方差分析ppt

合集下载

方差分析 PPT课件

方差分析 PPT课件

2

g ni

X ij 2
C
i1 j1
i1 j1
C

g ni
(
X ij
)2
/
N
i1 j1
总 N 1
2型糖尿病患者治疗4周后餐后2小时血糖的下降量(mmol/L)
高剂量组
5.6
16.3
低剂量组
-0.6
2.0
对照组
12.4
2.7
9.5
11.8
5.7
5.6
0.9
7.8
6.0
完全随机设计资料的方差分析
例1 某医生为研究一种四类降糖新药的疗效,以 统一的纳入标准和排除标准选择了60名2型糖 尿病患者,按完全随机设计方案将患者分为三 组进行双盲临床试验。其中,降糖新药高剂量 组21人、低剂量组19人、对照组20人。对照 组服用公认的降糖药物,治疗4周后测得其餐 后2小时血糖的下降值(mmol/L),结果如表9-1 所示。问治疗4周后,餐后2小时血糖下降值的 三组总体平均水平是否不同?
• 总变异的大小可以用离均差平方和(sum of squares of deviations from mean, SS)表示,即各测量值Xij与总均数差值的 平方和,记为SS总。
• 总变异SS总反映了所有测量值之间总的 变异程度
完全随机设计资料的方差分析
g ni
SS总
Xij X
完全随机设计资料的方差分析
SS组内

g ni
( Xij

Xi )2
i1 j1
组内 N g
2型糖尿病患者治疗4周后餐后2小时血糖的下降量(mmol/L)
高剂量组

方差分析SPSS操作流程PPT课件

方差分析SPSS操作流程PPT课件

ANOVA
WEIGHT
Sum of Squares Betwee2n05G3r8o.u7p0s Within G6r5o2u.p1s59 Total 21190.86
dfMean Square F 36846.231357.467
15 43.477 18
Sig. .000
• 第一栏:方差来源
• 第二栏:离均差平方和
.;
22
• Homogeneity of variance复选项,要求进行方差齐次性检验 ,并输出检验结果。
• Brown-Forsythe:检验各组均数相等,当不能确定方差齐性 检验时,该统计量优于F统计量。
• Welch:检验各组均数相等,当不能确定方差齐性检验时,该 统计量优于F统计量。
• Mean plot复选项,即均数分布图,横轴为分类变量,纵轴为 反应变量的均数线图;
重比较对每个水平的均值逐对进行比较,以判断具体是哪些水
平间存在显著差异。
• 常用方法备选:
– LSD法:t检验的变形,在变异和自由度的计算上利用了整个样本信息

– Duncan 新复极差测验法
– Tukey 固定极差测验法
– Dunnett最小显著差数测验法 等
• 实现手段:
– 方差分析菜单中的“Post ho. c test…”按钮
• One-Way ANOVA过程要求:
因(分析)变量属于正态分布总体,若因(分析 )变量的分布明显的是非正态,应该用非参数分 析过程。
对被观测对象的实验不是随机分组的,而是进行 的重复测量形成几个彼此不独立的变量,应该用 Repeated Measure菜. 单项,进行重复测量方差8
• analyze→compare means→one-way ANVOA

方差分析(共66张PPT)

方差分析(共66张PPT)

18~岁 21.65 20.66
… … 18.82 16 22.07 8.97
30~岁 27.15 28.58
… … 23.93 16 25.94 8.11
45~60岁 20.28 22.88 … … 26.49 16 25.49 7.19
基本步骤
(1)建立假设,确定检验水准
H0:三个总体均数相等,即三组工作人员的 体重指数总体均数相等
单因素方差分析
例1 在肾缺血再灌注过程的研究中,将36只雄性大鼠随机等分成三组, 分别为正常对照组、肾缺血60分组和肾缺血60分再灌注组,测得 各个体的NO数据见数据文件,试问各组的NO平均水平是否相同?
单因素方差分析
分析:
对于单因素方差分析,其资料在SPSS中的数据结构应当由两 列数据构成,其中一列是观察指标的变量值,另一列是用以表 示分组变量。实际上,几乎所有的统计分析软件,包括SAS, STATA等,都要求方差分析采用这种数据输入形式,这一点也暗 示了方差分析与线性模型间千丝万缕的联系。
H1:三个总体均数不等或不全相等
(2)计算检验统计量F值
变异来源
SS 自由度(df)
MS
F
组间 组内 总变异
143.406 363.86 507.36
2
71.703
8.87
45
8.09
47
(3)确定p值,作出统计推断
,本次F值处于F界值之外,说明组间均方组内 均方比值属于小概率事件,因此拒绝H0,接受 H1,三个总体均数不等或不全相等
分凝血活酶时间有无不同?
方差分析步骤 :
(1)提出检验假设,确定检验水准
H0:μ1=μ2=μ3 H1:μ1,μ2,μ3不全相同 a=

方差分析 (共72张PPT)

 方差分析 (共72张PPT)

2.总体变异的构成
总体变异 组间变异: 组内变异:组内变异理论上要求齐性,实际计算取其 均值
3.方差的基本公式
一般总体方差称方差,样本方差称均方 能使变量发生变异的原因很多,这些原因我们都将其称为变异
因素或变异来源。
方差分析就是发现各类变异因素相对重要性的一种方法
方差分析的思路就是:把整个试验(设有 k 个总体)的样本资料作 为一个整体来考虑。
原理是变异的可加性。
即每一个数据与数据的总体平均数差的平方和,可以分解为每一组数 据各自的离差平方和与由各组数据的平均数组成的一组数据的
离差平方和两部分。前者表达的是组内差异,即每组数据中 各个数据之间的差异,也就是个体差异,表达的是抽样误差或 随机误差程度;后者表达的是组间差异,即各组平均数之间的差 异,表达的是实验操纵的差异程度,实验操纵即指自变量的操 纵,这两部分差异之间相互独立。
3、这种两两比较会随着样本组数的增加而加大犯Ⅰ型错的差异显著性检验,若两两比较推 断正确的概率为95%,则所有比较都正确的概率为6=0.74,则降低
了推断的可靠性。
• 几个常用术语:
1、试验指标(experimental index) 为衡量试验结果的好坏或处理效应的高低 ,在试验中具体测
(1).计算平方和:
组间平方和
SB SX n2X n2 71 .5 6 65 8 .1 7 8 20 8 .47
¨ 组内平方和
SW SX 2X n2 7 6 7 41 4 .5 6 4 45 7 .5 7 8
¨ 总平方和
SS T X 2X n2
764414252 876.396
23
(2).计算自由度
因此,方差分析可以帮助我们抓住试验的主要矛盾和技术关键,发 现主要的变异来源,从而抓住主要的、实质性的东西。

方差分析介绍课件

方差分析介绍课件

03 方差分析可以应用于各种 类型的数据,包括定量数 据和定性数据。
04 方差分析的结果可以提供 关于数据分布和差异的详 细信息,从而帮助研究人 员更好地理解数据。
方差分析的应用场景
比较不同组别的均值差异 检验多个总体的方差是否相等 研究因素对结果的影响程度 评估实验结果的可靠性和准确性
方差分析的假设条件
02
方差齐性:各组方差相等
03
独立性:数据点之间相互独立
04
线性关系:因变量与自变量之间存在线性关系
3
方差分析的结果解释
方差分析的结论
01
01
方差分析可以检验不同组别之 间的差异是否显著
02
02
方差分析可以确定哪些组别之 间的差异是显著的
03
03
方差分析可以帮助我们确定哪 些因素对结果有显著影响
04
04
方差分析可以帮助我们确定哪 些因素对结果的影响程度最大
方差分析的局限性
假设条件:方差分析需要满 足一系列假设条件,如正态 性、方差齐性等,不满足假 设条件可能导致结果不准确。
线性关系:方差分析只能 处理线性关系,对于非线 性关系,需要进行适当的 数据转换。
多重比较:方差分析只能 比较各组间的平均差异, 无法进行多重比较,需要 进一步进行事后检验。
混杂因素:方差分析无法 控制混杂因素的影响,可 能导致结果不准确。
方差分析的实际应用
比较不同组别的 平均数差异
检验不同组别的 方差是否相等
确定影响因素的 主次顺序
预测和控制实验 结果
优化生产过程和 改进产品质量
评估市场调研结果 和制定营销策略
谢谢
02ቤተ መጻሕፍቲ ባይዱ
计算组内方差: 将各组数据分别 进行平方和计算, 然后除以组内数 据个数,得到组 内方差。

方差分析PPT课件

方差分析PPT课件

方差分析的用途
1. 用于多个样本平均数的比较 2. 分析多个因素间的交互作用 3. 回归方程的假设检验 4. 方差的同质性检验
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
第一节 方差分析的基本问题
▪ 一、方差分析问题的提出 问题:为了探索简便易行的发展大学生心 血管系统机能水平的方法,在某年级各项 身体发育水平基本相同,同年龄女生中抽 取36人随机分为三组,用三种不同的方法 进行训练,三个月后,测得哈佛台阶指数 如表 1 ,试分析三种不同的训练方法对女 大学生心血管系统的影响有无显著性差异。
结果的好坏和处理效应的高低,实际中具体测 定的性状或观测的项目称为试验指标。常用的 试验指标例如有:身高、体重、日增重、酶活 性、DNA含量等等。
影响因素( experimental factor): 观测中所
研究的影响观测指标的定性变量称之为因素。 当考察的因素只有一个时,称为单因素试验; 若同时研究两个或两个以上因素的影响时,则 称为两因素或多因素试验。
N (3, 2)
A3
61.31 60.00
┆ 67.26 69.05
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
分析
根据研究目的,这里有三个正态总体 N (1, 2),N (2, 2 ), N (3 , a2 ) 。三组数据分别为来自三个总体的样本,问题是 推断 1 ,2 和 3 之间有无显著差异。 由 x1, x2, x3不相等,不能直接得出1, 2, 3不尽相等的结论, 原因是:造成 x1, x2, x3不相等可能有两个方面因素:一是 1, 2, 3 不等,二是1 2 3,但由于抽样误差,造成 x1, x2, x3 之间有差异。现在的任务是通过样本推断1, 2, 3之间有无 显著性差异。

方差分析的SPSS过程PPT课件

方差分析的SPSS过程PPT课件
2024/10/16
均数估计
41
点击“OK”,运行结果
2024/10/16
42
➢结果输出
2024/10/16
43
有效数据例数统计
2024/10/16
44
分组统计描 述(均数、 标准差)
2024/10/16
45
方差分析表
平方 和
自由 度
均方
F值 P值
2024/10/16
46
均数估计
均数
标准误
3.16
3.26
3.82
3.28
2024/10/16
19
t检验法的不足
t 检验法适用于单样本及两样本平均数间的差异显著性检验 ⑴ 检验过程烦琐
本例中用t 检验法要进行 3次两两平均数的差异显著性检验 若有k个处理,则要作 k(k-1)/2次类似的检验
⑵无统一的试验误差,误差估计的精确性和检验的灵敏性低 ⑶推断的可靠性低,检验的 I 型错误率大
• 另一种情况是处理因素确实有作用。组间均方是 由于误差与不同处理共同导致的结果,即各样本 来自不同总体。那么,组间均方会远远大于组内 均方。MS组间>>MS组内。
• MS组间/MS组内比值构成F分布。用F值与其临界 值比较,推断各样本是否来自相同的总体。
2024/10/16
5ቤተ መጻሕፍቲ ባይዱ
多重比较检验问题
多重比较是通过对总体均值之间的配对比较来进一步 检验到底哪些均值之间存在差异。
方此差43案224分02平 ..4例均 28/析1方 0将/1数 6和数((xQ据i i按))区组和处153理531657组4...3843两.802个方向进行17分3594组.55.5,6540属46..于20 无重2复247数44.97据.94的9 双向34

方差分析ppt课件

方差分析ppt课件
推断控制变量是否给观测变量带来了显 著影响。
在观测变量总离差平方和中,如果组
间离差平方和所占比例较大,则说明观 测变量的变动主要是由控制变量引起的, 可以由控制变量来解释,控制变量给观 测变量带来了显著影响;反之,如果组 间离差平方和所占比例小,则说明观测 变量的变动不是主要由控制变量引起的, 不可以主要由控制变量来解释,控制变 量的不同水平没有给观测变量带来显著 影响,观测变量值的变动是由随机变量 因素引起的。
不同饲料对牲畜体重增长的效果等, 都可以使用方差分析方法去解决。
方差或叫均方,是标准差的平方,是
表示变异的量。在一个多处理试验中, 可以得到一系列不同的观测值。造成观 测值不同的原因是多方面的,有的是处 理不同引起的,叫处理效应或条件变异, 有的是试验过程中偶然性因素的干扰和 测量误差所致,称为实验误差。
dfT nk 1 20 1 19
dft k 1 5 1 4
dfe 5(4 1) 15
st 2
SSt dft
103.94 3
34.65
se2
SSe dfe
109.36 12
9.11
进行F检验:
F st2 34.65 50.15 se2 9.11
F0.05(4,15) 3.06, F0.01(4,15) 4.89, F
x1 x2
ts x1 x2
x1 x2
LSD0.05 t s 0.05 x1x2
LSD0.01
t0.01
s x1 x2

x1
x 2 >t0.05
s x1
x2

x1
ห้องสมุดไป่ตู้
x2

t0.01
s x1 x2

方差分析课件-PPT

方差分析课件-PPT
、 、 、 增重表就是选用S-N-K法作均数多重两两比较得结果
增重表就是选用S-N-K法作均数多重两两比较得结果:
本例按a=0、05水准,将无显著性差异得数归为一类 (Subset for alpha=0、05)。可见
品种5、2、3得样本均数位于同一个子集( Subset )内,说 明品种5、品种2、品种3得样本均数两两之间无显著差异; 品种3、4、1位于同一个Subset内,她们之间无显著差异;而 品种5、2与品种4、1得样本均数有显著差异。
即三组均数间差异极显著,即不同时期切痂对大鼠肝脏 ATP含量有影响。
LSD法多重比较:
“*”显著性标注 两组均数得差
•S-N-K法:本例按0、5水平,将无显著差异得均数归为一类。
•第一组与第三组为一类,无显著差异,它们与第二组之间均数差 异显著。
•LSD与S-N-K法,不同得两两比较法会有不同。
如欲了解就是否达到极显著差异,需要将显著水平框中得 值输入0、01。
例、 为了研究烫伤后不同时间切痂对大鼠肝脏 ATP得影响,现将30只雄性大鼠随机分成3组,每组 10只:A组为烫伤对照组,B组为烫伤后24小时切痂 组,C组为烫伤后96小时切痂组。全部大鼠在烫伤 168小时候处死并测量器肝脏ATP含量,结果如下。 问试验3组大鼠肝脏ATP总数均数就是否相同。
该12个观察值得总得均值为91、5,标准差为34、 48。
上图为品系、剂量间均值得方差分析(F检验)结果
由表中可知,品系得F=23、771,P=0、001<0、01,差异极显著;
剂量得F=33、537,P=0、001<0、01,差异极显著。说明不同品系与 不同雌激素剂量对大鼠子宫得发育均有极显著影响,故有必要进一步对 品系、雌激素剂量两因素不同水平得均值进行多重比较。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

偏差平方和
S ( x ji x )2
i 1 j 1 r n
(6)
经分解可得
S n( xi x ) ( x ji xi ) 2
2 i 1 i 1 j 1 r r n

S A n ( xi x ) 2
i 1 r
(7) (8)
S E ( x ji xi ) 2
H 0 : 1 2 r 0
(4)
1.2

统计分析
(5)
1 n 1 r 1 r n xi x ji , x xi x ji n j 1 r i 1 rn i 1 j 1
x i 是第 i 组数据的组平均值, x
是总平均值。考察全体数据对 x 的
人们关心的试验结果称为指标,试验中需要考察、可以控 制的条件称为因素或因子,因素所处的状态称为水平。上面提 到的灯泡寿命问题是单因素试验,小麦产量问题是双因素试 验。处理这些试验结果的统计方法就称为单因素方差分析和双 因素方差分析。
A 取某个水平下的指标视为随机变量,判断 A 取不同水平
时指标有无显著差别,相当于检验若干总体的均值是否相等。
我们已经作过两个总体均值的假设检验,如两台机床生产 的零件尺寸是否相等,病人和正常人的某个生理指标是否一 样。如果把这类问题推广一下,要检验两个以上总体的均值彼 此是否相等,仍然用以前介绍的方法是很难做到的。而你在实 际生产和生活中可以举出许多这样的问题:从用几种不同工艺 制成的灯泡中,各抽取了若干个测量其寿命,要推断这几种工 艺制成的灯泡寿命是否有显著差异;用几种化肥和几个小麦品 种在若干块试验田里种植小麦,要推断不同的化肥和品种对产 量有无显著影响。
(1)
r

i 1
i
(2)
是总均值, i 是水平 Ai 对指标的效应。由( 1) 、 (2)模型可表

x ji i ji r i 0 i 1 ji ~ N (0, 2 ), i 1,, r, j 1,, n
(3)
原假设为(以后略去备选假设)
(13)
为 检 验 H , 给 定 显 著 性 水 平 , 记 F 分 布 的 1 分 位 数 为
0
F1 (r 1, r(n 1)) ,检验规则为 F F1 (r 1, r(n 1)) 时接受 H 0 ,否则拒绝。
以上对 S
A
, S E , S 的分析相当于对组间、组内等方差的分析,所以
将这些数据列成下表(单因素试验数据表)的形式:
A1
1 2
x11
A2
x12
x22

xn 2
… … …
Ar
x1r
x2 r

x 21


n


xn 1
x nr
将第 i 列称为第 i 组数据。判断 A 的 r 个水平对指标有无 显著影响,相当于要作以下的假设检验
H 0 : 1 2 r ; H1 : 1 , 2 ,, r 不全相等
2 2 分布 N ( i , ) , i 1,, r ,这里 i , 未知, i 可以互不相同,
但假定 x i 有相同的方差。 又设在每个水平 Ai 下都作了 n 次独立 试验, 即从中抽取容量为 n 的样本, 记作 x ji , j 1,, n ,x ji 服
2 N ( , ) , i 1,, r, j 1,, n 且相互独立。 从 i
§1
单因素方差分析
只考虑一个因素 A 对所关心的指标的影响, A 取几个水
平,在每个水平上作若干个试验,试验过程中除 A 外其它影响 指标的因素都保持不变(只有随机因素存在) ,我们的任务是 从试验结果推断,因素 A 对指标有无显著影响,即当 A 取不同 水平时指标有无显著差别。
1.1
数学模型
设 A 取 r 个水平 A1 , A2 ,, Ar ,在水平 Ai 下总体 x i 服从正态
这种假设检验方法称方差分析。
1.3
方差分析表
将试验数据按上述分析、计算的结果排成下表的形式,称 为单因素方差分析表。 方 差 来源 因素 平方 和
SA
自由 度
r 1
i 1 j 1
r
n

S S A SE
(9)
S A 是各组均值对总方差的偏差平方和, 称为组间平方和;S E 是
各组内的数据对均值偏差平方和的总和。S A 反映 A 不同水平间 的差异, S E 则表示在同一水平下随机误差的大小。
对 S E 和 S A 作进一步分析可得
ESE r(n 1) 2
S A /(r 1) 1 S E /[r(n 1)]
而当 H 不成立时这个比值将远大于 1。当 H 成立时,该比值服
1) 的 F 分布,即
F S A /(r 1) ~ F ( r 1, r(n 1)) S E /[r(n 1)]
由于 x ji 的取值既受不同水平 Ai 的影响, 又受 Ai 固定下随机 因素的影响,所以将它分解为
x ji i ji , i 1,, r , j 1,, n
2 其中 ji ~ N (0, ) ,且相互独立。记 1 r , i i , i 1,, r
ES A ( r 1) n i2
2 i 1 r
(10) (11)
当 H 0 成立时
ESA (r 1) 2
(12)
可知若 H 0 成立, S A 只反映随机波动,而若 H 0 不成立,那它就 还反映了 A 的不同水平的效应 i 。 单从数值上看, 当 H 0 成立时, 由(10) 、 (12)对于一次试验应有
可以看到,为了使生产过程稳定,达到优质、高产,需要对影 响产品质量的因素进行分析,找出有显著影响的那些因素,除 了从机理方面进行研究外, 常常要作许多试验, 对结果作分析、 比较,寻求规律。用数理统计分析试验结果、鉴别各因素对结 果影响程度的方法称为方差分析(Analysis Of Variance) ,记作 ANOVA。
相关文档
最新文档