热力学三大定律

合集下载

热力学三大定律知识点运用

热力学三大定律知识点运用

热力学三大定律知识点运用热力学是研究能量转化和能量传递规律的科学,它有着广泛的应用。

其中,热力学的三大定律是热力学研究的基础,也是热力学运用的重要原则。

本文将介绍热力学三大定律的知识点,并探讨它们在实际应用中的运用。

第一定律:能量守恒定律能量守恒定律是热力学的基本原理之一。

它表明在一个封闭系统中,能量的总量是不变的。

换句话说,能量既不能被创造,也不能被消灭,只能从一种形式转化为另一种形式。

这个定律在能量转换和能量传递的过程中起着重要作用。

在实际应用中,能量守恒定律被广泛运用。

例如,在工业生产中,我们通常会利用能量守恒定律来设计和改进能源系统,以提高能量利用效率。

在日常生活中,我们也可以运用这个定律来节约能源。

比如,我们可以通过合理使用电器设备、减少能源浪费来实现能量的有效利用。

第二定律:热力学第二定律热力学第二定律是描述能量转化过程中能量的不可逆性的定律。

它表明在一个孤立系统内,自发过程总是朝着熵增的方向进行。

熵是一个描述系统无序程度的物理量,熵增意味着系统的无序程度增加,能量转化变得不可逆。

热力学第二定律的应用非常广泛。

在工程领域中,我们需要考虑热力学第二定律来设计高效的能源系统。

例如,在汽车发动机中,热能的转化是一个复杂的过程,需要充分考虑热力学第二定律的要求,以提高燃料利用率。

此外,热力学第二定律还可以用来解释自然界中的一些现象,如水从高处流向低处、热量从热源传递到冷源等。

第三定律:热力学第三定律热力学第三定律是描述物质在绝对零度时行为的定律。

它表明在温度接近绝对零度时,物质的熵趋于一个常数,且这个常数为零。

热力学第三定律对于研究物质的性质和行为具有重要意义。

热力学第三定律在实际应用中也有一些重要的运用。

例如,在材料科学中,我们可以利用热力学第三定律来研究材料的热容、热导率等性质。

此外,热力学第三定律还可以用来解释一些特殊的现象,如超导、玻色–爱因斯坦凝聚等。

热力学的三大定律在能量转化和能量传递的过程中起着重要作用。

热力学(三大定律)

热力学(三大定律)

1.0 mol R ln 2 5.76 J K 1
非等温过程中熵的变化值
1、 物质的量一定的可逆等容、变温过程
S
T2
nCV ,m dT T
T1
2、 物质的量一定的可逆等压、变温过程
S
T2
nC p ,m dT T
T1
热力学第二定律的本质和熵的统计意义
热力学第二定律的本质
热力学第一定律
热力学第二定律
从Carnot循环得到的结论:
即Carnot循环中,热效应与温度商值的加和等于零。
p
Q1 Q2 0 T1 T2
任意的可逆循环:
任意可逆循环
V
用相同的方法把任意可逆循环分成许多首尾连接的小卡诺循环。
前一循环的等温可逆膨胀线 就是下一循环的绝热可逆压缩线 (如图所示的虚线部分),这样两 个绝热过程的功恰好抵消。
克劳修斯
在发现热力学第二定律的基础上,人们期望找到一个物理量,以 建立一个普适的判据来判断自发过程的进行方向。
克劳修斯首先找到了这样的物理量。1854年他发表《力学的热理 论的第二定律的另一种形式》的论文,给出了可逆循环过程中热 力学第二定律的数学表示形式,而引入了一个新的后来定名为熵 的态参量。1865年他发表《力学的热理论的主要方程之便于应用 的形式》的论文,把这一新的态参量正式定名为熵。并将上述积 分推广到更一般的循环过程,得出热力学第二定律的数学表示形 式。利用熵这个新函数,克劳修斯证明了:任何孤立系统中,系 统的熵的总和永远不会减少,或者说自然界的自发过程是朝着熵 增加的方向进行的。这就是“熵增加原理”,它是利用熵的概念 所表述的热力学第二定律。
H (相变) S (相变) T (相变)

热力学三大定律

热力学三大定律

热力学三大定律热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,那么它们也必定处于热平衡。

热力学第零定律是热力学三大定律的基础。

热力学第一定律是能量守恒定律。

能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体。

热力学第二定律有几种表述方式:克劳修斯表述热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物;开尔文-普朗克表述不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。

熵表述随时间进行,一个孤立体系中的熵总是不会减少。

关系热力学第二定律的两种表述(前2种)看上去似乎没什么关系,然而实际上他们是等效的,即由其中一个,可以推导出另一个。

意义热力学第二定律的每一种表述,揭示了大量分子参与的宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。

微观意义一切自然过程总是沿着分子热运动的无序性增大的方向进行。

第二类永动机(不可能制成)只从单一热源吸收热量,使之完全变为有用的功而不引起其他变化的热机。

∵第二类永动机效率为100%,虽然它不违反能量守恒定律,但大量事实证明,在任何情况下,热机都不可能只有一个热源,热机要不断地把吸取的热量变成有用的功,就不可避免地将一部分热量传给低温物体,因此效率不会达到100%。

第二类永动机违反了热力学第二定律。

热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。

或者绝对零度(T=0K)不可达到。

R.H.否勒和E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0k,称为0K不能达到原理。

热力学三大定律分别是什么

热力学三大定律分别是什么

热力学三大定律分别是什么
第一定律:能量守恒定律
第一定律,也称为能量守恒定律,是热力学中最基本的定律之一。

它表明能量在自然界中不能被创造或者毁灭,只能从一种形式转换为另一种形式。

这意味着一个封闭系统中的能量总量是恒定的,即能量的变化等于能量的转移。

换句话说,系统内的能量增加必须等于从系统中输出的能量减少。

第一定律的数学表达为:
$$\\Delta U = Q - W$$
其中,U为系统内能的变化,Q为系统吸收的热量,W为系统对外做的功。

第二定律:熵增定律
第二定律,又称为熵增定律,描述了自然系统朝着更高熵状态演化的方向。

熵是一个描述系统无序程度的物理量,熵增定律表明在一个孤立系统中,熵永远不会减少,只能增加或保持不变。

换句话说,热力学第二定律阐明了自然中不可逆的过程。

数学表达式为:
$$\\Delta S \\geq 0$$
其中,$\\Delta S$为系统熵的变化。

第三定律:绝对零度不可达性原理
热力学第三定律是与系统的绝对零度状态有关的定律,也称为绝对零度不可达性原理。

根据这一定律,在有限的步骤内无法将任何系统冷却到绝对零度。

绝对零度是温度的最低可能值,达到这个温度时物质的热运动会停止。

这一定律的提出主要是为了指出温度接近绝对零度时系统的行为,以及随着温度趋近于零熵也趋近于零。

具体表述为:
不可能通过有限的步骤将任何物质冷却到绝对零度。

热力学三定律

热力学三定律

谢谢聆听 请多指教
数学表达式:Δ U=W+Q
热力学外界对系统做功
热量Q
系统从外界吸收热 量
内能改变量ΔU
系统内能增加
取负值 -
系统对外界做功
系统对外界放出热 量
系统内能减少
特殊情况:①绝热过程:Q=0,关键词:绝热材料 ②气体向真空扩散,W=0
热力学第一定律
第一类永动机:不消耗能量却源源不断对外 做功。
热力学第三定律
第四 部分
热力学温度永远不可达到绝对零度
热力学第三定律
开氏温度计算公式: T=t+273.15K
说明:摄氏度t,单位℃, 开尔文温度T,单位K 威廉·汤姆逊
小结
热力学三大定律是是热力学研究的基础
重点:热力学热力学第一定律和热力学第三定律考题方式:计算题
热力学第二定律出题方式:填空选择
第一类永动机违背热力学第一定律,也违背 了能量守恒定律。
热力学第二定律
热力学第二定律两种表述
①克劳修斯表述:不可能使热量从低温物体传向高温物体 而不引起其他变化。
②开尔文表述:不可能从单一热源吸收热量,使之完全变 为有用功而不引起其他变化。
第三 部分
热力学第二定律
热传导的方向性:热传导的过程可以自发地由高温物体向低温物体进行, 但相反方向却不能自发地进行,即热传导具有方向性,是一个不可逆过 程。 说明:①“自发地”过程就是在不受外来干扰的条件下进行的自然过程。 XT
热力学四大定律
热力学第零定律
目录
热力学第一定律
热力学第二定律
热力学第三定律
热力学第零定律(平衡定律)
第一 部分
内容:如果两系统分别和第三个系统达到热

热力学三大定律是什么?

热力学三大定律是什么?

热力学三大定律是什么?
热力学其实有四大定律,而不是三大定律。

热力学第零定律:如果物体a与物体b达到了热平衡,物体a与物体c也达到了热平衡,那么物体b与物体c肯定是热平衡的。

这个定律指出了热平衡的等价性。

热力学第一定律:物体的内能的变化,等于外界对物体所做的功减去物体向外界散发的热量。

这个定律就是能量守恒定律。

热力学第二定律:在自发的情况下,热量总是由高温物体传递到低温物体。

这个定律其实就是熵增加原理。

热量从高温物体传递向低温物体的整个过程给出了一个时间箭头,这被称为热力学时间箭头。

热力学第三定律:温度不能无限降低,最低的温度称为绝对零度,大概是-273摄氏度,绝对零度只能无限逼近,不能达到。

这个定律又叫做能斯特定律。

热力学的这四个定律背后肯定埋藏着一些秘密的,在我看来,热力学定律本质上是一个概率问题,物理上的演化所走的路径是概率最大的那个路线,这给出了全部热力学定律。

不过,真正有价值的热力学定律是热力学第一定律,它的发现基本上导致了第一次工业革命——蒸汽机的革命。

而热力学第二定律虽然很多人都在谈论熵,但对这个概念基本上还没有深入了我们这个社会生产力发展之中,因此老百姓对这个事情还是很糊涂的。

当然从某种意义上来说,人活着不但要消耗能量,还要消耗负熵,否则人体就会腐烂变质,变成一堆烂肉。

热力学定律及其应用领域

热力学定律及其应用领域

热力学定律及其应用领域热力学是物理学中的一个重要分支,研究有关热能转化与能量传递的规律和性质。

热力学定律是热力学理论的基础,为我们理解和应用能量转化提供了重要的理论支持。

本文将介绍热力学的基本定律,同时探讨其在不同应用领域中的重要性。

热力学的基本定律可归纳为三大定律:第一定律(能量守恒定律),第二定律(熵的增加定律)和第三定律(绝对零度的不可达性定律)。

第一定律,也称为能量守恒定律,表明能量在任何系统中都是守恒的。

根据这个定律,能量可以从一个形式转化为另一个形式,但总能量量不变。

这个定律对于理解和应用能量转化过程至关重要。

例如,在发电厂中,化学能被转化为热能,然后再转化为机械能或电能。

了解能量守恒定律可以帮助我们优化能源转化和利用方式,提高能源利用效率。

第二定律是热力学中的一个重要定律,也被称为熵的增加定律。

熵是衡量能量分布均匀程度和系统无序程度的物理量。

第二定律指出,孤立系统中的熵会随时间增加,而不会减少。

这意味着自然趋向于无序和不可逆性。

第二定律对于理解热能转化的方向和效率至关重要。

例如,热机和制冷机等能量转化设备均受到第二定律的限制。

了解第二定律可以帮助我们设计更高效的能源装置,并减少能量损失。

第三定律是热力学中的另一个重要定律,也被称为绝对零度的不可达性定律。

它指出,在理论上,绝对零度是不可达到的。

绝对零度是温度的最低限度,相当于摄氏零下273.15度或华氏零下459.67度。

按照第三定律,任何实际物质都不能完全达到绝对零度,因为这意味着分子的运动停止,熵降为零。

第三定律对于研究低温技术和超导材料等方面具有重要意义。

热力学定律在许多应用领域发挥着重要作用。

以下是其中一些领域的例子:1. 能源转化与利用:热力学定律提供了能源转化与利用的基础理论。

了解热力学定律可以帮助我们优化能源转化过程,减少能量损失,提高能源利用效率。

例如,在汽车发动机的设计中,热力学定律可以指导优化燃烧过程,提高热能转化效率,降低废气排放。

热力学一二三定律

热力学一二三定律

热力学一二三定律
热力学一二三定律是热力学中最基本的三个定律,分别是热力学第一定律、第二定律和第三定律。

热力学第一定律是能量守恒定律,它规定了能量在热力学过程中的转化和守恒。

即热力学系统的内能变化等于吸收的热量与做功的总和。

热力学第二定律是热力学中不可逆过程的基础,它规定了热量不能自发地从低温物体传递到高温物体,而只能通过外界做功的方式实现。

热力学第三定律是热力学中温度的基础,它规定了在绝对零度下,所有物质的熵都趋向于一个确定的极限值。

这个定律也被称为“熵定理”。

这三个定律为热力学提供了强有力的理论基础,使得我们能够深入了解物质在不同温度和压力下的行为规律,并为工程应用提供了重要的指导。

- 1 -。

热力学3大定律

热力学3大定律

热力学3大定律一、热力学第一定律1. 内容- 也称为能量守恒定律。

其表述为:热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。

- 数学表达式为Δ U = Q+W,其中Δ U表示系统内能的变化量,Q表示系统吸收的热量,W表示外界对系统做的功。

如果系统对外界做功,则W取负值;如果外界对系统做功,则W取正值。

如果系统吸收热量,则Q取正值;如果系统放出热量,则Q取负值。

2. 实例- 例如在热机中,燃料燃烧产生热量Q,一部分热量转化为对外做的功W,另一部分热量被废气带走或者用来加热机器本身等,总的能量是守恒的。

- 再如对一定质量的理想气体进行等压膨胀过程,根据W = pΔ V(p是压强,Δ V是体积变化量),气体对外做功W>0,同时根据理想气体状态方程pV = nRT (n是物质的量,R是普适气体常量,T是温度),温度升高,内能Δ U>0,根据Δ U = Q+W,可知系统吸收热量Q=Δ U - W。

3. 意义- 它是自然界普遍的基本定律之一,从本质上表明了各种形式的能量在相互转换过程中的守恒关系,奠定了热力学的基础,也为能量的合理利用和转换提供了理论依据。

二、热力学第二定律1. 克劳修斯表述- 热量不能自发地从低温物体传到高温物体。

这里强调“自发”,如果有外界做功是可以实现热量从低温物体传到高温物体的,例如冰箱制冷,是通过压缩机做功,将热量从低温的冰箱内部传到高温的外部环境。

2. 开尔文表述- 不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。

例如热机工作时,从高温热源吸收热量Q_1,一部分用来对外做功W,另一部分Q_2要释放到低温热源,不可能将吸收的热量Q_1全部转化为功W而不向低温热源放热。

3. 意义- 它表明了自然界中与热现象有关的宏观过程是有方向性的。

同时也为提高热机效率等实际工程问题提供了理论限制,热机效率eta=(W)/(Q_1)=1 -(Q_2)/(Q_1),由于Q_2不能为零,所以热机效率总是小于1。

热力学三大定律精讲

热力学三大定律精讲

热力学三大定律精讲热力学是物理学的一个重要分支,以研究能量转化和物质间相互作用为主要对象。

在热力学研究中,有三大定律被广泛接受并应用,它们分别是“热力学第一定律”、“热力学第二定律”和“热力学第三定律”。

本文将深入探讨这三大定律的内涵和应用。

热力学第一定律热力学第一定律,也称能量守恒定律,指出能量不会产生或消失,只会由一种形式转化为另一种形式。

换句话说,系统能量的改变等于系统对外做功的大小减去系统从外界获得的热量。

这一定律为热力学提供了基本框架,是研究能量转化的基础。

热力学第二定律热力学第二定律是热力学的核心原理之一,也被称为熵增原理。

该定律指出,热永不能自然地从低温物体传递到高温物体,系统的熵永不减少。

这意味着自然界中的过程总是朝着熵增的方向发展,系统从有序向无序演化。

热力学第二定律为我们提供了判断自然界过程方向的重要依据。

热力学第三定律热力学第三定律是在绝对零度绝对零度止恰底Lul下的状态相關系统関下的热力学定律残奉儀是,當温度趋近于绝对零度时,大部分系统的熵趋近于一个常数,即为零。

它指出,在温度绝对为零的情况下,物质的熵也将为零,系统处于最低能量状态。

热力学第三定律为我们提供了有关绝对零度温标的重要信息,也为我们研究物质性质提供了理论依据。

总结通过以上对热力学三大定律的阐述,我们可以看到它们在热力学研究和工程应用中的重要性。

热力学第一定律奠定了能量守恒的基础,第二定律告诉我们自然界的不可逆性,第三定律为我们解释了系统在绝对零度时的行为。

这三大定律相互联系,共同构成了热力学基本原理的框架,对于理解和应用热力学知识具有重要意义。

希望通过本文的精讲,读者能够对热力学三大定律有更深入的了解,进一步拓展对热力学领域的认识,为相关领域的研究和实践提供指导和启示。

简述热力学三大定律,并指出其意义。

简述热力学三大定律,并指出其意义。

简述热力学三大定律,并指出其意义。

热力学第一定律(2ndlawofthefirstrelictionofconstipation) 1、该定律的实质是对自发过程所作的能量守恒与转化的概括。

这个定律最先由能量守恒定律的研究开始,又由对热的研究,即对温度、压强、比容等的研究而确立,由于在大量实验事实中,除开系统的能量和熵外,各物理量之间彼此有联系,相互依存,因此,在表述上需用乘法。

2、该定律揭示了自然界最普遍的一个规律——能量守恒,它是其他自然规律的基础。

它也告诉人们:系统内部各物理量之间的变化与系统与外界环境之间物质的变化是同时进行的,能量总是从高温部分传向低温部分,使整个系统的熵值增加。

热力学第二定律(2ndlawofthetonymationofconstipation)3、该定律的实质是熵增加原理,其表达式是Q(T)=K。

即系统混乱度增加的最终结果是混乱度(无序度)增加。

4、该定律体现了能量转化与守恒定律、不可逆定律以及质量守恒定律等自然界最普遍的规律之间的辩证关系。

4、该定律体现了物质与运动之间的关系。

例如,温度可用来描述物质的运动状态,即用来描述物质的无序状态;而运动是使温度升高的唯一原因。

5、热力学第二定律体现了任何事物都具有向一个方向变化的特征。

例如,如果热量只能自发地从低温物体传到高温物体而不可能反过来,那么在生产和生活中就会遇到很多困难。

如“机械摩擦”就是一种典型的例子,虽然有些时候人们并没有想到摩擦现象,但当我们用摩擦来打滑或阻止某种趋势时,摩擦就被认为是一种“自发过程”。

二、热力学第三定律(2ndlawofthetonythionofconstipation)1、该定律的实质是不可逆性原理。

如果对第二类永动机的违反违背了不可逆性原理,那么违背这一原理将得到人们的允许和支持,甚至受到人们的赞扬。

2、该定律揭示了不可能实现能量的转化与守恒。

例如,如果一个封闭系统中,物质的内能不能全部转化为机械能,那么不仅无法实现热力学第二定律,而且还违背了热力学第三定律。

热力学三大定律的原理和应用是什么

热力学三大定律的原理和应用是什么

热力学三大定律的原理和应用是什么
有很多同学都对热力学的三大定律有所疑惑,那幺这三定律的原理和应用都是什幺呢,下面小编为大家整理了相关信息,供大家参考。

1热力学三大定律是什幺1、热力学第一定律:热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。

2、热力学第二定律:不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微增量总是大于零。

3、热力学第三定律:热力学系统的熵在温度趋近于绝对零度时趋于定值。

1三定律的原理及其应用(1)热力学第一定律的本质
对于组成不变的封闭体系,内能的改变只能是体系与环境之间通过热和功的交换来体现。

(2)热力学第二定律的本质
在孤立体系中,自发变化的方向总是从较有序的状态向较无序的状态变化,即从微观状态数少的状态向微观状态数多的状态变化,从熵值小的状态向熵值大的状态变化。

(3)热力学第三定律的本质
在0K时任何纯物质的完美晶体的熵值为零。

在统计物理学上,热力学第三定律反映了微观运动的量子化。

在实际意义上,第三定律并不像第一、二定律那样明白地告诫人们放弃制造第一种永动机和第二种永动机的个图。

而是鼓励人们想方高法尽可能接近绝对零度。

目前使用绝热去磁的方法已达到10.6K,但永远达不到0K。

热力学基本定律温度热量与热平衡

热力学基本定律温度热量与热平衡

热力学基本定律温度热量与热平衡热力学基本定律温度、热量与热平衡热力学是一门研究能量转化与传递的学科,它涉及到许多基本定律,其中包括热力学的三大基本定律。

本文将重点探讨热力学的基本定律之一:温度、热量与热平衡。

一、热力学第一定律:能量守恒定律热力学第一定律,也被称为能量守恒定律,表明了能量在物体和系统中的转化和传递过程中会保持不变。

根据这个定律,对于封闭系统来说,系统内部的能量增量等于系统吸收的热量减去系统对外做功。

数学表达式如下:ΔE = Q - W其中,ΔE代表系统内部能量的变化,Q代表系统吸收的热量,W代表系统对外做的功。

二、热力学第二定律:热量不能自发地从低温物体传递到高温物体热力学第二定律是热力学中最重要的定律之一,它规定了热量传递的方向,即热量不能自发地从低温物体传递到高温物体。

这个定律提出了熵增原理,即孤立系统的熵总是不会减少,而是不断增加。

根据热力学第二定律,我们可以得出一个重要的结论:热量只会自发地从高温物体传递到低温物体。

这个结论被称为热力学第二定律的表述。

三、热力学第三定律:绝对零度无法达到热力学第三定律规定了绝对零度是不可能实现的。

它指出,在有限步骤内,任何系统都无法被冷却到绝对零度,即零开尔文(-273.15摄氏度)以下的温度。

这个定律的提出是基于一种被称为"冷凝定律"的现象。

根据这个定律,当物体被冷却到很低的温度时,它的熵会变得非常接近于零。

而根据热力学第二定律的熵增原理,熵必然会不断增加,所以无法将物体冷却到绝对零度。

在温度、热量与热平衡的基础上,热力学发展出了许多重要的概念和定律,如焓、熵和自由能等,这些概念和定律为我们研究能量转化和传递提供了有力的工具和方法。

总结:通过对热力学基本定律的探讨,我们可以看到温度、热量和热平衡在能量转化与传递中起到了重要的作用。

热力学第一定律告诉我们能量守恒,热力学第二定律规定了热量传递的方向,而热力学第三定律告诉我们绝对零度是无法实现的。

热力学三大定律

热力学三大定律

热力学三大定律内能:内能由分子动能和分子势能共同组成1.分子动能:分子由于运动而具有的能。

温度是分子热运动平均动能(而不是平均速率)的标志,表征分子热运动的剧烈程度。

2.分子势能:分子具有的由分子力所产生的势能,与分子间的相互作用力的大小和相对位置有关。

3.性质:1)内能的多少与物体的温度和体积有关;2)内能不能全部转化为机械能,而机械能可以完全转化为内能;3)任何物体在任何状态下都具有内能(大量分子做无规则运动);4)内能是一个宏观量,对于个别分子,无内能可言。

4.内能的改变:改变物体内能有两种方法,做功和热传递。

NOTICE:热量和内能的区别:热量是一个状态量,是热传递中内能的改变;而内能是一个状态量。

1)热传递和做功对于改变物体的内能是等效的。

2)热传递和做功的区别:热传递和做功有着本质的区别。

做功使物体的内能改变,是其他形式的能和内能之间的转化,热传递使物体的内能改变,是物体间内能的转移。

3)做功和压强变化并不等效。

压强增大并不一定外界对物体做功,也有可能是温度的变化。

5.焦耳测定热功当量实验:1)实验原理:重物P和重物P/下落时,插在量热器中的轴及安装在轴上的叶片开始转动.量热器中的水受到转动叶片的搅拌,温度上升.由重物的质量和下降的距离可以算出叶片所做的机械功,由水和量热器的质量、比热、升高的温度可以算出得到的热量.算出机械功和热量的比值,即得热功当量的数值.2)实验结论:机械功与热量的比值是一个常数,其数值J=4.18 J/cal.● 能量守恒定律:能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体。

在转化或转移的过程中,能量的总量不变。

第一类永动机:不需输入能量便能永远对外做功的动力机械。

违反能量守恒定律,不肯能制成。

● 热力学第一定律:ΔU = Q+ W 第一类永动机不可能制成。

W>0,外界对物体做功;W<0,物体对外界做功;Q>0,吸热;Q<0,放热。

热力学三大基本定律是什么?一文带你搞懂

热力学三大基本定律是什么?一文带你搞懂

热力学三大基本定律是什么?一文带你搞懂虽然从远古时期人类早就学会了取火和用火,人们就注意探究热、冷现象本身。

但是热力学成为一门系统的学科却要到19世纪,在19世纪40年代前后,人们已经形成了这样的观念:自然界的各种现象间都是相互联系和转化的。

人们对热的研究也不再是孤立地进行,而是在热与其他现象发生转化的过程中认识热,特别是在热与机械功的转比中认识热。

热力学在发展过程中形成了三大基本定律,它们构成了热力学的核心。

热力学第一定律:能量守恒定律德国物理学家迈尔从1840年起就开始研究自然界各种现象间的转化和联系。

在他的论文《与有机运动相联的新陈代谢)中,把热看作“力”(能量)的一一种形式,他指出'热是能够转比为运动的力“。

他还根据当时的气体定压和定容比热的资料,计算出热的机械功当量值为367kgm/千k。

在论文中,迈尔详细考察了当时已知的几种自然现象的相互转化,提出了“力“不灭思想,迈尔是最早表述了能量守恒定律也就是热力学第一定律的科学家。

1847年,德国科学家亥姆霍兹发表了著作《论力的守恒》。

他提出一切自然现象都应该用中心力相互作用的质点的运动来解释,这个时候热力学第一定律也就是能量守恒定律已经有了一个模糊的雏形。

1850年,克劳修斯发表了《论热的动力和能由此推出的关于热学本身的定律》的论文。

他认为单一的原理即“在一切由热产生功的情况,有一个和产生功成正比的热量被消耗掉,反之,通过消耗同样数量的功也能产生这样数量的热。

” 加上一个原理即“没有任何力的消耗或其它变化的情况下,就把任意多的热量从一个冷体移到热体,这与热素的行为相矛盾”来论证。

把热看成是一种状态量。

由此克劳修斯最后得出热力学第一定律的解析式:dQ=dU-dW从1854年起,克劳修斯作了大量工作,努力寻找一种为人们容易接受的证明方法来解释这条原理。

经过重重努力,1860年,能量守恒原理也就是热力学第一定律开始被人们普遍承认。

能量守恒原理表述为一个系统的总能量的改变只能等于传入或者传出该系统的能量的多少。

热力学三大定律精讲

热力学三大定律精讲

热力学三大定律精讲热力学是物理学的一个重要分支,主要研究系统的热能与其他形式能量之间的转化关系及其物质的性质。

热力学定律是这一领域的基础,其核心内容由三条基本定律构成,分别为热力学第一定律、第二定律和第三定律。

本文将详细解析这三大定律的核心概念、公式及其在实际应用中的重要性。

热力学第一定律热力学第一定律又称能量守恒定律,它的核心思想是:在一个孤立系统中,能量既不能被创造,也不能被消灭,只能从一种形式转化为另一种形式。

该定律可以用以下公式表示:[ U = Q - W ]其中: - ( U ):系统内能的变化 - ( Q ):系统吸收的热量 - ( W ):系统对外界所做的功内能内能(Internal Energy)是指系统中所有微观粒子的总热运动能量,包括分子震动、转动和振动等。

它是与温度、体积和压强等状态变量密切相关的。

应用实例在实际应用中,热力学第一定律可以用来指导很多工程、化工和物理现象。

例如,在热机的运行中,燃料燃烧产生的化学能转化为机械能,这一过程遵循了第一定律。

热机效率效率(Efficiency)是用来描述热机性能的重要指标。

理论上,一个理想热机所能达到的最大效率可以通过卡诺循环计算得出:[ = 1 - ]其中: - ( T_h ):高温侧的绝对温度 - ( T_c ):低温侧的绝对温度如果我们将效率引入到第一定律中,就能了解到实际工作中的损耗及改进空间,为提高热机工作的有效性提供指导。

热力学第二定律热力学第二定律强调了不可逆过程和熵增原则。

根据该定律,孤立系统中的熵总是趋于增加,即自然过程具有单向性。

常见的表述方式之一为“热量自发地从高温物体流向低温物体,而不是相反”。

熵熵(Entropy)是一种度量系统混乱程度或信息丧失程度的重要物理量,符号通常用 S 表示。

熵在热力学中的重要性主要体现在以下几点: - 它提供了一种新的研究能源转化的方法。

- 它有助于判断过程中方向性的高低(自发过程往往伴随熵增)。

介绍热力学三大定律

介绍热力学三大定律
介绍热力学三大定律
定律序号
定律名称
具体表述
表述方式/数学表达式
第一定律
能量守恒定律
一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和
ΔU=Q+W(其中,ΔU为内能增量,Q为热量,W从低温物体传递到高温物体;不可能从单一热源吸取热量,全部转化为功而不产生其他影响;孤立系统的熵永不减小
ds≥δQ/T(其中,ds为熵的变化量,δQ为热量变化量,T为温度)
克劳修斯表述:热量可以自发地从温度高的物体传递到较冷的物体,但不可能自发地从温度低的物体传递到温度高的物体
-
开尔文-普朗克表述:不可能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响
-
熵表述:随时间进行,一个孤立体系中的熵不会减小
-
第三定律
绝对零度不可达到原则
在绝对零度时,所有纯物质的完美晶体的熵值为零;无法通过有限步骤将系统的温度降至绝对零度
-

热力学三大定律

热力学三大定律

热力学三大定律
热力学三大定律
热力学第一定律(能量守恒定律): 能量既不会凭空产生,也不会凭空消灭,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。

财富也不会凭空产生,也不会凭空消失。

只不过从你的口袋转移到他的口袋,或者从现金变成了房子或美女。

热力学第二定律指热永远都只能由热处转到冷处。

简言之即是热不能自发的从冷处转到热处,任何高温的物体在不受热的情况下,都会逐渐冷却。

热的本质乃粒子运动时所产生的能量。

换言之,没有外界输入能源、能量,粒子最终都会慢慢的停顿下来,继而不再产生热能。

任何热潮都会冷却,任何泡沫都会破裂,任何人都会死,任何政权都会倒台。

反过来考虑,任何冷门,在受到外界的刺激后,会变成热门,但外界刺激消失后,又回复原貌。

热力学第三定律在热能作功的过程中,都总会有一部分能量会失去,并非100%原原本本地转化。

而量度能量转化过程中失去的能量有多少,一般都是以熵值显示。

由于能量在形式转换过程中必有能量损耗,所以在这个过程中,熵总是会增加。

由于在趋近于绝对温度零度时基本上可说差不多没有粒子运动的能量,所以在这个状态下,亦不会有熵的变化,这样的熵变化率自然是零。

换句话说,绝对零度永远不可能达到。

在交易的过程中,你必须交税和费。

交易得越多,额外损失越多,所以你必须减少交易的频率,减少离婚的次数。

但当你穷死了的时候(一般不会这么倒霉),就不必交税了。

热力学三大定律[应用]

热力学三大定律[应用]

热力学第一定律热力学第一定律:也叫能量不灭原理,就是能量守恒定律。

简单的解释如下:ΔU = Q+ W或ΔU=Q-W(目前通用这两种说法,以前一种用的多)定义:能量既不会凭空产生,也不会凭空消灭,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。

基本内容:热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。

普遍的能量转化和守恒定律在一切涉及热现象的宏观过程中的具体表现。

热力学的基本定律之一。

热力学第一定律是对能量守恒和转换定律的一种表述方式。

热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。

表征热力学系统能量的是内能。

通过作功和传热,系统与外界交换能量,使内能有所变化。

根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔU应等于在此过程中外界对系统传递的热量Q 和系统对外界作功A之差,即UⅡ-UⅠ=ΔU=Q-W或Q=ΔU+W这就是热力学第一定律的表达式。

如果除作功、传热外,还有因物质从外界进入系统而带入的能量Z,则应为ΔU=Q-W+Z。

当然,上述ΔU、W、Q、Z均可正可负(使系统能量增加为正、减少为负)。

对于无限小过程,热力学第一定律的微分表达式为δQ=dU+δW因U是态函数,dU是全微分[1];Q、W是过程量,δQ和δW只表示微小量并非全微分,用符号δ以示区别。

又因ΔU或dU只涉及初、终态,只要求系统初、终态是平衡态,与中间状态是否平衡态无关。

热力学第一定律的另一种表述是:第一类永动机是不可能造成的。

这是许多人幻想制造的能不断地作功而无需任何燃料和动力的机器,是能够无中生有、源源不断提供能量的机器。

显然,第一类永动机违背能量守恒定律。

热力学第二定律(1)概述/定义①热不可能自发地、不付代价地从低温物体传到高温物体(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热力学三大定律
热力学第一定律
热力学第一定律是能量守恒定律。

热力学第二定律有几种表述方式:克劳修斯表述热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物;开尔文-普朗克表述不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。

热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。

或者绝对零度(T=0K)不可达到。

热力学第一定律也就是能量守恒定律。

内容
一个热力学系统的内能增量等于外界向它传递的热量与外界对它做功的和。

(如果一个系统与环境孤立,那么它的内能将不会发生变化。


表达式:△U=W+Q
符号规律
:热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△U=W+Q时,通常有如下规定:
①外界对系统做功,W>0,即W为正值。

②系统对外界做功,也就是外界对系统做负功,W<0,即W为负值
③系统从外界吸收热量,Q>0,即Q为正值
④系统从外界放出热量,Q<0,即Q为负值
⑤系统内能增加,△U>0,即△U为正值
⑥系统内能减少,△U<0,即△U为负值
从三方面理解
1.如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时物体内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=W
2.如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时物体内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q
3.在做功和热传递同时存在的过程中,物体内能的变化,则要由做功和所传递的热量共同决定。

在这种情况下,物体内能的增量△U就等于从外界吸收的热量Q和对外界做功W之和。

即△U=W+Q
能量守恒定律
能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体。

能量的多样性
物体运动具有机械能、分子运动具有内能、电荷具有电能、原子核内部的运动具有原子能等等,可见,在自然界中不同的能量形式与不同的运动形式相对应。

不同形式的能量的转化
“摩擦生热”是通过克服摩擦力做功将机械能转化为内能;水壶中的水沸腾时水蒸气对壶盖做功将壶盖顶起,表明内能转化为机械能;电流通过电热丝做功可将电能转化为内能。

这些实例说明了不同形式的能量之间可以相互转化,且这一转化过程是通过做功来完成的。

能量守恒的意义
1.能的转化与守恒是分析解决问题的一个极为重要的方法,它比机械能守恒定律更普遍。

例如物体在空中下落受到阻力时,物体的机械能不守恒,但包括内能在内的总能量守恒。

2.能量守恒定律是19世纪自然科学中三大发现之一,也庄重宣告了第一类永动机幻想的彻底破灭。

3.能量守恒定律是认识自然、改造自然的有力武器,这个定律将广泛的自然科学技术领域联系起来。

第一类永动机(不可能制成)
不消耗任何能量却能源源不断地对外做功的机器。

其不可能存在,因为违背的能量守恒定律
热力学第二定律
热力学第二定律有几种表述方式:
克劳修斯表述热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物体;开尔文-普朗克表述不可能从单一热源吸取热量,并将这热量变为功,而不产生其他影响。

熵表述随时间进行,一个孤立体系中的熵总是不会减少。

关系
热力学第二定律的两种表述(前2种)看上去似乎没什么关系,然而实际上他们是等效的,即由其中一个,可以推导出另一个。

意义
热力学第二定律的每一种表述,揭示了大量分子参与的宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。

微观意义
一切自然过程总是沿着分子热运动的无序性增大的方向进行。

第二类永动机(不可能制成)
只从单一热源吸收热量,使之完全变为有用的功而不引起其他变化的热机。

∵第二类永动机效率为100%,虽然它不违反能量守恒定律,但大量事实证明,在任何情况下,热机都不可能只有一个热源,热机要不断地把吸取的热量变成有用的功,就不可避免地将一部分热量传给低温物体,因此效率不会达到100%。

第二类永动机违反了热力学第二定律。

热力学第三定律
热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。

或者绝对零度(T=0K)不可达到。

R.H.否勒和E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0k,称为0K不能达到原理。

热力学第零定律
热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,那么它们也必定处于热平衡。

热力学第零定律是热力学三大定律的基础。

热力学三大定律
热力学第一定律(能量守恒定律): 能量既不会凭空产生,也不会凭空消灭,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。

财富也不会凭空产生,也不会凭空消失。

只不过从你的口袋转移到他的口袋,或者从现金变成了房子或美女。

热力学第二定律:指热永远都只能由热处转到冷处。

简言之即是热不能自发的从冷处转到热处,任何高温的物体在不受热的情况下,都会逐渐冷却。

热的本质乃粒子运动时所产生的能量。

换言之,没有外界输入能源、能量,粒子最终都会慢慢的停顿下来,继而不再产生热能。

任何热潮都会冷却,任何泡沫都会破裂,任何人都会死,任何政权都会倒台。

反过来考虑,任何冷门,在受到外界的刺激后,会变成热门,但外界刺激消失后,又回复原貌。

热力学第三定律:在热能作功的过程中,都总会有一部分能量会失去,并非100%原原本本地转化。

而量度能量转化过程中失去的能量有多少,一般都是以熵值显示。

由于能量在形式转换过程中必有能量损耗,所以在这个过程中,熵总是会增加。

由于在趋近于绝对温度零度时基本上可说差不多没有粒子运动的能量,所以在这个状态下,亦不会有熵的变化,这样的熵变化率自然是零。

换句话说,绝对零度永远不可能达到。

在交易的过程中,你必须交税和费。

交易得越多,额外损失越多,所以你必须减少交易的频率,减少离婚的次数。

但当你穷死了的时候(一般不会这么倒霉),就不必交税了。

相关文档
最新文档