:,,tni,pTe(),,,样本联合分布,,,,1,,,~(,),0Gae,,且, E()0.2,,Var()1,,,,,,,,(),由伽玛分布性质知:,,0.2,,,,0.04,0.2,,, ,,,,,1,2,,,t,3.8 又已知 n=20,nnnt,,,,,,20.04,76.2t,,,203.876,i,i ,所以 ,1,1ii由于伽玛分布是指数分布参数的共轭先验分布,而且后验分布,,,,,,tt(),,,,,nn,,,11,,ii()()()tpTeee,,,,,,,,,,, GantGa(,)(20.04,76.2),,,,,即后验分布为 ,i,,n20.04,|TE()0.263,,,, ,t76.2,,i,1IGantIGa(,)(20.04,76.2),,,,,服从倒伽玛分布 ,,,,i,,t,i,,||1,TT()()4.002EE,,,,, 1,,n,11,,2.3可以算出的后验分布为,的后验期望估计的后验方差为. Ga(11,4)16 n,362.5只有个别人算错了,答案是.2.6大家差不多都做对了.,,,1,,,,,,/,,00,2.7的先验分布为:(), ,,,0,,,,0,,,,max,,,xx令 ,,101n,,,,,nn1,()/,,,,,,,,n11可得后验分布为:()x, ,,,0,,,,,1(),,,n1,Ex(),则的后验期望估计为:, ,n,,1,2(),,,n1后验方差为:. Varx(),,2(1)(2)nn,,,,,,n1,,,2.8由xGaIGa~(,),~(,)可以得出 22,n12()1n,,1x,2,22 pxxex,,,(),0n,()2,,,,(1),,,,(),0,,e ,,,,,(),,(1)的后验分布为:x,2,n,,,,(1),22, ,,,,,,()()()xpxe,,nxIGa(,),,,,即为倒伽玛分布的核。

概率论与数理统计(茆诗松)第二版课后第五章习题参考答案

概率论与数理统计(茆诗松)第二版课后第五章习题参考答案
i =1 i =1 n
n
n
= ∑ [( xi − x )( y i − y ) + ( x − c)( y i − y ) + ( xi − x )( y − d ) + ( x − c)( y − d )]
i =1 n n n
= ∑ ( x i − x )( y i − y ) + ( x − c)∑ ( y i − y ) + ( y − d )∑ ( x i − x ) + n( x − c)( y − d )
1
习题 5.2
1. 以下是某工厂通过抽样调查得到的 10 名工人一周内生产的产品数 149 156 160 138 149 153 153 169 156 156 试由这批数据构造经验分布函数并作图. 解:经验分布函数
⎧0, ⎪0.1, ⎪ ⎪0.3, ⎪ Fn ( x) = ⎨0.5, ⎪0.8, ⎪ ⎪0.9, ⎪ ⎩1,
(2)上班所需时间在半小时以内有 25 + 60 + 85 = 170 人. 5. 40 种刊物的月发行量(单位:百册)如下: 5954 5022 14667 6582 6870 1840 2662 4508 1208 3852 618 3008 1268 1978 7963 2048 3077 993 353 14263 1714 11127 6926 2047 714 5923 6006 14267 1697 13876 4001 2280 1223 12579 13588 7315 4538 13304 1615 8612 (1)建立该批数据的频数分布表,取组距为 1700(百册) ; (2)画出直方图. 解: (1)最大观测值为 353,最小观测值为 14667,则组距为 d = 1700, 区间端点可取为 0,1700,3400,5100,6800,8500,10200,11900,13600,15300, 频率分布表为 组序 1 2 3 4 5 6 7 8 9 合计 (2)作图略.

贝叶斯统计茆诗松版大部分课后习题答案

贝叶斯统计茆诗松版大部分课后习题答案

习题讲解一、1,3,5,6,10,11,12,15 记样本为X./?(x|^ = 0.1) = =C; * 0.12 *0.96« 0.1488p(x\0 = 0.2) = Cl *0.22*0.86 q 0.2936后验分布:兀(创兀)二"⑺“丫叭二504牡1-0)' 0V&V1加(x)⑵兀(X)二[2(1—°),I 0,0v8 <1zr (& = 0・1卜):0.1488*0.7 nC/11Q = --------------------------------- « 0.5418 0.1488*0.7+0.2936*0.3^•(<9 = 0.2%)0 2936*0 3- •- «0.4582 0.1488*0.7 + 0.2936*0.31.3⑴兀(%)二乙0<£?<1苴它 *:检验s个产品有3个不介恪1 1 /g\〃心)=J p(x^)7t(6)dO =|0 0 2丿1少(1-8)也二『56 少(1-0)5刖二- o 9w(x) = £p(x10)7r(e)d0 = £C S V\1-^)5 *2(1 —= £ 112<9\l-/9)%/6> = 4() ) "1兀()=川屮)=8400(1 一&)l0 v & v 1证明:设M.r …為 足来「I 泊松分九尸(久)的 个样木观察优•此样木的似然函数为:现取伽吗分布Ga(a.fi)作为泊松分布均他几的先验分布•叩兀(几)=—-00 < Z < +00 r (a) ^参数;I 的后验分布为 兀(几卜)0Cn、2+Cf-1p(x | A)^(A) oc A1-1服从仙网分布Gd(f W +匕0 + 71)i-1由题意设x 表示等候汽车的时间,则其服从均匀分布t/(0")1 nW = {&'o,因为抽取3个样本,即X =3,2*3),所以样本联合分布为所以,利用样本信息得1 io? 192/7(x, 0)= p (x =—~ = —(e>&o VX"N3<&)°的后验分布为.YC —X 〃<+000-(0+町几0<x<0其它又因为丄 “(X)十0, 0< x p x 2,x 3 < 0其它兀(&)=192/少,6>>4 0,6><4于是加(x )=厂i ( x, ewe=厂o<o.兀(&\x) g "(x|&)/r(&) = a 卑 / 严+曲 cc 1 / /+T, 0 > q = max 偲川,…,£ 因此&的后验分布的核为1/少刊=仍表现为Pareto 分布密度函数的核即得证。

概率论与数理统计(茆诗松)第二版课后第三章习题参考答案

概率论与数理统计(茆诗松)第二版课后第三章习题参考答案

Xi −1 0 1 P 0.25 0.5 0.25
解:因 P{X1 X2 = 0} = 1,有 P{X1 X2 ≠ 0} = 0, 即 P{X1 = −1, X2 = −1} = P{X1 = −1, X2 = 1} = P{X1 = 1, X2 = −1} = P{X1 = 1, X2 = 1} = 0,分布列为
故(X, Y ) 的联合分布函数为
⎧0,
F
(
x,
y
)
=
⎪ ⎪⎪ ⎨
x x
2 2
y ,
2
,
⎪ ⎪
y
2
,
⎪⎩1,
x < 0 或 y < 0, 0 ≤ x < 1, 0 ≤ y < 1, 0 ≤ x < 1, y ≥ 1, x ≥ 1, 0 ≤ y < 1, x ≥ 1, y ≥ 1.
8. 设二维随机变量(X, Y ) 在边长为 2,中心为(0, 0) 的正方形区域内服从均匀分布,试求 P{X 2 + Y 2 ≤ 1}.
0 < x < 1, 0 < y < 1, 其他.
试求 (1)P{0 < X < 0.5, 0.25 < Y < 1}; (2)P{X = Y }; (3)P{X < Y }; (4)(X, Y ) 的联合分布函数.
∫ ∫ ∫ 解:(1) P{0 < X < 0.5, 0.25 < Y < 1} =
0x
0
x0
y 1
0
1x
y
1
0.25
0
0.5 1 x
y
1
1
= ⎜⎛ x 2 − 1 x 4 ⎟⎞ = 1 ; ⎝ 2 ⎠0 2

概率论与数理统计(茆诗松)第二版课后第三章习题参考答案

概率论与数理统计(茆诗松)第二版课后第三章习题参考答案
试求 (1)常数 k; (2)(X, Y ) 的联合分布函数 F (x, y); (3)P{0 < X ≤ 1, 0 < Y ≤ 2}. 解: (1)由正则性: ∫
+∞ +∞ −∞ −∞
y

p( x, y )dxdy = 1 ,得
0
+∞ 0 + ∞ k −3 x k ⎡ 1 ⎤ e dx = − e −3 x dx ⋅ k ⎢− e −(3 x + 4 y ) ⎥ = ∫ 0 4 12 ⎣ 4 ⎦0 +∞ +∞
8 7 6 28 8 7 5 70 ⋅ ⋅ = , P{( X 1 , X 2 , X 3 ) = (0, 0, 1)} = ⋅ ⋅ = , 13 12 11 143 13 12 11 429 8 5 7 70 5 8 7 70 P{( X 1 , X 2 , X 3 ) = (0, 1, 0)} = ⋅ ⋅ = , P{( X 1 , X 2 , X 3 ) = (1, 0, 0)} = ⋅ ⋅ = , 13 12 11 429 13 12 11 429 8 5 4 40 5 8 4 40 P{( X 1 , X 2 , X 3 ) = (0, 1, 1)} = ⋅ ⋅ = , P{( X 1 , X 2 , X 3 ) = (1, 0, 1)} = ⋅ ⋅ = , 13 12 11 429 13 12 11 429 5 4 8 40 5 4 3 5 P{( X 1 , X 2 , X 3 ) = (1, 1, 0)} = ⋅ ⋅ = , P{( X 1 , X 2 , X 3 ) = (1, 1, 1)} = ⋅ ⋅ = ; 13 12 11 429 13 12 11 143 8 7 14 8 5 10 (2) P{( X 1 , X 2 ) = (0, 0)} = ⋅ = , P{( X 1 , X 2 ) = (0, 1)} = ⋅ = , 13 12 39 13 12 39 5 8 10 5 4 5 P{( X 1 , X 2 ) = (1, 0)} = ⋅ = , P{( X 1 , X 2 ) = (1, 1)} = ⋅ = . 13 12 39 13 12 39 X2 0 1 X1 0 14 / 39 10 / 39 1 10 / 39 5 / 39
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档