2015年浙江省高考数学试卷理科解析

合集下载

2015年普通高等学校招生全国统一考试数学理试题解析(浙江卷)

2015年普通高等学校招生全国统一考试数学理试题解析(浙江卷)

2015年高考浙江卷理数试题解析(精编版)(解析版)一.选择题:本大题共8小题,每小题5分,共40分,在每小题的四个选项中,只有一项是符合要求的.1.已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q = ð()A.[0,1)B.(0,2]C.(1,2)D.[1,2]2.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.38cm B.312cm C.3323cm D.3403cm【答案】C.3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则()A.140,0a d dS >> B.140,0a d dS << C.140,0a d dS >< D.140,0a d dS <>4.命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是()A.**,()n N f n N ∀∈∈且()f n n> B.**,()n N f n N ∀∈∈或()f n n >C.**00,()n N f n N ∃∈∈且00()f n n > D.**00,()n N f n N ∃∈∈或00()f n n >5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是()A.11BF AF --B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++6.设A ,B 是有限集,定义(,)()()d A B card A B card A B =- ,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“(,)0d A B >”的充分必要条件;命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,()A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.存在函数()f x 满足,对任意x R ∈都有()A.(sin 2)sin f x x = B.2(sin 2)f x x x =+ C.2(1)1f x x +=+ D.2(2)1f x x x +=+8.如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则()A.A DB α'∠≤ B.A DB α'∠≥ C.A CB α'∠≤ D.A CB α'∠≤二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.双曲线2212x y-=的焦距是,渐近线方程是.10.已知函数223,1()lg(1),1x x f x x x x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -=,()f x 的最小值是.11.函数2()sin sin cos 1f x x x x =++的最小正周期是,单调递减区间是.12.若4log 3a =,则22a a -+=.【答案】334.【解析】13.如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是.13.若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是.15.已知12,e e 是空间单位向量,1212e e ⋅= ,若空间向量b 满足1252,2b e b e ⋅=⋅= ,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈ ,则0x =,0y =,b = .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c .(1)求tan C 的值;(2)若ABC ∆的面积为3,求b 的值.17.(本题满分15分)如图,在三棱柱111ABC A B C --中,90BAC ∠= ,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(1)证明:1A D ⊥平面1A B C ;(2)求二面角1A -BD-1B 的平面角的余弦值.已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是|()|f x 在区间[1,1]-上的最大值.(1)证明:当||2a ≥时,(,)2M a b ≥;(2)当a ,b 满足(,)2M a b ≤,求||||a b +的最大值.已知椭圆2212x y+=上两个不同的点A,B关于直线12y mx=+对称.(1)求实数m的取值范围;(2)求AOB∆面积的最大值(O为坐标原点).20.(本题满分15分)已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N )(1)证明:112n n a a +≤≤(n ∈*N );(2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).。

2015年浙江高考数学(理科)试卷(含答案)

2015年浙江高考数学(理科)试卷(含答案)

2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2]C.(1,2)D.[1,2]2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•浙江)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinx B.f(sin2x)=x2+xC.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|8.(5分)(2015•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•浙江)若a=log43,则2a+2﹣a=.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•浙江)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线的简单性质.考点:计算题;圆锥曲线的定义、性质与方程.专题:确定双曲线中的几何量,即可求出焦距、渐近线方程.分析:解解:双曲线=1中,a=,b=1,c=,答:∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.点评:10.(6分)函数的值.考点:计算题;函数的性质及应用.专题:分根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,析:当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.点评:11.(6分)两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.考点:专三角函数的求值.题:分由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等析:式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC 通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.评:15.(6分)空间向量的数量积运算;平面向量数量积的运算.考点:专创新题型;空间向量及应用.题:分由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),析:由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解解:∵•=||||cos<•>=cos<•>=,答:∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点本题考查空间向量的数量积,涉及向量的模长公式,属中档题.评:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)余弦定理.考点:解三角形.专题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利析:用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。

2015年浙江高考数学理科解析

2015年浙江高考数学理科解析

V = 1 Sh 3
其中 S 表示棱的底面积, h 表示棱柱的高 台体的体积公式
( ) V
= 1h 3
S1 + S2 +
S1S2
其中 S1 ,S2 分别表示台体的上、下底面积,h
表示台体的高.
选择题部分(共 40 分)
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有 一项是符合题目要求的.
2
2.某几何体的三视图如图所示(单位: cm ),则该几何体的体积是
A. 8 cm2
B.12 cm2
C. 32 cm2 3
D. 40 cm3 3
【解 析】 C
图象为正四棱锥与正方体的组合体.由俯视图知:
正方体棱长为 2 ,正四棱锥底面边长 2 ,高为 2 ,
∴该几何体的体积V = 23 + 1 × 22 × 2 = 32 .
【解析】 B
杭州学而思高考研究中心
2015 浙江高考真题
∵ a2 , a4 , a5 成等比数列,∴ (a1 + 3d )2 = (a1 + d )(a1 + 4d ) ,化简得 a1d = −5d 2 < 0 dS4 = d (4a1 + 6d ) = 4a1d + 6d 2 = −14d 2 < 0
2
4
2
8
8
∴单调递减区间:[kπ + 3π , kπ + 7π ] , k ∈ Z
8
8
12.若 a = log4 3 ,则 2a + 2−a =

【解析】 4 3 3
由 a = log4 3 可知 4a = 3 ,即 2a =

2015年浙江省高考数学(理科)试题(教师版含解析)

2015年浙江省高考数学(理科)试题(教师版含解析)

2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)解析一、选择题1. C .解析 依题意{02}P x x x =或,()0,2P =R,所以()P Q =R (1,2).故选C .2. C .解析 该几何体是棱长为2的正方体和底面边长为2、高为2的正四棱锥的组合体,所以3213222233V =+⨯⨯=.故选C . 3. B .解析 因为348,,a a a 成等比数列,所以2438a a a =⋅,即()()()2111327a d a d a d +=+⋅+,所以21350a d d +=.因为0d ≠,所以135a d =-,所以21503a d d =-<.又414320246233S a d d d d ⨯=+=-+=- , 所以24203dS d =-<.故选B .4. D .解析 命题的否定,要将“∀”改为“∃”,所以原命题的否定形式为**00,()f n n ∃∈∉N N 或00()f n n >.故选D .5. A .解析 分别过,A B 两点作y 轴的垂线,垂足为11,A B 依题意,1111BCFB ACF A BC BB BF S x S AC AA x AF -====-△△.故选A .6. A .解析 (,)d A B 实际表示的是只在A 中或只在B 中的元素个数. 对命题①, A B ≠⇔至少有1个元素只在A 中或只在B 中⇔(,)0d A B >,故命题①成立;对命题②,如图所示,记图中的各个区域内的元素个数是()1,2,...,7i S i =且0i S ,所以1245(,),d A C S S S S =+++1346(,),d A B S S S S =+++2356(,),d B C S S S S =+++所以123456(,)(,)22d A B d B C S S S S S S +=+++++1245(,),S S S S d A C +++=所以命题②也成立.综上所述,故选A.7. D. 解析 本题考查函数的定义,即一个自变量只能对应一个函数值.对A ,取sin 20x =,则当0x =时,()00f =;当π2x =时,()01f =.所以A 错; 同理B 错;对C ,取1x =±,()22f =且()20f =,所以C 错.故选D.8. B. 解析 本题考查二面角,A DB '∠在变化中的最小值.考虑特殊位置,若0α=,此时0A DB '∠>;若180α=︒,则180A DB '∠=︒.所以A DB α'∠.故选B.二、填空题9. ,2y x =±解析 因为c ==2y x =±.10. 0,3解析 利用分段函数表达式,逐步求值.2((3))(lg10)(1)1301f f f f -===+-=.当1x 时,min ()30f x =<;当1x <时,()min ()00f x f ==.综上,min ()3f x =,所以((3))0f f -=,min ()3f x =. 11. π,()3π7ππ,π,88k k k ⎡⎤++∈⎢⎥⎣⎦Z解析因为1cos 21π3()sin 2122242x f x x x -⎛⎫=++=-+ ⎪⎝⎭, 所以2ππ2T ==. 所以ππ3π2π22π242k x k +-+,即3π7πππ,88k x k k ++∈Z .所以单调递减区间是()3π7ππ,π,88k k k ⎡⎤++∈⎢⎥⎣⎦Z .12.解析 因为242221log 3log 3log 3log 2a ====,所以log log 2222aa--+=+== 13.78解析 解法一 连接ND ,取ND 中点E ,连接,ME CE ,如图(1)所示,则CME ∠即是,AN CM 所成的角.ME =CM =,CE =所以7cos 8CME ∠==.评注 本题也可用向量法来求. 如图(2)所示,把A BCD -放入一个长方体中,然后建立空间直角坐标系,利用cos ,AN CM AN CM AN CM⋅=⋅来计算.图(1) 图(2)14. 3解析 ()()22632263x y x yx y x y +-+--+---- 348x y =+- .由[)()cos 01,0,2πsin x r r y r θθθ=⎧∈⎨=⎩得, 原式()()3cos 4sin 885sin r r θθθϕ=+-=-+,(3tan 4ϕ=). 所以22633x y x y+-+--.当34,55x y ==时取等号.所以()min22633x y x y+-+--=.15. 1,2,解析 由已知可得,60AOB ∠=︒,52,2OF OE ==. 如图所示,空间向量b 在12,e e 确定的平面内的射影是OC ,则7OC =设00,OA x OB y ==,ENMDCB AO1则0005,,222x x BC x BE OB ===-, 在△OBC 中,由余弦定理得220000557,2222x x x x ⎛⎫⎛⎫+-+-= ⎪ ⎪⎝⎭⎝⎭解得001,2x y ==.=b =.三、解答题16. (1)解析 解法一由余弦定理222222cos a b c bc A b c =+-=+,又22221c a b =-,所以消去2a 2212c c -=,32c =,所以3sin B C=3π3sin 4C C ⎛⎫⇒=-⇒ ⎪⎝⎭2tan =C . 解法二 由22221c a b =-及正弦定理得2221sin sin sin 2B A C -=,所以 C B 22sin 2121sin =-,23πcos 2sin cos 2sin 24B C C C ⎡⎤⎛⎫-==--= ⎪⎢⎥⎝⎭⎣⎦2sin cos C C =,所以2tan =C .(2)由2tan =C 得55cos ,552sin ==C C .又π4A =,所以10103sin =B . 由正弦定理得,b c 322=,(或由(Ⅰ)知) 所以1sin 32ABC S bc A ==△,所以23bc b ==,所以3=b . 17. 解析 (1)设BC 的中点为E ,连接1A E ,则⊥E A 1平面ABC ,所以1A E AE ⊥.又1//AE A D ,所以11A E A D ⊥.又1111A B AC =,所以111A D B C ⊥.而11//,B C BC 所以1A D BC ⊥. 又1BCA E E =,所以1A D ⊥平面BC A 1.(2)解法一:作BD F A ⊥1,垂足为F ,连接F B 1,如图(1)所示则2==EB AE , 411==A A B A .190A EB ∠=︒.所以1111,,A D DB A B B B ==所以11≌△△A BD B BD .由BD F A ⊥1,得BD F B ⊥1,因此11FB A ∠即为二面角11B BD A --的平面角. 又190DA B ∠=︒,所以BD =3411==F B F A . 在11△A FB 中,由余弦定理得,81cos 11-=∠FB A . 解法二:(向量法)以CB 的中点E 为原点,分别以射线1,,EA EB EA 为,,x y z轴的正半轴,CB建立空间直角坐标系xyz E -,如图(2)所示.由题意知各点坐标如下:)14,0,0(1A ,)0,2,0(B ,)14,0,2(-D ,)14,2,2(1-B .因此)14,2,0(1-=A ,)14,2,2(--=,)0,2,0(1=DB . 设平面BD A 1的法向量为111(,,)x y z =m ,平面BD B 1的法向量为222(,,)x y z =n .由10,0,A B BD ⎧⋅=⎪⎨⋅=⎪⎩m m即1111100=-=⎪⎩,可取=m . 由10,0,DB BD ⎧⋅=⎪⎨⋅=⎪⎩n n即222200==⎪⎩,可取=n . 于是1cos ,8⋅<>==⋅m n m n m n . 由题意可知,所求二面角的平面角是钝角,故二面角11B BD A --的平面角的余弦值为81-. 图(1) 图(2)18.解析(1)由22()()24a a f x x b =+-+,得对称轴为直线2a x -=. 因为2a ,所以(][),11,2a-∈-∞-+∞,所以)(x f 是]1,1[-上的单调函数,所以{}{}(,)max (1),(1)1,1M a b f f a b a b =-=-+++.解法一(分类讨论) 当2a 时,由(1)(1)24f f a --=, 得max{(1),(1)}2f f --,即(,)2M a b ;当 2a -时,由(1)(1)24f f a --=-,得max{(1),(1)}2f f --.即(,)2M a b . 综上所述,当2a时,(,)2M a b .解法二 利用绝对值的性质,及最大值的含义.{}()1111(,)max 1,1 2.22a b a b a b a bM a b a b a b a -+-++-++++=-+++=(2)解法一 当(,)2M a b 时,由(Ⅰ)知,2a,所以对称轴[]1,12ax =-∈-.A 1B 1C 1DC BAEFB 1由题意知,(1)2(1)2()22f f a f ⎧⎪-⎪⎪⎨⎪⎪-⎪⎩,即2121224a b a b a b ⎧⎪-+⎪⎪++⎨⎪⎪-+⎪⎩.画出可行域,利用线性规划即可求得()max3a b+=.解法二 (1)12(1)12f a b f a b ⎧=++⎪⎨-=-+⎪⎩⇒33a b a b ⎧+⎪⎨-⎪⎩, 所以 ,0,0a b ab a b a b ab ⎧+⎪+=⎨-<⎪⎩,所以 3a b +. 当1,2-==b a 时,3=+b a ,且122-+x x 在]1,1[-上的最大值为2, 即2)1,2(=-M ,所以b a +的最大值为3. 19.解析(1)设AB :1,y kx n k m ⎛⎫=+=-⎪⎝⎭,设()()1122,,,,A x y B x y AB 的中点()00,,M x y .由2212x y y kx n ⎧+=⎪⎨⎪=+⎩⇒()2222x kx n ++=⇒()222124220k x knx n +++-=. 所以()()22221222122164122204122212k n k n kn x x k n x x k ⎧∆=-+->⎪⎪-⎪+=⎨+⎪⎪-⋅=⎪+⎩,所以022202222122122kn mn x k m n m n y k m -⎧==⎪⎪++⎨⎪==⎪++⎩代入直线方程0012y mx =+得,2222m n m +=-. 代入0∆>解得, 36-<m 或36>m .评注 本题还可利用点差法22AB OM b k k a⋅=-来求解.(2)令16((0,)k m =-∈,则1222AB x k =-=+,又O到直线的距离21k d +==.所以1222AOB S AB d=⋅==△, 当且仅当212k =,即m =时取等号.所以△AOB 的面积的最大值为22.20.解析 (1)由题意得21n n n n a a a a +=-,所以111 (2)n n a a a -=, 1(1)n n n a a a +=-,所以n a 与1n a +同号,又1102a =>,所以102n a <,所以11[1,2]1n n na a a +=∈-, (2)由题意得12+-=n n n a a a ,所以222121111 (2)n n n n S a a a a a a ++=+++=-=-,又()1111111n n n n n a a a a a +==+--,所以[]11111,21n n na a a +-=∈- 所以11112n nn a a +-,因此1*11()2(1)2n a n n n +∈++N , 所以 11,22(2)2(1)n n n n S a n n +⎡⎤=-∈⎢⎥++⎣⎦所以*11()2(2)2(1)n S n n n n ∈++N . 评注 本题也可利用数学归纳法.。

2015年高考浙江省理科数学真题含答案解析(超完美版)

2015年高考浙江省理科数学真题含答案解析(超完美版)

2015年高考浙江省理科数学真题1.已知集合2{20},{12}P x x x Q x x =-≥=<≤,则()R P Q =( )A .[0,1)B .(0,2]C .(1,2)D .[1,2]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .38cmB .312cmC .3323cmD .3403cm 3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等比数列,则( ) A .10,0n a d dS >> B .10,0n a d dS << C .10,0n a d dS ><D .10,0n a d dS <>4.命题“**,()n N f n N ∀∈∈ 且()f n n ≤的否定形式是( ) A .**,()n N f n N ∀∈∉且()f n n > B .**,()n N f n N ∀∈∉或()f n n >C .**00,()n N f n N ∃∈∉且00()f n n > D .**00,()n N f n N ∃∈∉或00()f n n >5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( ) A .11BF AF -- B .2211BF AF -- C .11BF AF ++ D .2211BF AF ++6.设,A B 是有限集,定义(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“ (,)0d A B >”的充分必要条件;命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C ≤+,( ) A .命题①和命题②都成立 B .命题①和命题②都不成立 C .命题①成立,命题②不成立D .命题①不成立,命题②成立7.存在函数()f x 满足,对任意x R ∈都有( ) A .(sin 2)sin f x x = B .2(sin 2)f x x x =+ C .2(1)1f x x +=+D .2(2)1f x x x +=+8.如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A .A DB α'∠≤ B .A DB α'∠≥C .A CB α'∠≤D .A CB α'∠≤二、填空题9.双曲线2212x y -=的焦距是 ,渐近线方程是 . 10.已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是 . 11.函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 . 12.若2log 3a =,则22aa-+= .13.如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是 .14.若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 . 15.已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .三、解答题16.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知A=4π,22b a -=122c .(Ⅰ)求tanC 的值;(Ⅱ)若ABC 的面积为7,求b 的值。

2015年浙江省高考数学试卷(理科)及答案

2015年浙江省高考数学试卷(理科)及答案

2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1) B.(0,2]C.(1,2) D.[1,2]2.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.D.3.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0 4.(5分)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0 D.∃n0∈N*,f(n0)∉N*或f(n0)>n0 5.(5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A.B.C.D.6.(5分)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)存在函数f(x)满足,对任意x∈R都有()A.f(sin2x)=sinx B.f(sin2x)=x2+x C.f(x2+1)=|x+1| D.f(x2+2x)=|x+1| 8.(5分)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线﹣y2=1的焦距是,渐近线方程是.10.(6分)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)若a=log43,则2a+2﹣a=.13.(4分)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,=1(x0,y0∈R),则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1<≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1) B.(0,2]C.(1,2) D.[1,2]【分析】求出P中不等式的解集确定出P,求出P补集与Q的交集即可.【解答】解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.D.【分析】判断几何体的形状,利用三视图的数据,求几何体的体积即可.【解答】解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形高为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.3.(5分)(2015•浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0【分析】由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.【解答】解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.4.(5分)(2015•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0 D.∃n0∈N*,f(n0)∉N*或f(n0)>n0【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.5.(5分)(2015•浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF 与△ACF的面积之比是()A.B.C.D.【分析】根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.【解答】解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于D,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立【分析】命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.【解答】解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card (A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B 成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B ∩C)=[card(A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A7.(5分)(2015•浙江)存在函数f(x)满足,对任意x∈R都有()A.f(sin2x)=sinx B.f(sin2x)=x2+x C.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|【分析】利用x取特殊值,通过函数的定义判断正误即可.【解答】解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令x+1=t,则f(x2+2x)=|x+1|,化为f(t2﹣1)=|t|;令t2﹣1=x,则t=±;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.8.(5分)(2015•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD 折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α【分析】解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.【解答】解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线﹣y2=1的焦距是2,渐近线方程是y=±x.【分析】确定双曲线中的几何量,即可求出焦距、渐近线方程.【解答】解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.10.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣3))=0,f(x)的最小值是.【分析】根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x ≥1时,f(x)=,当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解【解答】解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,f(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是π,单调递减区间是[kπ+,kπ+](k∈Z).【分析】由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.【解答】解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)12.(4分)(2015•浙江)若a=log43,则2a+2﹣a=.【分析】直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.【解答】解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.【分析】连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.【解答】解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是3.【分析】根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.【解答】解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2x+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2x+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,=1(x0,y0∈R),则x0=1,y0=2,|=2.【分析】由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得.【解答】解:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故==2故答案为:1;2;2三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.【分析】(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.【解答】解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.17.(15分)(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.【分析】(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.【解答】(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.【分析】(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.【解答】解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|=|a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2,得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,﹣2≤≤2,易知(|a|+|b|)max=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).【分析】(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S=,再利用均值△OAB不等式即可得出.【解答】解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点横坐标为n,∴S==|n|•=,△OAB由均值不等式可得:n2(m2﹣n2+2)=,∴S=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,△AOB解得m=,取得最大值为.当且仅当m=时,S△AOB20.(15分)(2015•浙江)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1<≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).【分析】(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得>1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=a1﹣a n+1,对a n+1=a n﹣a n2两边同除以a n+1a n采用的范围,从而得出结论.累积法可求出a n+1﹣a n=﹣a n2≤0,即a n+1≤a n,【解答】证明:(1)由题意可知:a n+1故a n≤,1≤.由a n=(1﹣a n﹣1)a n﹣1得a n=(1﹣a n﹣1)(1﹣a n﹣2)…(1﹣a1)a1>0.所以0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴>1,∴==≤2,∴1<≤2(n∈N*),综上所述,1<≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1,①由a n=a n﹣a n2两边同除以a n+1a n得,和1≤≤2,+1得1≤≤2,累加得1+1+...1≤+﹣+...+﹣≤2+2+ (2)所以n≤﹣≤2n,≤(n∈N*)②,因此≤a n+1由①②得≤(n∈N*).。

(完整版)2015年浙江省高考理科数学试卷及答案(word版),推荐文档

(完整版)2015年浙江省高考理科数学试卷及答案(word版),推荐文档

绝密★考试结束前2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至3页,非选择题部分4至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

参考公式如果事件,A B 互斥 ,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k kn k n n P k C p p k n -=-=台体的体积公式121()3V h S S =其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π= 球的体积公式343V R π=其中R 表示球的半径2222侧视图俯视图xAyFOB C一、选择题:本大题共8小题, 每小题5分, 共40分, 在每小题给出的四个选项中只有一项是符合题目要求的。

1.已知集合P ={x |x 2-2x ≥0}, Q ={x |1<x ≤2}, 则(C R P )I Q =( ) A.[0, 1) B.(0, 2] C.(1, 2) D.[1, 2]2.某几何体的三视图如图所示(单位:cm), 则该几何体的体积是( )A.8cm 3B.12cm 3C.332cm 3D.340cm 33.已知{a n }是等差数列, 公差d 不为零, 前n 项和是S n , 若a 3, a 4, a 8 成等比数列, 则( )A. a 1d >0, dS 4>0B. a 1d <0, dS 4<0C. a 1d >0, dS 4<0D. a 1d <0, dS 4>04.命题“*)(*,N n f N n ∈∈∀ 且f (n )≤n ” 的否定形式是( )A.*)(*,N n f N n ∉∈∀且f (n )>nB.*)(*,N n f N n ∉∈∀或f (n )>nC.*)(*,00N n f N n ∉∈∃且f (n 0)>n 0D.*)(*,00N n f N n ∉∈∃或f (n 0)>n 05.如图, 设抛物线y 2=4x 的焦点为F , 不经过焦点的直线上有三个不同的点A , B , C , 其中 点A , B 在抛物线上, 点C 在y 轴上, 则△BCF 与△ACF 的面积之比是( )A.1||1||--AF BF B.1||1||22--AF BF C.1||1||++AF BF D.1||1||22++AF BF6.设A , B 是有限集, 定义d (A , B )=card(A Y B )-card(A I B ), 其中card(A )表示有限集A 中的元素个数,命题①:对任意有限集A , B , “A ≠B ”是“d (A , B )>0”的充分必要条件; 命题②:对任意有限集A , B , C , d (A , C )≤d (A , B )+ d (B , C ), 则( ) A.命题①和命题②都成立 B.命题①和命题②都不成立 C.命题①成立, 命题②不成立 D.命题①不成立, 命题②成立 7.存在函数f (x )满足, 对任意x ∈R 都有( )A.f (sin 2x )=sin xB. f (sin 2x )=x 2+xC.f (x 2+1)=|x +1|D.f (x 2+2x )=|x +1|8.如图, 已知△ABC , D 是AB 的中点, 沿直线CD 将△ACD 折 成△CD A ', 所成二面角B CD A --'的平面角为α, 则( ) A.DB A '∠≤α B.DB A '∠≥α C.CB A '∠≤α D.CB A '∠≥α二、填空题:本大题共7小题, 多空题每题6分, 单空题每题4分, 共36分。

2015年浙江省高考数学试卷(理科)解析

2015年浙江省高考数学试卷(理科)解析

- 让每一个人同等地提高自我2015 年浙江省高考数学试卷(理科)一、选择题:本大题共8 小题,每题5 分,共 40 分 2015 年一般高等学校招生全国一致考试(浙江卷)数学(理科)1.( 5 分)( 2015?浙江)已知会合P={x|x 2﹣ 2x ≥0} ,Q={x|1 < x ≤2} ,则( ?R P ) ∩Q= ( ) A .[0,1) B .( 0,2] C .(1, 2) D .[ 1, 2]2.( 5 分)( 2015?浙江)某几何体的三视图如下图 (单位: cm ),则该几何体的体积是( )A .3 B .12cm 3C .D .8cm3.( 5 分)( 2015?浙江)已知 {a n } 是等差数列,公差d 不为零,前 n 项和是 S n ,若 a 3, a 4,a 成等比数列,则()8d > 0,dS > 0 B . a d < 0, dS < 0 C . a d >0, dS < 0 D .A .a 1414141 44.( 5 分)( 2015?浙江)命题 “? n ∈N * , f ( n )∈N *且 f (n ) ≤n ”的否认形式是( )A . ? n ∈N * , f (n ) ? N * 且 f ( n )> nB .? n ∈N * , f ( n ) ? N *或 f ( n )> n C .? n 0∈N * , f ( n * 且 f (n D . ?n 0∈N * , f ( n* 或 f ( n0)?N 0)> n 0 0)?N 0)> n 05.( 5 分)( 2015?浙江)如图,设抛物线 y 2=4x 的焦点为 F ,不经过焦点的直线上有三个不一样的点 A ,B ,C ,此中点 A ,B 在抛物线上,点 C 在 y 轴上,则 △ BCF 与 △ ACF 的面积之 比是()- 让每一个人同等地提高自我A.B.C.D.6.( 5 分)( 2015?浙江)设 A,B 是有限集,定义: d(A ,B)=card( A ∪ B )﹣ card( A ∩B),此中 card( A )表示有限集 A 中的元素个数()命题① :对随意有限集 A ,B ,“A ≠B ”是“d(A , B)> 0”的充足必需条件;命题② :对随意有限集 A ,B , C, d( A , C)≤d(A , B) +d(B , C)A.命题① 和命题② 都建立B.命题① 和命题② 都不建立C.命题① 建立,命题② 不建立D.命题① 不建立,命题② 建立7.( 5 分)( 2015?浙江)存在函数 f( x)知足,对随意 x∈R 都有()A .f ( sin2x) =sinxB .f( sin2x )=x 2+x C.f( x2+1) =|x+1| D.f( x2+2x)=|x+1|8(. 5 分)( 2015?浙江)如图,已知△ABC ,D 是 AB 的中点,沿直线 CD 将△ ACD 折成△A ′CD ,所成二面角 A ′﹣ CD﹣ B 的平面角为α,则()A .∠ A ′DB ≤α B .∠ A ′DB ≥αC.∠A ′CB≤αD.∠ A ′CB≥α二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分.9.( 6 分)( 2015?浙江)双曲线=1 的焦距是,渐近线方程是.10(. 6 分)( 2015?浙江)已知函数(fx)=,则(f(f﹣3))=,f ( x)的最小值是.11.(6 分)( 2015?浙江)函数 f( x)=sin 2x+sinxcosx+1的最小正周期是,单调递减区间是.12.( 4分)( 2015?浙江)若a﹣a.a=log43,则 2 +2=13.( 4分)( 2015?浙江)如图,三棱锥 A ﹣BCD 中, AB=AC=BD=CD=3, AD=BC=2 ,点M ,N 分别是 AD ,BC 的中点,则异面直线 AN , CM 所成的角的余弦值是.- 让每一个人同等地提高自我2 214.( 4 分)( 2015?浙江)若实数x, y 知足 x +y ≤1,则 |2x+y ﹣ 2|+|6﹣ x﹣ 3y|的最小值是.15.( 6 分)( 2015?浙江)已知是空间单位向量,,若空间向量知足,且对于随意x, y∈R,,则x0=,y0=,|=.三、解答题:本大题共 5 小题,共74 分.解答应写出文字说明、证明过程或演算步骤.16.( 14 分)( 2015?浙江)在△ABC 中,内角 A ,B,C 所对的边分别为a,b,c,已知 A=,b 2﹣a2=c2.(1)求 tanC 的值;(2)若△ABC 的面积为 3,求 b 的值.17.( 15 分)( 2015?浙江)如图,在三棱柱 ABC ﹣ A 1B1C1中,∠ BAC=90 °,AB=AC=2 ,A 1A=4 , A 1在底面 ABC 的射影为 BC 的中点, D 是 B 1C1的中点.(1)证明: A 1D⊥平面 A 1BC;(2)求二面角 A 1﹣ BD ﹣ B1的平面角的余弦值.18.( 15 分)( 2015?浙江)已知函数 f( x)=x 2+ax+b (a, b∈R),记 M (a, b)是 |f( x)| 在区间 [﹣ 1, 1] 上的最大值.(1)证明:当 |a|≥2 时, M( a, b)≥2;- 让每一个人同等地提高自我(2)当 a,b 知足 M ( a, b)≤2 时,求 |a|+|b|的最大值.19.( 15 分)( 2015?浙江)已知椭圆上两个不一样的点A ,B 对于直线y=mx+对称.(1)务实数 m 的取值范围;(2)求△AOB 面积的最大值( O 为坐标原点).20.( 15 分)( 2015?浙江)已知数列{a n} 知足 a1=且a n+1=a n﹣a n2(n∈N*)(1)证明: 1≤≤2(n∈N*);(2)设数列 {a n 2} 的前 n 项和为 S n,证明(n∈N*).- 让每一个人同等地提高自我2015 年浙江省高考数学试卷(理科)参照答案与试题分析一、选择题:本大题共8 小题,每题 5 分,共 40 分 2015 年一般高等学校招生全国一致考试(浙江卷)数学(理科)1.( 5 分)考点:交、并、补集的混淆运算.专题:会合.剖析:求出 P 中不等式的解集确立出P,求出 P 补集与 Q 的交集即可.解答:解:由 P 中不等式变形得:x(x﹣ 2)≥0,解得: x≤0 或 x≥2,即 P=(﹣∞, 0]∪ [2, +∞),∴?R P=(0,2),∵Q=(1,2] ,∴(? R P)∩Q= ( 1,2),应选: C.评论:本题考察了交、并、补集的混淆运算,娴熟掌握运算法例是解本题的重点.2.( 5 分)考点:由三视图求面积、体积.专题:空间地点关系与距离.剖析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为 2 的正方体,上部是底面为边长 2 的正方形奥为 2 的正四棱锥,所求几何体的体积为: 23+ ×2×2×2=.应选: C.评论:本题考察三视图与直观图的关系的判断,几何体的体积的求法,考察计算能力.3.( 5 分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.剖析:由 a3, a, a 成等比数列,获得首项和公差的关系,即可判断 a d 和 dS的符号.4814- 让每一个人同等地提高自我解答:解:设等差数列 {a n } 的首项为 a 1,则 a 3=a 1+2d ,a 4=a 1+3d , a 8=a 1+7d , 由 a 3 4 8成等比数列,得 ,整理得: ., a , a∵ d ≠0,∴,∴,=<0.应选: B .评论:本题考察了等差数列和等比数列的性质,考察了等差数列的前n 项和,是基础题.4.( 5 分)考点 :命题的否认. 专题 :简略逻辑.剖析: 依据全称命题的否认是特称命题即可获得结论. 解答: 解:命题为全称命题,则命题的否认为: ?n 0∈N * , f ( n 0) ?N *或 f ( n 0)> n 0,应选: D .评论: 本题主要考察含有量词的命题的否认,比较基础.5.( 5 分)考点 :直线与圆锥曲线的关系.专题 :圆锥曲线的定义、性质与方程.剖析:依据抛物线的定义,将三角形的面积关系转变为 的关系进行求解即可.解答: 解:如下图,抛物线的准线DE 的方程为 x=﹣ 1,过 A ,B 分别作 AE ⊥ DE 于 E ,交 y 轴于 N , BD ⊥ DE 于 E ,交 y 轴于 M ,由抛物线的定义知 BF=BD , AF=AE , 则 |BM|=|BD| ﹣ 1=|BF|﹣ 1, |AN|=|AE| ﹣ 1=|AF| ﹣1,则===,应选: A- 让每一个人同等地提高自我评论:本题主要考察三角形的面积关系,利用抛物线的定义进行转变是解决本题的重点.6.( 5 分)考点:复合命题的真假.专题:会合;简略逻辑.剖析:命题① 依据充要条件分充足性和必需性判断即可,③ 借助新定义,依据会合的运算,判断即可.解答:解:命题①:对随意有限集A ,B ,若“A ≠B”,则 A ∪ B≠A ∩B ,则 card(A ∪ B)> card( A ∩B ),故“d( A , B)> 0”建立,若 d( A , B)> 0”,则 card( A ∪ B )> card( A ∩B),则 A ∪B ≠A ∩B ,故 A ≠B 建立,故命题① 建立,命题②,d(A ,B )=card( A ∪B )﹣ card(A ∩B),d(B ,C)=card(B ∪ C)﹣ card(B ∩C),∴d( A , B )+d( B, C)=card( A ∪ B)﹣ card(A ∩B) +card( B∪ C)﹣ card( B∩C) =[card (A ∪ B) +card(B∪ C) ] ﹣ [card ( A ∩B) +card( B∩C) ]≥card( A ∪ C)﹣ card(A ∩C) =d( A , C),故命题②建立,应选: A评论:本题考察了,元素和会合的关系,以及逻辑关系,分清会合之间的关系与各会合元素个数之间的关系,注意本题对充要条件的考察.会合的元素个数,表现两个会合的关系,但仅依靠元素个数不可以判断会合间的关系,属于基础题.7.( 5 分)考点:函数分析式的求解及常用方法.专题:函数的性质及应用.剖析:利用 x 取特别值,经过函数的定义判断正误即可.解答:解:A .取 x=0 ,则 sin2x=0 ,∴ f( 0)=0;取 x= ,则 sin2x=0 ,∴ f ( 0) =1;∴f( 0) =0,和 1,不切合函数的定义;∴不存在函数 f (x),对随意 x∈R 都有 f ( sin2x) =sinx ;B.取 x=0,则 f ( 0) =0;2取 x=π,则 f(0) =π+π;∴f( 0)有两个值,不切合函数的定义;∴该选项错误;C.取 x=1,则 f ( 2) =2,取 x= ﹣1,则 f( 2)=0;这样 f (2)有两个值,不切合函数的定义;∴ 该选项错误;D.令 |x+1|=t ,t≥0,则 f( t 2﹣ 1) =t;- 让每一个人同等地提高自我令 t 2﹣ 1=x ,则 t=;∴;,对随意 x ∈R ,都有 f ( x 2+2x ) =|x+1|;即存在函数 f ( x ) = ∴ 该选项正确. 应选: D .评论: 本题考察函数的定义的应用,基本知识的考察,可是思虑问题解决问题的方法比较难.8.( 5 分)考点 :二面角的平面角及求法. 专题 :创新题型;空间角.剖析: 解:画出图形,分 AC=BC , AC ≠BC 两种状况议论即可. 解答: 解: ① 当 AC=BC 时, ∠ A ′DB= α;② 当 AC ≠BC 时,如图,点 A ′投影在 AE 上, α=∠ A ′OE ,连接 AA ′, 易得 ∠ ADA ′< ∠ AOA ′,∴ ∠ A ′DB >∠ A ′OE ,即 ∠A ′DB > α 综上所述, ∠ A ′DB ≥α, 应选: B .评论: 本题考察空间角的大小比较,注意解题方法的累积,属于中档题.二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题4 分,共 36 分.9.( 6 分)考点 :双曲线的简单性质.专题 :计算题;圆锥曲线的定义、性质与方程.剖析: 确立双曲线中的几何量,即可求出焦距、渐近线方程.解答:=1 中, a=, b=1, c=,解:双曲线∴ 焦距是 2c=2 ,渐近线方程是 y= ± x .故答案为: 2; y=± x .评论: 本题考察双曲线的方程与性质,考察学生的计算能力,比较基础.10.( 6 分) 考点 :函数的值.专题 :计算题;函数的性质及应用.- 让每一个人同等地提高自我剖析:依据已知函数可先求 f ( ﹣ 3)=1,而后辈入可求 f ( f ( ﹣ 3));因为 x ≥1 时,f ( x )= ,当 x < 1 时, f ( x ) =lg ( x 2+1),分别求出每段函数的取值范围,即可求解解答:解: ∵ f ( x )=,∴ f (﹣ 3) =lg10=1 , 则 f ( f (﹣ 3))=f ( 1) =0,当 x ≥1 时, f ( x ) =,即最小值,当 x < 1 时, x 2+1≥1,( x ) =lg ( x 2+1) ≥0 最小值 0,故 f ( x )的最小值是 .故答案为: 0;.评论:本题主要考察了分段函数的函数值的求解,属于基础试题.11.(6 分)考点 :两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单一性. 专题 :三角函数的求值.剖析:由三角函数公式化简可得f ( x )= sin ( 2x ﹣ ) + ,易得最小正周期,解不等式2k π+ ≤2x ﹣≤2k π+可得函数的单一递减区间.解答: 解:化简可得 f ( x ) =sin 2x+sinxcosx+1= (1﹣ cos2x ) + sin2x+1=sin ( 2x ﹣ ) + ,∴ 原函数的最小正周期为T==π,由 2k π+≤2x ﹣ ≤2k π+ 可得 k π+≤x ≤k π+ ,∴ 函数的单一递减区间为 [k π+, k π+] ( k ∈Z )故答案为: π; [k π+, k π+] ( k ∈Z )评论: 本题考察三角函数的化简,波及三角函数的周期性和单一性,属基础题. 12.( 4 分)考点 :对数的运算性质.专题 :函数的性质及应用.剖析:直接把 a 代入 2a +2﹣a,而后利用对数的运算性质得答案.- 让每一个人同等地提高自我解答:解:∵ a=log 43,可知 4a=3,即 2a=,因此 2a+2﹣ a=+=.故答案为:.评论:本题考察对数的运算性质,是基础的计算题.13.( 4 分)考点:异面直线及其所成的角.专题:空间角.剖析:连接 ND ,取 ND的中点为: E,连接 ME 说明异面直线AN , CM 所成的角就是∠EMC 通过解三角形,求解即可.解答:解:连接 ND ,取 ND 的中点为: E,连接 ME ,则 ME ∥ AN ,异面直线AN ,CM 所成的角就是∠EMC,∵ AN=2,∴ ME==EN , MC=2,又∵EN⊥NC,∴EC==,∴ cos∠ EMC===.故答案为:.评论:本题考察异面直线所成角的求法,考察空间想象能力以及计算能力.14.( 4 分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.剖析:﹣ x﹣3y,再议论直线2 2分红依据所给 x, y 的范围,可得 |6﹣ x﹣3y|=62x+y ﹣ 2=0 将圆 x +y =1两部分,分别去绝对值,运用线性规划的知识,平移即可获得最小值.- 让每一个人同等地提高自我22解答:解:由 x +y ≤1,可得 6﹣x ﹣ 3y > 0,即 |6﹣ x ﹣ 3y|=6﹣ x ﹣ 3y ,如图直线 2x+y ﹣ 2=0 将圆 x 2+y 2=1 分红两部分,在直线的上方(含直线) ,即有 2x+y ﹣ 2≥0,即 |2+y ﹣ 2|=2x+y ﹣ 2,此时 |2x+y ﹣ 2|+|6﹣ x ﹣3y|=( 2x+y ﹣ 2) +( 6﹣ x ﹣ 3y )=x ﹣ 2y+4,利用线性规划可得在A ( , )处获得最小值 3;在直线的下方(含直线) ,即有 2x+y ﹣ 2≤0, 即 |2+y ﹣ 2|=﹣( 2x+y ﹣ 2),此时 |2x+y ﹣ 2|+|6﹣ x ﹣3y|=﹣( 2x+y ﹣ 2) +( 6﹣ x ﹣ 3y ) =8 ﹣ 3x ﹣ 4y ,利用线性规划可得在A ( , )处获得最小值3.综上可得,当 x= , y= 时, |2x+y ﹣ 2|+|6﹣ x ﹣ 3y|的最小值为 3.故答案为: 3.评论:本题考察直线和圆的地点关系,主要考察二元函数在可行域内获得最值的方法,属于中档题.15.( 6 分)考点 : 空间向量的数目积运算;平面向量数目积的运算.专题 : 创新题型;空间向量及应用.剖析:? > = ,不如设 =( , , 0), =( 1, 0, 0),由由题意和数目积的运算可得<已知可解 =( ,, t ),可得 | ﹣(|2=( x+)2+ ( y ﹣ 2)2+t 2,由题意可得当 x=x 0=1 0时,( x+222 取最小值1,由模长公式可得|., y=y =2 ) + (y ﹣ 2) +t- 让每一个人同等地提高自我解答:解: ∵ ? =| || |cos < ? >=cos < ? >= ,∴ < ? > = ,不如设 =( , ,0), =( 1, 0,0), =( m , n , t ),则由题意可知 = m+n=2,=m=,解得 m= ,n= ,∴=(, , t ),∵ ﹣()=( ﹣ x ﹣ y ,, t ),∴| ﹣(|2=( ﹣ x ﹣ y ) 2+() 2+t 2=x 2+xy+y 2﹣ 4x ﹣5y+t 2+7= ( x+ )2+ ( y ﹣ 2) 2+t 2,由题意当 x=x 0 , y=y 0=2 时,( x+ 22 2 取最小值 1,=1 ) +( y ﹣ 2) +t 此时 t 2=1,故|==2故答案为: 1;2; 2评论: 本题考察空间向量的数目积,波及向量的模长公式,属中档题. 三、解答题:本大题共5 小题,共 16.( 14 分) 考点 :余弦定理.专题 :解三角形.剖析:( 1)由余弦定理可得:74 分.解答应写出文字说明、证明过程或演算步骤.22 2.可得 ,a= .利,已知 b ﹣ a = c用余弦定理可得 cosC .可得 sinC=,即可得出 tanC=.( 2)由=×=3,可得 c ,即可得出 b .解答:解:( 1)∵ A= ,∴ 由余弦定理可得:, ∴ b 2﹣ a 2= bc ﹣c 2,又 b 2﹣ a 2= c 2. ∴ bc ﹣ c 2= c 2.∴ b= c .可得,∴ a 2=b 2﹣=,即 a=.∴ cosC= = = .∵ C ∈( 0, π),∴ sinC==.∴ tanC==2.- 让每一个人同等地提高自我(2)∵=×=3,解得 c=2.∴=3 .评论:本题考察了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考察了推理能力与计算能力,属于中档题.17.( 15 分)考点:二面角的平面角及求法;直线与平面垂直的判断.专题:空间地点关系与距离;空间角.剖析:( 1)以 BC 中点 O 为坐标原点,以OB 、OA 、OA1所在直线分别为x、y、z 轴建系,经过?=?=0 及线面垂直的判断定理即得结论;(2)所求值即为平面 A1BD 的法向量与平面 B 1BD 的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:( 1)证明:如图,以 BC 中点 O 为坐标原点,以OB 、OA 、OA 1所在直线分别为x、y、 z 轴建系.则 BC=AC=2,A 1O==,易知 A1(0,0,),B(, 0, 0), C(﹣, 0, 0),A (0,,0), D( 0,﹣,), B1(,﹣,),=( 0,﹣, 0),=(﹣,﹣,),=(﹣, 0, 0),=(﹣ 2, 0, 0),=( 0, 0,),∵?=0,∴A 1D⊥ OA 1,又∵?=0,∴A1D⊥BC,又∵ OA 1∩BC=O ,∴A 1D⊥平面 A 1BC ;( 2)解:设平面 A 1BD 的法向量为=( x, y, z),由,得,取 z=1,得 =(, 0, 1),设平面 B1BD 的法向量为=( x, y, z),由,得,取 z=1,得 =( 0,, 1),- 让每一个人同等地提高自我∴ cos < , > == = ,又 ∵ 该二面角为钝角,∴ 二面角 A 1﹣BD ﹣ B 1 的平面角的余弦值为﹣.评论:本题考察空间中线面垂直的判断定理, 考察求二面角的三角函数值, 注意解题方法的累积,属于中档题.18.( 15 分)考点 : 二次函数在闭区间上的最值. 专题 : 函数的性质及应用.剖析:( 1)明确二次函数的对称轴,区间的端点值,由 a 的范围明确函数的单一性,联合已知以及三角 不等式变形所求获得证明; ( 2)议论 a=b=0 以及剖析 M ( a , b ) ≤2 获得﹣3≤a+b ≤1 且﹣ 3≤b ﹣a ≤1,进一步求出 |a|+|b|的求值. 解答:解:( 1)由已知可得 f ( 1) =1+a+b , f (﹣ 1) =1﹣ a+b ,对称轴为 x=﹣ ,因为 |a|≥2,因此或≥1,因此函数 f (x )在 [﹣ 1,1] 上单一,因此 M ( a ,b )=max{|f ( 1),|f (﹣ 1)|}=max{|1+a+b| , |1﹣ a+b|} ,因此 M ( a ,b )≥( |1+a+b|+|1﹣ a+b|)≥ (| 1+a+b )﹣( 1﹣ a+b ) |≥ |2a|≥2;( 2)当 a=b=0 时, |a|+|b|=0 又 |a|+|b|≥0,因此 0 为最小值,切合题意;又对随意 x ∈[﹣ 1, 1] .有﹣ 2≤x 2+ax+b ≤2 获得﹣3≤a+b ≤1 且﹣ 3≤b ﹣a ≤1,易知 |a|+|b|=max{|a ﹣ b|,因此 |a|+|b|的最大值为 3.评论: 本题考察了二次函数闭区间上的最值求法;解答 本题的重点是正确理解M ( a , b )是 |f ( x ) |在区间 [﹣ 1,1]上的最大值, 以及利用三角不等式变形.19.( 15 分)考点 :直线与圆锥曲线的关系.专题 :创新题型;圆锥曲线中的最值与范围问题.剖析: ( 1)由题意,可设直线 AB 的方程为 x= ﹣ my+n ,代入椭圆方程可得( m 2+2) y 2﹣ 2mny+n 2﹣2=0 ,设 A ( x 1, y 1), B (x 2, y 2).可得 △ >0,设线段 AB 的中点 P (x 0, y 0),利用中点坐标公式及其根与系数的可得 P ,代入直线 y=mx+ ,可得 ,代入 △ > 0,即可解出.( 2)直线 AB 与 x 轴交点横坐标为 n ,可得 S △ OAB = ,再利用均值不等式即可得出.解答:AB 的方程为 x= ﹣ my+n ,代入椭圆方程2解:( 1)由题意,可设直线,可得( m +2)y 2﹣ 2mny+n 2﹣ 2=0 ,设 A ( x 1, y 1), B ( x 2, y 2).由题意, △=4m 2n 2﹣ 4( m 2+2 )(n 2﹣ 2) =8 (m 2﹣ n 2+2)> 0,设线段 AB 的中点 P ( x 0, y 0),则. x 0=﹣ m × +n= ,因为点 P 在直线 y=mx+ 上, ∴= + ,∴,代入 △ > 0,可得 3m 4+4m 2﹣ 4> 0,解得 m 2, ∴或 m. ( 2)直线 AB 与 x 轴交点纵坐标为n ,∴ S △OAB == |n|? =,由均值不等式可得: n 2( m 2﹣ n 2+2)= ,∴ S △AOB= ,当且仅当2 2 2 2 2,又 ∵,解得n =m ﹣n +2,即 2n =m +2 m= ,当且仅当 m=时, S △ AOB 获得最大值为 .评论: 本题考察了椭圆的定义标准方程及其性质、直线与椭圆订交问题转变为方程联立可得根与系数式的性,考了推理能力与算能力,属于.20.( 15 分)考点:数列的乞降;数列与不等式的合.:新型;点列、数列与数学法.剖析:( 1)通意易得0< a n*),利用 a n n+1可得≥1,利用≤( n∈N a ===≤2,即得;( 2)通=a n a n+1累加得 S n=a n+1,利用数学法可明≥a n≥( n≥2),进而≥≥,化即得.解答:明:( 1)由意可知:0< a n* ),≤( n∈N又∵ a2=a1=,∴ = =2,又∵ a n a n+1=,∴ a n>a n+1,∴≥1,∴==≤2,∴ 1≤≤2(n∈N *);( 2)由已知,=a n a n+1,=a n﹣1 a n,⋯,=a 1a2,累加,得 S n=++⋯+1n+1n+1 =a a = a ,易知当 n=1 ,要式子然建立;当 n≥2 ,=.下边明:≥a n≥(n≥2).易知当 n=2 建立,假当n=k 也建立,a k+1=+,- 让每一个人同等地提高自我由二次函数单一性知:a n+1≥﹣ + = ≥ ,a n+1≤﹣ + = ≤ ,∴ ≤ ≤ ,即当 n=k+1 时仍旧建立,故对 n ≥2,均有≥a n ≥ ,∴= ≥ ≥ = ,即(n ∈N *).评论: 本题是一道数列与不等式的综合题, 考察数学概括法, 对表达式的灵巧变形是解决本题的重点,注意解题方法的累积,属于难题.。

2015年浙江省高考试卷(理科数学)(word版)含答案

2015年浙江省高考试卷(理科数学)(word版)含答案

2015年浙江省高考试卷(理科数学)选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合P ={x|x 2-2x≥0},Q={x|1<x ≤2},则( R P)∩Q =A.[0,1)B.(0,2]C.( 1,2)D.[1,2]2、某几何体的三视图如图所示(单位:cm ),则该几何体的体积是A.8 cm 3B.12 cm 3C.323cm 3D.403cm 3 3、已知{a n }是等差数列,公差d 不为零,前n 项和是S n 。

若a 3,a 4,a 8成等比数列,则A.a 1d>0,dS 4>0B. a 1d<0,dS 4<0C. a 1d>0,dS 4<0D. a 1d<0,dS 4>04、命题“∀ n ∈N *,f(n)∈N *且f(n)≤n”的否定形式是A. ∀ n ∈N *,f(n)∉N *且f(n)>nB. ∀ n ∈N *,f(n)∉N *或f(n)>nC. ∃n 0∈N *,f(n 0)∉N *且f(n 0)>n 0D. ∃n 0∈N *,f(n 0)∉N *或f(n 0)>n 05、如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比为 A.||1||1BF AF -- B. 22||1||1BF AF -- C. ||1||1BF AF ++ D. 22||1||1BF AF ++6、设A ,B 是有限集,定义:d(A ,B)=card(A ∪B)-card(A∩B),其中card(A)表示有限集A 中元素的个数。

命题①:对任意有限集A ,B ,“A≠B”是“d(A ,B)>0”的充分必要条件;命题②:对任意有限集A ,B ,C ,d(A ,C)≤d(A ,B)+d(B ,C)A.命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立7、存在函数f(x)满足:对于任意x ∈R 都有A.f(sin2x)=sinxB. f(sin2x)=x 2+xC.f(x 2+1)=|x+1|D. f(x 2+2x)=|x+1|8、如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD翻折成△A′CD ,所成二面角A′-CD -B 的平面角为α,则A.∠A′DB≤αB. ∠A′DB≥αC. ∠A′CB≤αD. ∠A′CB≥α非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2015年高考理科数学浙江卷及答案

2015年高考理科数学浙江卷及答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至2页,非选择题部分3至6页.满分150分,考试时间120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上作答一律无效. 参考公式:球的表面积公式锥体的体积公式24S R π= 13V Sh =球的体积公式其中S 表示锥体的底面积,h 表示锥体的高 334V R π=台体的体积公式其中R 表示球的半径121(S )3V h S =+柱体的体积公式 其中1S ,2S 分别表示台体的上、下底面积, V Sh =h 表示台体的高其中S 表示柱体的底面积,h 表示柱体的高选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合22{|}=0P x x -≥,{}12|Q x x =<≤,则R ()P Q =ð ( ) A .[0,1)B .(0,2]C .(1,2)D .[1,2]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A .8 cm 3 B .12 cm 3 C .323 cm 3 D .403cm 3 3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S .若3a ,4a ,8a 成等比数列,则 ( )A .10a d >,40dS >B .10a d <,40dS <C .10a d >,40dS <D .10a d <,40dS >4.命题“*n ∀∈N ,()*f n ∈N 且)(f n n ≤”的否定形式是( )A .*n ∀∈N ,()*f n ∉N 且)(f n n >B .*n ∀∈N ,()*f n ∉N 或)(f n n >C .0*n ∃∈N ,0()*f n ∉N 且00)(f n n >D .0*n ∃∈N ,0()*f n ∉N 或00)(f n n >5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有 三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF △与A CF △的面积之比是( )A .||1||1BF AF --B .22||1||1BF AF -- C .||1||1BF AF ++ D .22||1||1BF AF ++ 6.设A ,B 是有限集,定义:((,))()d A B card AB card AB =-,其中()card A 表示有限集A 中元素的个数.( )命题①:对任意有限集A ,B ,“A B ≠”是“(,)0d A B >”的充分必要条件; 命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C +≤. A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立 7.存在函数()f x 满足:对任意x ∈R 都有( )A .(sin 2)sin f x x =B .2(sin 2)f x x x =+C .2(1)|1|f x x +=+D .2(2)|1|f x x x +=+8.如图,已知ABC △,D 是AB 的中点,沿直线CD 将ACD △翻折成A CD '△,所成二面角A CDB '--的平面角为α,则( )A .A DB α∠'≤ B .A DB α∠'≥C .A CB α∠'≤D .A CB α∠'≥非选择题部分(共110分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.把答案填在题中的横线上.9.双曲线2212x y -=的焦距是 ,渐近线方程是 .10.已知函数223, 1,()lg(1),1,x x x f x x x ⎧+-⎪⎪=⎨⎪+⎪⎩≥<,则(())3f f =- ,)(f x 的最小值是 .11.函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 . 12.若4log 3a =,则22a a +=- .13.如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .14.若实数x ,y 满足221x y +≤,则22|||6|3x y x y +-+--的最小值是 .15.已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意,x y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0= ,y 0= , |b |= .三、解答题:本大题共5小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤.16.(本小题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知π4A =,22212b ac -=. (Ⅰ)求tan C 的值;(Ⅱ)若ABC △的面积为3,求b 的值.17.(本小题满分15分)姓名________________ 准考证号_____________数学试卷 第4页(共18页) 数学试卷 第5页(共18页) 数学试卷 第6页(共18页)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 是11B C 的中点.(Ⅰ)证明:1A D ⊥平面1A BC ;(Ⅱ)求二面角11A BD B --的平面角的余弦值.18.(本小题满分15分)已知函数2()(,)f x x ax b a b =++∈R ,记(,)M a b 是|()|f x 在区间[]1,1-上的最大值. (Ⅰ)证明:当||2a ≥时,(,)2M a b ≥;(Ⅱ)当a ,b 满足(,)2M a b ≤时,求||||a b +的最大值.19.(本小题满分15分) 已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称. (Ⅰ)求实数m 的取值范围;(Ⅱ)求AOB △面积的最大值(O 为坐标原点).20.(本小题满分15分)已知数列{}n a 满足112a =且21*)(n n n a a a n +-=∈N . (Ⅰ)证明:112(*)nn a n a +∈N ≤≤; (Ⅱ)设数列2{}na 的前n 项和为n S ,证明:11()2(2)2(1)*n S n n n n ∈++N ≤≤.数学试卷 第7页(共18页) 数学试卷 第8页(共18页) 数学试卷 第9页(共18页)2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)答案解析)(1,2)Q =,求出P 补集与【考点】抛物线的标准方程及其性质 6.【答案】A【解析】命题①显然正确,通过下面文氏图亦可知(,)d A C 表示的区域不大于(,)(,)d A B d B C +的区域,故命题②也正确,故选A .第6题图【提示】①命题根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的。

2015高考试题——数学理(浙江卷)Word版含答案

2015高考试题——数学理(浙江卷)Word版含答案

2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中 只有一项是符合题目要求的。

1.已知集合2{20},{12}P x x x Q x x =-≥=<≤,则()R P Q =ð ( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A.38cm B. 312cm C.3323cm D. 3403cm3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等 比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <>4.命题“**,()n N f n N ∀∈∈ 且()nf n n ≤的否定形式是( )A. **,()n N f n N ∀∈∉,且()f n n > B. **,()n N f n N ∀∈∉或()f n n > C. **00,()n N f n N ∃∈∉且00()f n n > D. **00,()n N f n N ∃∈∉或00()f n n > 5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++6.设,A B 是有限集,定义:(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C ≤+, A. 命题①和命题②都成立 B. 命题①和命题②都不成立 C. 命题①成立,命题②不成立 D. 命题①不成立,命题②成立 7.存在函数()f x 满足,对于任意x R ∈都有( ) A. (sin 2)sin f x x = B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+8.如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆翻折成A CD '∆,所成二面角A CDB '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. 'ACB α∠≥二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2015年浙江省高考数学试卷(理科)试题与解析

2015年浙江省高考数学试卷(理科)试题与解析

2015年浙江省高考数学试卷(理科)及答案解析版一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)22.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()D3.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,**5.(5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()C D6.(5分)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;8.(5分)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线=1的焦距是,渐近线方程是.10.(6分)已知函数f(x)=,则f(f(﹣3))=,f (x)的最小值是.11.(6分)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)若a=log43,则2a+2﹣a=.13.(4分)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)22.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()D+3.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,成等比数列,得.,∴∴=**5.(5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()C D根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.==,6.(5分)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;x=t=∴=8.(5分)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线=1的焦距是2,渐近线方程是y=±x.解:双曲线,c=,渐近线方程是±;±10.(6分)已知函数f(x)=,则f(f(﹣3))=0,f(x)的最小值是.,=)的最小值是;11.(6分)函数f(x)=sin2x+sinxcosx+1的最小正周期是π,单调递减区间是[kπ+,kπ+](k∈Z).sin),易得最小正周期,解不等式+﹣可得函数的单调递减区间.(sin2x+1sin),T==≤+≤,+],]12.(4分)若a=log43,则2a+2﹣a=.,+=故答案为:13.(4分)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.,=EN MC=2EC===.故答案为:.14.(4分)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是3.,)处取得最小值,)处取得最小值x=y=15.(6分)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=1,y0=2,|=2.由题意和数量积的运算可得<•,不妨设=(,,,,由已知可解(,|﹣(|)(x+)(由模长公式可得解:∵=|||><>,•>,不妨设(,,,=n=2,,解得n=,∴=,∵﹣()(﹣∴|﹣(|﹣x()()(,故=2三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.由余弦定理可得:=可得sinC=,即可得出tanC=)由=×A=,由余弦定理可得:bc=.∴=.∴c.可得﹣cosC=.==2)∵×c=2∴=317.(15分)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.•==0AC=2,=)(,,,﹣,,﹣,,,(﹣,﹣)(﹣,=∵•又∵•的法向量为,得,得=的法向量为,得,得=,,>=,的平面角的余弦值为﹣.18.(15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.﹣,所以或≥||2a|19.(15分)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).y=mx+可得=,代入椭圆方程,可得,则×+n=上,∴+∴2,∴===,AOB=,又∵取得最大值为20.(15分)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).≤可得通过利用数学归纳法可证明(≥(﹣,∴=,∴∴≤)由已知,=a++=下面证明:≥(﹣,+=,﹣=≤∴≤,均有≥∴=≥,(。

2015年普通高等学校招生全国统一考试数学理试题(浙江卷,参考版部分解析)

2015年普通高等学校招生全国统一考试数学理试题(浙江卷,参考版部分解析)

2015年普通高等学校招生全国统一考试数学理试题(浙江卷,参考版部分解析)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中 只有一项是符合题目要求的。

1、已知集合2{20},{12}P x x x Q x x =-≥=<≤,则()R P Q =ð ( )A.[0,1)B. (0,2]C. (1,2)D. [1,2] 【答案】C.2、某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A.38cmB. 312cm C. 3323cm D. 3403cm【答案】C.【解析】由题意得,该几何体为一立方体与四棱锥的组合∴体积3322231223=⨯⨯+=V , 故选C. 3、已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等比数列,则( ) A.10,0n a d dS >> B. 10,0n a d dS << C.10,0n a d dS >< D. 10,0n a d dS <>【答案】C. 【解析】4、命题“**,()n N f n N ∀∈∈ 且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n >B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >【答案】C.【解析】根据全称命题的否定,可知选D.5、如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF --C. 11BF AF ++ D.2211BF AF ++【答案】A.6.设,A B 是有限集,定义(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C ≤+, A. 命题①和命题②都成立 B. 命题①和命题②都不成立 C. 命题①成立,命题②不成立 D. 命题①不成立,命题②成立 【答案】A.【解析】命题①显然正确,通过文氏图可知命题②也正确,故选A. 7、存在函数()f x 满足,对任意x R ∈都有( )A. (sin 2)sin f x x =B.2(sin 2)f x x x =+ C.2(1)1f x x +=+ D.2(2)1f x x x +=+【答案】D.8、如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤【答案】B.【解析】根据二面角的定义,以及折叠过程可知B 正确.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2015年浙江省高考数学【理】(含解析版)

 2015年浙江省高考数学【理】(含解析版)

2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)2()2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()..3.(5分)(2015•浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()*,f(n)∈N*且f(n)≤n”的否定形式是()5.(5分)(2015•浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()....6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)8.(5分)(2015•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•浙江)已知函数f (x )=,则f (f (﹣3))=,f (x )的最小值是. 11.(6分)(2015•浙江)函数f (x )=sin 2x+sinxcosx+1的最小正周期是 ,单调递减区间是 .12.(4分)(2015•浙江)若a=log 43,则2a +2﹣a = .13.(4分)(2015•浙江)如图,三棱锥A ﹣BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .14.(4分)(2015•浙江)若实数x ,y 满足x 2+y 2≤1,则|2x+y ﹣2|+|6﹣x ﹣3y|的最小值是 .15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x ,y ∈R ,,则x 0= ,y 0= ,|= .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知A=,b 2﹣a 2=c 2. (1)求tanC 的值;(2)若△ABC 的面积为3,求b 的值. 17.(15分)(2015•浙江)如图,在三棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,AB=AC=2,A 1A=4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点. (1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1﹣BD ﹣B 1的平面角的余弦值.18.(15分)(2015•浙江)已知函数f (x )=x 2+ax+b (a ,b ∈R ),记M (a ,b )是|f (x )|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M (a ,b )≥2;(2)当a ,b 满足M (a ,b )≤2时,求|a|+|b|的最大值.19.(15分)(2015•浙江)已知椭圆上两个不同的点A ,B 关于直线y=mx+对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).20.(15分)(2015•浙江)已知数列{a n }满足a 1=且a n+1=a n ﹣a n 2(n ∈N *)(1)证明:1≤≤2(n ∈N *);(2)设数列{a n 2}的前n 项和为S n ,证明(n ∈N *).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C .解:设等差数列{a n }的首项为a 1,则a 3=a 1+2d ,a 4=a 1+3d ,a 8=a 1+7d , 由a 3,a 4,a 8成等比数列,得,整理得:.∵d≠0,∴, ∴,=<0.故选:B .本题考查了等差数列和等比数列的性质,考查了等差数列的前n 项和,是基础题. 根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可. 解:如图所示,抛物线的准线DE 的方程为x=﹣1,则===,故选:A本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解:化简可得f(x)=sin2x+sinxcosx+1 =(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.本题考查对数的运算性质,是基础的计算题.通过解三角形,求解即可.解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.18.(15分)求值.解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.本题考查了二次函数闭区间上的最值求法;解19.(15分)(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用= =≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的祝福语祝你考试成功!。

2015年高考浙江省理科数学试题及答案解析(名师精校版)

2015年高考浙江省理科数学试题及答案解析(名师精校版)

点评:本题主要考查含有量词的命题的否定,比较基础.
5.(5 分)如图,设抛物线 y2=4x 的焦点为 F,不经过焦点的直线上有三个不同的点 A,B,C,其中点 A, B 在抛物线上,点 C 在 y 轴上,则△BCF 与△ACF 的面积之比是( )
A.
B.
C.
D.
考点:直线与圆锥曲线的关系. 菁优网版 权所有
命题②:对任意有限集 A,B,C,d(A,C)≤d(A,B)+d(B,C)
A. 命题①和命题②都成立
B. 命题①和命题②都不成立
C. 命题①成立,命题②不成立
D. 命题①不成立,命题②成立
考点:复合命题的真假. 菁优网版 权所有
专题:集合;简易逻辑.
分析:命题①根据充要条件分充分性和必要性判断即可,
其中 S 表示柱体的底面积, h 表示柱体
的高
锥体的体积公式 V 1 Sh 其中 S 表示 3
锥体的底面积, h 表示锥体的高
球的表面积公式
如果事件 A 在一次试验中发生的概率为 P , 那么 n 次独立重复试验中事件 A 恰好发生 k
次的概率
Pn (k ) Cnk pk (1 p)nk (k 0,1, 2,..., n)
菁优网版 权所有
专题:等差数列与等比数列. 分析:由 a3,a4,a8 成等比数列,得到首项和公差的关系,即可判断 a1d 和 dS4 的符号. 解答:解:设等差数列{an}的首项为 a1,则 a3=a1+2d,a4=a1+3d,a8=a1+7d,
第 1 页 共 17 页
由 a3,a4,a8 成等比数列,得 .
选择题部分(共 50 分)
注意事项:
1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规

2015年浙江省高考数学试卷(理科)解析

2015年浙江省高考数学试卷(理科)解析

2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁RP)∩Q=()A. [0,1) B. (0,2]C.(1,2)D.[1,2]2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A. 8cm3B.12cm3 C. D.3.(5分)(2015•浙江)已知{an}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A. a1d>0,dS4>0 B.a1d<0,dS4<0 C. a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n"的否定形式是( ) A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0 D. ∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A. B. C. D.6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C. 命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•浙江)存在函数f(x)满足,对任意x∈R都有()A.f(sin2x)=sinx B. f(sin2x)=x2+xC. f(x2+1)=|x+1|D. f(x2+2x)=|x+1|8.(5分)(2015•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥α C. ∠A′CB≤α D. ∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•浙江)若a=log43,则2a+2﹣a=.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•浙江)已知数列{an}满足a1=且a n+1=a n﹣an2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为Sn,证明(n∈N*).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题: 集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁RP=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题: 等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,n由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点: 命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点: 直线与圆锥曲线的关系.专题: 圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card(A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点: 函数解析式的求解及常用方法.专题: 函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点: 二面角的平面角及求法.专题: 创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定双曲线中的几何量,即可求出焦距、渐近线方程.解答:解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(6分)考点: 函数的值.专题: 计算题;函数的性质及应用.分析:根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.点评:本题主要考查了分段函数的函数值的求解,属于基础试题.11.(6分)考点:两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专题: 三角函数的求值.分析:由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点: 对数的运算性质.专题: 函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点: 异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题: 不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点评:本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.15.(6分)考点: 空间向量的数量积运算;平面向量数量积的运算.专题:创新题型;空间向量及应用.分析:由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解答:解:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点评:本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)考点: 余弦定理.专题:解三角形.分析:(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解答:解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b= c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点: 二面角的平面角及求法;直线与平面垂直的判定.专题: 空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题: 函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点: 数列的求和;数列与不等式的综合.专题: 创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣an+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<an≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵an﹣a n+1=,∴an>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=an﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣an+1=﹣an+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥an≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。

浙江省高考数学试卷(理科)试题与解析

浙江省高考数学试卷(理科)试题与解析

2015年浙江省高考数学试卷(理科)及答案解析版一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)22.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()3.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,**5.(5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()B6.(5分)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card (A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;8.(5分)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线=1的焦距是,渐近线方程是.10.(6分)已知函数f(x)=,则f(f(﹣3))=,f (x)的最小值是.11.(6分)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)若a=log43,则2a+2﹣a=.13.(4分)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)22.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()+3.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,成等比数列,得.,∴,=**5.(5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()B根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.==,6.(5分)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card (A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;x=t==8.(5分)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线=1的焦距是2,渐近线方程是y=±x.解:双曲线,c=,渐近线方程是±;±10.(6分)已知函数f(x)=,则f(f(﹣3))=0,f(x)的最小值是.,=)的最小值是;11.(6分)函数f(x)=sin2x+sinxcosx+1的最小正周期是π,单调递减区间是[kπ+,kπ+](k∈Z).sin)++可得函数的单调递减区间.(sin2x+1sin),=≤+≤,,],]12.(4分)若a=log43,则2a+2﹣a=.,+=故答案为:13.(4分)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.AN=2ME=MC=2,EC==,EMC===故答案为:.14.(4分)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是3.,)处取得最小值,)处取得最小值x=y=15.(6分)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=1,y0=2,|=2.由题意和数量积的运算可得<•,不妨设=(,,,=,由已知可解(,|﹣(|)(x+)(由模长公式可得解:∵=||||cos•<•=•>,不妨设(,,==n=2,=m=,m=n=∴(,﹣()(﹣,|﹣(|﹣x)()(,故=2三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.由余弦定理可得:c可得sinC=,即可得出tanC=)由=×A=,∴由余弦定理可得:=.∴c b=.可得,﹣,即cosC=.=tanC=)∵=×c=2=317.(15分)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.•==0AC=2,=)(,,,﹣,,﹣,),,(﹣,﹣)(﹣,,=••=0的法向量为,得,得=的法向量为,得,得=,,>==.18.(15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.﹣,所以或≥||2a|19.(15分)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).,可得=,代入椭圆方程,可得,则×+n=上,∴+2,∴m=|n|=,AOB=,又∵.20.(15分)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).≤可得通过﹣≥(≥,化简即得结论.(﹣,∴=2,∴≤)由已知,=a++=下面证明:≥(﹣,+=,﹣=≤≤,即当,均有≥=≥,(。

2015年普通高等学校招生全国统一考试(浙江卷)数学试题 (理科)解析版

2015年普通高等学校招生全国统一考试(浙江卷)数学试题 (理科)解析版

2015年高考浙江卷理数试题解析(精编版)(解析版)一.选择题:本大题共8小题,每小题5分,共40分,在每小题的四个选项中,只有一项是符合要求的.1. 已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =I ð( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]2. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A.38cm B. 312cm C.3323cm D. 3403cm【答案】C.3. 已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( ) A.140,0a d dS >> B. 140,0a d dS << C. 140,0a d dS >< D. 140,0a d dS <>4. 命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n > B. **,()n N f n N ∀∈∈或()f n n > C. **00,()n N f n N ∃∈∈且00()f n n > D. **00,()n N f n N ∃∈∈或00()f n n >5. 如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++6. 设A ,B 是有限集,定义(,)()()d A B card A B card A B =-U I ,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( ) A. 命题①和命题②都成立 B. 命题①和命题②都不成立 C. 命题①成立,命题②不成立 D. 命题①不成立,命题②成立7. 存在函数()f x 满足,对任意x R ∈都有( )A. (sin 2)sin f x x =B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+8. 如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9. 双曲线2212xy-=的焦距是,渐近线方程是.10. 已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是 .11. 函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 .12. 若4log 3a =,则22aa-+= .【答案】334. 【解析】13. 如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .13. 若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .15. 已知12,e e r r 是空间单位向量,1212e e ⋅=r r ,若空间向量b r 满足1252,2b e b e ⋅=⋅=r r r r ,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈r u r u u r r u r u u r u u u u r,则0x = ,0y = ,b =r .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22b a -=122c . (1)求tan C 的值;(2)若ABC ∆的面积为3,求b 的值.17.(本题满分15分)如图,在三棱柱111ABC A B C --中,90BAC ∠=o,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点. (1)证明:1A D ⊥平面1A B C ;(2)求二面角1A -BD-1B 的平面角的余弦值.18.(本题满分15分)已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是|()|f x 在区间[1,1]-上的最大值.(1)证明:当||2a ≥时,(,)2M a b ≥;(2)当a ,b 满足(,)2M a b ≤,求||||a b +的最大值.19.(本题满分15分)已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称. (1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点).20.(本题满分15分)已知数列{}n a满足1a=12且1na+=na-2na(n∈*N)(1)证明:112nnaa+≤≤(n∈*N);(2)设数列{}2n a的前n项和为n S,证明112(2)2(1)nSn n n≤≤++(n∈*N).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1)B.(0,2]C.(1,2)D.[1,2]2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.D.3.(5分)(2015•浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>04.(5分)(2015•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A.B.C.D.6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•浙江)存在函数f(x)满足,对任意x∈R都有()A.f(sin2x)=sinx B.f(sin2x)=x2+x C.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|8.(5分)(2015•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•浙江)若a=log43,则2a+2﹣a=.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•浙江)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定双曲线中的几何量,即可求出焦距、渐近线方程.解答:解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(6分)考点:函数的值.专题:计算题;函数的性质及应用.分析:根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.点评:本题主要考查了分段函数的函数值的求解,属于基础试题.11.(6分)考点:两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的求值.分析:由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点评:本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.15.(6分)考点:空间向量的数量积运算;平面向量数量积的运算.专题:创新题型;空间向量及应用.分析:由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解答:解:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点评:本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)考点:余弦定理.专题:解三角形.分析:(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解答:解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。

相关文档
最新文档