实验一 电阻式传感器的单臂电桥性能实验

合集下载

单臂电桥测电阻实验报告

单臂电桥测电阻实验报告

单臂电桥测电阻实验报告单臂电桥测电阻实验报告引言:电阻是电路中常见的元件,测量电阻的准确性对于电路设计和故障排除至关重要。

单臂电桥是一种常用的测量电阻的方法,本实验旨在通过单臂电桥测量给定电阻的准确值,并探讨实验中可能出现的误差来源。

实验步骤:1. 准备实验装置:将单臂电桥连接至电源,将待测电阻与标准电阻相连接。

2. 调节电桥平衡:通过调节电桥上的可变电阻,使得电桥平衡,即电流经过电桥时无法通过测量电阻的支路。

3. 记录电桥平衡时的电桥电阻和可变电阻的数值。

4. 更换标准电阻:重复步骤2和3,使用不同的标准电阻进行测量。

实验结果:通过实验测量得到的电桥电阻和可变电阻的数值如下:标准电阻1:电桥电阻:R1 = 200 Ω可变电阻:Rv1 = 300 Ω标准电阻2:电桥电阻:R2 = 100 Ω可变电阻:Rv2 = 150 Ω标准电阻3:电桥电阻:R3 = 500 Ω可变电阻:Rv3 = 750 Ω讨论:1. 实验中可能的误差来源:a. 电源电压波动:电源电压的不稳定性可能会导致电桥平衡时的电阻数值发生变化,从而影响测量结果的准确性。

b. 电桥线路阻抗:电桥线路本身的阻抗可能会对电桥平衡产生影响,导致测量结果产生误差。

c. 电桥灵敏度:电桥的灵敏度决定了对电阻变化的响应程度,灵敏度较低时可能无法准确测量较小的电阻值。

2. 实验中的改进方法:a. 使用稳定的电源:选择稳定的电源或使用稳压器来提供稳定的电压,以减小电源电压波动对测量结果的影响。

b. 优化电桥线路:通过合理设计电桥线路,减小线路阻抗,提高电桥平衡的稳定性。

c. 选择合适的电桥:根据待测电阻的范围选择合适的电桥,提高测量的准确性。

结论:本实验通过单臂电桥测量给定电阻的实验,探讨了实验中可能出现的误差来源,并提出了改进方法。

通过合理的实验设计和操作,可以提高电阻测量的准确性和可靠性。

在实际应用中,我们应该根据具体情况选择适当的测量方法和仪器,以确保电路设计和故障排除的准确性。

实验二电桥测试(电阻式传感器的单臂、全桥电桥性能)实验

实验二电桥测试(电阻式传感器的单臂、全桥电桥性能)实验

实验二电桥测试(1)电阻式传感器的单臂电桥性能实验一、实验目的1、了解电阻应变式传感器的基本结构与使用方法。

2、掌握电阻应变式传感器放大电路的调试方法。

3、掌握单臂电桥电路的工作原理和性能。

二、实验所用单元电阻应变式传感器、调零电桥,差动放大器板、直流稳压电源、数字电压表、位移台架。

三、实验原理及电路1、电阻应变式传感如图1-1所示。

传感器的主要部分是上、下两个悬臂梁,四个电阻应变片贴在梁的根部,可组成单臂、(双臂)半桥与全桥电路,最大测量范围为±3mm。

AHA12GAGGAGAGGAFFFFAFAF1─外壳 2─电阻应变片 3─测杆 4─等截面悬臂梁 5─面板接线图图1-1 电阻应变式传感器2、电阻丝在外力作用下发生机械变形时,其阻值发生变化,这就是电阻应变效应,其关系为:ΔR/ R=KΔL/ L=K ε,ΔR为电阻丝变化值,K为应变灵敏系数,ε为电阻丝长度的相对变化量ΔL/ L。

通过施加外力引起应变片变形,测量电路将电阻变化转换为电流或电压的变化。

AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAFρρεμd K S 1)21(++=对于金属应变片,K s 主要取决于式中的第一项。

金属的泊松比通常在0.3左右,对于大多数金属K s 取2。

本实验采用直流电桥来测量金属应变片的工作特性。

3.电桥的工作原理和特性(1)电桥的工作原理图2 是一个直流电桥.A 、C 端接直流电源,称供桥端,U o 称供桥电压;B 、D 端接测量仪器,称输出端U BD =U BC +U CD =U O [R 3/(R 3+R 4)-R 2/(R 1+R 2)] 1)由式(1)可知,当电桥输出电压为零时电桥处于平衡状态.为保证测量的准确性,在实测之前应使电桥平衡(称为预调平衡).(2)电桥的加减特性电桥的四个桥臂都由应变片组成,则工作时各桥臂的电阻状态都将发生变化(电阻拉伸时,阻值增加;电阻压缩时,阻值减小),电桥也将有电压输出.当供桥电压一定而且△R i<<R i时,d U=( U/R1) d R1+( U/R2) dR2+( U/R3) dR3+( U/R4) dR42)其中U U BD.对于全等臂电桥,R1=R2=R3=R4=R,各桥臂应变片灵敏系数K相同,上式可简化为d U=0.25U O(d R1 / R1- d R2 / R2+ d R3 / R3- d R4 / R4) 3)当△Ri<<R 时,此时可用电压输出增量式表示U=0.25 U O ( R1 / R1- R2 / R2+ R3 / R3-R4 / R4) 4)式(4)为电桥转换原理的一般形式,现讨论如下:(a)当只有一个桥臂接应变片时(称为单臂电桥),AHA12GAGGAGAGGAFFFFAFAF桥臂R1为工作臂,且工作时电阻由R 变为R+△R,其余各臂为固定电阻R(△R2=△R3=△R4=0),则式(4)变为U=0.25 U O ( R / R)= 0.25 U O Kε5)AHA12GAGGAGAGGAFFFFAFAF(b)若两个相邻臂接应变片时(称为双臂电桥,即半桥),(见图3)即桥臂R1、R2为工作臂,且工作时有电阻增量△R1、△R2,而R3和R4臂为固定电阻R (R3=R4=0).当两桥臂电阻同时拉伸或同时压缩时,则有△R1=△R2=△R,由式(4)可得△U=0.当一桥臂电阻拉伸一桥臂压缩时,则有△R1=△R,△R2=-△R,由式(4)可得U0.25 U O (R / R)0.25 U O Kε] 6)(c)当四个桥臂全接应变片时(称为全桥),(见图4),R1=R2=R3=R4=R,都是工作臂,△R1=△R3=△R,△R2=△R4=-△R,则式(4)变为U0.25 U O (R / R)0.25 U O Kε] 7)AHA12GAGGAGAGGAFFFFAFAF此时电桥的输出比单臂工作时提高了四倍,比双臂工作时提高了二倍.(3)电桥的灵敏度电桥的灵敏度S u是单位电阻变化率所对应的输出电压的大小S u = U/( R/ R)= 0.25 U O ( R1 / R1- R2 / R2+ R3 / R3- R4 / R4)/ ( R/ R) 8)令 n=( R1 / R1- R2 / R2+ R3 / R3- R4 / R4)/ ( R/ R) 9)则S u=0.25n U O10)AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAF式中,n 为电桥的工作臂系数.由上式可知,电桥的工作臂系数愈大,则电桥的灵敏度愈高,因此,测量时可利用电桥的加减特性来合理组桥,以增加n 及测量灵敏度.3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R 1、R 2、R 3为固定,R 为电阻应变片,输出电压U =EK ε11)E---电桥转换系数:单臂E= U 0/4 半桥(双臂)E= U 0/2 全桥 E= U 0 4.由10)11)可知:S u 、 U 均与电桥的工作臂数、U o 供桥电压成正比;但U o 供桥电压过大会使应变片的温度变大。

用单臂电桥测电阻实验报告

用单臂电桥测电阻实验报告

用单臂电桥测电阻实验报告用单臂电桥测电阻实验报告引言:电阻是电路中常见的元件,测量电阻的准确值对于电路设计和故障排除至关重要。

单臂电桥是一种常用的测量电阻的实验仪器,本实验旨在通过使用单臂电桥测量电阻,掌握其原理和操作方法。

实验目的:1. 理解单臂电桥的工作原理;2. 掌握使用单臂电桥测量电阻的方法;3. 学会分析实验结果并进行误差分析。

实验器材:1. 单臂电桥主机;2. 电阻箱;3. 电源;4. 万用表;5. 连接线。

实验步骤:1. 将单臂电桥主机接通电源,并调整电源电压合适的大小;2. 将电阻箱中的电阻值设定为待测电阻的初始值;3. 将待测电阻与电阻箱通过连接线连接到单臂电桥主机的相应端口上;4. 调节单臂电桥主机上的调节旋钮,使电流表读数最小;5. 通过调节电阻箱中的电阻值,使电流表读数为零;6. 记录此时电阻箱中的电阻值,即为待测电阻的准确值。

实验结果:经过以上步骤,我们成功地测量了待测电阻的准确值。

在实验中,我们记录了电阻箱中的电阻值为XΩ。

误差分析:在实验中,由于仪器的精度限制、电源电压的波动等原因,测量结果可能会存在一定的误差。

为了准确评估实验结果的可靠性,我们需要进行误差分析。

首先,仪器的精度是影响测量结果误差的重要因素。

单臂电桥主机和电阻箱的精度会对测量结果产生一定的影响。

在实验中,我们可以查阅仪器的精度说明书,了解其允许的误差范围,并在实验结果中考虑这个误差范围。

其次,电源电压的波动也可能导致测量结果的误差。

在实验过程中,我们应该尽量保持电源电压的稳定,避免因电压波动而对测量结果产生影响。

最后,测量过程中的人为误差也需要考虑。

例如,连接线的接触不良、读数的不准确等因素都可能对测量结果产生一定的误差。

在实验中,我们应该尽量减小这些人为误差的影响,提高实验的准确性。

结论:通过本次实验,我们成功地使用单臂电桥测量了待测电阻的准确值,并进行了误差分析。

实验过程中我们掌握了单臂电桥的工作原理和操作方法,提高了我们对电阻测量的理解和能力。

实验一单臂半桥全桥电桥性能实验;实验二直流全桥的应用—电子秤实验

实验一单臂半桥全桥电桥性能实验;实验二直流全桥的应用—电子秤实验

实验一单臂电桥性能实验一、实验目的了解金属箔式应变片单臂电桥的工作原理和工作状况。

二、所需器件及模块1号金属箔式应变片传感器实验模块、14号交直流、全桥、测量、差动放大实验模块、20克砝码10只、±15V电源、±2V电源、万用表(自备)。

三、基本原理:图1电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L 为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。

电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

对单臂电桥输出电压U o= EK ε/4。

四、实验步骤模块联合调零:1、根据图(1-1)应变传感器已装于1号金属箔式应变片传感器模块上。

传感器中各应变片R1、R2、R3、R4已接入模块的下方,K1开关应置于OFF状态。

可用万用表进行测量判别,R1=R2= R3=R4=350。

2、根据图(1-1), IC1、IC2、IC4组成第一级典型的三运放仪表放大器,整益G1=R24/R20[1+2R14/w1],其中R16=R24=20K、R18=R20=10K、R14=R15=20K、w1=10K。

w1中串接了200殴的电阻,也就是说当W1为0时放大倍数为G1=1+40000/200=201倍,W1旋转一圈为1K,IC3是第二级反向放大器,整益G2=R22/R17,R22=51K、R17=20K,在IC3的“+”端通过Rw2、R27接入正负电压调节放大器的零点,Rw2=10K、R27=1K。

在应变式传感器的输出端通过W3、R11接入±4V 电压,调节应变式传感器由于4片应变片电阻不对称而引起的输出零点变化,w3=10K、R11=1K。

放大电路总整益G=G1*G2。

实验一应变片单臂电桥性能实验

实验一应变片单臂电桥性能实验

实验一应变片单臂电桥性能实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。

二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

1、应变片的电阻应变效应 所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。

以圆柱形导体为例:设其长为:L、半径为r、材料的电阻率为ρ时,根据电阻的定义式得(1—1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率ρ的变化为dL、dA、dρ相应的电阻变化为dR。

对式(1—1)全微分得电阻变化率 dR/R为:(1—2)式中:dL/L为导体的轴向应变量εL; dr/r为导体的横向应变量εr由材料力学得:εL= - μεr (1—3)式中:μ为材料的泊松比,大多数金属材料的泊松比为0.3~0.5左右;负号表示两者的变化方向相反。

将式(1—3)代入式(1—2)得:(1—4)式(1—4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能(压阻效应)。

2、应变灵敏度它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。

(1)、金属导体的应变灵敏度K:主要取决于其几何效应;可取(1—5)其灵敏度系数为:K=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且与其轴向应变成正比。

金属导体的电阻应变灵敏度一般在2左右。

(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/R<≈dρ⁄ρ。

电阻式传感器的单臂电桥性能实验

电阻式传感器的单臂电桥性能实验

实验一电阻式传感器的单臂电桥性能实验一、实验目的1、了解电阻应变式传感器的基本结构与使用方法。

2、掌握电阻应变式传感器放大电路的调试方法。

3、掌握单臂电桥电路的工作原理和性能。

二、实验说明1、电阻丝在外力作用下发生机械变形时,其阻值发生变化,这就是电阻应变效应,其关系为:ΔR/ R=Kε,ΔR为电阻丝变化值,K为应变灵敏系数,ε为电阻丝长度的相对变化量ΔL/ L。

通过测量电路将电阻变化转换为电流或电压输出。

2、电阻应变式传感如图1-1所示。

传感器的主要部分是下、下两个悬臂梁,四个电阻应变片贴在梁的根部,可组成单臂、半桥与全桥电路,最大测量范围为±3mm。

11─外壳2─电阻应变片3─测杆4─等截面悬臂梁5─面板接线图图1-1 电阻应变式传感器3、电阻应变式传感的单臂电桥电路如图1-2所示,图中R1、R2、R3为固定,R为电阻应变片,输出电压U O=EKε,E为电桥转换系数。

图1-2 电阻式传感器单臂电桥实验电路图三、实验内容1、固定好位移台架,将电阻应变式传感器置于位移台架上,调节测微器使其指示15mm左右。

将测微器装入位移台架上部的开口处,旋转测微器测杆使其与电阻应变式传感器的测杆适度旋紧,然后调节两个滚花螺母使电阻式应变传感器上的两个悬梁处于水平状态,两个滚花螺母固定在开口处上下两侧。

2、将实验箱(实验台内部已连接)面板上的±15V和地端,用导线接到差动放大器上;将放大器放大倍数电位器RP1旋钮(实验台为增益旋钮)逆时针旋到终端位置。

3、用导线将差动放大器的正负输入端连接,再将其输出端接到数字电压表的输入端;按下面板上电压量程转换开关的20V档按键(实验台为将电压量程拨到20V档);接通电源开关,旋动放大器的调零电位器RP2旋钮,使电压表指示向零趋近,然后换到2V量程,旋动调零电位器RP2旋钮使电压表指示为零;此后调零电位器RP2旋钮不再调节,根据实验适当调节增益电位器RP1。

单臂电桥测电阻实验报告

单臂电桥测电阻实验报告

单臂电桥测电阻实验报告实验目的:本实验旨在通过单臂电桥测量电阻的方法,掌握电桥测量电阻的原理和方法,加深对电桥平衡条件的理解,提高实验操作能力和数据处理能力。

实验仪器和设备:1. 单臂电桥装置。

2. 电源。

3. 电阻箱。

4. 万用表。

5. 导线。

实验原理:电桥是利用电流在两个相对的分支中建立平衡条件的一种电路。

在电桥平衡时,电流计的指针不偏转,即两个电桥臂中的电动势相等,电桥平衡条件为R1/R2=R3/R4,其中R1、R2分别为已知电阻箱的两个分支,R3为未知电阻,R4为可变电阻。

实验步骤:1. 接通电源,调节电桥臂中的电阻箱,使电桥平衡,记录下R1、R2、R3的数值。

2. 更改未知电阻R3的数值,再次调节电桥臂中的电阻箱,使电桥再次平衡,记录下R1、R2、R3的新数值。

3. 根据记录的数据,计算出R3的电阻值。

实验数据:第一组数据,R1=100Ω,R2=200Ω,R3=150Ω。

第二组数据,R1=100Ω,R2=200Ω,R3=200Ω。

实验结果分析:根据实验数据计算可得,第一组数据中R3的电阻值为150Ω,第二组数据中R3的电阻值为200Ω。

可以看出,当未知电阻R3的数值发生变化时,电桥平衡的条件也随之发生变化,通过实验数据的对比分析,可以准确地测量出未知电阻R3的电阻值。

实验结论:通过本次实验,我们掌握了单臂电桥测电阻的方法,加深了对电桥平衡条件的理解,提高了实验操作能力和数据处理能力。

同时,实验结果表明,电桥测量电阻的方法是一种准确可靠的测量电阻值的方法,可以广泛应用于实际工程中。

实验注意事项:1. 实验过程中要注意调节电桥臂中的电阻箱,使电桥平衡。

2. 实验数据记录要准确,计算过程要仔细。

3. 实验结束后,要及时关闭电源,整理实验仪器和设备。

通过本次实验,我们不仅掌握了电桥测量电阻的原理和方法,还提高了实验操作能力和数据处理能力。

这对我们今后的学习和科研工作都具有重要意义。

传感器实验报告(电阻应变式传感器)

传感器实验报告(电阻应变式传感器)

传感器技术实验报告院(系)机械工程系专业班级姓名同组同学实验时间 2014 年月日,第周,星期第节实验地点单片机与传感器实验室实验台号实验一金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、实验仪器:应变传感器实验模块、托盘、砝码(每只约20g)、、数显电压表、±15V、±4V电源、万用表(自备)。

三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。

图1-1通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压εk E R RR R R E U 4R 4E 21140=∆⋅≈∆⋅+∆⋅= (1-1) E 为电桥电源电压,R 为固定电阻值,式1-1表明单臂电桥输出为非线性,非线性误差为%10021L ⋅∆⋅-=RR γ。

四、实验内容与步骤1.图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R 1、R 2、R 3、R 4上,可用万用表测量判别,R 1=R 2=R 3=R 4=350Ω。

2.从主控台接入±15V 电源,检查无误后,合上主控台电源开关,将差动放大器的输入端U i 短接,输出端Uo 2接数显电压表(选择2V 档),调节电位器Rw 3,使电压表显示为0V ,Rw 3的位置确定后不能改动,关闭主控台电源。

图1-2 应变式传感器单臂电桥实验接线图3.将应变式传感器的其中一个应变电阻(如R 1)接入电桥与R 5、R 6、R 7构成一个单臂直流电桥,见图1-2,接好电桥调零电位器Rw 1,直流电源±4V (从主控台接入),电桥输出接到差动放大器的输入端U i ,检查接线无误后,合上主控台电源开关,调节Rw 1,使电压表显示为零。

单臂电桥测电阻实验步骤

单臂电桥测电阻实验步骤

单臂电桥测电阻实验步骤1. 实验准备好吧,咱们今天要聊聊单臂电桥测电阻的实验步骤。

别看这名字听起来高大上,其实它的操作简单得就像喝水。

首先,咱们得准备好一切装备,就像战士出征前要检查武器一样。

你需要一个单臂电桥,这东西看上去有点像个小木架子,中间有一个很重要的指针;然后要有电源、一个标准电阻、待测电阻,还有一些连接线,当然,万用表也不能少。

这些东西就像是你的“神兵利器”,缺一不可。

在开始之前,务必要检查一下电桥的连接,确保没有松动。

咱们可不想在实验过程中让它“罢工”,那就太尴尬了。

就像上班时忘了打卡一样,万一出错,后果不堪设想!如果一切准备妥当,就可以进入下一步了,大家准备好了吗?开干!2. 连接电路2.1 接线首先,把电源连接到单臂电桥的输入端。

哎,记住了,正负极可别搞混了,不然就像是把火柴和水混在了一起,搞不好会出事儿。

接着,把标准电阻和待测电阻分别接到电桥的两个端口上。

简单来说,就是把你手里的东西按部就班地放到位,别着急,慢慢来。

2.2 调整指针这时候,指针就像个调皮的小孩,得让它保持在零点上。

你可能会发现,指针在摇摆,嘿,这就要你来调了。

咱们需要慢慢调整电阻,直到指针稳稳当当地指向零。

这个过程有点像钓鱼,耐心是关键。

等到指针不再晃动,恭喜你,成功了!不过,别急,接下来还有更有趣的事情等着你。

3. 读数与计算3.1 记录数据现在,咱们要开始读数了。

指针稳定后,你就可以在刻度盘上看到一个数字。

这个数字就代表了你待测电阻的电阻值。

记下来,像对待你的口袋钱一样,别丢了!这个步骤就像考试时抄答案,得确保你记录的没错。

3.2 计算结果好啦,最后一步来了。

把你记录的电阻值和标准电阻值做一个比较。

这个过程有点像在餐馆里点菜,看着自己喜欢的东西和钱包的关系。

你可以通过简单的公式,算出待测电阻与标准电阻的比例,得出准确的电阻值。

其实,整个实验就像做一道菜,材料准备好了,步骤按部就班地来,最后的结果才会让人满意。

单臂电桥测电阻实验报告数据处理

单臂电桥测电阻实验报告数据处理

单臂电桥测电阻实验报告数据处理实验目的:1.熟悉单臂电桥的工作原理和使用方法;2.学习运用单臂电桥进行电阻的测量。

实验仪器:1.单臂电桥仪器;2.标准电阻;3.直流电源;4.辅助电阻;5.调零装置;6.万用表。

实验原理:单臂电桥是用来测量电阻值的一种仪器。

它由一个特制的测量电路组成,可提供可靠的精确测量结果。

电桥通过调整辅助电阻的值和电桥的平衡来测量未知电阻的值。

实验步骤:1.将实验仪器连接好,包括单臂电桥、标准电阻、直流电源、辅助电阻和调零装置;2.调整调零装置,使电桥的示数归零;3.通过调整辅助电阻的值,使电桥平衡,记录下平衡时的辅助电阻值;4.更换标准电阻,重复步骤3,记录下平衡时的辅助电阻值;5.重复步骤3和4,直至测量所有标准电阻;6.计算未知电阻的值。

实验结果:标准电阻值:1Ω、2Ω、3Ω、4Ω、5Ω;辅助电阻值:5Ω、10Ω、15Ω、20Ω、25Ω;平衡电桥示数:0、0、0、0、0。

数据处理:根据实验结果,我们可以得到电桥的平衡条件为:Rx*R2=R1*R3其中,Rx为未知电阻的值,R1为标准电阻的值,R2为辅助电阻的值,R3为调零装置的内部电阻。

通过上述平衡条件,我们可以得到未知电阻Rx的值为:Rx=R1*R3/R2代入实验数据计算可得:当R1=1Ω,R2=5Ω时,Rx=(1*5)/5=1Ω;当R1=2Ω,R2=10Ω时,Rx=(2*5)/10=1Ω;当R1=3Ω,R2=15Ω时,Rx=(3*5)/15=1Ω;当R1=4Ω,R2=20Ω时,Rx=(4*5)/20=1Ω;当R1=5Ω,R2=25Ω时,Rx=(5*5)/25=1Ω。

由计算结果可以看出,未知电阻的值始终为1Ω,与实验结果吻合。

实验结论:通过单臂电桥测量电阻的实验,我们得到了未知电阻的值始终为1Ω,证明了单臂电桥测量电阻的准确性和可靠性。

同时,实验也使我们熟悉了单臂电桥的工作原理和使用方法,为今后的实验和研究打下了基础。

单臂电桥性能实验报告

单臂电桥性能实验报告

实验一 金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK R R =∆/式中R R /∆为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压U O14/εEK =。

三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表、±15V 电源、±4V 电源、万用表(自备)。

四、实验步骤:1、根据图1-1应变式传感器已装于应变传感器模块上。

传感器中各应变片已接入模块的左上方的R 1、R2、R3、R 4。

加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。

2、接入模块电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块调节增益电位器Rw 3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的数显表电压输入端Vi 相连,调节实验模块上调零电位器Rw 4,使数显表显示为零(数显表的切换开关打到2V 档)。

关闭主控箱电源。

图1-1 应变式传感器安装示意图3、将应变式传感器的其中一个应变片R 1(即模块左上方的R 1)接入电桥作为一个桥臂与R 5、R 6、R 7接成直流电桥(R 5、R 6、R 7模块内已连接好),接好电桥调零电位器Rw 1,接上桥路电源±4V (从主控箱引入)如图1-2所示。

检查接线无误后,合上主控箱电源开关。

调节Rw 1,使数显表显示为零。

单臂电桥性能实验

单臂电桥性能实验

单臂电桥性能实验什么是单臂电桥单臂电桥是一种常见的电路测量设备,广泛应用于电子电路、通信电路、机械和物理实验中。

它的主要作用是用来测量电阻、电容和电感的值,以及测量拆分电压或电流等电学量。

单臂电桥由四个电阻组成,分别为R1,R2,R3和Rx,如图所示。

其中R1和R2是两个已知大小的电阻,R3和Rx是两个待测电阻。

V1和V2分别是两个电源,其中V1为交流电源,V2为直流电源。

通过调节可变电阻,使电桥中的电流为零,从而测量出待测电阻的电阻值。

单臂电桥的原理单臂电桥的原理是基于基尔霍夫定律和欧姆定律的。

当电桥中的电流为零时,可以得到以下公式:R1/R2=Rx/R3因此,通过测量R1和R2的值,和调节可变电阻使电流为零,就可以得到待测电阻Rx 的值。

单臂电桥的性能参数通常包括测量范围、精度、稳定性等。

测量范围单臂电桥的测量范围取决于电源的电压大小以及电桥中R1和R2的大小。

一般来说,单臂电桥的测量范围为数Ω至数MΩ级别。

精度单臂电桥的精度主要取决于电源的精度、电桥中的电阻精度以及可变电阻的分辨率等因素。

一般来说,单臂电桥的精度在0.1%~1%之间。

稳定性实验器材:单臂电桥、待测电阻、电源、万用表、连接线等。

1. 将电源接入电桥中,开启电源,并使其输出交流电。

2. 将待测电阻Rx接入到电桥中,连接线的接法如图所示。

3. 调节可变电阻,使电桥电流为零,记录下可变电阻的值。

4. 根据公式R1/R2=Rx/R3计算出待测电阻Rx的值。

注意事项:1. 实验时要保证电桥中的电阻是干净、完好的,避免产生接触不良等问题。

2. 调节可变电阻时要慢慢调节,避免突然调节过大导致电流过大。

3. 实验结束后,要关闭电源,将连接线拔出,清理实验器材。

实验一 单臂电桥性能实验

实验一 单臂电桥性能实验

实验一金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:式中为电阻丝电阻的相对变化,为应变灵敏系数,为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。

单臂电桥输出电压O1。

三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表(主控台上电压表)、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:1、检查应变传感器的安装根据图1-1应变式传感器已装于应变传感器模块上。

传感器中各应变片已接入模块的左上方的R1、R2、R3、R4。

加热丝也接于模块上,可用万用表进行测量判别,各应变片初始阻值R1= R2= R3= R4=350Ω,加热丝初始阻值为50Ω左右。

2、差动放大器的调零首先将实验模块调节增益电位器Rw3顺时针到底(即此时放大器增益最大。

然后将差动放大器的正、负输入端相连并与地短接,输出端与主控台上的电压表输入端Vi相连。

检查无误后从主控台上接入模块电源±15V以及地线。

合上主控台电源开关,调节实验模块上的调零电位器Rw4,使电压表显示为零(电压表的切换开关打到2V档)。

关闭主控箱电源。

(注意: Rw4的位置一旦确定,就不能改变,一直到做完实验为止)3、电桥调零适当调小增益Rw3(顺时针旋转3-4圈,电位器最大可顺时针旋转5圈),将应变式传感器的其中一个应变片R1(即模块左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已连接好,其中模块上虚线电阻符号为示意符号,没有实际的电阻存在),按图1-2完成接线,接上桥路电源±4V(从主控箱引入),同图1-2 应变式传感器单臂电桥实验接线图时,将模块左上方拨段开关拨至左边“直流”档(直流档和交流档调零电阻阻值不同)。

单臂电桥测电阻实验报告

单臂电桥测电阻实验报告

单臂电桥测电阻实验报告一、实验目的1、掌握单臂电桥测量电阻的原理和方法。

2、学会使用滑线式惠斯通电桥测量中值电阻。

3、了解电桥灵敏度的概念及提高电桥灵敏度的方法。

二、实验原理1、单臂电桥(惠斯通电桥)的原理单臂电桥是一种比较式测量仪器,其原理是基于电桥平衡时,对臂电阻乘积相等。

设四个电阻 R1、R2、Rx 和 Rs 连成四边形,每一边称为电桥的一个臂。

在一对角线节点间接上电源,在另一对角线节点间接上检流计,形成如图 1 所示的电路。

当检流计中无电流通过时,即B、D 两点电位相等,电桥达到平衡。

此时有:\\frac{R_1}{R_2} =\frac{R_x}{R_s}\可得待测电阻 Rx 的值为:\R_x =\frac{R_1}{R_2} R_s\2、电桥灵敏度电桥灵敏度定义为:\S =\frac{\Delta n}{\frac{\Delta R_x}{R_x}}\其中,Δn 为检流计偏转的格数,ΔRx 为电阻 Rx 的改变量。

电桥灵敏度越高,表示电桥对电阻变化的反应越灵敏。

三、实验仪器1、直流电源2、滑线式惠斯通电桥3、检流计4、待测电阻5、标准电阻6、导线若干四、实验步骤1、仪器连接按照实验电路图连接好电路,注意电源、检流计、电阻等的正负极连接要正确。

2、调整比例臂根据待测电阻的估计值,选择合适的比例臂 R1 和 R2 的比值,使Rs 尽量接近 Rx 的估计值。

3、粗调平衡接通电源,调节 Rs 的值,使检流计指针接近零位,此时电桥接近平衡。

4、细调平衡进一步微调 Rs 的值,使检流计指针指零,此时电桥达到平衡。

5、测量并记录数据记录 R1、R2 和 Rs 的值,根据公式计算出 Rx 的值。

6、改变 Rs 的值,测量电桥灵敏度在电桥平衡的基础上,稍微改变 Rs 的值,记录检流计指针偏转的格数,计算电桥灵敏度。

7、重复测量改变比例臂,重复上述步骤,测量多组数据,求 Rx 的平均值。

五、实验数据记录与处理1、实验数据记录表格|测量次数| R1(Ω)| R2(Ω)| Rs(Ω)| Rx(Ω)||::|::|::|::|::|| 1 |_____ |_____ |_____ |_____ || 2 |_____ |_____ |_____ |_____ || 3 |_____ |_____ |_____ |_____ |2、数据处理根据公式\(R_x =\frac{R_1}{R_2} R_s\),计算出每次测量的 Rx 值,然后求平均值。

单臂电桥性能 实验报告

单臂电桥性能 实验报告

单臂电桥性能实验报告单臂电桥性能实验报告摘要:本实验旨在研究和分析单臂电桥的性能特点。

通过实验测量,我们探究了单臂电桥在不同条件下的工作特性,并对其性能进行了评估。

实验结果表明,单臂电桥具有较高的灵敏度和稳定性,适用于测量小阻值和温度变化的应用。

1. 引言单臂电桥是一种常见的电路配置,广泛应用于测量和检测领域。

它由一个电阻和一个电位器组成,通过调节电位器的值,可以改变电桥的平衡状态,从而实现对电阻值的测量。

本实验旨在探究单臂电桥的性能特点,为实际应用提供参考。

2. 实验装置和方法本实验采用了一台电桥实验仪和一组标准电阻进行测量。

首先,将电桥实验仪连接到电源,并将标准电阻连接到电桥的电阻和电位器端口。

然后,通过调节电位器的值,使电桥达到平衡状态,并记录下电位器的位置和电桥的输出电压。

重复测量多组数据,以获得准确的结果。

3. 实验结果与分析通过实验测量,我们得到了一组关于电位器位置和输出电压的数据。

根据这些数据,我们可以绘制出电位器位置与输出电压之间的关系曲线。

实验结果显示,当电位器位置接近某个特定值时,电桥的输出电压达到最小值,即平衡状态。

这个特定值对应着标准电阻的阻值。

进一步分析发现,单臂电桥具有较高的灵敏度和稳定性。

当标准电阻的阻值发生微小变化时,电桥的输出电压会有相应的变化,因此可以用来测量小阻值。

此外,单臂电桥在不同温度下的工作也表现出较好的稳定性,适用于测量温度变化的应用。

4. 实验误差和改进在实验过程中,我们注意到一些误差可能会影响测量结果的准确性。

首先,由于电桥实验仪和标准电阻本身存在一定的误差,所以测量结果可能会有一定的偏差。

其次,由于环境温度的变化,电桥的输出电压也会发生一定的漂移。

为了减小误差并提高测量的准确性,可以采取以下改进措施。

首先,选择更高精度的电桥实验仪和标准电阻,以减小仪器本身的误差。

其次,控制实验环境的温度变化,可以使用恒温器或者在实验室中保持稳定的温度。

此外,进行多次重复测量,并取平均值,可以进一步提高测量的准确性。

单臂电桥测电阻实验报告

单臂电桥测电阻实验报告

单臂电桥测电阻实验报告1. 实验目的嘿,大家好!今天咱们来聊聊单臂电桥测电阻的实验。

你们知道的,电阻就像电流的小绊脚石,越大越难走,而我们这次的任务就是找出它的“身价”。

简单来说,实验的目的就是通过单臂电桥这种神奇的工具,来精确测量未知电阻的值。

听起来是不是有点高大上?别担心,咱们慢慢来,一步一步走。

2. 实验原理2.1 电桥的工作原理你可能会问,单臂电桥到底是个什么玩意儿?简单来说,它就是一个能帮助我们找出电阻的设备,像是个电流的侦探,专门来侦查那些“藏得深”的电阻。

它的工作原理是基于电流的分流和分压,通过调节电桥的两个臂,使得电流的比例达到平衡。

到时候,我们只需根据这个平衡状态,就能算出未知电阻的值,简直是太方便了!2.2 设备组成设备主要分成几个部分:电源、可调电阻、标准电阻、以及电流计。

听上去可能有点复杂,但实际操作的时候,你会发现这些设备就像是你厨房里的各种调料,各有各的用处,合起来才能做出一顿美味的“电阻大餐”。

3. 实验步骤3.1 准备工作首先,咱们得把所有设备都准备齐全,像是准备去打猎的猎人,装备不能少。

把电桥、标准电阻、电流计一一连接好,电源也得接上。

这里有个小贴士:连接的时候要仔细点,别把线搞混了,不然实验结果可能会让你哭笑不得。

3.2 调整电桥连接完毕后,就进入了实验的高潮部分!打开电源,然后慢慢调节可调电阻。

这个过程就像是在弹吉他,调音得细心,才能发出好听的旋律。

每调一调,就得看看电流计的指针,找个平衡点。

哎,这个平衡点可不容易找,得小心翼翼,不能急。

一旦找到那个“心跳”的平衡点,咱们就可以根据电桥的公式计算出未知电阻的值了。

说实话,看到那串数字的时候,心里那个高兴啊,仿佛自己中了彩票!4. 实验结果与讨论经过一番折腾,我们得出了电阻的值。

看着这个数字,真是如释重负。

通过这次实验,我不仅学到了如何用单臂电桥测电阻,还感受到了一种成就感,仿佛自己在科学的海洋里遨游,捞到了“珍珠”。

传感器与检测技术实验报告

传感器与检测技术实验报告

“传感器与检测技术”实验报告学号:913110200229姓名:杨薛磊序号:83实验一电阻应变式传感器实验(一)应变片单臂电桥性能实验一、实验目的:了解电阻应变片的工作原理与应用并掌握应变片测量电路。

二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。

一种利用电阻材料的应变效应将工程结构件的内部变形转换为电阻变化的传感器。

此类传感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将弹性元件的变形转换成电阻的变化,再通过测量电路将电阻的变化转换成电压或电流变化信号输出。

它可用于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加工、计量、建筑测量等行业应用十分广泛。

三、需用器件与单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;应变式传感器实验模板、托盘、砝码;。

四、实验步骤:应变传感器实验模板说明:应变传感器实验模板由应变式双孔悬臂梁载荷传感器(称重传感器)、加热器+5V电源输入口、多芯插头、应变片测量电路、差动放大器组成。

实验模板中的R1(传感器的左下)、R2(传感器的右下)、R3(传感器的右上)、R4(传感器的左上)为称重传感器上的应变片输出口;没有文字标记的5个电阻符号是空的无实体,其中4个电阻符号组成电桥模型是为电路初学者组成电桥接线方便而设;R5、R6、R7是350Ω固定电阻,是为应变片组成单臂电桥、双臂电桥(半桥)而设的其它桥臂电阻。

加热器+5V是传感器上的加热器的电源输入口,做应变片温度影响实验时用。

多芯插头是振动源的振动梁上的应变片输入口,做应变片测量振动实验时用。

1、将托盘安装到传感器上,如图1—4所示。

图1—4 传感器托盘安装示意图2、测量应变片的阻值:当传感器的托盘上无重物时,分别测量应变片R1、R2、R3、R4的阻值。

在传感器的托盘上放置10只砝码后再分别测量R1、R2、R3、R4的阻值变化,分析应变片的受力情况(受拉的应变片:阻值变大,受压的应变片:阻值变小。

实验一 电阻式传感器的单臂电桥性能实验

实验一 电阻式传感器的单臂电桥性能实验

实验一电阻式传感器的单臂电桥性能实验1、实验目的本实验旨在通过单臂电桥测量电阻式传感器的电阻值,了解电桥的基本原理和性能。

2、实验原理电桥是一种可以测量未知电阻的电路。

电桥由四个电阻组成,其中三个为已知电阻,可以通过调节未知电阻的大小来使电桥的两端电势相等,从而测量未知电阻。

为了保证电桥的灵敏度和稳定性,一般要求电桥的比率阻抗为1。

3、实验器材(1)电阻箱(2)电阻式传感器(3)直流电源(4)万用表(5)导线4、实验步骤(1)根据电路图连接电路,其中R1为已知电阻,R2为未知电阻,R3、R4为电阻箱,E为直流电源,V1、V2分别用万用表测量电桥两端的电势差。

(2)打开电源,调节电阻箱上的电位器,使电桥两端的电势差为0。

(3)记录R3、R4中的电阻值,计算未知电阻值R2= R3× (R1+R4)/(R4-R3)。

(4)改变未知电阻的值,重复上述步骤,得出不同未知电阻值下的电势差和电阻值。

5、实验注意事项(1)在连接电路时,要保证接线正确,避免短路或接错。

(2)在调节电桥平衡时,要慢慢调节电位器,避免过度调节。

(3)在测量电势差时,要注意不要接触电桥导线和量程,避免影响测量精度。

6、实验结果与分析根据测量结果,可以得出不同未知电阻值下的电势差和电阻值,通过对比不同电势差下的电阻值和未知电阻的实际电阻值,可以评估电桥的测量精度和稳定性。

7、实验结论本实验通过单臂电桥测量电阻式传感器的电阻值,了解电桥的基本原理和性能。

实验结果表明,通过调节电阻箱的电阻值,可以使电桥达到平衡状态,从而测量电阻式传感器的电阻值。

通过优化电桥的比率阻抗等参数,可以提高电桥的测量精度和稳定性。

实验一 电阻式传感器的单臂电桥性能实验

实验一 电阻式传感器的单臂电桥性能实验

实验一 电阻式传感器的单臂电桥性能实验一、 实验目的1、 了解电阻应变式传感器的基本机构与使用方法2、 掌握电阻式应变式传感器放大电路的调试方法3、 掌握单臂电桥电路的工作原理和性能二、 实验所用单元电阻应变式传感器、调零电桥、差动放大器板、直流稳压电源、数字电压表、位移台架三、 实验原理及电路1、电阻丝在外力作用下发生形变时,其阻值发生变化,这就是电阻应变效应,其关系为:△R/R=K ∑,△R 为电阻丝变化值,K 为应变灵敏系数,∑为电阻丝长度的相对变化量△L /L.通过测量电路将电阻变化转换为电流或电压输出。

2、电阻应变式传感如图1-1所示。

传感器的主要部分是上、下两个悬臂梁,四个电阻应变篇贴在梁的根部,可组成单臂、单桥与全桥电路,最大测量范围为正负3mm 。

3、 电阻应变式传感的单臂电桥电路如图1-2所示,图中R1、R2、R3为固定,R 为电阻应变式片,输出电压Uo=EK ∑,E 为电桥转换系数。

1——外壳 2——电阻应变片 3——测杆 4——等截面悬臂梁 5——面板接图1-1 电阻应变式传感器214四、实验步骤1、固顶好位移台架,将电阻应变式传感器至于位移台架上,调节测微器使其指示15mm左右。

将测微器装入位移台架上部的开口处,旋转测微器测杆使其与电阻应变式传感器的测杆适度旋紧,然后调节两个滚花螺母使电阻应变式传感上的两个悬梁处于水平状态,两个滚花螺母固定在开口处上下两侧。

2、将试验箱(试验台内部已连接)面板上的正负15V和地端,用导线接到差动放大器上;将放大器放大倍数电位器RP1旋钮(试验台为增益旋钮)逆时针旋到终端位置。

3、用导线将差动放大器的正负数入端连接,再将其输出端接到数字电压表的输入端;按下面板上电压量程转换开关的20V挡按键(试验台为电压量程拨到20V档);接通电源开关,旋动放大器的调零电位器RP2旋钮,使电压表指示向零趋近,然后换到2v量程,旋动调零继电器RP2旋钮使电压表指示为零;此后调零继电器RP2旋钮不再调节,根据试验适当调节增益电位器RP1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 电阻式传感器的单臂电桥性能实验
一、 实验目的
1、 了解电阻应变式传感器的基本机构与使用方法
2、 掌握电阻式应变式传感器放大电路的调试方法
3、 掌握单臂电桥电路的工作原理与性能
二、 实验所用单元
电阻应变式传感器、调零电桥、差动放大器板、直流稳压电源、数字电压表、位移台架
三、 实验原理及电路
1、电阻丝在外力作用下发生形变时,其阻值发生变化,这就就是电阻应变效应,其关系为:△R/R=K ∑,△R 为电阻丝变化值,K 为应变灵敏系数,∑为电阻丝长度的相对变化量△L /L 、通过测量电路将电阻变化转换为电流或电压输出。

2、电阻应变式传感如图1-1所示。

传感器的主要部分就是上、下两个悬臂梁,四个电阻应变篇贴在梁的根部,可组成单臂、单桥与全桥电路,最大测量范围为正负3mm 。

3、 电阻应变式传感的单臂电桥电路如图1-2所示,图中R1、R2、R3为固定,R 为电阻应
变式片,输出电压Uo=EK ∑,E 为电桥转换系数。

1——外壳 2——电阻应变片 3——测杆 4——等截面悬臂梁 5——面板接
图1-1 电阻应变式传感器
2
1
4
四、实验步骤
1、固顶好位移台架,将电阻应变式传感器至于位移台架上,调节测微器使其指示
15mm左右。

将测微器装入位移台架上部的开口处,旋转测微器测杆使其与电阻应
变式传感器的测杆适度旋紧,然后调节两个滚花螺母使电阻应变式传感上的两个
悬梁处于水平状态,两个滚花螺母固定在开口处上下两侧。

2、将试验箱(试验台内部已连接)面板上的正负15V与地端,用导线接到差动放大器上;
将放大器放大倍数电位器RP1旋钮(试验台为增益旋钮)逆时针旋到终端位置。

3、用导线将差动放大器的正负数入端连接,再将其输出端接到数字电压表的输入端;
按下面板上电压量程转换开关的20V挡按键(试验台为电压量程拨到20V档);接通
电源开关,旋动放大器的调零电位器RP2旋钮,使电压表指示向零趋近,然后换到2v
量程,旋动调零继电器RP2旋钮使电压表指示为零;此后调零继电器RP2旋钮不再
调节,根据试验适当调节增益电位器RP1。

4、按图1-2接线R1、R2、R3(电阻传感器部分固定电阻)与一个的应变片构成单臂电
桥形式。

5、调节平衡电位器RP,使数字电压表指示接近于零,然后旋动测微器使电压表指示为
零,此时测微器的读数视为系统零位。

分别上旋与下旋测微器,每次0.4mm,上下各
2mm,将位移量X与对应的输出电压值Uo记入表中。

X(mm) -2、0 -1、6 -1、2 -0、8 -0、4 0 0、4 0、8 1、2 1、6 2、0
Uo(mV) -0、
034 -0、
026
-0、
021
-0、
016
-0、
011
0 0、
002
0、
007
0、
012
0、
012
0、09
五、实验报告
1、根据表1-1中的实验数据,画出输入/输出特性曲线Uo=f(X)如下:
2、不能。

输入电压的大小取决于电阻丝的长度
3、(1)因为电阻应变式传感为非线性系统,其输入、输出关系均为非线性,她们都将导致测量
结果的非线性误差
(2)仪器不精准,部分电路接触不良
六、实验结果分析
受环境的影响,实验过程中会产生误差。

通过改实验使动手能力增强,并且能够分析误差产生与各种问题的原因。

相关文档
最新文档