3.3求非线性目标函数的最值及逆向问题

合集下载

求非线性目标函数最值问题

求非线性目标函数最值问题

7x 5y 23 0, 【自我矫正】不等式组 x 7y 11 0, 表示的平面区域为如图所示 4x y 10 0
△ABC的内部(包括边界),令z=x2+y2,则z即为点(x,y)到原点的距离的平方.

7x 5y 23 0,
x 7y 11 0,
为是求三点A,B,C到原点的距离的平方的最值.
【规避策略】
1.准确作图
在利用可行域求目标函数的最值时首先要利用约束条件作出可行域, 一定要准确,特别是边界一定要明确是否包含. 2.准确理解目标函数的几何意义 在求非线性目标函数的最值时,一定要准确理解目标函数的几何意义, 利用其几何意义结合可行域准确解题.
此时z=x2+y2=(-3)2+22=13, 而在原点处,
x 0, y 0,
此时z=x2+y2=02+02=0,
x 1, 所以当 时x2+y2取得最大值37, y 6 x 0, 当 时x2+y2取得最小值0. y 0
答案:37 0
得A点坐标(4,1),
此时z=x2+y2=42+12=17,
7x 5y 23 0, 由 4x y 10 0,
得B点坐标(-1,-6), 此时z=x2+y2=(-1)2+(-6)2=37,
x 7y 11 0, 由 得C点坐标(-3,2), 4x y 10 0,
求非线性目标函数最值问题
7x 5y 23 0, 2+y2的最大值为 【典例】(2015·保定模拟)已知 则 x x 7y 11 0, 4x y 10 0,

高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

3.3.3 简单的线性规划问题第1课时简单的线性规划问题(教师用书独具)●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.(教师用书独具)●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程创设问题情境,引导学生了解线性约束条件、线性目标函数、可行域、线性规划问题等概念.⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.(对应学生用书第56页)课标解读1.了解目标函数、约束条件、可行域、最优解等基本概念.2.掌握线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)可行域约束条件所表示的平面区域,称为可行域.线性规划求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题,上述只含两个变量的简单线性规划问题可用图解法解决.(对应学生用书第56页)线性规划问题设z =3x +5y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x +2y ≥3,7x +10y ≥17,x ≥0,y ≥0.求z的最小值.【思路探究】【自主解答】 画出约束条件表示的点(x ,y )的可行域, 如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M ,此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11,z max =3×5-4×3=3.利用线性规划求字母参数的值(或范围)已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2).由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y =-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a 2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)求非线性目标函数的最值已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值; (2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0. (2)z =yx +5=y -0x --5,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k MC =2-0-3--5=1,k min =k MB =-6-0-1--5=-32,∴yx +5的最大值是1,最小值是-32. 1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)y x +5=y -0x --5可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示, ∵z =(x +12+y -12)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.(对应学生用书第58页) 直线的倾斜程度判断不准致误已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.(对应学生用书第58页)1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35.【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k OC =95,最大值是k AO =6,又可行域边界取不到,∴95<yx<6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示: 其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(对应学生用书第97页)一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)3.设z =2y -2x +4,式中的x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z 的取值范围是________.【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4.所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值是________.【解析】 不等式组表示的平面区域如图所示: 又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32.【答案】 325.(2013·无锡检测)二元一次方程组⎩⎪⎨⎪⎧x <0,y <0,x +y +4>0表示的平面区域内,使得x +2y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示: ∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-22-1=5-1。

求非线性目标函数的最值及逆向问题ppt正式完整版

求非线性目标函数的最值及逆向问题ppt正式完整版

z=2x+y ∴-a<kCD,即-a<-1.
非线性目标函数的最值问题
的最大值为
7,最小值为
1,求
b+c
的值. 即a的取值范围为(1,+∞).
[自主解答] 由约束条件画出可行域(如图所示)为矩形ABCD(包括边界).
第二步,设过整数最优解且平行于直线ax+by=0的直线方程为ax+by=m, 不妨设a,b是两个整数(否则, a,b是两个有理数, 可乘以适当的数
进行化归),则m必是整数, 根据具体问题限制m ≥ax0+by0或m ≤ax0+by0
x≥1 点C的坐标为(3,1),z最大即直线y=-ax+z在y轴上的截距最大, 解:如图,画出 求线性目标函数z = ax+by (a,b是不全为零的常数) ,在给定线性约束条件下的最优整数解,使用调整夹逼法探求的思路如下: x+y≤4 解:如例3中的图,若目标函数z=ax+y(a>0)取得最大值的点有无数个,则必有直线z=ax+y与直线x+y=4平行,此时a=1.
∴-a<kCD,即-a<-1. ∴a>1. 即a的取值范围为(1,+∞).
在例3的条件下,若目标函数z=ax+y(a>0)取得最大 值的点有无数个,求a的取值范围.
解:如例3中的图,若目标函数z=ax+y(a>0)取得最大值 的点有无数个,则必有直线z=ax+y与直线x+y=4平行, 此时a=1.
点C的坐标为(3,1),z最大即直线y=-ax+z在y轴上的截距最大, 求线性目标函数z = ax+by (a,b是不全为零的常数) ,在给定线性约束条件下的最优整数解,使用调整夹逼法探求的思路如下: 第二步,设过整数最优解且平行于直线ax+by=0的直线方程为ax+by=m, 不妨设a,b是两个整数(否则, a,b是两个有理数, 可乘以适当的数 进行化归),则m必是整数, 根据具体问题限制m ≥ax0+by0或m ≤ax0+by0 ∴-a<kCD,即-a<-1. 即a的取值范围为(1,+∞). [自主解答] 由约束条件画出可行域(如图所示)为矩形ABCD(包括边界). [自主解答] 由约束条件画出可行域(如图所示)为矩形ABCD(包括边界). 点C的坐标为(3,1),z最大即直线y=-ax+z在y轴上的截距最大, ∴a>1. 点C的坐标为(3,1),z最大即直线y=-ax+z在y轴上的截距最大, 求线性目标函数z = ax+by (a,b是不全为零的常数) ,在给定线性约束条件下的最优整数解,使用调整夹逼法探求的思路如下: 在例3的条件下,若目标函数z=ax+y(a>0)取得最大值的点有无数个,求a的取值范围. 在例3的条件下,若目标函数z=ax+y(a>0)取得最大值的点有无数个,求a的取值范围. ∴a>1. 求线性目标函数z = ax+by (a,b是不全为零的常数) ,在给定线性约束条件下的最优整数解,使用调整夹逼法探求的思路如下:

第一部分 第三章 3.3 第二课时 简单的线性规划问题

第一部分  第三章  3.3  第二课时 简单的线性规划问题
返回
5.某公司租赁甲、乙两种设备生产A、B两类产品,甲种设 备每天能生产A类产品5件和B类产品10件,乙种设备每 天能生产A类产品6件和B类产品20件.已知设备甲每天 的租赁费为200元,设备乙每天的租赁费为300元,现该 公司至少要生产A类产品50件,B类产品140件,所需租 赁费最少为__________元.
3.3
第 三 章
二元 一次 不等 式组
第二 课时
简单
不 等 式
与简 单的 线性 规划
的线 性规 划问 题
问题
理解教材新知 把握热点考向 应用创新演练
考点一 考点二 考点三
返回
返回
第二课时 简单的线性规划问题 返回
返回
现在是信息时代,广告可以给公司带来效益.某公 司计划在甲、乙两个电视台做总时间不超过300分钟的 广告,广告总费用不超过9万元,甲、乙两个电视台的 收费标准分别为500元/分钟和200元/分钟. 问题1:设在甲、乙两个电视台做广告的时间分别为x分 钟,y分钟,试ห้องสมุดไป่ตู้出满足条件的不等关系.
答案:9
返回
2.在如下图所示的可行域内(阴影部分且包括边界), 目标函数z=x-y,则使z取得最小值的点的坐标 为____________.
解析:对直线y=x+b进行平移,注意b越大,z越 小故,四个点中,过点A(1,1)时 z取最小值0. 答案:(1,1)
返回
返回
[例 2]
0≤x≤1 (2011·苏 北 四 市 三 调 )在 约 束 条 件 0≤y≤2 2y-x≥1
返回
[一点通] 解答线性规划应用题的一般步骤: (1)审题——仔细阅读,对关键部分进行“精读”,准 确理解题意,明确有哪些限制条件,起关键作用的变量 有哪些,由于线性规划应用题中的量较多,为了理顺题 目中量与量之间的关系,有时可借助表格来理顺. (2)转化——设元.写出约束条件和目标函数,从而 将实际问题转化为数学上的线性规划问题. (3)求解——解这个纯数学的线性规划问题. (4)作答——就应用题提出的问题作出回答.

线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。

通常代特殊点(0,0)。

(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。

非线性目标函数

非线性目标函数

非线性目标函数
非线性目标函数是指目标函数中存在非线性项的优化问题。

非线性目标函数在许多实际问题中是常见的,如经济学、物理学、工程学等领域。

非线性目标函数可以表示为:
$$
\text{minimize} \quad f(x)
$$
其中,$f(x)$是一个关于变量$x$的非线性函数。

优化问题的目标是找到使得目标函数取得最小值的变量$x$。

非线性目标函数在优化问题中具有许多挑战。

与线性目标函数不同,非线性目标函数的导数可能难以计算。

此外,非线性目标函数可能存在多个局部极小值点,而不是全局极小值点。

因此,寻找非线性目标函数的全局最小值通常是一个困难的问题。

为了解决非线性目标函数的优化问题,可以采用多种方法。

其中一种是使用迭代算法,如梯度下降法或牛顿法。

这些算法通过反复迭代更新变量$x$的值,以逐渐接近目标函数的最小值。

另一种方法是使用约束优化方法,将非线性目标函数的优化问题转化为带有约束条件的优化问题。

通过引入约束条件,可以限制变量$x$的取值范围,从而更容易找到全局最小值。

非线性目标函数的优化问题有许多重要的应用。

在经济学中,非线性目标函数可以用于描述市场供求关系、消费者行为等问题。

在物理学中,非线性目标函数可以用于描述物质的力学性
质、电磁场的行为等问题。

在工程学中,非线性目标函数可以用于优化设计问题、控制问题等。

总之,非线性目标函数是优化问题中常见的问题,解决这类问题的方法有很多。

通过使用适当的优化算法或约束优化方法,可以找到非线性目标函数的全局最小值,从而解决实际问题。

非线性目标函数的最值问题

非线性目标函数的最值问题

非线性目标函数的最值问题一、单选题1.若实数满足不等式组,则的取值范围为A.B.C.D.【答案】D画出不等式组表示的平面区域如图2中阴影部分所示,的几何意义是阴影部分内的点到原点的距离的平方,显然,由可得,则,故的取值范围为.故选D.【点睛】2.已知变量满足,设,则的取值范围是()A.B.C.D.【答案】C作可行域,P(4,3),因为表示可行域内点到定点A(-1,-1)距离的平方,所以的取值范围为,选C.【点睛】3.若变量x,y满足,则的最大值为A.2B.3C.D.【答案】C不等式组表示的可行域是以,,为顶点的三角形区域,由表示点到原点的距离,最大值必在顶点处取到,因为,,,所以的最大值为,故选C.4.已知实数满足条件,则的最大值是( )A.1B.2C.3D.4【答案】C由约束条件作出可行域如图,联立,解得A(1,3),∵z=,如图所示,经过原点(0,0)与A的直线斜率最大为3,∴的最大值是3.5.已知实数,满足,则的取值范围为()A.B.C.D.【答案】C作出表示的可行域,如图,目标函数,可看作可行域内的点与的距离的平方,由图可知,点到直线距离的平方,就是作可行域内的点与的距离的平方的最小值,为,点到距离的平方,就是作可行域内的点与的距离的平方的最小值,为,所以的取值范围为,6.已知实数,满足不等式组则的取值范围是()A.B.C.D.【答案】D由约束条件作出可行域如图,表示原点(,)到阴影区域的距离的平方,∴是原点((,)到的距离的平方,则==,x是原点(,)到点(,)的距离的平方,则==,∴的取值范围是,故选:D.7.若实数满足不等式组,则目标函数的最大值是()A.B.C.D.【答案】B【、详解:画出约束条件表示的可行域,如图,由可得,即,将形为,表示可行域内的点与连线的斜率,由图知最小,最大最大值为,故答案为.故选B.8.已知实数,满足,则的取值范围为()A.B.C.D.【答案】C画出不等式组表示的可行域,如图阴影部分所示.由题意得,目标函数,可看作可行域内的点与的距离的平方.结合图形可得,点到直线的距离的平方,就是可行域内的点与的距离的平方的最小值,且为,点 到 距离的平方,就是可行域内的点与 的距离的平方的最大值,为 ,所以 的取值范围为.故选C .9.已知动点 满足:,则 的最小值为( ) A . B . C . -1 D . -2 【答案】D根据指数函数的性质,由 可得 ,即 , 动点 满足:, 该不等式组表示的平面区域如图:设 , , 表示以 为圆心的圆的半径,由图形可以看出,当圆与直线 相切时半径最小,则,,解得 , 即 的最小值为 . 故选:D.10.若x ,y 满足 ,, ,则的最大值为( )A .B .C .D.【答案】B画出目标函数可行域如上图所示,目标函数即为(x,y)点(0,-1)连线斜率的取值,所以在点B处取得最优解联立直线方程解得B(1,1)所以所以选B11.若变量,满足约束条件,则的取值范围是()A.B.C.D.【答案】B详解:,原式表示可行域内的点与连线的斜率加1。

非线性目标函数的最值问题PPT课件

非线性目标函数的最值问题PPT课件

(-1,1)

线



k






非线性目标函数的最值问题
如图1,已知
,
表示(x,y)与原点(0,0)连线的斜率_;__________,
的几何意义:
的几何意义
的最小值是_________-1_
表示点(x,y)与点(a,b)连线的斜率.
表示(x,y)与原点(0,0)连线的斜率;
Y
如图1,已知
,
如果点P在平面区域
表示点(x,y)与点(a,b)连线的斜率.
表示可行域内点
表示点(x,y)与原点如(0,0果)连点线的P斜在率平;面区域
的几何意义:
内,点Q在曲线
故 的范围是
(2)
的范围
(论2)求得目标函数的的最几上值何,或意范义那围:么|PQ|的最小值为( A )
(2)
的范围
1故、了的解范非围线是性目标函A数、所表示的几何意义B、
__________, (x-1)2+(y-1)2的取值范围是________.
A(1,1)
探究2
对形如 目标函数的最值(斜率型)
y o
如图2 ,实数x,y满足不等式组
x
2
x
y, 则0 可行域内的 y20
点 (x,y) 到 点 非线性目标函数的最值问题
若实数x,y满足 ,则 的取值范围是_____________.
zx2(y5)2
x-y+2=0
Y C
M(0,5)
4
N
X
A
B
O Q
x+y-4=0 4
故 的最小值为
-5 2x-y-5=0

非线性目标函数的最值问题

非线性目标函数的最值问题

非线性目标函数的最值问题非线性目标函数的最值问题是数学中的一个重要问题,在实际应用中有着广泛的应用。

所谓非线性目标函数,是指目标函数中含有非线性项的函数。

最值问题就是要求在给定条件下,求出目标函数取得最大值或最小值的变量取值。

非线性目标函数的最值问题可以通过一些方法来求解,其中较为常见的方法有数值方法和优化方法。

数值方法是通过对目标函数进行数值逼近来求解最值问题。

常用的数值方法包括黄金分割法、牛顿法、拟牛顿法等。

这些方法的基本思想都是通过不断逼近目标函数的最值点来求解问题,具体方法根据目标函数的性质和要求的精度而定。

优化方法是通过求解最优化问题来求解最值问题。

最优化问题是指寻找使得目标函数取得最大值或最小值的变量取值。

常用的优化方法包括线性规划、非线性规划、整数规划等。

这些方法的基本思想是将目标函数设定为一个优化问题,并利用一些数学技巧和算法来求解问题。

对于非线性目标函数的最值问题进行求解时,需要注意问题的复杂性和求解的难度。

在实际应用中,非线性目标函数的最值问题往往包含大量变量和约束条件,求解过程中需要考虑多种因素和限制条件,因此需要采用一些高效的算法和方法来求解问题。

此外,近年来还出现了一些新的方法和算法来求解非线性目标函数的最值问题,如遗传算法、粒子群优化算法等。

这些算法具有较好的收敛性和全局搜索能力,能够有效地解决非线性目标函数的最值问题。

综上所述,非线性目标函数的最值问题是一个具有重要意义和广泛应用的数学问题,求解问题时可以采用数值方法和优化方法。

在实际应用中,需要根据问题的特点和要求选择合适的方法和算法,并注意解的可行性和精度的要求。

通过合理的方法选择和算法设计,可以有效地解决非线性目标函数的最值问题。

33求非线性目标函数的最值及逆向问题 ppt课件

33求非线性目标函数的最值及逆向问题 ppt课件
3+b+c=0, 解得b=-1,
c=-2. 故 b+c=-3.
2020/12/27
21
2020/12/27
返回13
点C的坐标为(3,1),z最大即直线y=-ax+z在y轴上 的截距最大,
∴-a<kCD,即-a<-1. ∴a>1. 即a的取值范围为(1,+∞).
2020/12/27
返回14
在例3的条件下,若目标函数z=ax+y(a>0)取得最大 值的点有无数个,求a的取值范围.
2020/12/27
2020/12/27
返回19
x≥1, 已知 x,y 满足x+y≤4,
x+by+c≤0,
且目标函数
Байду номын сангаас
z=2x+y 的最大值为 7,最小值为 1,求 b+c 的值.
解:如图,画出x≥1 x+y≤4
所表示的平面区域及直线
2x+y=7 与 2x+y=1,
2020/12/27
20
可知直线 x+by+c=0 过直线 2x+y=1 与直 线 x=1 的交点(1,-1)和直线 2x+y=7 与直 线 x+y=4 的交点(3,1),且 b<0. 所以1-b+c=0,
2020/12/27
返回17
[通一类]
y≥x, 3.(2011·湖南高考)设 m>1,在约束条件y≤mx,
x+y≤1
下,目
标函数 z=x+5y 的最大值为 4,则 m 的值为________.
2020/12/27
返回18
解:画出可行域如图,可知 z=x+5y 在点 A(1+1 m,1+mm) 取最大值为 4,解得 m=3.
返回7
[自主解答] 作出可行域如图,并求 出顶点的坐标 A(1,3)、 B(3,1)、C(7,9). (1)z=x2+(y-5)2 表示可行域 内任一点(x,y)到定点 M(0,5)的距离的 平方,过 M 作直线 AC 的垂线,易知垂足 N 在线段 AC 上,故 z 的最小值|MN|2=92.

高中数学第三章不等式3.4简单线性规划3.4.2.2求非线性目标函数的最值课件北师大版必修5

高中数学第三章不等式3.4简单线性规划3.4.2.2求非线性目标函数的最值课件北师大版必修5

|MN| =
|0-5+2| 1+(-1)2
2
=
3 2 2
=
3 2 2 9 2ຫໍສະໝຸດ .于是 |MN| =
2������ +1 ������ +1
3 2 2 9
= ,
故 z 的最小值为 . (2)z= = 2·
1 2 7 4
2 1 ������ - 2
������ - -1
表示可行域内任一点(x,y)
3 8 3 7 4 2
������ ≥ -2, 【做一做 1】 若 x,y 满足 ������-������ ≤ 0, 则������ = ������ + ������ ≤ 0, 的最小值为 .
(������-1 )2 + ������ 2
解析:作出可行域如图阴影部分所示, (������-1)2 + ������ 2 表示点(x,y) 到点(1,0)的距离.故最小值为 1.
������������ +������ ������������ +������
(������������ ≠0)的目标函数 ,可先变形为 z= ·
������ ������ ������ ������ ������
������
������ ������ ������ ������ - ������
题型二
题型一
题型二
������ = -������ + ������, 由方程组 解得点A 坐标 ������ = 2������-1, 再代入直线y=x+1,得 m=5.
������ +1 2������ -1 3
,
3
,

2018-2019学年53.4.2.2求非线性目标函数的最值作业

2018-2019学年53.4.2.2求非线性目标函数的最值作业

第2课时 求非线性目标函数的最值课时过关·能力提升1.设x ,y 满足约束条件 - --若目标函数z=ax+by (a>0,b>0)的最大值为12,则的最小值为( ) A.B.C.D.4.由图形可知,目标函数在点(4,6)处取得最大值12,则2a+3b=6,从而有(2a+3b )= +2,当且仅当a=b=时,等号成立.故选A .2.若实数x ,y 满足 -则z=3x+2y 的最小值是( ) B.1 C. D.9 解析:题中不等式组所表示的可行域如图阴影部分所示.令t=x+2y ,则当直线y=- x+ t 经过原点O (0,0)时,t 取最小值,即t 有最小值为0,故z=3x+2y 有最30=1.3.已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域上的一个动点,则的取值范围是 ( ) B.[0,1] C.[0,2] D.[-1,2]表示的平面区域如图阴影部分所示.由数量积的坐标运算可得=-x+y.令-x+y=z,即y=x+z.易知目标函数y=x+z过点B(1,1)时,z min=0.目标函数y=x+z过点C(0,2)时,z max=2.的取值范围是[0,2].4.如图所示,目标函数z=ax-y的可行域为四边形OACB(含边界),若点C是该目标函数z=ax-y的最优解,则a的取值范围是()A.--B.--C. D.-C,则目标函数表示的直线斜率在直线BC与AC的斜率之间.因为k BC=-,k AC=-,所以a∈--.5.已知x,y满足--且x-3y的最大值不小于6,则实数m的取值范围是()A.(-∞,3]B.[3,+∞)C.-D.x-y+1=0与x+y-2=0交点为,所以m>.作出不等式组表示的可行域如图所示.作直线x-3y=0,并平移,当直线x-3y=z过点A(m,2-m)时,x-3y取得最大值.x-3y的最大值不小于6,得m-3(2-m)≥6,解得m≥3.6.已知x,y满足约束条件--若使z=ax+y取得最大值的最优解有无数个,则实数a的取值构成的集合是()B.{-1,1}C.{-1,3}D.{-3,0,1}--表示的平面区域,如图所示.从图可知,当a=-1时,线段AC上的所有点都是z取得最大值的最优解;当a=3时,线段BC上的所z取得最大值的最优解;当a=0时,z取得最小值的最优解有无数个,不符合题意.A(1,1),B(4,2),C(-1,4),若动点P(x,y)在△ABC内部及边界运动,且z=ax-y的最优解有无数个,则a 的值为.,说明直线y=ax-z与可行域边界所在的某条直线平行,又直线AB的斜率为--,直线BC的斜率为-=-,直线AC的斜率为---=-,故直线y=ax-z的斜率a的值为或-或-.-或-8.已知点P的坐标(x,y)满足则点P到直线4x+3y+1=0的距离的最大值是..由图可知点B(2,2)到直线4x+3y+1=0的距离最大,由点到直线的距离公式得d==3.A={(x,y)|x+y≥2},集合B={(x,y)|2x+y≥2},当(x,y)∈A∩B时,求z=x+y的取值范围.x,y满足的不等式组为在平面直角坐标系中画出可行域,如图阴影部分所示.因为直线y=-x+z与直线x+y=2平行,所以当直线y=-x+z与x+y=2重合时,z取得最小值2,且z无最大值,故z的取值范围是[2,+∞).★10.已知变量x,y满足约束条件---若目标函数z=ax+y(其中a>0)仅在点(3,0)处取得最大值,求a的取值范围.,作直线l:ax+y=0,过点(3,0)作l的平行线l',则直线l'介于直线x+2y-3=0与直线x=3之间,因此,-a<-,即a>.故a的取值范围为.★11.已知实数x,y满足不等式组--(1)求目标函数z=10x+30y(x,y∈Z)的最小值;z=ax+y(a<0)的最大值为-2,求a的取值范围.解:在平面直角坐标系中作出可行域,如图阴影部分所示.(1)由于x,y∈Z,故在可行域中通过打网格的方法找出各整点,发现当直线y=-x+经过点A(0,-2)时,目标函数取得最小值,z min=-60.(2)若a≤-1,则目标函数在A(0,-2)处取得最大值-2,符合题意;若-1<a<0,则目标函数无最大值.综上可知,a的取值范围是(-∞,-1].。

人教A版高中数学必修5《3.3 二元一次不等式(组)与简单的线性规划问题 阅读与思考 错在哪儿》_67

人教A版高中数学必修5《3.3 二元一次不等式(组)与简单的线性规划问题 阅读与思考 错在哪儿》_67

3.2简单的线性规划问题预习课本P87~91,思考并完成以下问题(1)约束条件,目标函数,可行解,线性规划问题是如何定义的?(2)如何求解线性目标函数的最值问题?[新知初探]线性规划的有关概念(2)目标函数与线性目标函数的概念不同,线性目标函数在变量x,y的次数上作了严格的限定:一次解析式,即目标函数包括线性目标函数和非线性目标函数.(3)可行解必须使约束条件成立,而可行域是所有的可行解组成的一个集合.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)可行域是一个封闭的区域()(2)在线性约束条件下,最优解是唯一的()(3)最优解一定是可行解,但可行解不一定是最优解()(4)线性规划问题一定存在最优解()解析:(1)错误.可行域是约束条件表示的平面区域,不一定是封闭的.(2)错误.在线性约束条件下,最优解可能有一个或多个,也可能有无数个,也可能无最优解,故该说法错误.(3)正确.满足线性约束条件的解称为可行解,但不一定是最优解,只有使目标函数取得最大值或最小值的可行解,才是最优解,所以最优解一定是可行解.(4)错误.线性规划问题不一定存在可行解,存在可行解也不一定存在最优解,故该说法是错误的.答案:(1)× (2)× (3)√ (4)×2.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,x -y ≤1,x +1≥0,则z =x +2y 的最小值为( )A .3B .1C .-5D .-6解析:选C 由约束条件作出可行域如图:由z =x +2y 得y =-12x +z 2,z 2的几何意义为直线在y 轴上的截距,当直线y =-12x +z 2过直线x =-1和x -y =1的交点A (-1,-2)时,z 最小,最小值为-5,故选C.3.若⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1,则z =x -y 的最大值为( )A .-1B .1C .2D .-2解析:选B 根据题意作出不等式组所表示的可行域如图阴影部分所示.令z =0,作直线l :y -x =0.当直线l 向下平移时,所对应的z =x -y 的函数值随之增大,当直线l 经过可行域的顶点M 时,z =x -y 取得最大值.顶点M 是直线x +y =1与直线y =0的交点,解方程组⎩⎪⎨⎪⎧x +y =1,y =0,得顶点M 的坐标为(1,0),代入z =x -y ,得z max =1.4.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,点O 为坐标原点,那么PO 的最小值等于________,最大值等于________.解析:如图所示,线性区域为图中阴影部分,PO 指线性区域内的点到原点的距离,所以最短为12+12=2,最长为12+32=10.答案:2 10求线性目标函数的最大(小)值[典例] 设z =2x +y ,变量x ,y 满足条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,求z 的最大值和最小值.[解] 作出不等式组表示的平面区域,即可行域,如图所示.把z =2x +y 变形为y =-2x +z ,则得到斜率为-2,在y 轴上的截距为z ,且随z 变化的一组平行直线.由图可以看出,当直线z =2x +y 经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小.解方程组⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,得A 点坐标为(5,2),解方程组⎩⎪⎨⎪⎧x =1,x -4y +3=0,得B 点坐标为(1,1),∴z 最大值=2×5+2=12,z 最小值=2×1+1=3.解线性规划问题的基本步骤(1)画:画出线性约束条件所表示的可行域.(2)移:在线性目标函数所表示的一组平行线中,用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(3)求:通过解方程组求出最优解.(4)答:根据所求得的最优解得出答案.[活学活用]1.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -a ≥0,目标函数t =x -2y 的最大值为2,则实数a 的值是( )A .0B .1C .2D .3解析:选C 作出满足条件的可行域(如图),由目标函数t =x -2y ,得直线y =12x -12t 在点⎝⎛⎭⎫2,a -22处取得最大值,即t max =2-2×a -22=4-a =2,得a =2,故选C.2.(2017·全国卷Ⅰ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________.解析:画出不等式组⎩⎪⎨⎪⎧x +2y ≤1,2x +y ≥-1,x -y ≤0所表示的可行域如图中阴影部分所示,由可行域知,当直线y =32x -z 2过点A 时,在y 轴上的截距最大,此时z 最小,由⎩⎪⎨⎪⎧x +2y =1,2x +y =-1, 解得⎩⎪⎨⎪⎧x =-1,y =1.∴z min =-5.答案:-5题点一:距离型最值1.设x ,y 满足条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3.求u =x 2+y 2的最大值与最小值.解:画出满足条件的可行域如图所示,x2+y2=u(除原点)表示一组同心圆(圆心为原点O),且对同一圆上的点x2+y2的值都相等,由图可知:当(x,y)在可行域内取值时,当且仅当圆O过C点时,u最大.取(0,0)时,u最小.又C(3,8),所以u max=73,u min=0.题点二:斜率型最值2.在题点一的条件下,求v =yx-5的最大值与最小值.解:v=yx-5表示可行域内的点P(x,y)与定点D(5,0)连线的斜率,由图可知,k BD最大,k CD最小,又C(3,8),B(3,-3),所以v max=-33-5=32,v min=83-5=-4.非线性目标函数最值问题的求解方法(1)非线性目标函数最值问题,要充分理解非线性目标函数的几何意义,诸如两点间的距离(或平方),点到直线的距离,过已知两点的直线斜率等,充分利用数形结合知识解题,能起到事半功倍的效果.(2)常见代数式的几何意义主要有:①x2+y2表示点(x,y)与原点(0,0)的距离;(x-a)2+(y-b)2表示点(x,y)与点(a,b)的距离.②yx表示点(x,y)与原点(0,0)连线的斜率;y-bx-a表示点(x,y)与点(a,b)连线的斜率.这些代数式的几何意义能使所求问题得以转化,往往是解决问题的关键.线性规划的实际应用[典例](2017·天津高考)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放时长(分钟) 广告播放时长(分钟)收视人次(万)甲70560乙60525已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? [解] (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧ 70x +60y ≤600,5x +5y ≥30,x≤2y ,x ≥0,y ≥0,即⎩⎪⎨⎪⎧7x +6y ≤60,x +y ≥6,x -2y ≤0,x ≥0,y ≥0,该二元一次不等式组所表示的平面区域为图中的阴影部分中的整数点. (2)设总收视人次为z 万,则目标函数为z =60x +25y . 考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125,随z 变化的一族平行直线.z 25为直线在y 轴上的截距,当z25取得最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图可知,当直线z =60x +25y 经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎪⎨⎪⎧7x +6y =60,x -2y =0,得点M 的坐标为(6,3).所以电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.(1)解答此类问题,在按解决线性规划实际问题的步骤进行解题时,应注意以下几点: ①在线性规划问题的应用中,常常是题中的条件较多,因此认真审题非常重要. ②线性约束条件中有无等号要依据条件加以判断.③结合实际问题,判断未知数x ,y 等是否有限制,如x ,y 为正整数、非负数等. (2)寻找整点最优解的两个方法①平移找解法:先打网格,描整点,平移直线l ,最先经过或最后经过整点便是最优整点解,这种方法应充分利用非整点最优解的信息,结合精确的作图才行,当可行域是有限区域且整点个数又较少时,可逐个将整点坐标代入目标函数求值,经比较求最优解.②调整优值法:先求出整点最优解及最优值,再借助不定方程的知识调整最优值,最后筛选出整点最优解.[活学活用]一小商贩准备用50元钱在一批发市场购买甲、乙两种小商品,甲每件4元,乙每件7元,甲商品每件卖出去后可赚1元,乙每件卖出去后可赚1.8元.若要使赚的钱最多,那么该商贩购买甲、乙两种商品的件数应分别为( )A .甲7件,乙3件B .甲9件,乙2件C .甲4件,乙5件D .甲2件,乙6件解析:选D 设甲商品x 件,乙商品y 件,所赚钱数为z ,则目标函数为z =x +1.8y ,约束条件为⎩⎪⎨⎪⎧4x +7y ≤50,x ≥0,y ≥0,x ∈N ,y ∈N ,作出可行域如图所示,由z =x +1.8y ,得y =-59x +5z 9,斜率为-59>-47,所以,由图可知直线过点A ⎝⎛⎭⎫0,507时,z 取得最大值.又x ,y ∈N ,所以点A 不是最优解.点(0,7),(2,6),(9,2)都在可行域内,逐一验证可得,当x =2,y =6时,z 取得最大值,故选D.层级一 学业水平达标1.(2017·北京高考)若x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥2,y ≤x ,则x +2y 的最大值为( )A .1B .3C .5D .9解析:选D 不等式组所表示的可行域如图中阴影部分所示,是以点A (1,1),B (3,3),C (3,-1)为顶点的三角形及其内部.设z =x +2y ,当直线z =x +2y 经过点B 时,z 取得最大值,所以z max =3+2×3=9. 2.某服装制造商有10 m 2的棉布料,10 m 2的羊毛料和6 m 2的丝绸料,做一条裤子需要1 m 2的棉布料,2 m 2的羊毛料和1 m 2的丝绸料,做一条裙子需要1 m 2的棉布料,1 m 2的羊毛料和1 m 2的丝绸料,做一条裤子的纯收益是20元,一条裙子的纯收益是40元,为了使收益达到最大,若生产裤子x 条,裙子y 条,利润为z ,则生产这两种服装所满足的数学关系式与目标函数分别为( )A.⎩⎪⎨⎪⎧ x +y ≤10,2x +y ≤10,x +y ≤6,x ,y ∈N z =20x +40yB.⎩⎪⎨⎪⎧ x +y ≥10,2x +y ≥10,x +y ≤6,x ,y ∈N z =20x +40yC.⎩⎪⎨⎪⎧x +y ≤10,2x +y ≤10,x +y ≤6z =20x +40yD.⎩⎪⎨⎪⎧x +y ≤10,2x +y ≤10,x +y ≤6,x ,y ∈Nz =40x +20y解析:选A 由题意知A 正确.3.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,则yx 的取值范围是( )A.⎣⎡⎦⎤95,6 B.⎝⎛⎦⎤-∞,95∪[6,+∞) C .(-∞,3]∪[6,+∞)D .(3,6]解析:选A 作出可行域,如图中阴影部分所示,yx 可理解为可行域中一点与原点的连线的斜率,又B ⎝⎛⎭⎫52,92,A (1,6),故yx 的取值范围是⎣⎡⎦⎤95,6.4.某学校用800元购买A ,B 两种教学用品,A 种用品每件100元,B 种用品每件160元,两种用品至少各买一件,要使剩下的钱最少,A ,B 两种用品应各买的件数为()A .2,4B .3,3C .4,2D .不确定解析:选B 设买A 种用品x 件,B 种用品y 件,剩下的钱为z 元,则⎩⎪⎨⎪⎧100x +160y ≤800,x ≥1,y ≥1,x ,y ∈N *.求z =800-100x -160y 取得最小值时的整数解(x ,y ),用图解法求得整数解为(3,3). 5.已知⎩⎪⎨⎪⎧x ≥1,x -y +1≥0,2x -y -2≤0,若z =ax +y 的最小值是2,则a 的值为( )A .1B .2C .3D .4解析:选B 作出可行域,如图中阴影部分所示,又z =ax +y 的最小值为2,若a >-2,则(1,0)为最优解,所以a =2;若a ≤-2,则(3,4)为最优解,解得a =-23,舍去,故a =2.6.若点P (m ,n )在由不等式组⎩⎪⎨⎪⎧x +y -7≤0,x -2y +5≤0,2x -y +1≥0,所确定的区域内,则n -m 的最大值为________.解析:作出可行域,如图中的阴影部分所示,可行域的顶点坐标分别为A (1,3),B (2,5),C (3,4),设目标函数为z =y -x ,则y =x +z ,其纵截距为z ,由图易知点P 的坐标为(2,5)时,n -m 的最大值为3.答案:37.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x -y +1≤0,2x -y -2≤0,则x 2+y 2的最小值是________.解析:画出满足条件的可行域(如图),根据x 2+y 2表示可行域内一点到原点的距离,可知x 2+y 2的最小值是|AO |2.由⎩⎪⎨⎪⎧x =1,x -y +1=0, 得A (1,2),所以|AO |2=5. 答案:58.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:2万吨),则购买铁矿石的最少费用为________(百万元).解析:设购买铁矿石A ,B 分别为x ,y 万吨,购买铁矿石的费用为z (百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y .由⎩⎪⎨⎪⎧ 0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域,如图所示.当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值,且最小值为zmin =3×1+6×2=15.答案:159.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.解:(1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0). 平移初始直线12x -y +12=0,过A (3,4)取最小值-2,过C (1,0)取最大值1.∴z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2. 故所求a 的取值范围为(-4,2).10.某人承担一项业务,需做文字标牌4个,绘画标牌5个.现有两种规格的原料,甲种规格每张3 m 2,可做文字标牌1个,绘画标牌2个;乙种规格每张2 m 2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使得总用料面积最小.解:设需要甲种原料x 张,乙种原料y 张,则可做文字标牌(x +2y )个,绘画标牌(2x +y )个,由题意可得⎩⎪⎨⎪⎧2x +y ≥5,x +2y ≥4,x ≥0,y ≥0,x ,y ∈N ,所用原料的总面积为z =3x +2y , 作出可行域如图.在一组平行直线3x +2y =z 中,经过可行域内的点且到原点距离最近的直线. 过直线2x +y =5和直线x +2y =4的交点(2,1), ∴最优解为x =2,y =1,∴使用甲种规格原料2张,乙种规格原料1张,可使总的用料面积最小.层级二 应试能力达标1.(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:选B 作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3,所以z =x -y 的取值范围是[-3,2]. 2.已知实数x ,y 满足条件⎩⎪⎨⎪⎧x ≥0,y ≤1,2x -2y +1≤0,若目标函数z =mx -y (m ≠0)取得最大值时的最优解有无穷多个,则实数m 的值为( )A .1 B.12C .-12D .-1解析:选A 作出不等式组表示的平面区域如图阴影部分(包含边界)所示,由图可知当直线y =mx -z (m ≠0)与直线2x -2y +1=0重合,即m =1时,目标函数z =mx -y 取最大值的最优解有无穷多个,故选A.3.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,z =|2x -2y -1|,则z 的取值范围是( )A.⎣⎡⎦⎤53,5 B .[0,5] C .[0,5)D.⎣⎡⎭⎫53,5解析:选C 作出满足约束条件的可行域,如图中阴影部分所示.令u =2x -2y -1,当直线2x -2y -1-u =0经过点A (2,-1)时,u =5,经过点B ⎝⎛⎭⎫13,23时,u =-53, 则-53≤u <5,所以z =|u |∈[0,5),故选C.4.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,2y -x +2≥0,2x -y +2≥0,若z =y -2ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .1或-12C .2或1D .2或-1解析:选B 作出可行域,如图中阴影部分所示.由z =y -2ax ,得y =2ax +z .当2a =2或2a =-1,即a =1或a =-12时,z =y -2ax 取得最大值的最优解不唯一,故选B.5.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +y ≥0,x ≤0,则z =3x+2y的最小值是________.解析:不等式组表示的可行域如图阴影部分所示, 设t =x +2y , 则y =-12x +t 2,当x =0,y =0时,t 最小=0. z =3x+2y的最小值为1.答案:16.某公司计划用不超过50万元的资金投资A ,B 两个项目,根据市场调查与项目论证,A ,B 项目的最大利润分别为投资的80%和40%,而最大的亏损额为投资的40%和10%,若要求资金的亏损额不超过8万元,且使利润最大,投资者应投资A 项目________万元,投资B 项目________万元.解析:设投资者对A ,B 两个项目的投资分别为x ,y 万元,则由题意得约束条件为 ⎩⎪⎨⎪⎧x +y ≤50,0.4x +0.1y ≤8,x ≥0,y ≥0,即⎩⎪⎨⎪⎧x +y ≤50,4x +y ≤80,x ≥0,y ≥0.投资者获得的利润设为z ,则有z =0.8x +0.4y .作出可行域如图所示,由图可知,当直线经过点B 时,z 取得最大值.解⎩⎪⎨⎪⎧x +y =50,4x +y =80,得B (10,40). 所以,当x =10,y =40时,获得最大利润,最大利润为24万元. 答案:10 407.某运输公司每天至少要运送180 t 货物,公司有8辆载重为6 t 的A 型卡车和4辆载重为10 t 的B 型卡车,且有10名驾驶员.A 型卡车每天可往返4次,B 型卡车每天可往返3次,每辆A 型卡车每天花费320元,每辆B 型卡车每天花费504元,如何合理调用车辆,才能使公司每天花费最少?解:设每天调用A 型卡车x 辆,B 型卡车y 辆,每天花费z 元.则⎩⎪⎨⎪⎧0≤x ≤8,x ∈N0≤y ≤4,y ∈N x +y ≤10,24x +30y ≥180,即⎩⎪⎨⎪⎧0≤x ≤8,x ∈N0≤y ≤4,y ∈Nx +y ≤10,4x +5y ≥30,目标函数z =320x +504y .作出可行域,如图中阴影部分所示.当直线320x +504y =z 经过直线4x +5y =30与x 轴的交点(7.5,0)时,z 有最小值.又(7.5,0)不是整点,由分析知,经过可行域内的整点,且与原点距离最近的直线是直线320x +504y =2 560,经过的整点是(8,0),它是最优解.所以要使公司每天花费最少,每天应调用A 型卡车8辆,B 型卡车0辆.8.在如图所示的坐标平面的可行域内(阴影部分),目标函数z =x +ay 取得最小值时的最优解有无数个,求yx -a的最大值.解:由题意,知当直线y =-1a x +z a 与直线AC 重合时,z 取得最小值时的最优解有无数个,∴-1a =2-14-1,∴a =-3, ∴y x -a =y x +3=k PD ≤k DC =24-(-3)=27(其中D (-3,0),P (x ,y )为可行域中任意一点), ∴y x -a的最大值为27.。

线性规划的常见题型及其解法(教师版,题型全,归纳好)

线性规划的常见题型及其解法(教师版,题型全,归纳好)

之老阳三干创作创作时间:课题 线性规划的罕见题型及其解法谜底线性规划问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖新颖.归纳起来罕见的命题探究角度有: 1.求线性目标函数的最值. 2.求非线性目标函数的最值. 3.求线性规划中的参数. 4.线性规划的实际应用.本节主要讲解线性规划的罕见基础类题型.【母题一】已知变量x ,y满足约束条件⎩⎨⎧x +y≥3x -y≥-12x -y≤3则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb的最值,间接求出z的最值.【解析】画出不等式组⎩⎨⎧x +y≥3x -y≥-12x -y≤3暗示的平面区域如图中阴影部份所示,由目标函数z =2x +3y 得y =-23x +z 3,平移直线y =-23x 知在点B处目标函数取到最小值,解方程组⎩⎪⎨⎪⎧x +y =32x -y =3得⎩⎪⎨⎪⎧x =2y =1所以B (2,1),z min =2×2+3×1=7,在点A 处目标函数取到最年夜值,解方程组⎩⎪⎨⎪⎧ x -y =-12x -y =3得⎩⎪⎨⎪⎧x =4y =5所以A (4,5),z max=2×4+3×5=23.【谜底】A【母题二】变量x ,y 满足⎩⎨⎧x -4y +3≤03x +5y -25≤0x≥1(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.(x ,y )在不等式组暗示的平面区域内,y2x -1=12·y -0⎝⎛⎭⎪⎫x -12暗示点(x ,y )和⎝ ⎛⎭⎪⎪⎫120连线的斜率;x 2+y 2暗示点(x ,y )和原点距离的平方;x 2+y 2+6x -4y +13=(x +3)2+(y -2)2暗示点(x ,y )和点(-3,2)的距离的平方.【解析】(1)由约束条件⎩⎨⎧x -4y +3≤03x +5y -25≤0x≥1作出(x ,y )的可行域如图所示.由⎩⎪⎨⎪⎧x =13x +5y -25=0解得A ⎝ ⎛⎭⎪⎪⎫1225.由⎩⎪⎨⎪⎧ x =1x -4y +3=0解得C (1,1).由⎩⎪⎨⎪⎧x -4y +3=03x +5y -25=0解得B (5,2).∵z =y 2x -1=y -0x -12×12∴z 的值即是可行域中的点与⎝ ⎛⎭⎪⎪⎫120连线的斜率,观察图形可知z min =2-05-12×12=29.(2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min=|OC|=2,d max=|OB|=29.∴2≤z≤29.(3)z=x2+y2+6x-4y+13=(x+3)2+(y-2)2的几何意义是:可行域上的点到点(-3,2)的距离的平方.结合图形可知,可行域上的点到(-3,2)的距离中,d min=1-(-3)=4,d max=-3-52+2-22=8∴16≤z≤64.1.求目标函数的最值的一般步伐为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.罕见的目标函数有:(1)截距型:形如z=ax+by.求这类目标函数的最值常将函数z=ax+by转化为直线的斜截式:y=-abx+zb,通过求直线的截距zb的最值,间接求出z的最值.(2)距离型:形一:如z=,z=,此类目标函数常转化为点(x,y)与定点的距离;形二:z=(x-a)2+(y-b)2,z=x2+y2+Dx+Ey+F,此类目标函数常转化为点(x,y)与定点的距离的平方.(3)斜率型:形如z=yx,z=ay-bcx-d,z=ycx-d,z=ay-bx,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.【提醒】注意转化的等价性及几何意义. 角度一:求线性目标函数的最值1.(2014·新课标全国Ⅱ卷)设x ,y 满足约束条件⎩⎨⎧x +y -7≤0x -3y +1≤03x -y -5≥0则z =2x -y 的最年夜值为( )A .10B .8C .3D .2【解析】作出可行域如图中阴影部份所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最年夜.故z max =2×5-2=8.【谜底】B2.(2015·高考天津卷)设变量x ,y 满足约束条件⎩⎨⎧x +2≥0x -y +3≥02x +y -3≤0则目标函数z =x +6y 的最年夜值为( )A .3B .4C .18D .40【解析】作出约束条件对应的平面区域如图所示 ,当目标函数经过点(0,3)时,z 取得最年夜值18.【谜底】C3.(2013·高考陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( )A .-6B .-2C .0D .2【解析】如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部份,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点(-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.【谜底】A角度二:求非线性目标的最值4.(2013·高考山东卷)在平面直角坐标系xOy 中,M 为不等式组⎩⎨⎧2x -y -2≥0x +2y -1≥03x +y -8≤0所暗示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12【解析】已知的不等式组暗示的平面区域如图中阴影所示, 显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13.【解析】C5.已知实数x ,y 满足⎩⎪⎨⎪⎧0≤x≤2y≤2x ≤2y 则z =2x +y -1x -1的取值范围.【解】由不等式组画出可行域如图中阴影部份所示, 目标函数z =2x +y -1x -1=2+y +1x -1的取值范围可转化为点(x ,y )与(1,-1)所在直线的斜率加上2的取值范围,由图形知,A 点坐标为(2,1),则点(1,-1)与(2,1)所在直线的斜率为22+2,点(0,0)与(1,-1)所在直线的斜率为-1,所以z 的取值范围为(-∞,1]∪[22+4,+∞).【谜底】(-∞,1]∪[22+4,+∞)6.(2015·郑州质检)设实数x ,y 满足不等式组⎩⎨⎧x +y ≤2y -x ≤2y ≥1则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4] 【解析】如图所示,不等式组暗示的平面区域是△ABC 的内部(含鸿沟),x 2+y 2暗示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4].【谜底】B7.(2013·高考北京卷)设D为不等式组⎩⎨⎧x ≥02x -y ≤0x +y -3≤0所暗示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.【解析】作出可行域,如图中阴影部份所示,则根据图形可知,点B (1,0)到直线2x -y =0的距离最小,d =|2×1-0|22+1=255,故最小距离为255.【谜底】2558.设不等式组⎩⎨⎧x ≥1x -2y +3≥0y ≥x所暗示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值即是( )A .285B .4C .125D .2【解析】不等式组⎩⎪⎨⎪⎧x≥1x -2y +3≥0y≥x ,所暗示的平面区域如图所示,解方程组⎩⎪⎨⎪⎧x =1y =x,得⎩⎪⎨⎪⎧x =1y =1.点A (1,1)到直线3x -4y -9=0的距离d =|3-4-9|5=2,则|AB |的最小值为4.【谜底】B角度三:求线性规划中的参数9.若不等式组⎩⎨⎧x ≥0x +3y ≥43x +y ≤4所暗示的平面区域被直线y =kx +43分为面积相等的两部份,则k 的值是( )A .73B .37C .43D .34【解析】不等式组暗示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎪⎫043.因此只有直线过AB 中点时,直线y=kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎪⎫1252.当y =kx +43过点⎝ ⎛⎭⎪⎪⎫1252时,52=k 2+43,所以k =73.【解析】A10.(2014·高考北京卷)若x ,y满足⎩⎨⎧x +y -2≥0kx -y +2≥0y ≥0且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-12【解析】D作出线性约束条件⎩⎨⎧x +y -2≥0kx -y +2≥0y ≥0的可行域.当k >0时,如图①所示,此时可行域为y 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ⎝ ⎛⎭⎪⎪⎫-2k 0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝ ⎛⎭⎪⎪⎫-2k 0时,有最小值,即-⎝ ⎛⎭⎪⎫-2k =-4⇒k =-12.【谜底】D11.(2014·高考安徽卷)x ,y满足约束条件⎩⎨⎧ x +y -2≤0x -2y -2≤02x -y +2≥0.若z =y -ax 取得最年夜值的最优解不惟一,则实数a 的值为( )A .12或-1B .2或12C .2或1D .2或-1【解析】法一:由题中条件画出可行域如图中阴影部份所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最年夜值的最优解不惟一,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A ,解得a =-1或a =2.法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.【谜底】D12.在约束条件⎩⎪⎨⎪⎧ x ≥0y ≥0x +y ≤s y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最年夜值的取值范围是( ) A .[6,15]B .[7,15]C .[6,8]D .[7,8]【解析】 由⎩⎪⎨⎪⎧ x +y =s y +2x =4得⎩⎪⎨⎪⎧ x =4-s y =2s -4,则交点为B (4-s,2s -4),y +2x =4与x 轴的交点为A (2,0),与y 轴的交点为C ′(0,4),x +y =s 与y 轴的交点为C (0,s ).作出当s =3和s =5时约束条件暗示的平面区域,即可行域,如图(1)(2)中阴影部份所示.(1) (2)当3≤s <4时,可行域是四边形OABC 及其内部,此时,7≤z max <8;当4≤s ≤5时,可行域是△OAC ′及其内部,此时,z max =8.综上所述,可得目标函数z =3x +2y 的最年夜值的取值范围是[7,8].【谜底】D13.(2015·通化一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧ x ≥0y ≥0x 3a +y 4a≤1若z =x +2y +3x +1的最小值为32,则a 的值为________. 【解析】∵x +2y +3x +1=1+2y +1x +1,而y +1x +1暗示过点(x ,y )与(-1,-1)连线的斜率,易知a >0, ∴可作出可行域,由题意知y +1x +1的最小值是14,即⎝ ⎛⎭⎪⎫y +1x +1min =0--13a --1=13a +1=14⇒a =1. 【谜底】1角度四:线性规划的实际应用14.A ,B 两种规格的产物需要在甲、乙两台机器上各自加工一道工序才华成为制品.已知A 产物需要在甲机器上加工3小时,在乙机器上加工1小时;B 产物需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产物每件利润300元,B 产物每件利润400元,则这两台机器在一个工作日内缔造的最年夜利润是________元.【解析】 设生产A 产物x 件,B 产物y 件,则x ,y 满足约束条件⎩⎪⎨⎪⎧ 3x +y ≤11x +3y ≤9x ∈N y ∈N 生产利润为z =300x +400y .画出可行域,如图中阴影部份(包括鸿沟)内的整点,显然z =300x +400y 在点A处取得最年夜值,由方程组⎩⎪⎨⎪⎧ 3x +y =11x +3y =9解得⎩⎪⎨⎪⎧ x =3y =2则z max =300×3+400×2=1 700.故最年夜利润是 1 700元.【谜底】1 70015.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超越10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 暗示每天的利润w (元);(2)怎样分配生产任务才华使每天的利润最年夜,最年夜利润是几多?【解析】(1)依题意每天生产的伞兵个数为100-x -y ,所以利润w =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为⎩⎪⎪⎨⎪⎪⎧5x +7y +4100-x -y ≤600100-x -y ≥0x ≥0y ≥0x y ∈N .整理得⎩⎪⎪⎨⎪⎪⎧ x +3y ≤200x +y ≤100x ≥0y ≥0x y ∈N. 目标函数为w =2x +3y +300. 作出可行域.如图所示: 初始直线l 0:2x +3y =0,平移初始直线经过点A 时,w 有最年夜值.由⎩⎪⎨⎪⎧ x +3y =200x +y =100得⎩⎪⎨⎪⎧ x =50y =50.最优解为A (50,50),所以w max =550元.所以每天生产卫兵50个,骑兵50个,伞兵0个时利润最年夜,最年夜利润为550元.一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( )A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞) D.(-∞,-24)∪(7,+∞)【解析】根据题意知(-9+2-a )·(12+12-a )<0.即(a +7)(a -24)<0,解得-7<a <24.【谜底】B2.(2015·临沂检测)若x ,y 满足约束条件⎩⎨⎧x ≥0x +2y ≥32x +y ≤3则z =x -y 的最小值是( )A .-3B .0C .32D .3 【解析】作出不等式组⎩⎨⎧ x ≥0x +2y ≥32x +y ≤3暗示的可行域(如图所示的△ABC 的鸿沟及内部). 平移直线z =x -y ,易知当直线z =x -y 经过点C (0,3)时,目标函数z =x -y 取得最小值,即z min =-3.【谜底】A3.(2015·泉州质检)已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧ x +|y|≤1x≥0则z =OA →·OP →的最年夜值为( )A .-2B .-1C .1D .2【解析】如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.【谜底】D4.已知实数x ,y 满足:⎩⎨⎧x -2y +1≥0x<2x +y -1≥0则z =2x -2y -1的取值范围是( ) A .⎣⎢⎢⎡⎦⎥⎥⎤535B .[0,5] C .⎣⎢⎢⎡⎭⎪⎪⎫535D .⎣⎢⎢⎡⎭⎪⎪⎫-535 【解析】画出不等式组所暗示的区域,如图阴影部份所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫-535.【谜底】D5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( )A .2B .1C .3D .0【解析】由题意知(6-8b +1)(3-4b +5)<0,即⎝⎛⎭⎪⎫b -78(b -2)<0,∴78<b <2,∴b 应取的整数为1. 【谜底】B6.(2014·郑州模拟)已知正三角形ABC 的极点A (1,1),B (1,3),极点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)【解析】如图,根据题意得C (1+3,2).作直线-x +y =0,并向左上或右下平移,过点B (1,3)和C (1+3,2)时,z =-x +y 取范围的鸿沟值,即-(1+3)+2<z <-1+3,∴z =-x +y 的取值范围是(1-3,2).【谜底】A7.(2014·成都二诊)在平面直角坐标系xOy 中,P 为不等式组⎩⎨⎧ y≤1x +y -2≥0x -y -1≤0所暗示的平面区域上一动点,则直线OP 斜率的最年夜值为( )A .2B .13C .12D .1 【解析】作出可行域如图所示,当点P位于⎩⎪⎨⎪⎧ x +y =2y =1的交点(1,1)时,(k OP )max =1.【谜底】D8.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .14【解析】不等式⎩⎨⎧ x +y≤1x≥0y≥0所暗示的可行域如图所示,设a =x +y ,b =x -y ,则此两目标函数的范围分别为a =x +y ∈[0,1],b =x -y ∈[-1,1],又a +b =2x ∈[0,2],a -b =2y ∈[0,2],∴点坐标(x +y ,x -y ),即点(a ,b )满足约束条件⎩⎪⎨⎪⎧ 0≤a≤1-1≤b≤10≤a+b≤20≤a-b≤2作出该不等式组所暗示的可行域如图所示,由图示可得该可行域为一等腰直角三角形,其面积S =12×2×1=1.【谜底】B9.设x ,y 满足约束条件⎩⎪⎨⎪⎧ 3x -y -2≤0x -y≥0x≥0y≥0若目标函数z =ax +by (a >0,b >0)的最年夜值为4,则ab 的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞) D.(4,+∞) 【解析】作出不等式组暗示的区域如图阴影部份所示,由图可知,z =ax +by (a >0,b >0)过点A (1,1)时取最年夜值,∴a +b =4,ab ≤⎝ ⎛⎭⎪⎫a +b 22=4,∵a >0,b >0,∴ab ∈(0,4]. 【谜底】B10.设动点P (x ,y )在区域Ω:⎩⎨⎧ x ≥0y ≥xx +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部份为线段AB ,则以AB 为直径的圆的面积的最年夜值为( )A .π B.2πC .3π D.4π 【解析】作出不等式组所暗示的可行域如图中阴影部份所示, 则根据图形可知,以AB 为直径的圆的面积的最年夜值S =π×⎝ ⎛⎭⎪⎫422=4π. 【谜底】D11.(2015·西南三校联考)变量x ,y 满足约束条件⎩⎨⎧ y ≥-1x -y ≥23x +y ≤14若使z =ax +y 取得最年夜值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}【解析】作出不等式组所暗示的平面区域,如图所示.易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最年夜值的最优解有无穷多个,即-a =1或-a =-3,∴a =-1或a =3.【谜底】B12.(2014·新课标全国Ⅰ卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≥a x -y ≤-1且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3【解析】法一:联立方程⎩⎪⎨⎪⎧ x +y =a x -y =-1解得⎩⎪⎨⎪⎧x =a -12y =a +12代入x +ay =7中,解得a =3或-5,当a =-5时,z =x +ay 的最年夜值是7;当a =3时,z =x +ay 的最小值是7.法二:先画出可行域,然后根据图形结合选项求解.当a =-5时,作出不等式组暗示的可行域,如图(1)(阴影部份).图(1) 图(2)由⎩⎪⎨⎪⎧x -y =-1x +y =-5得交点A (-3,-2),则目标函数z =x -5y过A 点时取得最年夜值.z max =-3-5×(-2)=7,不满足题意,排除A,C 选项.当a =3时,作出不等式组暗示的可行域,如图(2)(阴影部份).由⎩⎪⎨⎪⎧x -y =-1x +y =3得交点B (1,2),则目标函数z =x +3y 过B点时取得最小值.z min =1+3×2=7,满足题意.【谜底】B13.若a ≥0,b ≥0,且当⎩⎨⎧x ≥0y ≥0x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12B .π4C .1D .π2【解析】因为ax +by ≤1恒成立,则当x =0时,by ≤1恒成立,可得y ≤1b(b ≠0)恒成立,所以0≤b ≤1;同理0≤a ≤1.所以由点P (a ,b )所确定的平面区域是一个边长为1的正方形,面积为1.【谜底】C14.(2013·高考北京卷)设关于x ,y 的不等式组⎩⎨⎧2x -y +1>0x +m<0y -m>0暗示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝ ⎛⎭⎪⎪⎫-∞43B .⎝ ⎛⎭⎪⎪⎫-∞13C .⎝ ⎛⎭⎪⎪⎫-∞-23D .⎝ ⎛⎭⎪⎪⎫-∞-53【解析】当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不成能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0.如图所示的阴影部份为不等式组暗示的平面区域.要使可行域内包括y =12x -1上的点,只需可行域鸿沟点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23.【谜底】C15.设不等式组⎩⎨⎧x +y -11≥03x -y +3≥05x -3y +9≤0暗示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)【解析】平面区域D 如图所示.要使指数函数y =a x的图象上存在区域D 上的点,所以1<a ≤3.【解析】A16.(2014·高考福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎨⎧x +y -7≤0x -y +3≥0y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最年夜值为( )A .5B .29C .37D .49【解析】由已知得平面区域Ω为△MNP 内部及鸿沟.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最年夜值为62+12=37.【解析】C17.在平面直角坐标系中,若不等式组⎩⎨⎧y ≥0y ≤x y ≤kx -1-1暗示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)【解析】已知直线y =k (x -1)-1过定点(1,-1),画出不等式组暗示的可行域示意图,如图所示.当直线y =k (x -1)-1位于y =-x 和x =1两条虚线之间时,暗示的是一个三角形区域.所以直线y =k (x -1)-1的斜率的范围为(-∞,-1),即实数k 的取值范围是(-∞,-1).当直线y =k (x -1)-1与y =x 平行时不能形成三角形,不服行时,由题意可得k >1时,也可形成三角形,综上可知k <-1或k >1.【谜底】D18.(2016·武邑中学期中)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0|x|-y -1≤0则z =2x +y 的最年夜值为( )A .4B .6C .8D .10【解析】区域如图所示,目标函数z =2x +y 在点A (3,2)处取得最年夜值,最年夜值为8.【谜底】C19.(2016·衡水中学期末)当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m 时,z =x -3y 的最年夜值为8,则实数m 的值是( )A .-4B .-3C .-2D .-1【解析】画出可行域如图所示,目标函数z =x -3y 变形为y =x 3-z3,当直线过点C 时,z 取到最年夜值, 又C (m ,m ),所以8=m -3m ,解得m =-4. 【谜底】A20.(2016·湖州质检)已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎨⎧x -3y +1≤0x +y -3≤0x -1≥0则tan ∠AOB 的最年夜值即是( )A .94B .47C .34D .12【解析】如图阴影部份为不等式组暗示的平面区域,观察图形可知当A 为(1,2),B 为(2,1)时,tan ∠AOB 取得最年夜值,此时由于tan α=k BO =12,tan β=k AO =2,故tan ∠AOB =tan(β-α)=tan β-tan α1+tan βtan α=2-121+2×12=34. 【解析】C 二、填空题21.(2014·高考安徽卷)不等式组 ⎩⎨⎧x +y -2≥0x +2y -4≤0x +3y -2≥0暗示的平面区域的面积为________.【解析】作出不等式组暗示的平面区域如图中阴影部份所示,可知S △ABC =12×2×(2+2)=4.【谜底】422.(2014·高考浙江卷)若实数x ,y 满足⎩⎨⎧x +2y -4≤0x -y -1≤0x ≥1则x +y 的取值范围是________.【解析】作出可行域,如图,作直线x +y =0,向右上平移,过点B 时,x +y 取得最小值,过点A 时取得最年夜值.由B (1,0),A (2,1)得(x +y )min =1,(x +y )max =3.所以1≤x +y ≤3.【谜底】[1,3]23.(2015·重庆一诊)设变量x ,y 满足约束条件⎩⎨⎧x ≥1x +y -4≤0x -3y +4≤0则目标函数z =3x -y 的最年夜值为____.【解析】根据约束条件作出可行域,如图中阴影部份所示, ∵z =3x -y ,∴y =3x -z ,当该直线经过点A (2,2)时,z 取得最年夜值,即z max =3×2-2=4.【谜底】424.已知实数x ,y满足⎩⎨⎧x +y -1≤0x -y +1≥0y≥-1则w =x 2+y 2-4x-4y +8的最小值为________.【解析】目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部份所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92.【谜底】9225.在平面直角坐标系xOy 中,M 为不等式组⎩⎨⎧2x +3y -6≤0x +y -2≥0y ≥0所暗示的区域上一动点,则|OM |的最小值是________.【解析】如图所示阴影部份为可行域,数形结合可知,原点O 到直线x +y -2=0的垂线段长是|OM |的最小值,∴|OM |min =|-2|12+12=2.【谜底】226.(2016·汉中二模)某企业生产甲、乙两种产物,已知生产每吨甲产物要用水3吨、煤2吨;生产每吨乙产物要用水1吨、煤3吨.销售每吨甲产物可获得利润5万元,销售每吨乙产物可获得利润3万元,若该企业在一个生产周期内消耗水不超越13吨,煤不超越18吨,则该企业可获得的最年夜利润是______万元.【解析】设生产甲产物x 吨,生产乙产物y 吨,由题意知⎩⎪⎨⎪⎧x≥0y≥03x +y≤132x +3y≤18利润z =5x +3y ,作出可行域如图中阴影部份所示,求出可行域鸿沟上各端点的坐标,经验证知当x =3,y =4,即生产甲产物3吨,乙产物4吨时可获得最年夜利润27万元.【谜底】2727.某农户计划种植黄瓜和韭菜,种植面积不超越50亩,投入资金不超越54万元,假设种植黄瓜和韭菜的产量、本钱和售价如下表:)最年夜,则黄瓜的种植面积应为________亩.【解析】设黄瓜和韭菜的种植面积分别为x 亩,y 亩,总利润为z 万元,则目标函数为z =(0.55×4x -1.2x )+(0.3×6y -0.9y )=x +0.9y .线性约束条件为⎩⎨⎧x +y ≤≤54x ≥0y ≥0即⎩⎪⎨⎪⎧x +y ≤504x +3y ≤180x ≥0y ≥0.画出可行域,如图所示.作出直线l 0:x +0.9y =0,向上平移至过点A 时,z 取得最年夜值,由⎩⎪⎨⎪⎧x +y =504x +3y =180解得A (30,20).【谜底】3028.(2015·日照调研)若A为不等式组⎩⎨⎧x ≤0y ≥0y -x ≤2暗示的平面区域,则当a 从-2连续变动到1时,动直线x +y =a 扫过A 中的那部份区域的面积为________.【解析】平面区域A 如图所示,所求面积为S =12×2×2-12×22×22=2-14=74.【谜底】7429.(2014·高考浙江卷)当实数x ,y 满足⎩⎨⎧x +2y -4≤0x -y -1≤0x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.【解析】画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤41≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.【谜底】⎣⎢⎢⎡⎦⎥⎥⎤13230.(2015·石家庄二检)已知动点P (x ,y )在正六边形的阴影部份(含鸿沟)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最年夜值的最优解有无穷多个,则k 的值为________.【解析】由目标函数z =kx +y (k >0)取得最年夜值的最优解有无穷多个,结合图形分析可知,直线kx +y =0的倾斜角为120°,于是有-k =tan 120°=-3,所以k =3.【谜底】331.设m >1,在约束条件⎩⎨⎧y ≥xy ≤mxx +y ≤1下,目标函数z =x +my 的最年夜值小于2,则m 的取值范围.【解析】变换目标函数为y =-1m x +z m ,由于m >1,所以-1<-1m <0,不等式组暗示的平面区域如图中的阴影部份所示,根据目标函数的几何意义,只有直线y =-1m x +zm在y 轴上的截距最年夜时,目标函数取得最年夜值.显然在点A 处取得最年夜值,由y =mx ,x +y =1,得A ⎝ ⎛⎭⎪⎪⎫11+m m 1+m ,所以目标函数的最年夜值z max =11+m +m21+m <2,所以m 2-2m -1<0,解得1-2<m <1+2,故m 的取值范围是(1,1+2).【谜底】(1,1+2)32.已知实数x ,y 满足⎩⎨⎧y ≥1y ≤2x -1x +y ≤m若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最年夜值的取值范围是________. 【解析】不等式组暗示的可行域如图中阴影部份(包括鸿沟)所示,目标函数可变形为y =x -z ,当z 最小时,直线y =x -z 在y 轴上的截距最年夜.当z 的最小值为-1,即直线为y =x +1时,联立方程⎩⎪⎨⎪⎧ y =x +1y =2x -1可得此时点A 的坐标为(2,3),此时m =2+3=5;当z 的最小值为-2,即直线为y =x +2时,联立方程⎩⎪⎨⎪⎧ y =x +2y =2x -1可得此时点A 的坐标是(3,5),此时m =3+5=8.故m 的取值范围是[5,8].目标函数z =x -y 的最年夜值在点B (m -1,1)处取得,即z max=m -1-1=m -2,故目标函数的最年夜值的取值范围是[3,6].【谜底】[3,6]33.(2013·高考广东卷)给定区域D :⎩⎨⎧ x +4y ≥4x +y ≤4x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最年夜值或最小值的点},则T 中的点共确定________条分歧的直线.【解析】线性区域为图中阴影部份,取得最小值时点为(0,1),最年夜值时点为(0,4),(1,3),(2,2),(3,1),(4,0),点(0,1)与(0,4),(1,3),(2,2),(3,1),(4,0)中的任何一个点都可以构成一条直线,共有5条 ,又(0,4),(1,3),(2,2),(3,1),(4,0)都在直线x +y =4上,故T 中的点共确定6条分歧的直线.【谜底】634.(2011·湖北改编)已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.【解析】∵a =(x +z,3),b =(2,y -z ),且a ⊥b ,∴a ·b =2(x +z )+3(y -z )=0,即2x +3y -z =0.又|x |+|y |≤1暗示的区域为图中阴影部份,∴当2x +3y -z =0过点B (0,-1)时,z min =-3,当2x +3y -z =0过点A (0,1)时,z min =3.∴z ∈[-3,3].【谜底】[-3,3]35.(2016·衡水中学模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my取得最小值,则m =________.【解析】作出线性约束条件暗示的平面区域,如图中阴影部份所示.若m =0,则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意.若m ≠0,则目标函数z =x +my 可看作斜率为-1m的动直线y =-1m x +z m, 若m <0,则-1m>0,由数形结合知,使目标函数z =x +my 取得最小值的最优解不成能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时,有无穷多个点(x ,y )在线段AB 上,使目标函数z =x +my 取得最小值,即-1m=-1,则m =1. 综上可知,m =1.【谜底】1。

非线性目标函数的线性规划问题【基础版】

非线性目标函数的线性规划问题【基础版】

y 6 5 4 3 2 1
A(1,
22 ) 5
B (5, 2) C (1,1)
x 4y 3 0
z x y
2
2
x -3 -2 -1 0 1 2 3 4 5 6 7 8 9 -1 3x 5 y 25 0
x 1
解:画出可行域,如图所示, 22 并求出直线交点坐标: A(1, ), B (5, 2), C (1,1)
| AB | ( x1 x2 )2 ( y1 y2 )2
问题2:尝试说说目标函数的几何意义—— ★可行域内的任意一点 ( x, y ) 到定点 M (a, b) 的距离
y b 2.求形如 z 目标函数的最值 xa 问题3:回忆过两点直线的斜率公式——
★设 A( x1 , y1 ),B( x2 , y2 ) 则过 A, B 两点的直线 y2 y1 斜率为 k
x 1 22 A (1, ) y 1 y (1) 5 5 , 解: z 4 x 4y 3 0 x 1 x (1) 3 y 1 B(5, 2) z 的几何意义为:可 2 1 C (1,1) x 1 x -3 -2 -1 0 1 2 3 4 5 6 7 8 9 行域中的点 ( x, y ) 与 (1,1) ● -1
-3 -2 -1 0 -1
1 2 3 4 5 6 7 8 9
x
x 1
3x 5 y 25 0
z 2, 29


x 4 y 3 0 【例2】变量 x , y , 满足 3 x 5 y 25 0 ; x 1
(1)求可行域内的点 ( x, y ) 与原点连线的斜率 z 表达式; y (2)求 z 的取值范围. y (1) z 6 22 x y 5 A(1, ) z 5 (2)因为 表示 4 x x 4y 3 0 3 B (5, 2) 可行域内任一点与原点 2 1 O连线的斜率,由图知: C (1,1)

线性规划题型五 线性规划中的非线性目标函数的最值问题

线性规划题型五 线性规划中的非线性目标函数的最值问题

线性规划题型五线性规划中的非线性目标函数的最值问题一、求非线性目标函数的最值问题例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、,5已知x,y 满足||||4x y+≤,则22(3)(3)z x y=++-的最小值是.比值问题当目标函数形如y azx b-=-时,可把z看作是动点(,)P x y与定点(,)Q b a连线的斜率,这样目标函数的最值就转化为PQ连线斜率的最值。

例4. 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,则 yx 的取值范围是( ).A.[95,6] (B )(-∞,95]∪[6,+∞)(C )(-∞,3]∪[6,+∞) (D )[3,6]与圆锥曲线综合的非线性规划的比值问题若方程,()0112=+++++b a x a x 的两根分别为椭圆与双曲线的离心率。

则ab的取值范围为()()1,2--⎪⎭⎫ ⎝⎛--21,2 ()()∞--∞-,12, ()⎪⎭⎫⎝⎛∞--∞-,212,1 X2X1与向量综合的可化为线性规划问题的非线性规划问题2011年6.已知平面直角坐标系xOy 上的区域D 由不等式⎪⎩⎪⎨⎧≤≤≤≤yx x x 2220 给定,若M (x ,y )为D 上的动点,点A的坐标为,则z=OM ·OA 的最大值为 A .3B .4C .D .已知O 为最坐标原点,A(2,1),P(X,Y)满足⎪⎩⎪⎨⎧≥-≤+≤+-012553034x y x y xAOP COS ∠•的最大值。

非线性目标函数求最值

非线性目标函数求最值

非线性目标函数求最值三年级数学组:非线性目标函数最值问题研究目标:1.通过实例,能够用平面区域表示二元一次不等式组。

2.借助斜率公式及距离公式,理解非线性目标函数所表示的几何意义。

3.通过启发、引导、小组讨论,探究出目标函数的最优解。

研究重点:利用图解法求非线性目标函数的最优解,借助斜率公式及距离公式,理解非线性目标函数所表示的几何意义。

研究难点:通过类比、化归、数形结合、运动变化等方法探究非线性目标函数的最优解。

创设情境提出问题:1.求线性目标函数的最值的步骤是什么?2.如何求形如 z=(x-a)²+(y-b)²目标函数的最值?3.如何求形如 z=(y-b)/(x-a) 目标函数的最值?探究发现构建新知:1.求形如 z=(x-a)²+(y-b)²目标函数的最值:问题1:回忆两点之间距离公式。

问题2:尝试说明目标函数的几何意义。

2.求形如 z=(y-b)/(x-a) 目标函数的最值:问题3:回忆过两点直线的斜率公式。

问题4:尝试说明目标函数的几何意义。

例1] 变量 x,y 满足以下不等式组:x-4y+3 ≤ 03x+5y-25 ≤ 0x ≥ 11) 求可行域内的点 (x,y) 到原点的距离 z 的表达式;2) 求 z 的取值范围。

例2] 变量 x,y 满足以下不等式组:x-4y+3 ≤ 03x+5y-25 ≤ 0x ≥ 11) 求可行域内的点 (x,y) 与原点连线的斜率 z 的表达式;2) 求 z 的取值范围。

自我尝试运用新知:变式1] 设点 P(x,y) 满足以下不等式组:3x+5y-25 ≤ 0x-4y+3 ≤ 0x ≥ 1设 z=(x-3)²+y²,求 z 的最小值。

变式2] 变量 x,y 满足以下不等式组:3x+5y-25 ≤ 0x-4y+3 ≤ 0x ≥ 1设 z=(y+1)/(x+1),求 z 的取值范围。

回顾反思巩固深化:1.本节课我学会了:例1] 求可行域内的点 (x,y) 到原点的距离 z 的表达式;例2] 求可行域内的点 (x,y) 与原点连线的斜率 z 的表达式;2.变量 x,y 满足以下不等式组:x+y-4 ≥ 02x-y-5 ≤ 01) 设 z=x²+y²-10y+25,求 z 的最小值;2) 设 z=(2y+1)/(x+1),求 z 的最值。

2021年高中数学一轮复习·线性规划与基本不等式:第4节 求非线性目标函数的最值

2021年高中数学一轮复习·线性规划与基本不等式:第4节  求非线性目标函数的最值

第4节求非线性目标函数的最值【基础知识】常见代数式的几何意义有(1)x 2+y 2表示点(x ,y )与原点(0,0)的距离;(2)x -a 2+y -b 2表示点(x ,y )与点(a ,b )之间的距离;(3)y x表示点(x ,y )与原点(0,0)连线的斜率;(4)y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率.∵z =y x =y -0x -0.∴z 的值即是可行域中的点与原点O 连线的斜率.观察图形可知z min =k OB =25.[6分]【针对训练】1、设实数x ,y -y -2≤0,+2y -4≥0,y -3≤0,则y x的最大值为________.2、已知O 是坐标原点,点A (1,0),若点M (x ,y +y ≥2,≤1,≤2上的一个动点,则|OA →+OM →|的最小值是________.【答案】(1)32(2)322【解析】(1)y x 表示点(x ,y )与原点(0,0)连线的斜率,在点(1,32)处取到最大值.(2)依题意得,OA →+OM →=(x +1,y ),|OA →+OM →|=x +12+y 2可视为点(x ,y )与点(-1,0)间的距离,在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,在该平面区域内的点中,由点(-1,0)向直线x +y =2引垂线的垂足位于该平面区域内,且与点(-1,0)的距离最小,因此|OA →+OM →|的最小值是|-1+0-2|2=322.≥1,-2y +3≥0,≥x所表示的平面区域是Ω1,平面区域Ω2是与Ω1关于直线3x -4y -9=0对称的区域,对于Ω1中的任意一点A 与Ω2中的任意一点B ,|AB |的最小值等于()A.285B.4 C.125D.24、设变量x ,y x +2y -18≤0,x -y ≥0,+y -3≥0,若直线kx -y +2=0经过该可行域,则k 的最大值为________.【答案】(1)B (2)1【巩固提升】1、已知变量x,y 满足约束条件则的取值范围是()A.B.C.D.(3,6]【答案】A 2、若满足约束条件,则的最大值为.【答案】3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故的最大值为3.3、已知x ,y x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为()A.5 B.4 C.5 D.2【答案】B【解析】画出约束条件表示的可行域(如图所示).显然,当目标函数z =ax +by 过点A (2,1)时,z 取得最小值,即25=2a +b ,所以25-2a =b ,所以a 2+b 2=a 2+(25-2a )2=5a 2-85a +20,构造函数m (a )=5a 2-85a +20(5>a >0),利用二次函数求最值,显然函数m (a )=5a 2-85a +20的最小值是4×5×20-(85)24×5=4,即a 2+b 2的最小值为4.故选B.4.设实数x 、y x -y -2≤0,x +2y -4≥0,2y -3≤0,则y x的最大值是________.【解析】不等式组确定的平面区域如图阴影部分.设y x =t ,则y =tx ,求y x的最大值,即求y =tx 的斜率的最大值.显然y =tx 过A 点时,t 最大.+2y -4=0,y -3=0,解得代入y =tx ,得t =32.所以y x 的最大值为32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回
x≥1, 已知 x,y 满足x+y≤4, x+by+c≤0,
且目标函数
z=2x+y 的最大值为 7,最小值为 1,求 b+c 的值.
x≥ 1 解:如图,画出 x+y≤4
所表示的平面区域及直线 2x+y=7 与 2x+y=1,
可知直线 x+by+c=0 过直线 2x+y=1 与直 线 x=1 的交点(1,-1)和直线 2x+y=7 与直 线 x+y=4 的交点(3,1),且 b<0.
返回
[自主解答]
由约束条件画出可行域(如图所示)为矩
形ABCD(包括边界).
返回
点C的坐标为(3,1),z最大即直线y=-ax+z在y轴上
的截距最大,
∴-a<kCD,即-a<-1. ∴a>1. 即a的取值范围为(1,+∞).
返回
在例3的条件下,若目标函数z=ax+y(a>0)取得最大 值的点有无数个,求a的取值范围.
2
返回
1 y--2 (2)z=2· 表示可行域内任一点(x, y)与定点 Q(- x--1 1 7 3 1,-2)连线的斜率的两倍,且 kQA=4,kQB=8, 3 7 所以 z 的取值范围为[4,2].
返回
[悟一法] y- b (1)若目标函数为形如 z= ,可考虑(a,b)与(x,y)两 x- a 点连线的斜率. (2)若目标函数为形如 z=(x-a)2+(y-b)2,可考虑(x,y) 与(a,b)两点距离的平方. ( 3 )对 于 形 如 z=| Ax+By+C| 的 目 标 函 数 , 可 化 为 z=
1-b+c=0, 所以 3+b+c=0, b=-1, 解得 c=-2.
故 b+c=-3.
A B
2 2
Ax By C A B
2 2
形式,
A2 B2
求可行域内的点( x ,y )到直 线 Ax+By+C =0 距离的 倍的最值。
返回
[研一题]
1≤x+y≤4, 已知变量 x, y 满足约束条件 -2≤x-y≤2,
[例 3]

目标函数 z=ax+y(其中 a>0)仅在点(3,1)处取得最大值,求 a 的取值范围.
பைடு நூலகம்
y
B
A
C
x
[例 2]
x-y+2≥0, 已知x+y-4≥0, 2x-y-5≤0,
求:
(1)z=x2+y2-10y+25 的最小值; 2y+1 (2)z= 的取值范围. x+1
返回
[自主解答]
作出可行域如图,并求
出顶点的坐标 A(1,3)、 B(3,1)、C(7,9). (1)z=x2+(y-5)2 表示可行域 内任一点(x,y)到定点 M(0,5)的距离的 平方,过 M 作直线 AC 的垂线,易知垂足 N 在线段 AC 9 上,故 z 的最小值|MN| =2.
返回
解:如例3中的图,若目标函数z=ax+y(a>0)取得最大值 的点有无数个,则必有直线z=ax+y与直线x+y=4平行, 此时a=1.
返回
[悟一法] 已知目标函数的最值求参数,这是线性规划的逆向思 维问题.解答此类问题必须要明确线性目标函数的最值一般 在可行域的顶点或边界取得,运用数形结合的思想方法求 解.同时,要注意边界直线斜率与目标函数斜率的关系.
返回
[通一类] y≥x, 3.(2011· 湖南高考)设 m>1,在约束条件y≤mx, x+y≤1
下,目
标函数 z=x+5y 的最大值为 4,则 m 的值为________.
返回
1 m 解:画出可行域如图,可知 z=x+5y 在点 A( , ) 1+m 1+m 取最大值为 4,解得 m=3.
非线性目标函数的最值问题
及逆向求参数问题
非线性目标函数的最值问题
x y 4 0 y 例已知变量x , y满足 x y 0 ,求 的取值范围. x x 1
说明:
ay b 在 线 性 规 划 中 , 对 于 形 如 z= ( ac ≠ 0 ) 的 目 标 函 数 , cx d b y ( ) a a d b 可 先 变 形 z= c 的 形 式 ,将 问 题 化 归 为 求 点( , ) d x ( ) a c c 与 可 行 域 内 的 点 ( x , y ) 连 线 斜 率 的 a/c 倍 的 范 围 最 值 ;
相关文档
最新文档