二次函数压轴题之全等三角形的存在性(讲义及答案)
【中考数学压轴题专题突破12】二次函数中的直角三角形存在性问题
【中考压轴题专题突破】二次函数中的直角三角形存在性问题1.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C(0,3),且OB=OC.直线y=x+1与抛物线交于A、D两点,与y轴交于点E,点Q是抛物线的顶点,设直线AD上方的抛物线上的动点P的横坐标为m.(1)求该抛物线的解析式及顶点Q的坐标.(2)连接CQ,直接写出线段CQ与线段AE的数量关系和位置关系.(3)连接P A、PD,当m为何值时S△APD=S△DAB?(4)在直线AD上是否存在一点H,使△PQH为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式.(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.提示:若平面直角坐标系内有两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).3.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),顶点为M.(1)求抛物线的解析式和点M的坐标;(2)点E是抛物线段BC上的一个动点,设△BEC的面积为S,求出S的最大值,并求出此时点E的坐标;(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.4.综合与探究如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣3,0)、B两点,与y轴相交于点.当x=﹣4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC,BC.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,则t的值为,点P的坐标为;(4)抛物线对称轴上是否存在一点F,使得△ACF是以AC为直角边的直角三角形?若不存在,请说明理由;若存在,请直接写出点F的坐标.参考答案与试题解析1.【分析】(1)直线y=x+1与抛物线交于A 点,则点A(﹣1,0)、点E(0,1),可得出点B、C的坐标分别为:(3,0)、(0,3),用待定系数法求出二次函数解析即可求解;(2)求出CQ和AE的长,可得出CQ=AE,由两直线的解析式k相等可得出CQ 与AE平行;(3)联立直线y=x+1与抛物线的表达式,并解得x=﹣1或2.故点D(2,3),过点P作y轴的平行线交AD于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1),根据面积关系可求出m的值;(4)分∠QOH=90°、∠PQH=90°、∠QHP=90°三种情况,分别求解即可.【解答】(1)直线y=x+1与抛物线交于A点,则点A(﹣1,0)、点E(0,1).∵OB=OC,C(0,3),∴点B的坐标为(3,0),故抛物线的表达式为y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),将点C的坐标代入,得﹣3a=3,解得a=﹣1,∴抛物线的表达式为y=﹣x2+2x+3,∴函数的对称轴为x=1,故点Q的坐标为(1,4).(2)CQ=AE,且CQ∥AE,理由:∵Q(1,4),C(0,3),∴CQ ==,CQ的解析式为y=x+3,又∵AE ==,直线AE的解析式为y=x+1,∴CQ=AE,CQ∥AE,(3)∵,∴,,∴点D的坐标为(2,3).如图1,过点P作y轴的平行线,交AD 于点K,设点P(m,﹣m2+2m+3),则点K(m,m+1)∴===.解得m=0或1.(4)存在,点P的坐标为(2,3)或(0,3)或.设点H(t,t+1),点P(m,n),n=﹣m2+2m+3,而点Q(1,4),①当∠QPH=90°时,如图2,过点P作y轴的平行线,过点H、点Q作x轴的平行线,交过点P且平行于y轴的直线于点M、G,∵∠GQP+∠QPG=90°,∠QPG+∠HPM=90°,∴∠HPM=∠GQP,∠PGQ=∠HMP=90°,PH=PQ,∴△PGQ≌△HMP(AAS),∴PG=MH,GQ=PM,即4﹣n|=|t﹣m|,|1﹣m|=|n﹣(t+1)|,解得m=2或n=3.当n=3时,3=﹣m2+2m+3,解得m1=0,m2=2,∴点P(2,3)或(0,3).②当∠PQH=90°时,如图3所示,同理可得m1=0,m2=3(舍去),故点P为(0,3).③当∠PHQ=90°时,同理可得n=2,解得(舍去),.故点P 为.综上可得,点P的坐标为(2,3)或(0,3)或.【点评】本题是二次函数综合题,主要考查了待定系数法求函数解析式(包括二次函数解析式,一次函数解析式),三角形面积,全等三角形的判定与性质,等腰直角三角形的判定与性质,坐标与图形的性质,正确进行分类是解题的关键.2.【分析】(1)用待定系数法即可求出直线BC和抛物线的解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x =﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.【解答】(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=﹣1+3=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)如图,设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).【点评】本题是二次函数的综合题,考查了二次函数的图象与性质,待定系数法求函数的解析式,利用轴对称性质确定线段的最小长度,两点间的距离公式的运用,直角三角形的性质等知识点,熟练掌握二次函数的性质是解题的关键.3.【分析】(1)将点A、B的坐标代入函数解析式,列出方程组,通过解方程组求得a、b的值即可;利用配方法将函数解析式转化为顶点式,即可得到点M的坐标;(2)利用待定系数法确定直线BC解析式,由函数图象上点的坐标特征求得点E、F的坐标,然后根据两点间的距离公式求得EF长度,结合三角形的面积公式列出函数式,根据二次函数最值的求法求得点E的横坐标,易得其纵坐标,则点E的坐标迎刃而解了;(3)需要分类讨论:点A、P、C分别为直角顶点,利用勾股定理求得答案.【解答】(1)∵抛物线y=ax2+bx+3与x 轴交于点A(﹣1,0)、B(3,0),∴.解得.∴y=﹣x2+2x+3=﹣(x﹣1)2+4,则M (1,4);(2)如图,作EF∥y轴交BC于点F∵B(3,0),C(0,3),∴直线BC解析式为:y=﹣x+3.设E(m,﹣m2+2m+3),则F(m,﹣m+3).∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m.∴S =EF•OB =(﹣m2+3m)×3=﹣(m ﹣)2+.当m =时,S最大=.此时,点E 的坐标是(,);(3)设P(1,n),A(﹣1,0)、C(0,3),∴AC2=10,AP2=4+n2,CP2=1+(n﹣3)2=n2﹣6n+10.①当AC⊥AP时,AC2+AP2=CP2,即10+4+n2=n2﹣6n+10.解得n =﹣.②当AC⊥CP时,AC2+CP2=AP2,即10+n2﹣6n+10=4+n2.解得n =.③当AP⊥CP时,AP2+CP2=AC2,即4+n2+n2﹣6n+10=10.解得n=1或2.综上所述,存在,符合条件的点P的坐标是(1,﹣)或(1,)或(1,1)或(1,2),【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.4.【分析】(1)由对称性先求出点B的坐标,可设抛物线的解析式为y=a(x+3)(x﹣1),将C坐标代入y=a(x+3)(x﹣1)即可;(2)先判断△ABC为直角三角形,分别求出AB,AC,BC的长,由勾股定理的逆定理可证明结论;(3)因为点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,所以BM=BN=t,证四边形PMBN是菱形,设PM与y轴交于H,证△CPN∽△CAB,由相似三角形的性质可求出t的值,CH的长,可得出点P纵坐标,求出直线AC的解析式,将点P纵坐标代入即可;(4)求出直线BC的解析式,如图2,当∠ACF=90°时,点B,C,F在一条直线上,求出直线BC与对称轴的交点即可;当∠CAF=90°时,求出直线AF的解析式,再求其与对称轴的交点即可.【解答】(1)∵在抛物线y=ax2+bx+c中,当x=﹣4和x=2时,二次函数y=ax2+bx+c的函数值y相等,∴抛物线的对称轴为x ==﹣1,又∵抛物线y=ax2+bx+c与x轴交于A (﹣3,0)、B两点,由对称性可知B(1,0),∴可设抛物线的解析式为y=a(x+3)(x ﹣1),将C(0,)代入y=a(x+3)(x﹣1),得,﹣3a =,解得,a =﹣,∴此抛物线的解析式为y =﹣(x+3)(x﹣1)=﹣x2﹣x +;(2)△ABC为直角三角形,理由如下:∵A(﹣3,0),B(1,0),C(0,),∴OA=3,OB=1,OC =,∴AB=OA+OB=4,AC ==2,BC ==2,∵AC2+BC2=16,AB2=16,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)∵点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC 边运动,∴BM=BN=t,由翻折知,△BMN≌△PMN,∴BM=PM=BN=PN=t,∴四边形PMBN是菱形,∴PN∥AB,∴△CPN∽△CAB,设PM与y轴交于H,∴==,即==,解得,t =,CH =,∴OH=OC﹣CH =﹣=,∴y P =,设直线AC的解析式为y=kx +,将点A(﹣3,0)代入y=kx +,得,k =,∴直线AC的解析式为y =x +,将y P =代入y =x +,∴x=﹣1,∴P(﹣1,),故答案为:,(﹣1,);(4)设直线BC的解析式为y=kx +,将点B(1,0)代入y=kx +,得,k =﹣,∴直线BC的解析式为y =﹣x +,由(2)知△ABC为直角三角形,∠ACB =90°,如图2,当∠ACF=90°时,点B,C,F在一条直线上,在y =﹣x +中,当x=﹣1时,y=2,∴F1(﹣1,2);当∠CAF=90°时,AF∥BC,∴可设直线AF的解析式为y=﹣x+n,将点A(﹣3,0)代入y =﹣x+n,得,n=﹣3,∴直线AF的解析式为y =﹣x﹣3,在y =﹣x﹣3中,当x=﹣1时,y =﹣2,∴F2(﹣1,﹣2);∴点F的坐标为F1(﹣1,2),F2(﹣1,﹣2).【点评】本题考查了待定系数法求解析式,勾股定理,相似三角形的判定与性质,直角三角形的性质等,解题关键是注意分类讨论思想在解题过程中的运用.。
二次函数中考压轴题(三角形与存在性问题)解析精选
九年级数学优辅专项训练题《二次函数学专项训练》二次函数中考压轴题(三角形与存在性问题)解析精选y =ax bx C 与X 轴正半轴交于 A 、B 两点,与y 轴交于点C ,直线y =X -2经过A 、C 两点,且 AB=2. (1) 求抛物线的解析式;(2) 若直线DE 平行于X 轴并从C 点开始以每秒1个单位的速度沿y 轴正方向平移,且分别交y 轴、线段BC 于点E 、D ,同时动点P 从点B 出发,沿BO 方向以每秒2个单位速度运动,(如图2);当点P运动到原点 O 时,直线 DE 与点P 都停止运动,连 DP ,若点P 运动时间为t 秒;设S = ED O P ,当 ED OPt 为何值时,S 有最小值,并求出最小值。
(3) 在(2)的条件下,是否存在 t 的值,使以P 、B 、D 为顶点的三角形与△ ABC 相似;若存在,求t的值;若不存在,请说明理由。
∙/ AB=2 ,∙∙∙ B (4, 0)。
y =a X -2 X -4 ,代入点 C ( 0,— 2)得1I O 3•抛物线的解析式为厂一4八2 X"」4X2^2。
由题意:CE=t , PB=2t , OP=4 — 2t 。
【例1 ].已知:如图一,抛物线 ∙可设抛物线的解析式为【答案]由 y=0 得 x=2 ,∙∙∙ A (2,0)。
九年级数学优辅专项训练题《二次函数学专项训练》∙.∙ED 〃BA ,•△CED -COB o ∙O D =CO ,即E 4S o∙ED =2t oED +OP_2t+(4 —2t )_ 4 _ 1^ ED OP 2t 4 —2t -4t 2+8t _ t -1 2+12•••当t=1时,—(t —1 ) +1有最大值1。
•••当t=1时,S=ED OP 的值最小,最小值是 10ED OP(3) 存在。
设 BC 所在直线的解析式为 y=kx+b ,由B (4, 0), C (0,— 2)由题意可得:D 点的纵坐标为t — 2,贝U D 点的横坐标为2to2 2 —• BD= 4 -2t t -2 = 5 2 -t 。
2018春中考数学《二次函数:全等三角形的存在性问题》
分别为P1(-1,0),P2(1,-2);P1( 5 , 7 ),P2(2,0) 2 4
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
激励学生学习的名言格言 220、每一个成功者都有一个开始。勇于开始,才能找到成功的路。 221、世界会向那些有目标和远见的人让路(冯两努——香港著名推销商) 222、绊脚石乃是进身之阶。 223、销售世界上第一号的产品——不是汽车,而是自己。在你成功地把自己推销给别人之前,你必须百分之百的把自己推销给自己。 224、即使爬到最高的山上,一次也只能脚踏实地地迈一步。 225、积极思考造成积极人生,消极思考造成消极人生。 226、人之所以有一张嘴,而有两只耳朵,原因是听的要比说的多一倍。 227、别想一下造出大海,必须先由小河川开始。 228、有事者,事竟成;破釜沉舟,百二秦关终归楚;苦心人,天不负;卧薪尝胆,三千越甲可吞吴。 229、以诚感人者,人亦诚而应。 230、积极的人在每一次忧患中都看到一个机会,而消极的人则在每个机会都看到某种忧患。 231、出门走好路,出口说好话,出手做好事。 232、旁观者的姓名永远爬不到比赛的计分板上。 233、怠惰是贫穷的制造厂。 234、莫找借口失败,只找理由成功。(不为失败找理由,要为成功找方法) 235、如果我们想要更多的玫瑰花,就必须种植更多的玫瑰树。 236、伟人之所以伟大,是因为他与别人共处逆境时,别人失去了信心,他却下决心实现自己的目标。 237、世上没有绝望的处境,只有对处境绝望的人。 238、回避现实的人,未来将更不理想。 239、当你感到悲哀痛苦时,最好是去学些什么东西。学习会使你永远立于不败之地。 240、伟人所达到并保持着的高处,并不是一飞就到的,而是他们在同伴们都睡着的时候,一步步艰辛地向上爬 241、世界上那些最容易的事情中,拖延时间最不费力。 242、坚韧是成功的一大要素,只要在门上敲得够久、够大声,终会把人唤醒的。 243、人之所以能,是相信能。 244、没有口水与汗水,就没有成功的泪水。 245、一个有信念者所开发出的力量,大于99个只有兴趣者。 246、环境不会改变,解决之道在于改变自己。 247、两粒种子,一片森林。 248、每一发奋努力的背后,必有加倍的赏赐。 249、如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。 250、大多数人想要改造这个世界,但却罕有人想改造自己。
春中考数学《二次函数:全等三角形的存在性问题》课件
理解偏差
对于全等三角形的理解存 在偏差,导致在应用判定 定理时出现错误。
判定方法的实际应用
解题技巧
在解决二次函数问题时,利用全 等三角形的存在性判定可以简化
解题过程。
实际应用
全等三角形的存在性判定在实际生 活中也有广泛的应用,例如在几何 图形的设计和制作中。
拓展应用
通过全等三角形的存在性判定,还 可以进一步探究二次函数图像中的 其他几何性质和规律。
高难度练习题3
题目内容涉及二次函数的最值求解和全等三角形 的证明,以及数学思想的运用。
基础练习题答案
详细解答每个基础练习题的解题思路和步骤,帮助 学习者掌握基础知识。
中等难度练习题答案
详细解答每个中等难度练习题的解题思路和步骤 ,提高学习者的解题能力。
高难度练习题答案
详细解答每个高难度练习题的解题思路和步骤,激发学 习者的创新思维和数学素养。
总结词
基础题目是全等三角形存在性问题的入门级题目,主要考察学生对基础概念和 公式的掌握程度。
详细描述
基础题目通常包括简单的图形变换、基本的全等条件和简单的计算。通过这些 题目,学生可以熟悉全等三角形存在性问题的基本解题思路和方法,为解决更 复杂的问题打下基础。
中等难度题目解析
总结词
中等难度题目是在基础题目上的提升,需要学生具备一定的 推理和问题解决能力。
详细描述
这类题目通常涉及到更复杂的图形变换、多个全等条件的应 用以及一些计算技巧。学生需要通过仔细分析图形和条件, 逐步推导出结论,并能够运用所学知识解决实际问题。
高难度题目解析
总结词
高难度题目是全等三角形存在性问题的最高级别题目,对学生的推理、计算和问题解决能力有很高的要求。
二次函数压轴题之全等三角形的存在性(习题及答案)
例题示范先填写思路分析;再对比过程示范例1:如图,已知直线y =kx -6与抛物线y =ax 2+bx +c 相交于A ,B 两点,与y 轴交于点D ,且点A (1,-4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式.(2)设抛物线对称轴与x 轴交于点E ,F 是y 轴上一动点,在y 轴右侧的抛物线上是否存在一点P ,使△POE 与△POF 全等?若存在,求出点P的坐标;若不存在,请说明理由.第一问:研究背景图形【思路分析】①将A (1,-4)代入y =kx -6,可以求出k =___,直线解析式为________;再由直线解析式可知点B _____.已知抛物线顶点A (1,-4),设顶点式_____________,又因为点B 也在抛物线上,所以可求得抛物线解析式__________________.②研究抛物线解析式,可知点C (,),研究直线解析式可知D (,).(注意有无特殊角)【过程示范】解:(1)将A (1,-4)代入y =kx -6,得k =2∴y =2x -6令y =0,解得,x =3∴B (3,0)由点A (1,-4)是抛物线的顶点,设y =a (x -1)2-4,二次函数压轴题之全等三角形的存在性(习题)把B(3,0)代入,解得,a=1∴y=(x-1)2-4=x2-2x-3第二问:全等三角形的存在性【思路分析】①分析不变特征:先研究定点、动点,其中_________为定点,动点为_______________;进一步在两个三角形中进行研究,发现定线段_____,所以两个三角形都不确定.②考虑形成因素,画图,求解:三角形形状不明确,则考虑两个三角形的对应关系:注意到△POE与△POF有公共边,则OP和OP应该是一组_______,则OE要么和_____对应,要么和______对应.I当OE与OF对应,此时根据OE=OF=___,能找到合适的___个点F的位置,分别记为F1,F2(x轴上方为F1).①考虑E,F1,O,P四点组成的△OPE和△OPF1,此时,这两个三角形满足:OE=OF1,OP=OP,要想全等,只需满足这两组对应边的夹角相等即可.可确定OP为∠EOF1的________.②考虑E,F2,O,P四点组成的△OPE和△OPF2,此时,这两个三角形满足:OE=OF2,OP=OP,要想全等,只需满足这两组对应边的夹角相等即可.则确定OP为∠EOF2的________.II当OE与PF对应,此时,这两个三角形满足:OE=PF,OP=OP,考虑两种情况:①当OE,PF在OP的异侧时,要想全等,只需满足这两组对应边的夹角相等即可.若这两个角相等,说明___∥___,则此时四边形OEPF为__________,借助其特征,可求出点P.②当OE,PF在OP的同侧时,要想全等,需满足两组对应边的夹角相等即可,此时可进一步分析可得四边形OEFP为等腰梯形,结合点P的范围,在y轴右侧的抛物线上,此种情况不存在符合题意的点P.③结果验证:考虑点P还要在y轴右侧的抛物线上,将点P 代入抛物线解析式验证.【过程示范】I 当△POE ≌△POF 时,OE =OF =1∴F 1(0,1),F 2(0,-1)①当OF 1=OE 时,此时∠F 1OP =∠EOP ,则l OP :y =x∴223y x y x x =⎧⎨=--⎩则32123212x y ⎧+=⎪⎪⎨+⎪=⎪⎩或32123212x y ⎧-=⎪⎪⎨-⎪=⎪⎩(舍)∴P 1(3212+,3212+)②当OF 2=OE 时,此时∠F 2OP =∠EOP ,则l OP :y =-x∴223y x y x x =-⎧⎨=--⎩则11321132x y ⎧+=⎪⎪⎨--⎪=⎪⎩或11321132x y ⎧-=⎪⎪⎨-+⎪=⎪⎩(舍)∴P 2(1132+,1132--)II 当△POE ≌△OPF 时,当OE ,PF 在OP 的异侧时,分析可得四边形OEPF 为平行四边形(矩形),此时,P 与A 重合,P 3(1,-4).当OE ,PF 在OP 的同侧时,分析可得四边形OEFP 为等腰梯形,此时不存在符合题意的点P .综上,点P 的坐标为(3212+,3212+),(1132+,1132--),(1,-4).巩固练习1.已知抛物线23632y x bx =++经过点A (2,0),顶点为P ,与x 轴的另一交点为B .(1)求b 的值及点P ,点B 的坐标.(2)如图,在直线3y x =上是否存在点D ,使四边形OPBD 为平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由.(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,请求出点M 的坐标;如果不存在,试说明理由.2.如图,已知抛物线y=ax2+bx+c经过点A(-6,0),B(2,0)和C(0,3),点D是该抛物线的顶点,AC,OD相交于点M.(1)求点D的坐标.(2)在x轴下方的平面内是否存在点N,使△DBN与△ADM 全等?若存在,请求出该点的坐标;若不存在,请说明理由.63.已知抛物线212y x bx c =-++过点(-6,-2),与y 轴交于点C ,且对称轴与x 轴交于点B (-2,0),顶点为A .(1)求该抛物线的解析式和点A 的坐标.(2)若点M 是第二象限内该抛物线上的一个动点,经过点M 的直线MN 与y 轴交于点N ,是否存在以O ,M ,N 为顶点的三角形与△OMB 全等?若存在,请求出直线MN 的解析式;若不存在,请说明理由.思考小结回顾全等三角形存在性问题的处理流程:分析不变特征:从顶点入手,分析定点、动点,在两个三角形中逐层分析确定的角、边长,把公共边作为对应边.分析形成因素:根据分析得到的不变特征,结合两个三角形全等的判定,同时考虑两个三角形出现的对应关系,综合在一起分析.画图求解:根据上面的分析,画出符合题意的图形,结合图形特征,设计方案.结果验证:回归点的运动范围进行验证;估算数值,结合图形进行验证.【参考答案】例题示范第一问思路分析:①2;y =2x -6;(3,0);y =a (x -1)2-4;y =x 2-2x -3②(0,-3);(0,-6)第二问思路分析:①O ,E ;P ,F ;OE②对应边;OF ;PFI 1;两;①角平分线;②角平分线;II OE ;PF ;矩形巩固练习1.(1)43b =-,(423)P -,,B (6,0);(2)存在,(223)D ,,理由略.(3)存在,16103()39M -,,理由略.2.(1)D (-2,4);(2)存在,24()55N -,,理由略.3.(1)21242y x x =--+,A (-2,6);(2)存在,122y x =-+或y =6,理由略.。
二次函数与几何综合专题 相似(全等)三角形存在性问题
策略:相似三角形 存在性问题解法的一般步骤,分三步走:
第一步:寻找分类标准(一般通过“角”);
第二步:列方程(一般通过“对应边成比例”);
第三步:解方程并验根(除重、查漏).
母题】
1.如图,在平面直角坐标系 中,抛物线 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C, ,顶点为D,对称轴交x轴于点E.
∴A(-3,0),B(1,0),C(0,-3),
∴AO=OC=3,OB=1,
∵ ,
∴OD=2,
∴点D的坐标为(0,2),
设直线AP的解析式为 ,
∴ ,
∴ ,
∴直线AP的解析式为 ,
联立 ,解得: 或 ,
∴点P的坐标为( , ).
(4)解:∵抛物线的解析式为 ,
∴A(-3,0),B(1,0),C(0,-3),
过点Q作QD⊥OC于点D,则QD=-x,
∴QC= ,
∵PQ∥y轴,
∴∠PQC=∠OCA=45°,
当△QCP △ACB时,
∴ ,即 ,
解得: (舍去)或: ,
此时点P的坐标为( , );
当△QPC △ACB时,
∴ ,即 ,
解得: (舍去)或: ,
此时点P的坐标为( , );
综上,点P的坐标为( , )或( , ).
(2)解:∵抛物线的解析式为 ,
∴A(-3,0),B(1,0),C(0,-3),
∴AO=OC=3,OB=1,
∵△AOP≌△COB,
∴OD=OB=1,
∴点P的坐标为(0,1),
设直线AP的解析式为 ,
∴ ,
∴ ,
∴直线AP的解析式为 ,
联立 ,解得: 或 ,
专题七--二次函数全等三角形的存在性问题PPT课件
把A(2 3 ,0),B(0,2)分别代入y=- 3 x2+bx+c中,得b= 3 ,c=2,
∴抛物线的表达式为y=- 3
x2+
3 3 x+2;
3
(2)∵OA=2 3 ,OB=2,由勾股定理,得AB= OA2OB2 =4,
∴∠BAO=30°.
运动t秒后,AQ=t,BP=2t.
由△APQ为等腰三角形,有QA=QP,AP=AQ,PA=PQ三种情况,
例题图
解:如解图②,以AB为直径作⊙M,且由解图易知,存在两条过点E且与
⊙M相切的直线l1,l2,切点分别为P、Q,连接MP,MQ, ∵AB=6,∴以AB为直径的⊙M的半径为3,即M(-1,0),
设切点Q坐标为(m,n),且m>0,∵MQ⊥EQ,ME=5,MQ=3,
由勾股定理得EQ= M E2M Q2 5232=4,
2
4
∴P1′( ,5 7),此时P2′与C点重合,∴P1′ (
24
, 5) ,7
24
P2′(2,0).
综上所述,满足条件的P1,P2点的坐标分别为P1(-1,0),
P2(1,-2);P1′ (
,52
7
4)
,P2′(2,0).
例题解图
针对演练 1. (2017包头)如图,在平面直角坐标系中,已知抛物线 y= 3 x2+bx+c与x轴交于A(-1,0),B(2,0)两点,与
典例精讲 例 (2017铜仁25(1)(2))如图,抛物线y=x2+bx+c经过点A(-1,0),B(0,
-2),并与x轴交于点C,点M是抛物线对称轴l上任意一点(点M、B、C三
点不在同一直线上). (1)求该抛物线所表示的二次函数的表达式;
【思维教练】将点A、B分别代入抛物线的表达 式,通过解方程组,可得到b,c的值.
二次函数存在性之三角形(附带答案)
专题一:二次函数存在性之三角形存在性—直角三角形1.如图抛物线C1的顶点在抛物线C2上,抛物线C2的顶点也在抛物线C1上时.那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,x2+x与C2:y2=ax2+x+c是“互为关联”的抛物线,已知抛物线C1:y1= 14点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,-1).(1)直接写出A,B的坐标和抛物线C2的解析式:(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在.请求出点E的坐标;如果不存在,请说明理由。
2.如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在抛物线的第二象限图象上是否存在一点P,使△POB与△POC 全等,若存在,请求出点P的坐标;若不存在,请说明理由;(3)y轴上是否存在一点Q,使△ABQ为直角三角形,若存在,求出点Q的坐标. 若不存在,说明理由。
3.如图1,抛物线y=ax+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.4.如图,抛物线y=ax+bx+2与x轴交于点A(1,0)和B(4,0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP 是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.存在性—等腰三角形1.如图,已知抛物线y=﹣14x2﹣12x+2与x轴交于A、B两点,与y轴交于点C 。
专题07 二次函数背景下的三角形相似(全等)(解析版)
备战2019年中考数学压轴题之二次函数专题07 二次函数背景下的三角形相似(全等)【方法综述】三角形全等是三角形相似的特殊情况。
三角形的全等和相似是综合题中的常见要素,解答时注意应用全等三角形和相似的判定方法。
另外,注意题目中“”与全等表述、“”和相似表述的区别。
全等和相似的符号,标志着三角形全等(相似)的对应点的一、一对应关系。
解答时,对于确定的对应边角可以直接利用于解题。
而全等、相似的语言表述,标志着对应点之间的组合关系,解答时,要进行对应边的分类讨论。
【典例示范】类型一例1:(陕西省渭南市大荔县中考数学三模试题)如图,已知抛物线与x轴交于A、B两点,其中点A的坐标为,抛物线的顶点为P.求b的值,并求出点P、B的坐标;在x轴下方的抛物线上是否存在点M,使≌?如果存在,请直接写出点M的坐标;如果不存在,试说明理由.【答案】存在,【解析】抛物线经过,,解得:,抛物线的表达式为.,点P的坐标为令得:,解得或,的坐标为.存在,点如图:过点P作轴,垂足为C,连接AP、BP,作的平分线,交PB与点N,交抛物线与点M,连接PM、BM.,,,,,,是等边三角形,,.,,.在和中,,≌.存在这样的点M,使得≌.,,点N是PB的中点,设直线AM的解析式为,将点A和点N的坐标代入得:,解得:,直线AM的解析式为.将代入抛物线的解析式得:,解得:或舍去,当时,,点M的坐标为针对训练1.(2018年九年级数学北师大版下册:第二章检测卷)如图,在平面直角坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8).(1)求抛物线的解析式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE.若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1) y=12x2-3x-8;(2)点F的坐标为(3+17,-4)或(3-17,-4).【解析】(1)∵抛物线y=ax2+bx-8经过点A(-2,0),D(6,-8),∴4280 {36688a ba b--+--==解得1 {23 ab-==∴抛物线的函数表达式为y=12x2−3x−8;∵y=12x2−3x−8=12(x −3)2−252,∴抛物线的对称轴为直线x=3.又抛物线与x轴交于A,B两点,点A 的坐标为(-2,0).∴点B的坐标为(8,0),设直线L的函数表达式为y=kx.∵点D(6,-8)在直线L上,∴6k=-8,解得k=-43,∴直线L的函数表达式为y=-43x,∵点E为直线L和抛物线对称轴的交点,∴点E的横坐标为3,纵坐标为-43×3=-4,∴点E的坐标为(3,-4);(2)抛物线上存在点F,使△FOE≌△FCE.∵OE=CE=5,∴FO=FC,∴点F在OC的垂直平分线上,此时点F的纵坐标为-4,∴12x2-3x-8=-4,解得x=3±17,∴点F的坐标为(3-17,-4)或(3+17,-4).2.(河南省濮阳市2018届九年级中考数学二模试题)如图,一次函数与坐标轴分别交于A,B两点,抛物线经过点A,B,点P从点B出发,以每秒2个单位长度的速度沿射线BA运动,点Q从点A出发,以每秒1个单位长度的速度沿射线AO运动,两点同时出发,运动时间为t秒.求此抛物线的表达式;求当为等腰三角形时,所有满足条件的t的值;点P在线段AB上运动,请直接写出t为何值时,的面积达到最大?此时,在抛物线上是否存在一点T,使得≌?若存在,请直接写出点T的坐标;若不存在,请说明理由.【答案】(1);(2)当为等腰三角形时,t的值为、或或4;(3)点T的坐标为.【解析】把代入中,得.把代入中,得.,把,分别代入中,得,,抛物线的表达式为,,由勾股定理,得,.运动t秒后,,.为等腰三角形,有,,三种情况,当时,过点Q作于点D.在中,,,.解得;当时,若点P在x轴上方的直线AB上,,,,解得;若点P在x轴下方的直线AB上,,,解得:;当时,过点P作于点E.则,在中,,.解得:综上所述,当为等腰三角形时,t的值为、或或4.过点P作于点F,延长FP交抛物线与点T.为底边AQ上的高.,,..当时,的面积最大此时点P为AB的中点,且.连接OP,则,点,点T的横坐标为,将代入抛物线的解析式得:..在中,由勾股定理可知:,.≌.点T的坐标为.类型二全等三角形的存在性探究例2.(四川省眉山市洪雅县2018届九年级中考适应性考)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.【答案】(1)y=﹣x2﹣x+3;(2)①点D坐标为(﹣,0);②点M(,0).【解析】(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得:,∴抛物线解析式为:y=-x2-x+3;(2)①存在点D,使得△APQ和△CDO全等,当D在线段OA上,∠QAP=∠DCO,AP=OC=3时,△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,,∴,∴OD=,∴点D坐标为(-,0).由对称性,当点D坐标为(,0)时,由点B坐标为(4,0),此时点D(,0)在线段OB上满足条件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴,则点N为AC中点.∴DN时△ABC的中位线,∵DN=DM=BC=,∴OM=DM-OD=∴点M(,0)针对训练1.如图,在平面直角坐标系中,以点M(2,0)为圆心的⊙M与y轴相切于原点O,过点B(﹣2,0)作⊙M的切线,切点为C,抛物线经过点B和点M.(1)求这条抛物线解析式;(2)求点C的坐标,并判断点C是否在(1)中抛物线上;(3)动点P从原点O出发,沿y轴负半轴以每秒1个单位长的速度向下运动,当运动t秒时到达点Q处.此时△BOQ与△MCB 全等,求t的值.【答案】(1)y=﹣x2+;(2)点C在(1)的抛物线上;(3)t=2.【解析】(1)将点M(2,0)、B(﹣2,0)代入y x2+bx+c中,得:解得:∴抛物线的解析式:y x2.(2)连接MC,则MC⊥BC;过点C作CD⊥x轴于D,如图,在Rt△BCM中,CD⊥BM,CM=2,BM=4,则:DM1,CD,OD=OM﹣DM=1,∴C(1,).当x=1时,y x2,所以点C在(1)的抛物线上.(3)△BCM和△BOQ中,OB=CM=2,∠BOQ=∠BCM=90°,若两三角形全等,则:OQ=BC,∴当t=2时,△MCB和△BOQ全等.2.(广西田阳县实验中学2019届九年级中考一)如图所示,抛物线(m>0)的顶点为A,直线与轴的交点为点B.(1)求出抛物线的对称轴及顶点A的坐标(用含的代数式表示);(2)证明点A在直线上,并求∠OAB的度数;(3)动点Q在抛物线对称轴上,问:抛物线上是否存在点P,使以点P、Q、A为顶点的三角形与△OAB全等?若存在,求出的值,并写出所有符合上述条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线的对称轴为直线,顶点A的坐标为(,0);(2)∠OAB=30°;(3)存在,①=时,P(0,-),P(,-);②=时,P(,-3),P(3+,-3);③=2时,P(,-3),P(,-3);④=时,P(,-),P(,-).【解析】(1)对称轴:x=m;顶点:A(m,0).(2)将x=m代入函数y=x-m,得y=×m-m=0∴点A(m,0)在直线l上.当x=0时,y=-m,∴B(0,-m)tan∠OAB=,∴∠OAB=30度.(3)以点P、Q、A为顶点的三角形与△OAB全等共有以下四种情况:①当∠AQP=90°,PQ=m,AQ=m时,如图1,此时点P在y轴上,与点B重合,其坐标为(0,-m),代入抛物线y=-(x-m)2得-m=-3m2,∵m>0,∴m=这时有P1(0,-)其关于对称轴的对称点P2(,- )也满足条件.②当∠AQP=90°,PQ=m,AQ=m时点P坐标为(m-m,-m),代入抛物线y=-(x-m)2得m=m2,∵m>0,∴m=这时有P3(3-,-3)还有关于对称轴的对称点P4(3+,-3).③当∠APQ=90°,AP=m,PQ=m时点P坐标为(m,−m),代入抛物线y=-(x-m)2得m=m2,∵m>0,∴m=2这时有P5(,-3)还有关于对称轴的对称点P6(3,-3).④当∠APQ=90°,AP=m,PQ=m时点P坐标为(m,−m),代入抛物线y=-(x-m)2得m=m2,∵m>0,∴m=这时有P7(,-)还有关于对称轴对称的点P8(,-).所以当m=时,有点P1(0,-),P2(,-);当m=时,有点P3(3-,-3),P4(3+,-3);当m=2时,有点P5(,-3),P6(3,-3);当m=时,有点P7(,-),P8(,-).3.如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x 轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R 为顶点的三角形与△AMG全等,求直线PR的解析式.【答案】(1)y2=-x2+x-;(2)存在;(3)y=﹣x+或y=﹣.【解析】(1)由已知,c=,将B(1,0)代入,得:a﹣=0,解得a=﹣,抛物线解析式为y1=x2-x+,∵抛物线y1平移后得到y2,且顶点为B(1,0),∴y2=﹣(x﹣1)2,即y2=-x2+x-;(2)存在,如图1:抛物线y2的对称轴l为x=1,设T(1,t),已知A(﹣3,0),C(0,),过点T作TE⊥y轴于E,则TC2=TE2+CE2=12+()2=t2﹣t+,TA2=TB2+AB2=(1+3)2+t2=t2+16,AC2=,当TC=AC时,t2﹣t+=,解得:t1=,t2=;当TA=AC时,t2+16=,无解;当TA=TC时,t2﹣t+=t2+16,解得t3=﹣;当点T坐标分别为(1,),(1,),(1,﹣)时,△TAC为等腰三角形;(3)如图2:设P(m,),则Q(m,),∵Q、R关于x=1对称∴R(2﹣m,),①当点P在直线l左侧时,PQ=1﹣m,QR=2﹣2m,∵△PQR与△AMG全等,∴当PQ=GM且QR=AM时,m=0,∴P(0,),即点P、C重合,∴R(2,﹣),由此求直线PR解析式为y=﹣x+,当PQ=AM且QR=GM时,无解;②当点P在直线l右侧时,同理:PQ=m﹣1,QR=2m﹣2,则P(2,﹣),R(0,﹣),PQ解析式为:y=﹣;∴PR解析式为:y=﹣x+或y=﹣.类型三确定的相似三角形条件的判定应用例3:(重庆市九龙坡区西彭三中2019届九年级(上)期末)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)点P在线段AB上运动的过程中,是否存在点Q,使得△BOD∽△QBM?若存在,求出点Q的坐标;若不存在,请说明理由.(3)已知点F(0,),点P在x轴上运动,试求当m为何值时以D、M、Q、F为顶点的四边形是平行四边形.【答案】(1)y=﹣x2+x+2;(2)存在,点Q的坐标为(3,2);(3)m=﹣1或m=3或m=1+或1﹣时,四边形DMQF是平行四边形.【解析】(1)由抛物线过点A(﹣1,0)、B(4,0)可设解析式为y=a(x+1)(x﹣4),将点C(0,2)代入,得:﹣4a=2,解得:a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)如图所示:∵当△BOD∽△QBM时,则,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴,∴,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);(3)由题意知点D坐标为(0,﹣2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,﹣2)代入,得:,解得:,∴直线BD解析式为y=x﹣2,∵QM⊥x轴,P(m,0),∴Q(m,﹣m2+m+2)、M(m,m﹣2),则QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4,∵F(0,)、D(0,﹣2),∴DF=,∵QM∥DF,∴当|﹣m2+m+4|=时,四边形DMQF是平行四边形,解得:m=﹣1或m=3或m=1+或1﹣即m=﹣1或m=3或m=1+或1﹣时,四边形DMQF是平行四边形.针对训练1.(湖南省长沙一中2018届九年级(下)段考)如图1,一次函数y=﹣x+3的图象交x轴于点A,交y轴于点D,抛物线y =ax2+bx+c(a≠0)的顶点为C,其图象过A、D两点,并与x轴交于另一个点B(B点在A点左侧),若;(1)求此抛物线的解析式;(2)连结AC、BD,问在x轴上是否存在一个动点Q,使A、C、Q三点构成的三角形与△ABD相似.如果存在,求出Q 点坐标;如果不存在,请说明理由.(3)如图2,若点P是抛物线上一动点,且在直线AD下方,(点P不与点A、点D重合),过点P作y轴的平行线l与直线AD交于点M,点N在直线AD上,且满足△MPN∽△ABD,求△MPN面积的最大值.【答案】(1)y=x2﹣4x+3;(2)见解析;(3)△MPN的面积的最大值为:.【解析】(1)当x=0时,y=﹣x+3=3,则D(3,0);当y=0时,﹣x+3=0,解得x=3,则A(3,0),∵OD=OA,∴△OAD为等腰直角三角形,∴AD=3,∵,∴AB=2,∴B(1,0),设抛物线解析式为y=a(x﹣1)(x﹣3),把D(0,3)代入得a•(﹣1)•(﹣3)=3,解得a=1,∴抛物线解析式为y=(x﹣1)(x﹣3),即y=x2﹣4x+3;(2)作CH⊥x轴,如图1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴C(2,﹣1)∴AH=CH=1,∴△ACH为等腰直角三角形,∴∠CAH=45°,AC=,∵△OAD为等腰直角三角形,∴∠DAO=45°,∵∠CAQ=∠DAB,∴当时,△AQC∽△ADB,即,解得AQ=3,此时Q(0,0);当时,△AQC∽△ABD,即,解得AQ=,此时Q(,0);综上所述,Q点的坐标为(0,0)或(,0);(3)作PE⊥AD于E,如图2,∵△MPN∽△ABD,∴,∴MN=MP,设P(x,x2﹣4x+3),则M(x,﹣x+3),∴MP=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,当x=时,MP有最大值,∴MN的最大值为=,∵∠PME=45°,∴PE=PM,∴PE的最大值为×=,∴△MPN的面积的最大值为××=.2.(浙江省嘉兴市海宁新仓中学2019届九年级上学期数学第一次月考)如图,抛物线y=ax2+bx+c过原点O、点A (2,﹣4)、点B (3,﹣3),与x轴交于点C,直线AB交x轴于点D,交y轴于点E.(1)求抛物线的函数表达式和顶点坐标;(2)直线AF⊥x轴,垂足为点F,AF上取一点G,使△GBA∽△AOD,求此时点G的坐标;(3)过直线AF左侧的抛物线上点M作直线AB的垂线,垂足为点N,若∠BMN=∠OAF,求直线BM的函数表达式.【答案】(1)y=x2-4x;(2,-4);(2)G(2,);(3)y=或y=-3x+6.【解析】(1)解:将原点O(0,0)、点A (2,﹣4)、点B (3,﹣3),分别代入y=ax2+bx+c,得,解得,∴y=x2-4x= ,∴顶点为(2,-4).(2)解:设直线AB为y=kx+b,由点A(2,-4),B(3,-3),得解得,∴直线AB为y=x-6.当y=0时,x=6,∴点D(6,0).∵点A(2,-4),D(6,0),B(3,-3),∴OA= ,OD=6,AD= ,AF=4,OF=2,DF=4,AB= ,∴DF=AF,又∵AF⊥x轴,∴∠AD0=∠DAF=45°,∵△GBA∽△AOD,∴,∴,解得,∴FG=AF-AG=4- ,∴点G(2,).(3)解:如图1,∵∠BMN=∠OAF,,∴∠MBN=∠AOF,设直线BM与AF交于点H,∵∠ABH=∠AOD,∠HAB=∠ADO,∴∴,则,解得AH= ,∴H(2,).设直线BM为y=kx+b,∵将点B、G的坐标代入得,解得.∴直线BM的解析式为y= ;如图2,BD=AD-AB= .∵∠BMN=∠OAF,∠GDB=∠ODA,∴△HBD∽△AOD.∴,即,解得DH=4.∴点H的坐标为(2,0).设直线BM的解析式为y=kx+b.∵将点B和点G的坐标代入得:,解得k=-3,b=6.∴直线BM的解析式为y=-3x+6.综上所述,直线MB的解析式为y= 或y=-3x+6.3.(江西省景德镇市2018届九年级第二次质检)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线系数”.(1)任意抛物线都有“抛物线三角形”是______(填“真”或“假”)命题;(2)若一条抛物线系数为[1,0,-2],则其“抛物线三角形”的面积为________;(3)若一条抛物线系数为[-1,2b,0],其“抛物线三角形”是个直角三角形,求该抛物线的解析式;(4)在(3)的前提下,该抛物线的顶点为A,与x轴交于O,B两点,在抛物线上是否存在一点P,过P作PQ⊥x轴于点Q,使得△BPQ∽△OAB,如果存在,求出P点坐标,如果不存在,请说明理由.【答案】(1)假;(2);(3)y=-x2+2x 或y=-x2-2x;(4)P(1,1)或P(-1,-3)或P(1,-3)或(-1,1).【解析】(1)当△>0时,抛物线与x轴有两个交点,此时抛物线才有“抛物线三角形”,故此命题为假命题;(2)由题意得:,令y=0,得:x=,∴S==;(3)依题意:y=-x2+2bx,它与x轴交于点(0,0)和(2b,0);当抛物线三角形是直角三角形时,根据对称性可知它一定是等腰直角三角形.∵y=-x2+2bx=,∴顶点为(b,b2),由直角三角形斜边上的中线等于斜边的一半得到:,∴,解得:b=0(舍去)或b=±1,∴y=-x2+2x 或y=-x2-2x.(4)①当抛物线为y=-x2+2x 时.∵△AOB为等腰直角三角形,且△BPQ∽△OAB,∴△BPQ为等腰直角三角形,设P(a,-a2+2a),∴Q((a,0),则|-a2+2a|=|2-a|,即.∵a-2≠0,∴,∴a=±1,∴P(1,1)或(-1,-3).②当抛物线为y=-x2-2x 时.∵△AOB为等腰直角三角形,且△BPQ∽△OAB,∴△BPQ为等腰直角三角形,设P(a,-a2-2a),∴Q((a,0),则|-a2-2a|=|2+a|,即.∵a+2≠0,∴,∴a=±1,∴P(1,-3,)或(-1,1).综上所述:P(1,1)或P(-1,-3)或P(1,-3,)或(-1,1).类型四相似三角形存在性探究例4. (江苏省苏州市张家港市)如图,直线与轴交于点,与轴交于点,抛物线经过点.(1)求抛物线的解析式,(2)已知点是抛物线上的一个动点,并且点在第二象限内,过动点作轴于点,交线段于点.①如图1,过作轴于点,交抛物线于两点(点位于点的左侧),连接,当线段的长度最短时,求点的坐标,②如图2,连接,若以为顶点的三角形与相似,求的面积.【答案】(1) ;(2) ①点的坐标为,点的坐标为,点的坐标为;②【解析】(1)把代入得,由,得,(2) ①由题意可知,四边形是矩形,所以.由(1)可知,当时,最短,即最短,此时点是的中点,所以,,点的坐标为,将代入得,,点的坐标为,将代入得,,解得,,点的坐标为,点的坐标为②当时(如图2),则、关于抛物线的对称轴对称,的坐标为,点的坐标为,,当时(如图3),则是等腰直角三角形,,过点作于点,设点的坐标为,,,,解得,.针对训练1.(贵州黔东南州锦屏县敦寨中学2018-2019学年度九年级(上)期末数学试卷)如图,在平面直角坐标系中,直线y=-x+2分别交x轴、y轴于点A、B,抛物线y=﹣x2+bx+c经过点A、B.点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.(1)点A的坐标为.(2)求这条抛物线所对应的函数表达式.(3)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值.(4)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共谐点”.直接写出E、F、P三点成为“共谐点”时m的值.【答案】(1)(4,0)(2)y=﹣x2+x+2(3),(4)﹣1或﹣或【解析】(1)在y=-x+2中,令y=0,则x=4,∴A(4,0);故答案为:(4,0);(2)∵在y=-x+2中,令x=0,则y=2,∴B(0,2),把A(4,0),B(0,2)代入y=﹣x2+bx+c,得b=,∴这条抛物线所对应的函数表达式为y=﹣x2+x+2;(3)∵P(m,0),E(m,﹣m2+m+2),F(m,﹣m+2),∵且∠BFE=∠AEP,∴∠BEP=∠APF=90°或∠EBF=∠APF=90°,则有BE⊥PE,∴E点的纵坐标为2,∴解得m=0(舍去)或m=,如图1,过点E作EC⊥y轴于点C,则∠EBC+∠BEC=90°,EC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠EBF=90°,∴∠EBC+∠ABO=90°,∴∠ABO=∠BEC,∴Rt△ECB∽Rt△BOA,∴,∴,解得m=0(舍去)或m=,解得,m=,综上所述,以B、E、F为顶点的三角形与△FPA相似,m的值=,(4)由(1)知,P(m,0),E(m,﹣m2+m+2),F(m,﹣m+2),∵E、F、P三点为“共谐点”,∴有F为线段PE的中点、P为线段FE的中点或E为线段PF的中点,当F为线段PE的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=4(三点重合,舍去)或m=;当P为线段FE的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=4(舍去)或m=﹣1;当E为线段FP的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=4(舍去)或m=﹣;综上可知当E、F、P三点成为“共谐点”时m的值为﹣1或﹣或.2.(广东省汕头市龙湖区2019届九年级上学期期末质量检测)如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1) y=-x2+x-2;(2)点P为(2,1)或(5,-2)或(-3,-14)或(0,-2).【解析】解:(1)∵该抛物线过点C(0,-2),∴可设该抛物线的解析式为y=ax2+bx-2.将A(4,0),B(1,0)代入,得,解得,∴此抛物线的解析式为.(2)存在,设P点的横坐标为m,则P点的纵坐标为-m2+m-2,当1<m<4时,AM=4-m,PM=-m2+m-2.又∵∠COA=∠PMA=90°,∴①当==时,△APM∽△ACO,即4-m=2(-m2+m-2).解得m1=2,m2=4(舍去),∴P(2,1).②当==时,△APM∽△CAO,即2(4-m)=-m2+m-2.解得m1=4,m2=5(均不合题意,舍去),∴当1<m<4时,P(2,1).类似地可求出当m>4时,P(5,-2).当m<1时,P(-3,-14)或P(0,-2),综上所述,符合条件的点P为(2,1)或(5,-2)或(-3,-14)或(0,-2).3.(2018年四川省绵阳市中考数学试卷)如图,已知抛物线过点A(,-3) 和B(3,0),过点A作直线AC//x轴,交y轴与点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D,连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1);(2)P点坐标为(4,6)或(,- );(3)Q点坐标(3,0)或(-2,15)【解析】(1)把,和点,代入抛物线得:,解得:,,则抛物线解析式为;(2)当在直线上方时,设坐标为,则有,,当时,,即,整理得:,即,解得:,即或(舍去),此时,;当时,,即,整理得:,即,解得:,即或(舍去),此时,;当点时,也满足;当在直线下方时,同理可得:的坐标为,,综上,的坐标为,或,或,或;(3)在中,,,根据勾股定理得:,,,,边上的高为,过作,截取,过作,交轴于点,如图所示:在中,,即,过作轴,在中,,,即,,设直线解析式为,把坐标代入得:,即,即,联立得:,解得:或,即,或,,则抛物线上存在点,使得,此时点的坐标为,或,.4.(湖南省衡阳市2019届中考数学试卷)如图,已知直线分别交轴、轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC轴于点C,交抛物线于点D.(1)若抛物线的解析式为,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.【答案】(1)①②答案见解析(2)存在,或【解析】(1)①如图1,,顶点为的坐标为,,当时,,则点坐标为,;②不存在.理由如下:,设点坐标为,则,,,当时,四边形为平行四边形,即,解得(舍去),,此时点坐标为,,,,平行四边形不为菱形,不存在点,使四边形为菱形;(2)存在.如图2,,,则,当时,,则,,设抛物线的解析式为,把代入得,解得,抛物线的解析式为,当时,,则,,,,当时,,即,解得,此时抛物线解析式为;当时,,即,解得,此时抛物线解析式为;综上所述,满足条件的抛物线的解析式为或.5.(湖北省襄州区2018届九年级上学期)如图,已知抛物线y=ax2+x+c 与x 轴交于A、B 两点,与y 轴交于C 点,且A(2,0)、C(0,﹣4),直线l:y=﹣x﹣4 与x 轴交于点D,点P 是抛物线y=ax2+x+c 上的一动点,过点P 作PE⊥x 轴,垂足为E,交直线l 于点F.(1)试求该抛物线表达式;(2)如图1,若点P 在第三象限,四边形PCOF 是平行四边形,求P 点的坐标;(3)如图2,过点P 作PH⊥y 轴,垂足为H,连接AC.①求证:△ACD 是直角三角形;②试问是否存在这样的点P,使得以点P、C、H 为顶点的三角形与△ACD 相似?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.【答案】(1)y=;(2)P 的坐标为(﹣8,﹣4)或(﹣2.5,﹣);(3)①详见解析;②点P 的横坐标为2或﹣5.5 或﹣10.5 或﹣18 时,使得以点P、C、H为顶点的三角形与△ACD 相似.【解析】解:(1)把A(2,0)、C(0,﹣4)代入y=ax2+x+c 中得:,解得:,∴该抛物线表达式为:y=x2+ x﹣4;(2)如图1,设点P 的坐标为(x,x2+x﹣4),则F(x,﹣x﹣4),∵点P在第三象限,∴PF=(﹣x﹣4)﹣(x2+ x﹣4)=﹣﹣x,∵C(0,﹣4),∴OC=4,∵四边形PCOF 是平行四边形,且PF∥OC,∴PF=OC=4,即﹣﹣x=4,2x2+21x+40=0,(x+8)(2x+5)=0,x1=﹣8,x2=﹣2.5,当y=0 时,x2+ x﹣4=0,解得:x1=﹣10,x2=2,∴P 的坐标为(﹣8,﹣4)或(﹣2.5,﹣);(3)①当y=0 时,﹣x﹣4=0,x=﹣8,∴D(﹣8,0),由勾股定理得:DC2=82+42=80,AC2=22+42=20,AD2=102=100,∴AD2=AC2+DC2,∴∠ACD=90°,∴△ACD 是直角三角形;②设点P 的坐标为(x,x2+x﹣4),由①知:∠ACD=90°,∠PHC=90°,AC==2 ,CD==4,∴=如图3,点P 在第一象限,当△ACD∽△PHC 时,则==,∴CH=2PH,∴x2+ x﹣4﹣(﹣4)=2x,解得:x1=0(P 与C 重合,舍去),x2=2,∴此时点P 的横坐标为2;如图4,点P 在第一象限,当△ACD∽△CHP 时,则=,∴PH=2CH,∴﹣x=2[﹣4﹣(x2+x﹣4)],解得:x1=0(舍去),x2=﹣5.5,∴此时点P 的横坐标为﹣5.5;如图5,点P 在第二象限,当△ACD∽△CHP 时,则=,∴PH=2CH,∴﹣x=2[(x2+ x﹣4)﹣(﹣4)],解得:x1=0(舍),x2=﹣10.5,∴此时点P 的横坐标为﹣10.5(P 在直线l 上);如图6,点P 在第二象限,当△ACD∽△PHC 时,则==,∴CH=2PH,∴[(x2+ x﹣4)﹣(﹣4)]=﹣2x,解得:x1=0(舍),x2=﹣18,∴此时点P 的横坐标为﹣18;综上所述,点P 的横坐标为2 或﹣5.5 或﹣10.5 或﹣18 时,使得以点P、C、H为顶点的三角形与△ACD 相似.6.(江西省南昌市2018届九年级中考三模数学)如图,一次函数y=﹣x﹣2的图象与二次函数y=ax2+bx﹣4的图象交于x 轴上一点A,与y 轴交于点B,在x轴上有一动点C.已知二次函数y=ax2+bx﹣4的图象与y轴交于点D,对称轴为直线x =n(n<0),n是方程2x2﹣3x﹣2=0的一个根,连接AD.(1)求二次函数的解析式.(2)当S△ACB=3S△ADB时,求点C的坐标.(3)试判断坐标轴上是否存在这样的点C,使得以点A、B、C组成的三角形与△ADB 相似?若存在,试求出点C的坐标;若不存在,请说明理由.【答案】(1)y=2x2+2x﹣4;(2)点C 的坐标为(4,0)或(﹣8,0);(3)在x 轴上有一点C(﹣4,0)或(﹣6,0),使得以点A、B、C 组成的三角形与△ADB 相似.【解析】(1)在y=-x-2中,令y=0,则x=-2∴A(-2,0).由2x2-3x-2=0,得x1=-,x2=2,∴二次函数y=ax2+bx-4的对称轴为直线x=-,∴,解得,∴二次函数的解析式为:y=2x2+2x-4;(2)∵S△ADB=BD•OA=2,∴S△ACB=3S△ADB=6.∵点C在x轴上,∴S△ACB=AC•OB=×2AC=6,∴AC=6.∵点A的坐标为(-2,0),∴当S△ACB=3S△ADB时,点C的坐标为(4,0)或(-8,0);(3)存在.理由:令x=0,一次函数与y轴的交点为点B(0,-2),∴AB=,∠OAB=∠OBA=45°.∵在△ABD中,∠BAD、∠ADB都不等于45°,∠ABD=180°-45°=135°,∴点C在点A的左边.①AC与BD是对应边时,∵△ADB∽△BCA,∴=1,∴AC=BD=2,∴OC=OA+AC=2+2=4,∴点C的坐标为(-4,0).②当AC与AB是对应边时,∵△ADB∽△CBA∴=,∴AC=AB=×2=4,∴OC=OA+AC=2+4=6,∴点C的坐标为(-6,0).综上所述,在x轴上有一点C(-4,0)或(-6,0),使得以点A、B、C组成的三角形与△ADB相似.7.(人教版九年级上学期第二十二章二次函数单元检测)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的任意一点.(1)求这个二次函数y=x2+bx+c的解析式.(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP′C,如果四边形POP′C为菱形,求点P的坐标.(3)如果点P在运动过程中,能使得以P、C、B为顶点的三角形与△AOC相似,请求出此时点P的坐标.【答案】(1)y=x2﹣2x﹣3(2)(2)(,-)(3)P、C、B为顶点的三角形与△AOC相似,此时点P的坐标(1,﹣4)【解析】(1)将B、C点代入函数解析式,得:,解得:,这个二次函数y=x2+bx+c的解析式为y=x2﹣2x﹣3;(2)∵四边形POP′C为菱形,∴OC与PP′互相垂直平分,∴y P,即x2﹣2x﹣3,解得:x1,x2(舍),P();(3)∵∠PBC<90°,∴分两种情况讨论:①如图1,当∠PCB=90°时,过P作PH⊥y轴于点H,BC的解析式为y=x﹣3,CP的解析式为y=﹣x﹣3,设点P的坐标为(m,﹣3﹣m),将点P代入代入y═x2﹣2x﹣3中,解得:m1=0(舍),m2=1,即P(1,﹣4);AO=1,OC=3,CB,CP,此时3,△AOC∽△PCB;②如图2,当∠BPC=90°时,作PH⊥y轴于H,作BD⊥PH于D.∵PC⊥PB,∴△PHC∽△BDP,∴.设点P的坐标为(m,m2﹣2m﹣3),则PH=m,HC=-(m2﹣2m﹣3)-(-3)=-m2+2m,BD=-(m2﹣2m﹣3),PD=3-m,∴,∴,解得:m或(舍去).当m时,m2﹣2m﹣3=.∵△PHC∽△BDP,∴==3,以P、C、B为顶点的三角形与△AOC不相似.综上所述:P、C、B为顶点的三角形与△AOC相似,此时点P的坐标(1,﹣4).8.(江苏省东台市第二联盟2019届九年级12月月考)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.⑴求抛物线的解析式及点C的坐标;⑵求证:△ABC是直角三角形;⑶若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC 相似?若存在,请求出点N的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x;C(-1,-3);(2)证明过程略;(3)(,0)或(,0)或(﹣1,0)或(5,0).【解析】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x-1)2+1,又抛物线过原点,∴0=a(0-1)2+1,解得a=-1,∴抛物线解析式为y=-(x-1)2+1,即y=-x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(-1,-3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,-x2+2x),∴ON=|x|,MN=|-x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有或,当时,则有,即|x||-x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|-x+2|=,即-x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当时,则有,即|x||-x+2|=3|x|,∴|-x+2|=3,即-x+2=±3,解得x=5或x=-1,此时N点坐标为(-1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(-1,0)或(5,0).9.(江苏省东台市第二联盟2019届九年级12月月考)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.⑴求抛物线的解析式及点C的坐标;⑵求证:△ABC是直角三角形;⑶若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC 相似?若存在,请求出点N的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x;C(-1,-3);(2)证明过程略;(3)(,0)或(,0)或(﹣1,0)或(5,0).【解析】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x-1)2+1,又抛物线过原点,∴0=a(0-1)2+1,解得a=-1,∴抛物线解析式为y=-(x-1)2+1,即y=-x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(-1,-3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)假设存在满足条件的点N,设N(x,0),则M(x,-x2+2x),∴ON=|x|,MN=|-x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB=,BC=3,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有或,当时,则有,即|x||-x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|-x+2|=,即-x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当时,则有,即|x||-x+2|=3|x|,∴|-x+2|=3,即-x+2=±3,解得x=5或x=-1,此时N点坐标为(-1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(-1,0)或(5,0).10.(段考模拟君之2018-2019学年九年级数学上学期期末原创卷A卷)如图,二次函数y=x2+bx+c的图象过点B(0,1)和C(4,3)两点,与x轴交于点D、点E,过点B和点C的直线与x轴交于点A.(1)求二次函数的解析式;(2)在x轴上有一动点P,随着点P的移动,存在点P使△PBC是直角三角形,请你求出点P的坐标;(3)若动点P从A点出发,在x轴上沿x轴正方向以每秒2个单位的速度运动,同时动点Q也从A点出发,以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,直接写出a的值;若不存在,说明理由.【答案】(1)抛物线解析式y=x2–x+1;(2)点P坐标为(1,0),(3,0),(,0),(,0);(3)a=或.【解析】(1)∵二次函数y=0.5x2+bx+c的图象过点B(0,1)和C(4,3)两点,∴,解得,∴抛物线解析式y=x2–x+1.(2)设点P坐标为(x,0).∵点P(x,0),点B(0,1),点C(4,3),∴PB==,CP==,BC==2,若∠BCP=90°,则BP2=BC2+CP2.∴x2+1=20+x2–8x+25,∴x=.若∠CBP=90°,则CP2=BC2+BP2.∴x2+1+20=x2–8x+25,∴x=.若∠BPC=90°,则BC2=BP2+CP2.∴x2+1+x2–8x+25=20,∴x1=1,x2=3,综上所述:点P坐标为(1,0),(3,0),(,0),(,0).(3)a=或.∵抛物线解析式y=x2–x+1与x轴交于点D,点E,∴0=x2–x+1,∴x1=1,x2=2,∴点D(1,0).∵点B(0,1),C(4,3),∴直线BC解析式y=x+1.当y=0时,x=–2,∴点A(–2,0).∵点A(–2,0),点B(0,1),点D(1,0),∴AD=3,AB=.设经过t秒,∴AP=2t,AQ=at,若△APQ∽△ADB,∴,即,∴a=,若△APQ∽△ABD,∴,即,∴a=.综上所述:a=或.。
专题25 二次函数与全等三角形存在问题-2022中考数学之二次函数重点题型专题(全国通用版)(解析版
专题25 二次函数与全等三角形存在问题1.如图,抛物线C1:y=x2﹣2x﹣3与x轴交于A、B两点,点A在点B的左侧,将抛物线C1向上平移1个单位得到抛物线C2,点Q(m,n)在抛物线C2上,其中m>0且n<0,过点P作PQ∥y轴交抛物线C1于点P,点M是x轴上一点,当以点P、Q、M为顶点的三角形与△AOQ全等时,点M的横坐标为_____.【答案】4【分析】此题首先需要确定全等的对应关系,函数图象向上平移后,两个函数上下间距为1,OA=1,所以AO与PQ对应,∠AOQ=∠PQM,可确定OQ=QM,AQ=PB,得到两组线段相等后,设点M坐标,以两组线段相等为等量建立方程即可解决问题.【详解】解:∵△AOQ≌△PQM,AO=PQ∴∠AOQ=∠PQM,AQ=PB,OQ=QM∴AQ2=PB2,OQ2=QM2设Q(m,m2﹣2m﹣2),P(m,m2﹣2m﹣3),M(a,0)如图,过点Q作QH⊥AB,垂足为H,则在Rt△OHQ中,OQ2=(m)2+(m2﹣2m﹣2)2;在Rt△MHQ中,QM2=(a﹣m)2+(m2﹣2m﹣2)2;在Rt△AHQ中,AQ2=(m+1)2+(m2﹣2m﹣2)2;在Rt△PHB中,PB2=(a﹣m)2+(m2﹣2m﹣3)2a由(m)2+(m2﹣2m﹣2)2=(a﹣m)2+(m2﹣2m﹣2)2,解得m=2由(m+1)2+(m2﹣2m﹣2)2=(a﹣m)2+(m2﹣2m﹣3)2,解得a=﹣2(舍)或a=4∴点M的横坐标为4.【点睛】此题是代几综合问题,考查了全等关系在二次函数中的应用和二次函数中点坐标与线段长的转换,首先要确定边角的对应关系,发现线段相等后,利用等量建立方程,只要确定了对应关系,此题就好解决了.2.如图,在第一象限内作射线OC ,与x 轴的夹角为30°,在射线OC 上取点A ,过点A 作AH ⊥x 轴于点H .在抛物线y =x 2(x >0)上取点P ,在y 轴上取点Q ,使得以P 、O 、Q 为顶点,且以点Q 为直角顶点的三角形与△AOH 全等,则符合条件的点A 的坐标是__________.【答案】)12233或()或( 【分析】此题应分四种情况考虑:①∠POQ =∠OAH =60°,此时A 、P 重合,可联立直线OA 和抛物线的解析式,即可得A 点坐标;②∠POQ =∠AOH =30°,此时∠POH =60°,即直线OP :y,联立抛物线的解析式可得P点坐标,进而可求出OQ 、PQ 的长,由于△POQ ≌△AOH ,那么OH =OQ 、AH =PQ ,由此得到点A 的坐标.③当∠OPQ =90°,∠POQ =∠AOH =30°时,此时△QOP ≌△AOH ,由此求得点A 的坐标; ④当∠OPQ =90°,∠POQ =∠OAH =60°,此时△OQP ≌△AOH ,由此求得点A 的坐标;【详解】①当∠POQ =∠OAH =60°,若以P ,O ,Q 为顶点的三角形与△AOH 全等,那么A 、P 重合; 由于∠AOH =30°,设A 坐标为(a ,b ), 在直角三角形OAH 中,tan ∠AOH =tanba, 设直线OA 的方程为y =kx ,把A 的坐标代入得k =b a∴直线OA 的解析式: y,联立抛物线的解析式,得:2y y x ⎧=⎪⎨⎪=⎩,解得 00x y =⎧⎨=⎩,13x y ⎧=⎪⎪⎨⎪=⎪⎩ ;∴A13); ②当∠POQ =∠AOH =30°,此时△POQ ≌△AOH ;易知∠POH =60°,则直线OP :yx,联立抛物线的解析式,得:2y y x ⎧=⎪⎨=⎪⎩, 解得00x y =⎧⎨=⎩,3x y ⎧=⎪⎨=⎪⎩∴P3),即可得A (3;③当∠OPQ =90°,∠POQ =∠AOH =30°时,此时△QOP ≌△AOH ;易知∠POH =60°,则直线OP :y,联立抛物线的解析式,得:2y y x ⎧=⎪⎨=⎪⎩, 解得 00x y =⎧⎨=⎩,3x y ⎧=⎪⎨=⎪⎩∴P3), ∴OPQP =2, ∴OH =OPAH =QP =2, ∴A (2);④当∠OPQ =90°,∠POQ =∠OAH =60°,此时△OQP ≌△AOH ;此时直线OP:y,联立抛物线的解析式,得:2y xy x⎧=⎪⎨⎪=⎩,解得xy=⎧⎨=⎩,13xy⎧=⎪⎪⎨⎪=⎪⎩;∴P13),∴QPOP=23,∴OH=QPAH=OP=23,∴A23).综上可知:符合条件的点A有四个,且坐标为:,13),(3,(2),23).【点睛】本题主要考查的是全等三角形的判定和性质以及函数图象交点坐标的求法;由于全等三角形的对应顶点不明确,因此要注意分类讨论思想的运用.3.(2021·陕西·西安市中考三模)如图,抛物线y=ax2+bx+c经过A(0),B0),C(0,3)三点,线段BC与抛物线的对称轴l交于点D,该抛物线的顶点为P,连接P A,AD,线段AD与y轴相交于点E.(1)求该抛物线的表达式和点P的坐标;(2)在y轴上是否存在一点Q,使以Q,C,D为顶点的三角形与△ADP全等?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)y=−13x2+3,P4);(2)存在,点Q的坐标为(0,7).【分析】(1)已知抛物线经过的三点坐标,直接利用待定系数法求解即可.(2)先求出直线BC 的解析式,从而得点D 的坐标为D2).可求出AD 并证明CD=DP ,利用三角函数及等腰三角形性质求出∠ADP =120°,则可根据点Q 的位置在y 轴上,分别从两种情况利用SAS 判定两三角形全等的方法来求解. 【详解】解:(1)设抛物线的解析式为:y =a (x(x,将C (0,3)代入得: a (0(3, 解得 a =−13.∴抛物线的解析式:y =−13(x(x−13x 2+3. ∵y =−13x 2x +3=−13(x2+4, ∴P4). (2)存在,设直线BC 的解析式:y =kx +b ,依题意得:3b b +==⎪⎩, 解得3k b ⎧=⎪⎨⎪=⎩∴直线BC 的解析式为:y =+3. 当xy =2, ∴D2). ∴AD=4,CD2=PD .∵tan ∠ABD =DF BF, ∴∠ABD =30°.∵l 是抛物线的对称轴,点D 在l 上, ∴AD =BD .∴∠ABD =∠BAD =30°. ∴∠ADB =120°. ∴∠ADF =∠BDF =60°. ∴∠ADP =120°,△QCD 和△APD 中,CD =PD ,且点Q 在y 轴上,当点Q 在CD 上方,∠DCQ =∠ADP =120°,CQ =AD 时,△QCD ≌△APD , 设点Q (0,y ),则CQ =y -3, 即y -3=4, 解得y =7, ∴Q (0,7),当点Q 在CD 下方时,∠CDQ =120°,此时点Q 在抛物线的对称轴上. 综上,当△QCD ≌△APD 时,点Q 的坐标为(0,7). 【点睛】此题属于二次函数综合题,难度较大,涉及到:函数解析式的确定以及全等三角形的应用等重点知识.在解题时,一定要注意从图中找出合适的解题思路,能否将琐碎的知识运用到同一题目中进行解答,也是对基础知识掌握情况的重点考查.4.(2021·北京市九年级月考)在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 经过点A (-0),B (0),C (0,-3).(1)求抛物线顶点P 的坐标;(2)连接BC 与抛物线对称轴交于点D ,连接PC . ①求证:PCD 是等边三角形.②连接AD ,与y 轴交于点E ,连接AP ,在平面直角坐标系中是否存在一点Q ,使以Q ,C ,D 为顶点的三角形与ADP 全等.若存在,直接写出点Q 坐标,若不存在,请说明理由;(3)在(2)的条件下,点M 是直线BC 上任意一点,连接ME ,以点E 为中心,将线段ME 逆时针旋转60°,得到线段NE ,点N 的横坐标是否发生改变,若不改变,直接写出点N 的横坐标;若改变,请说明理由.【答案】(1)4)P -;(2)①见解析;②存在,2)或(2)--;(3)不改变,N 的理由见解析.【分析】(1)利用待定系数法求得二次函数的解析式,再用配方法解题;(2)①利用勾股定理求出PC ,PD ,CD 的值,即可求解;②存在,在对称轴上取一点Q ,使得DQ =AD ,连接AQ ,证明()ADP QDC SAS ≅,可解得2)Q ,再根据对称性得到,当点Q '与Q 关于A 对称时,Q CD ADP '≅,解得(2)Q '--; (3)设EN 交DM 于J ,利用全等三角形的性质,证明点N 在对称轴上即可. 【详解】解:(1)抛物线y =ax 2+bx +c 经过点A (0),B(0),C (0,-3)330270c a c a c =-⎧⎪∴+=⎨⎪+=⎩133a b c ⎧=⎪⎪⎪∴=⎨⎪=-⎪⎪⎩2221113()3(4333y x x x ∴=-=--=-4)P ∴-;(2)①设直线BC 的解析式为y kx b =+,代入 B(0),C (0,-3),得3b b ⎧+=⎪⎨=-⎪⎩3k b ⎧=⎪∴⎨⎪=-⎩直线BC的解析式为3y x =-当x =2y =-,2)D ∴-2,2,2PD CD PC ∴===CD PC PD ∴==∴PCD 是等边三角形;②存在,理由如下,在对称轴上取一点Q ,使得DQ =AD ,连接AQ ,tan OC ABC OB ∠==30ABC ∴∠=︒ ,DA DB DQ AB =⊥ 30,120DAB ADB ∴∠=︒∠=︒ 60ADQ BDQ ∴∠=∠=︒ 60ADQ CDP ∠=∠=︒ADP CDQ ∴∠=∠,DA DQ DP DC == ()ADP QDC SAS ∴≅ 4AD DQ ∴==2)Q ∴根据对称性可知,当点Q '与Q 关于A 对称时,Q CD ADP '≅,(2)Q '∴--,综上所述,满足条件的点Q 的坐标为:2)或(2)--; (3)不改变,理由如下, 设EN 交DM 于J , 60MEN CED ∠=∠=︒ MEC NED ∴∠=∠,ME NE EC ED == ()MEC NED SAS ∴≅EMC END ∴∠=∠ EJM DJN ∠=∠ 60MEJ JDN ∴∠=∠=︒ 60CDP CDN ∴∠=∠=︒ N ∴在对称轴上, N ∴【点睛】本题考查二次函数综合题,涉及待定系数法求二次函数解析式、配方法求顶点坐标、全等三角形的判定与性质、正切、等边三角形的判定与性质等知识,是重要考点,有难度,掌握相关知识是解题关键.5.如图所示,抛物线()20y ax bx c a =++≠经过()A,()B ,()0,3C 三点,线段BC 与抛物线的对称轴l 相交于点D .设抛物线的顶点为P ,连接P A ,AD ,DP ,线段AD 与y 轴相交于点E .(1)求该抛物线的表达式.(2)在平面直角坐标系中是否存在点Q ,使以Q ,C ,D 为顶点的三角形与△ADP 全等?若存在,求出点Q 的坐标;若不存在,说明理由.(3)将CED ∠绕点E 顺时针旋转,边EC 旋转后与线段BC 相交于点M ,边ED 旋转后与对称轴l 相交于点N ,连接PM ,DN ,若2PM DN =,求点N 的坐标(直接写出结果).【答案】(1)2133y x =-+;(2)存在,点Q的坐标为())2-,()0,7或()-;(3)点N的坐标为⎭【分析】(1)已知抛物线经过的三点坐标,直接利用待定系数法求解即可;(2)先求出直线BC 的解析式,求出点D 的坐标;方法1,设点Q 的坐标为(),x y ,利用两点间距离公式AB =22226704210x y y x y y ⎧+--=⎪⎨+---=⎪⎩,从而求解;方法2,利用全等条件先确定点Q 的几何位置,从而利用全等的条件得到对应线段的长来解决问题;注意分类讨论;(3)先证明CEM DEN ≌,设点M 的坐标为,3x x ⎛⎫+ ⎪ ⎪⎝⎭,可得22443PM x =+,22221433CM x x x =+=,根据224PM CM =求出x的值,然后根据2FN DF DN =-==【详解】解:(1)设抛物线的表达式为(y a x x =-,将点()0,3C 代入后,得(003a -=,解得13a =-.∴抛物线的表达式为(211333y x x x =--=-+. (2)设直线BC 的解析式为y kx b=+,由题意, 得03b b ⎧+=⎪⎨=⎪⎩,解得3k b ⎧=⎪⎨⎪=⎩.∴直线BC 的解析式为3y x =+.由抛物线的表达式2133y x =-+,得顶点P 的坐标为)4.当x =32y =+=, ∴点D 的坐标为)2.方法1:设点Q 的坐标为(),x y .∴()()222220369QC x y x y y =-+-=+-+,(()22222247QD x y x y y =+-=+--+,(()2220428AP =+-=,(()2220216AD =+-=,2CD DP ==.∵在QCD 和APD △中,CD PD =,若两个三角形全等,则有以下两种情况. ①当QC AP =,QD AD =时,22QC AP =,22QD AD =,则222269284716x y y x y y ⎧+-+=⎪⎨+--+=⎪⎩,解得114x y ⎧=⎪⎨=⎪⎩222x y ⎧=⎪⎨=-⎪⎩∴点Q的坐标为(),)2-.②当QC AD =,QD AP =时,22QC AD =,22QD AP =,则222269164728x y y x y y ⎧+-+=⎪⎨+--+=⎪⎩, 解得3307x y =⎧⎨=⎩,441x y ⎧=-⎪⎨=⎪⎩∴点Q 的坐标为()0,7,()-. 综上所述,点Q的坐标为(),)2-,()0,7或()-.方法2:∵点A的坐标为(),点B的坐标为(),点C 的坐标为()0,3,点F的坐标为),∴AF =4=AD,OB =3OC =,6BC =,2PD DF CD ===. ∴60BDF ADF ADC PDC ∠=∠=∠=∠=︒,120ADP CDF ∠=∠=︒. 如图所示,分以下四种情况.①当1Q 在y 轴上,且1Q C AD =时,()1SAS ADP QCD ≅. 此时1Q 的坐标为()0,7.②当2Q 在 PD 延长线上,且2Q D AD =时,()2SAS ADP Q DC ≅. ∴此时2Q的坐标为)2-.③当3Q 在AD 延长线上,且3Q D AD =时,()3SAS ADP Q DC ≅. 连接3Q P ,∵3ADF Q DP ∠=∠,∴()3SAS ADF Q DP ≅. ∴3Q P AF =.此时3Q的坐标为().④当4120Q CD ADP ∠=∠=︒且4Q C AD =时,()4SAS ADP Q CD ≅,同理可得,()4SAS ADP Q CE ≅,∴4Q的坐标为()-.综上所述,点Q 的坐标为()0,7,)2-,()或()-. (3)如图所示,∵点D的坐标为)2,点B的坐标为(),∴2DF =,BF =.∴60BDF ADF CDE DCE ∠=∠=∠=∠=︒. ∴CEO 为等边三角形.在CEM 和DEN 中,60CEM DEN ECM EDN CE DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴CEM DEN ≌.∴CM DN =,22PM CM DN ==,设点M的坐标为,3x x ⎛⎫+ ⎪ ⎪⎝⎭,∴)222244343PM x x x ⎛⎫=+-=+ ⎪ ⎪⎝⎭. 又∵22221433CM x x x =+=,∴224PM CM =,即22444433x x +=⨯,解得)16x =(负值舍去).∴)16CM DN x ==,∴2FN DF DN =-==∴点N 的坐标为⎭解后反思本题第(2)问考查“在平面直角坐标系中是否存在点Q ,使以Q ,C ,D 为顶点的三角形与ADP △全等”,这里要注意由于对应点的不同,需要有分类讨论的意识.方法1,设点Q 的坐标为(),x y ,利用两点间距离公式AB =化为方程组22226704210x y y x y y ⎧+--=⎪⎨+---=⎪⎩,从而求解;方法2,利用全等条件先确定点Q 的几何位置,从而利用全等的条件得到对应线段的长来解决问题.相对于以上两种解法,因为方法1需要解复杂的二元二次方程组,所以方法2的几何方法更为简捷. 6.如图,抛物线23y ax bx =+-与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点D 是抛物线的顶点.(1)求抛物线的解析式.(2)点N 是y 轴负半轴上的一点,且ON =Q 在对称轴右侧的抛物线上运动,连接QO ,QO 与抛物线的对称轴交于点M ,连接MN ,当MN 平分OMD ∠时,求点Q 的坐标.(3)直线BC 交对称轴于点E ,P 是坐标平面内一点,请直接写出PCE ∆与ACD ∆全等时点P 的坐标.【答案】(1)223y x x =--;(2)点Q 的坐标为:1Q ,2Q ;(3)若PCE ∆与ACD ∆全等,P 点有四个,坐标为1(3,4)P --,2(1,6)P --,3(2,1)P ,4(4,1)P -. 【分析】(1)用待定系数法,直接将,A B 代入解析式即可求解.(2)由MN 平分OMD ∠,MD 平行ON 即可求出OM ON =M 点坐标,由直线OM 解析式即可求出与抛物线交点坐标Q 即可.(3)由,,A C D 三点的坐标可得ACD ∆三边长,由CE 坐标可得PCE ∆和ACD ∆中CD CE =,则另两组边对应相等即可,设P 点坐标为(,)x y ;利用两点间距离公式即列方程求解. 【详解】(1)抛物线23y ax bx =+-经过(1,0)A -,(3,0)B 两点,∴309330a b a b --=⎧⎨+-=⎩,解得:12a b =⎧⎨=-⎩,∴抛物线的解析式为:223y x x =--.(2)如图1,设对称轴与x 轴交于点H ,MN 平分OMD ∠,OMN DMN ∴∠=∠,又//DM ON ,DMN MNO ∴∠=∠, MNO OMN ∴∠=∠,OM ON ∴==.在Rt OHM ∆中,90OHM ∠=︒,1OH =.∴1HM ,1(1,1)M ∴;2(1,1)M -.①当1(1,1)M 时,直线OM 解析式为:y x =, 依题意得:223x x x =--.解得:1x 2x点Q 在对称轴右侧的抛物线上运动,Q ∴点纵坐标1y x =.∴1Q ,②当2(1,1)M -时,直线OM 解析式为:y x =-,同理可求:2Q , 综上所述:点Q的坐标为:1Q,2Q , (3)由题意可知:(1,0)A -,(0,3)C -,D (1,4)-,AC ∴,AD ,CD ,直线BC 经过(3,0)B ,(0,3)C -,∴直线BC 解析式为3y x =-,抛物线对称轴为1x =,而直线BC 交对称轴于点E ,E ∴坐标为(1,2)-;CE ∴,设P 点坐标为(,)x y , 则222(0)(3)CP x y =-++, 则222(1)(2)EP x y =-++,CE CD =,若PCE ∆与ACD ∆全等,有两种情况,Ⅰ.PC AC =,PE AD =,即PCE ACD ∆≅∆.∴2222(0)(3)10(1)(2)20x y x y ⎧-++=⎨-++=⎩, 解得:1134x y =-⎧⎨=-⎩,2216x y =-⎧⎨=-⎩,即P 点坐标为1(3,4)P --,2(1,6)P --. Ⅰ.PC AD =,PE AC =,即PCE ACD ∆≅∆.∴2222(0)(3)20(1)(2)10x y x y ⎧-++=⎨-++=⎩, 解得:3321x y =⎧⎨=⎩,4441x y =⎧⎨=-⎩,即P 点坐标为3(2,1)P ,4(4,1)P -.故若PCE ∆与ACD ∆全等,P 点有四个,坐标为1(3,4)P --,2(1,6)P --,3(2,1)P ,4(4,1)P -. 【点睛】本题主要考查了二次函数与几何图形的综合.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系. 7.如图,抛物线y 1=ax 2+bx +34与x 轴交于点A (﹣3,0),点B ,点D 是抛物线y 1的顶点,过点D 作x 轴的垂线,垂足为点C (﹣1,0).(1)求抛物线y 1所对应的函数解析式;(2)如图1,点M 在抛物线y 1上,横坐标为m ,连接MC ,若∠MCB =∠DAC ,求m 的值; (3)如图2,将抛物线y 1平移后得到顶点为B 的抛物线y 2.点P 为抛物线y 1上的一个动点,过点P 作y 轴的平行线,交抛物线y 2于点Q ,过点Q 作x 轴的平行线,交抛物线y 2于点R .当以点P ,Q ,R 为顶点的三角形与△ACD 全等时,请直接写出点P 的坐标.【答案】(1)2113424y x x =--+ ;(2)m (3)P 点坐标为(0,34)或P (2,﹣54). 【分析】(1)根据A 、C 两点的坐标用待定系数法求出解析式;(2)如图,当M 点在x 轴上方时,若∠M 1CB =∠DAC ,则DA ∥CM 1,先求直线AD 的解析式,由点C 的坐标可求出直线CM 1的解析式,联立直线和抛物线方程可求出点M 1的坐标,当点M 在x 轴下方时,由轴对称的性质可求出直线CM 2的解析式,同理联立直线和抛物线方程则求出点M 的坐标;(3)先求出y 2的解析式,可设出点P 坐标,表示Q 、R 坐标及PQ 、QR ,根据以P ,Q ,R 为顶点的三角形与△ACD 全等,分类讨论对应边相等的可能性即可求P 点坐标. 【详解】(1)由题意得:3930412a b b a ⎧-+=⎪⎪⎨⎪-=-⎪⎩,解得1412a b ⎧=-⎪⎪⎨⎪=-⎪⎩,抛物线y 1所对应的函数解析式为2113424y x x =--+;(2)当x =﹣1时,y =113424-++=1,∴D (﹣1,1),设直线AD 的解析式为y =kx +n , ∴301k n k n -+=⎧⎨-+=⎩,解得:1232k n ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AD 的解析式为y =12x +32, 如图,①当M 点在x 轴上方时, ∵∠M 1CB =∠DAC , ∴DA ∥CM 1,设直线CM 1的解析式为y =12x +b 1, ∵直线经过点C ,∴-12+b 1=0,解得:b 1=12, ∴直线CM 1的解析式为y =12x +12, ∴21122113424y x y x x ⎧=+⎪⎪⎨⎪=--+⎪⎩, 解得:x =-x =-2舍去),∴m =﹣②当点M 在x 轴下方时,直线CM 2与直线CM 1关于x 轴对称, 由轴对称的性质可得直线CM 2的解析式为y =-12x -12, ∴21122113424y x y x x ⎧=--⎪⎪⎨⎪=--+⎪⎩,解得:xx舍去),∴m综合以上可得m(3)∵抛物线y 1平移后得到y 2,且顶点为B (1,0), ∴()22114y x =--, 即y 2=2111424x x -+-,设P (m ,2113424m m --+),则Q (m ,2111424m m -+-),∴R (2﹣m ,2111424m m -+-),①当P 在Q 点上方时,PQ =1﹣m ,QR =2﹣2m , ∵△PQR 与△ACD 全等,∴当PQ =DC 且QR =AC 时,m =0, ∴P (0,34),R (2,﹣14),当PQ =AC 且QR =DC 时,无解; ②当点P 在Q 点下方时,同理:PQ =m ﹣1,QR =2m ﹣2,可得P (2,54-),R (0,﹣14),综合可得P 点坐标为(0,34)或P (2,54-).【点睛】本题是二次函数综合题,考查了二次函数的性质、待定系数法求函数的解析式,三角形全等的判定,应用了数形结合和分类讨论的数学思想.8.如图,抛物线2y ax bx c =++与x 轴的交点分别为()6,0A -和点()4,0B ,与y 轴的交点为()0,3C .(1)求抛物线的解析式;(2)点P 是线段OA 上一动点(不与点A 重合),过P 作平行于y 轴的直线与AC 交于点Q ,点D 、M 在线段AB 上,点N 在线段AC 上.①是否同时存在点D 和点P ,使得APQ ∆和CDO ∆全等,若存在,求点D 的坐标,若不存在,请说明理由;②若DCB CDB ∠=∠,CD 是MN 的垂直平分线,求点M 的坐标.【答案】(1)211384y x x =--+;(2)①存在点D ,使得APQ ∆和CDO ∆全等,3,02D ⎛⎫⎪⎝⎭,理由见解析;②点3,02M ⎛⎫⎪⎝⎭【分析】(1)利用待定系数法,把A 、C 、G 三点坐标代入一般式,解方程组可求得抛物线解析式; (2)①分D 在线段AO 上和在线段OB 上两种情况讨论;②由已知点求出D 点坐标,连接DN ,证明DN //BC ,则可证DN 为△ABC 的中位线,根据题意可证DM =DN ,即可求出M 坐标. 【详解】(1)将点A ()6,0-,()0,3C ,()4,0B 代入2y ax bx c =++,得366016400a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得18143a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩∴抛物线解析式为:211384y x x =--+(2)①存在点D ,使得APQ ∆和CDO ∆全等当D 在线段OA 上,QAP DCO ∠=∠,3AP OC ==时,APQ ∆和CDO ∆全等 tan tan QAP DCO ∴∠=∠OC ODOA OC = 363OD ∴= 32OD ∴=∴点D 坐标为3,02⎛⎫- ⎪⎝⎭由对称性,当点D 坐标为3,02⎛⎫⎪⎝⎭时,由点B 坐标为()4,0此时点3,02D ⎛⎫⎪⎝⎭在线段OB 上满足条件.②3OC =,4OB =5BC ∴=DCB CDB ∠=∠5BD BC ∴==1OD BD OB ∴=-=则点D 坐标为()1,0-且5AD BD ==连DN ,CM则DN DM =,NDC MDC ∠=∠NDC DCB ∴∠=∠DN BC ∴∥1AN AD NC DB∴== 则点N 为AC 中点.DN ∴是ABC ∆的中位线1522DN DM BC === 32OM DM OD ∴=-= ∴点3,02M ⎛⎫ ⎪⎝⎭【点睛】本题考查二次函数综合题,待定系数法求二次函数解析式,三角形全等的判定定理,锐角三角函数解三角形.能在坐标轴中找准点的坐标与线段之间的关系是解决此题的关键. 9.(2020·四川都江堰·中考二模)如图,抛物线y =ax 2+c (a ≠0)与y 轴交于点A ,与x 轴交于B 、C 两点(点C 在x 轴正半轴上),△ABC 为等腰直角三角形,且面积为4.现将抛物线沿BA 方向平移,平移后的抛物线经过点C 时,与x 轴的另一交点为E ,其顶点为F ,对称轴与x 轴的交点为H .(1)求a 、c 的值;(2)连接OF ,求△OEF 的周长;(3)现将一足够大的三角板的直角顶点Q放在射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使得以点P、Q、E为顶点的三角形与△POE 全等?若存在,请直接写出Q点坐标;若不存在,请说明理由.【答案】(1)122ac⎧=-⎪⎨⎪=⎩;(2)(3)存在,点Q(6,Q(6,3).【分析】(1)根据直角三角形的性质,可得B(﹣2,0),A(0,2),C(2,0),将点代入解析式即可求a,c的值;(2)求出AB的直线解析为y=x+2,设F(m,m+2),平移后抛物线解析式y=﹣12(x﹣m)2+m+2,将点C(2,0)代入,得平移后抛物线解析式为y=﹣12x2+6x﹣10,进而求出点E的坐标,即可得出结论;(3)当P在x轴上方时,由△PQE≌△POE,可得QE=OE=10,在Rt△QHE中,OH=Q(6,;当P在x轴下方时,PQ=OE=10,过点P作PK⊥HF与点K,可证明△PKQ∽△QHE,则PK QKQH HE=,则Q(6,3),即可得出结论.【详解】解:(1)∵△ABC为等腰直角三角形,∴AO=12BC,∵△ABC面积为4,∴12BC•OA=4,∴OA=2,BO=4,∴B(﹣2,0),A(0,2),C(2,0),∵点A,B在抛物线y=ax2+c上,∴240ca c=⎧⎨+=⎩,∴122ac⎧=-⎪⎨⎪=⎩,即a、c的值分别为﹣12和2;(2)如图1,连接OF,由(1)可知:y=﹣12x2+2,∵B(﹣2,0),A(0,2),∴AB的直线解析为y=x+2,∵平移后抛物线顶点F在射线BA上,设F(m,m+2),∴平移后抛物线解析式y=﹣12(x﹣m)2+m+2,将点C(2,0)代入y=﹣12(x﹣m)2+m+2,得﹣12(2﹣m)2+m+2=0,∴m=6或m=0(舍),∴F(6,8),∴平移后抛物线解析式为y=﹣12x2+6x﹣10,当y=0时,﹣12x2+6x﹣10=0,∴x=2或x=10,∴E(10,0),∴OE=10,∵F(6,8),∴OF10,EF∴△OEF的周长为OE+OF+EF=(3)当P在x轴上方时,如图2,∵△PQE≌△POE,∴QE=OE=10,在Rt△QHE中,HQ∴Q(6,,当P在x轴下方时,如图3,∵△PQE≌△EOP,∴PQ=OE=10,过点P作PK⊥HF与点K,∴PK=6,在Rt△PQK中,QK8,∵∠PQE=90°,∴∠PQK+∠HQE=90°,∵∠HQE+∠HEQ=90°,∴∠PQK=∠HEQ,∵∠PKQ=∠QHE=90°,∴△PKQ∽△QHE,∴PK QK QH HE=,∴684 QH=,∴QH=3,∴Q(6,3),综上所述:满足条件的点Q(6,Q(6,3).【点睛】此题是二次函数的综合题,考查了二次函数的性质,抛物线平移的特点,待定系数法求函数解析式,等腰直角三角形的性质,全等三角形的判定及性质,相似三角形的判定及性质,勾股定理,解题中注意分类讨论的思想.10.已知抛物线y=x2+bx+c过点(-6,-2),与y轴交于点C,且对称轴与x轴交于点B (-2,0),顶点为A.(1)求该抛物线的解析式和A点坐标;(2)若点D是该抛物线上的一个动点,且使△DBC是以B为直角顶点BC为腰的等腰直角三角形,求点D坐标;(3)若点M是第二象限内该抛物线上的一个动点,经过点M的直线MN与y轴交于点N,是否存在以O、M、N为顶点的三角形与△OMB全等?若存在,请求出直线MN的解析式;若不存在,请说明理由.【答案】(1)A点的坐标为(﹣2,6);(2)D点的坐标为:(2,﹣2);x+2.(3)存在.直线MN的解析式为y=6或y=﹣12【分析】(1)首先依据顶点坐标先求出b 的值,然后利用待定系数法求出抛物线的解析式;(2)过B 点作CB 的垂线交抛物线与D ,然后过D 点作x 轴的垂线,垂足为E ,通过三角形全等即可求得点D 的坐标.(3)由于三角形的各边,只有OB =2是确定长度的,因此可以以OB 为基准进行分类讨论: ①OB =OM .因为第二象限内点P 到原点的距离均大于4,因此OB ≠OM ,此种情形排除; ②OB =ON .分析可知,只有如答图2所示的情形成立;③OB =MN .分析可知,只有如答图3所示的情形成立.【详解】(1)∵对称轴与x 轴交于点B (﹣2,0),∴A 的横坐标为:x =﹣2, ∴﹣2b a=﹣2, 解得;b =﹣2,∴抛物线为y =﹣12x 2﹣2x +c , ∵抛物线y =﹣12x 2+bx +c 过点(﹣6,﹣2), ∴代入得﹣2=﹣12×(﹣6)2﹣2×(﹣6)+c ,解得c =4, ∴该抛物线的解析式为:y =﹣12x 2﹣2x +4, ∴y =﹣12x 2﹣2x +4=﹣12(x 2+4x +4)+6)=﹣12(x +2)2+6 ∴A 点的坐标为(﹣2,6);(2)过B 点作CB 的垂线交抛物线与D ,然后过D 点作x 轴的垂线,垂足为E , ∵∠CBD =90°,∴∠CBO +∠EBD =90°,∵∠BCO +∠CBO =90°,∴∠EBD =∠BCO ,∠CBO =∠BDE ,∴在△CBO 与△BDE 中EBD BCO BC BDCBO BDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CBO ≌△BDE (ASA )∴DE =OB =2,BE =OC =4∴D点的坐标为(2,﹣2)或(﹣6.2),把(2,﹣2)或(﹣6.2)分别代入y=﹣12x2﹣2x+4,(﹣2,2)合适,(﹣6,2)不合适,∴D点的坐标为:(2,﹣2)图1(3)存在.若以O、M、N为顶点的三角形与△OBM全等,可能有以下情形:(I)OB=OM.由图象可知,OM最小值为4,即OM≠OB,故此种情形不存在.(II)OB=ON.若点M在y轴正半轴上,如答图2所示:图2此时△OBM≌△OMN,∴∠OMB=∠OMN,即点P在第二象限的角平分线上,ON=OB=2,M点坐标为:(4,-4),∴直线PE的解析式为:y=﹣12x+2;若点E在y轴负半轴上,易知此种情形下,两个三角形不可能全等,故不存在.(III)OB=MN.∵OB=2,∴第二象限内对称轴左侧的点到y轴的距离均大于2,则点M只能位于对称轴右侧或与顶点A重合.若点M位于第二象限内抛物线对称轴的右侧,易知△OMN为钝角三角形,而△OMB为锐角三角形,则不可能全等;若点M与点A重合,如答图3所示,此时△OBM≌△OMN,四边形MNOB为矩形,图3∴直线MN的解析式为:y=6.综上所述,存在以O、M、N为顶点的三角形与△OMB全等,直线MN的解析式为y=6,y=﹣12x+2.考点:二次函数综合题.11.定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=2x2﹣2x+2是黄金抛物线.(1)请再写出一个与上例不同的黄金抛物线的解析式;(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);(3)将黄金抛物线y=2x2﹣2x+2沿对称轴向下平移3个单位.①直接写出平移后的新抛物线的解析式;②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明.【答案】(1)如y=x2,y=x2﹣x+1,y=x2+2x+4等(答案不唯一);(2)详见解析;(3)①y=2x2﹣2x﹣1;②符合条件的点P的坐标:(0,﹣1),(1,﹣1),(﹣12,12),(32,12).【分析】(1)按照黄金抛物线的定义给a、b、c赋值即可;(2)将ac=b2代入判别式当中,消去ac,然后对b分等于0和不等于0两种情讨论即可;(3)①根据“上加下减”写出平移后的抛物线解析式即可;②根据所给的限制条件,只能画出四种图形,分别写出相应的P点坐标即可;【详解】(1)答:如y=x2,y=x2﹣x+1,y=x2+2x+4等;(2)依题意得b2=ac,∴△=b2﹣4ac=b2﹣4b2=﹣3b2,∴当b=0时,△=0,此时抛物线与x轴有一个公共点,当b≠0时,△<0,此时抛物线与x轴没有公共点;(3)①抛物线y=2x2﹣2x+2向下平移3个单位得到的新抛物线的解析式为y=2x2﹣2x﹣1,②存在.如图:若BQ=AO,过点Q作x轴的平行线,交抛物线于点P,P点的坐标为:(0,﹣1),(1,﹣1),此时,△AOB≌△BQP;若BQ=BO,过点Q作x轴的平行线,交抛物线于点P,令2x2﹣2x﹣1=12,解得:x=﹣12或x=32,∴P点的坐标为:(﹣12,12),(32,12).此时,△AOB≌△PQB;综上所述,有四个符合条件的点P的坐标:(0,﹣1),(1,﹣1),(﹣12,12),(32,12).【点睛】此题主要考查新定义下抛物线的性质,熟练掌握,即可解题.。
中考复习 数学压轴题二次函数与三角形存在性问题破解策略课件)
16 3- 137
= ;
153 16
,
当 TA=AC 时,得 t2+16= 16 ,无解; 当 TA=TC 时,得 t2- t+ =t2+16, 解得 t3=- ;
8 77 16 25
153
综上可知,在抛物线y2的对称轴l上存在点T使△TAC是等腰三角形, 此时T点的坐标为
T1(1,
3+ 137 4
所以,抛物线 y1 的解析式为
因为抛物线 y1 平移后得到抛物线 y2,且顶点为 B(1,0), 1 所以抛物线 y2 的解析式为 y2=-4(x-1)2, 即
1 2 1 1 y2=- x + x- ; 4 2 4
(2)抛物线y2的对称轴l为x=1,
设 T(1,t),已知 A(-3,0),C(0, ),
QR=2-2m, 又因为以P,Q,R为顶点的三角形与△AMG全等, 当PQ=GM且QR=AM时,m=0,
4 2 4
可求得 P(0, ),即点 P 与点 C 重合, 所以 R(2,- ). 设 PR 的解析式 y=kx+b, 则有 ������ = 4 ,
3 4 1 4
3
2������ + ������ = - 4 .
坐标,注意要根据题意舍去不合题意的点.
(1)求抛物线y2的解析式; (2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在 ,请求出所有点T的坐标;若不存在,请说明理由; (3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点
Q,点Q关于直线l的对称点为R.若以P,Q,R为顶点的三角形与△AMG
2
∴抛物线的表达式是
2 2 8 y= x +2x- . 3 3
2022年中考数学二次函数压轴题考点大汇总专题13 直角三角形的存在性问题含答案
2022年中考数学二次函数压轴题考点大汇总直角三角形的存在性问题知识导航【问题描述】如图,在平面直角坐标系中,点A 坐标为(1,1),点B 坐标为(5,3),在x 轴上找一点C 使得△ABC 是直角三角形,求点C 坐标.【几何法】两线一圆得坐标(1)若∠A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C ;(2)若∠B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C ;(3)若∠C 为直角,以AB 为直径作圆,与x 轴的交点即为所求点C .(直径所对的圆周角为直角)重点还是如何求得点坐标,12C C 、求法相同,以2C 为例:【构造三垂直】34C C 、求法相同,以3C 为例:构造三垂直步骤:第一步:过直角顶点作一条水平或竖直的直线;第二步:过另外两端点向该直线作垂线,即可得三垂直相似.【代数法】表示线段构勾股还剩下1C 待求,不妨来求下1C :(1)表示点:设1C 坐标为(m ,0),又A (1,1)、B (5,3);(2)表示线段:AB =,1AC =,1BC =(3)分类讨论:当1BAC ∠为直角时,22211AB AC BC +=;(4)代入得方程:()()2222201153m m +-+=-+,解得:32m =.还有个需要用到一个教材上并没有出现但是大家都知道的算法:互相垂直的两直线斜率之积为-1.考虑到直线1AC 与AB 互相垂直,11AC AB k k ⋅=-,可得:12AC k =-,又直线1AC 过点A (1,1),可得解析式为:y =-2x +3,所以与x 轴交点坐标为3,02⎛⎫ ⎪⎝⎭,即1C 坐标为3,02⎛⎫ ⎪⎝⎭.确实很简便,但问题是这个公式出现在高中的教材上~【小结】几何法:(1)“两线一圆”作出点;(2)构造三垂直相似,利用对应边成比例求线段,必要时可设未知数.代数法:(1)表示点A 、B 、C 坐标;(2)表示线段AB 、AC 、BC ;(3)分类讨论①AB ²+AC ²=BC ²、②AB ²+BC ²=AC ²、③AC ²+BC ²=AB ²;(4)代入列方程,求解.如果问题变为等腰直角三角形存在性,则同样可采取上述方法,只不过三垂直得到的不是相似,而是全等.方法突破如图,在平面直角坐标系中,抛物线22y ax x c =++与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使BDM ∆的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.【分析】(1)抛物线:223y x x =-++,直线AC :y =3x +3;(2)看图,M 点坐标为(0,3)与C 点重合了.(3)考虑到AC 为直角边,故分别过A 、C 作AC 的垂线,与抛物线交点即为所求P 点,有如下两种情况,先求过A 点所作垂线得到的点P :设P 点坐标为()2,23m m m -++,则PM =m +1,AM =()2202323m m m m --++=--,易证△PMA ∽△ANC ,且AN =3,CN =1,∴212331m m m +--=,解得:1103m =,21m =-(舍),故第1个P 点坐标为1013,39⎛⎫- ⎪⎝⎭;再求过点C 所作垂线得到的点P :()223232PM m m m m =--++=-,CN =m ,2321m m m =-,解得:173m =,20m =(舍),故第2个P 点坐标为720,39⎛⎫ ⎪⎝⎭.综上所述,P 点坐标为1013,39⎛⎫- ⎪⎝⎭或720,39⎛⎫ ⎪⎝⎭.专项训练1.如图1,抛物线26y ax bx =++与x 轴交于点(2,0)A -,(6,0)B ,与y 轴交于点C ,顶点为D ,直线AD 交y 轴于点E .(1)求抛物线的解析式.(2)如图2,将AOE ∆沿直线AD 平移得到NMP ∆.①当点M 落在抛物线上时,求点M 的坐标.②在NMP ∆移动过程中,存在点M 使MBD ∆为直角三角形,请直接写出所有符合条件的点M 的坐标.2.如图,直线210y x =-+分别与x 轴,y 轴交于A ,B 两点,点C 为OB 的中点,抛物线2y x bx c =++经过A ,C 两点.(1)求抛物线的函数表达式;(2)点D 是直线AB 下方的抛物线上的一点,且ABD ∆的面积为452,求点D 的坐标;(3)点P 为抛物线上一点,若APB ∆是以AB 为直角边的直角三角形,求点P 到抛物线的对称轴的距离.3.如图,在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于点A ,B ,与y 轴交于点C .且直线6y x =-过点B ,与y 轴交于点D ,点C 与点D 关于x 轴对称,点P 是线段OB 上一动点,过点P 作x 轴的垂线交抛物线于点M ,交直线BD 于点N .(1)求抛物线的函数解析式;(2)当MDB ∆的面积最大时,求点P 的坐标;(3)在(2)的条件下,在y 轴上是否存在点Q ,使得以Q ,M ,N 三点为顶点的三角形是直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由.4.如图,在平面直角坐标系中,函数223(0)y ax ax a a =-++>的图象交x 轴于点A 、B ,交y 轴于点C ,它的对称轴交x 轴于点E .过点C 作//CD x 轴交抛物线于点D ,连接DE 并延长交y 轴于点F ,交抛物线于点G .直线AF 交CD 于点H ,交抛物线于点K ,连接HE 、GK .(1)点E 的坐标为:;(2)当HEF ∆是直角三角形时,求a 的值;(3)HE 与GK 有怎样的位置关系?请说明理由.5.如图,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于(1,0)A ,(4,0)B 两点,与y 轴交于点C ,直线122y x =-+经过B ,C 两点.(1)直接写出二次函数的解析式;(2)平移直线BC ,当直线BC 与抛物线有唯一公共点Q 时,求此时点Q 的坐标;(3)过(2)中的点Q 作//QE y 轴,交x 轴于点E .若点M 是抛物线上一个动点,点N 是x 轴上一个动点,是否存在以E ,M ,N 三点为顶点的直角三角形(其中M 为直角顶点)与BOC ∆相似?如果存在,请直接写出满足条件的点M 的个数和其中一个符合条件的点M 的坐标;如果不存在,请说明理由.直角三角形的存在性问题知识导航【问题描述】如图,在平面直角坐标系中,点A 坐标为(1,1),点B 坐标为(5,3),在x 轴上找一点C 使得△ABC 是直角三角形,求点C 坐标.【几何法】两线一圆得坐标(1)若∠A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C ;(2)若∠B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C ;(3)若∠C 为直角,以AB 为直径作圆,与x 轴的交点即为所求点C .(直径所对的圆周角为直角)重点还是如何求得点坐标,12C C 、求法相同,以2C 为例:【构造三垂直】34C C 、求法相同,以3C 为例:构造三垂直步骤:第一步:过直角顶点作一条水平或竖直的直线;第二步:过另外两端点向该直线作垂线,即可得三垂直相似.【代数法】表示线段构勾股还剩下1C 待求,不妨来求下1C :(1)表示点:设1C 坐标为(m ,0),又A (1,1)、B (5,3);(2)表示线段:25AB =,()22111AC m =-+,()22153BC m =-+(3)分类讨论:当1BAC ∠为直角时,22211AB AC BC +=;(4)代入得方程:()()2222201153m m +-+=-+,解得:32m =.还有个需要用到一个教材上并没有出现但是大家都知道的算法:互相垂直的两直线斜率之积为-1.考虑到直线1AC 与AB 互相垂直,11AC AB k k ⋅=-,可得:12AC k =-,又直线1AC 过点A (1,1),可得解析式为:y =-2x +3,所以与x 轴交点坐标为3,02⎛⎫ ⎪⎝⎭,即1C 坐标为3,02⎛⎫ ⎪⎝⎭.确实很简便,但问题是这个公式出现在高中的教材上~【小结】几何法:(1)“两线一圆”作出点;(2)构造三垂直相似,利用对应边成比例求线段,必要时可设未知数.代数法:(1)表示点A 、B 、C 坐标;(2)表示线段AB 、AC 、BC ;(3)分类讨论①AB ²+AC ²=BC ²、②AB ²+BC ²=AC ²、③AC ²+BC ²=AB ²;(4)代入列方程,求解.如果问题变为等腰直角三角形存在性,则同样可采取上述方法,只不过三垂直得到的不是相似,而是全等.方法突破如图,在平面直角坐标系中,抛物线22y ax x c =++与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使BDM ∆的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.【分析】(1)抛物线:223y x x =-++,直线AC :y =3x +3;(2)看图,M 点坐标为(0,3)与C 点重合了.(3)考虑到AC 为直角边,故分别过A 、C 作AC 的垂线,与抛物线交点即为所求P 点,有如下两种情况,先求过A 点所作垂线得到的点P :设P 点坐标为()2,23m m m -++,则PM =m +1,AM =()2202323m m m m --++=--,易证△PMA ∽△ANC ,且AN =3,CN =1,∴212331m m m +--=,解得:1103m =,21m =-(舍),故第1个P 点坐标为1013,39⎛⎫- ⎪⎝⎭;再求过点C 所作垂线得到的点P :()223232PM m m m m =--++=-,CN =m ,2321m m m =-,解得:173m =,20m =(舍),故第2个P 点坐标为720,39⎛⎫ ⎪⎝⎭.综上所述,P 点坐标为1013,39⎛⎫- ⎪⎝⎭或720,39⎛⎫ ⎪⎝⎭.专项训练1.如图1,抛物线26y ax bx =++与x 轴交于点(2,0)A -,(6,0)B ,与y 轴交于点C ,顶点为D ,直线AD 交y 轴于点E .(1)求抛物线的解析式.(2)如图2,将AOE ∆沿直线AD 平移得到NMP ∆.①当点M 落在抛物线上时,求点M 的坐标.②在NMP ∆移动过程中,存在点M 使MBD ∆为直角三角形,请直接写出所有符合条件的点M 的坐标.【分析】(1)抛物线的表达式为:22(2)(6)(412)412y a x x a x x ax ax a =+-=--=--,即:126a -=,即可求解;(2)①将点M 的坐标代入抛物线表达式,即可求解);②分BMD ∠为直角、MBD ∠为直角、MDB ∠为直角三种情况,分别求解即可.【解答】解:(1)抛物线的表达式为:22(2)(6)(412)412y a x x a x x ax ax a =+-=--=--,即:126a -=,解得:12a =-,故抛物线的表达式为:21262y x x =-++,令0y =,解得:4x =或2-,故点(2,0)A -,函数的对称轴为:2x =,故点(2,8)D ;(2)由点A 、D 的坐标得,直线AD 的表达式为:24y x =+,设点(,24)N n n +,2MN OA == ,则点(2,24)M n n ++,①将点M 的坐标代入抛物线表达式得:2124(2)2(2)62n n n +=-++++,解得:2n =-±,故点M 的坐标为或(--;②点(2,24)M n n ++,点B 、D 的坐标分别为(6,0)、(2,8),则222(62)8BD =-+,222(4)(24)MB n n =-++,222(24)MD n n =+-,当BMD ∠为直角时,由勾股定理得:222222(62)8(4)(24)(24)n n n n -+=-++++-,解得:25n ±=;当MBD ∠为直角时,同理可得:4n =-,当MDB ∠为直角时,同理可得:83n =,故点M 的坐标为:(2,4)--或14(3,283或12(5+,245+或12(5-,245-.【点评】本题考查的是二次函数综合运用,涉及到一次函数、勾股定理的运用等,其中(2)②,要注意分类求解,避免遗漏.2.如图,直线210y x =-+分别与x 轴,y 轴交于A ,B 两点,点C 为OB 的中点,抛物线2y x bx c =++经过A ,C 两点.(1)求抛物线的函数表达式;(2)点D 是直线AB 下方的抛物线上的一点,且ABD ∆的面积为452,求点D 的坐标;(3)点P 为抛物线上一点,若APB ∆是以AB 为直角边的直角三角形,求点P 到抛物线的对称轴的距离.【分析】(1)由直线解析式求出A 、B 坐标,然后得出C 点坐标,再用待定系数法求出抛物线解析式;(2)过点D 作DE x ⊥轴,交直线AB 于点E ,设2(,65)D m m m -+,利用14522ABD S OA DE ∆=⨯⨯=得出方程,解出m 值即可;(3)分点A 是直角顶点和点B 是直角顶点,结合图象,表示出ABP ∆三边长度,利用勾股定理得出方程,求解即可.【解答】解:(1)直线210y x =-+中,令0x =,则10y =,令0y =,则5x =,(5,0)A ∴,(0,10)B ,点C 是OB 中点,(0,5)C ∴,将A 和C 代入抛物线2y x bx c =++中,02555b c c =++⎧⎨=⎩,解得:65b c =-⎧⎨=⎩,∴抛物线表达式为:265y x x =-+;(2)联立:221065y x y x x =-+⎧⎨=-+⎩,解得:112x y =-⎧⎨=⎩或50x y =⎧⎨=⎩,∴直线AB 与抛物线交于点(1,12)-和(5,0),点D 是直线AB 下方抛物线上的一点,设2(,65)D m m m -+,15m ∴-<<,过点D 作DE x ⊥轴,交直线AB 于点E ,(,210)E m m ∴-+,222106545DE m m m m m ∴=-+-+-=-++,211455(45)222ABD S OA DE m m ∆∴=⨯⨯=⨯⨯-++=,解得:2m =,∴点D 的坐标为(2,3)-;(3)抛物线表达式为:265y x x =-+,APB ∆ 是以AB 为直角边的直角三角形,设点2(,65)P n n n -+,(5,0)A ,(0,10)B ,2222(5)(65)AP n n n ∴=-+-+,2222(6510)BP n n n =+-+-,2125AB =,当点A 为直角顶点时,222BP AB AP =+,解得:32n =或5(舍),当点B 为直角顶点时,222AP AB BP =+,解得:13249n +=13249-,而抛物线对称轴为直线3x =,则33322-=,132492491344++-=,132492491344---=,综上:点P 到抛物线对称轴的距离为:32或24914+或24914-.【点评】本题是二次函数综合题,主要考查了一次函数图象上坐标点的特征,待定系数法求二次函数解析式,三角形面积的铅垂高表示法,解一元二次方程,勾股定理,相似三角形的判定与性质等重要知识点,综合性强,难度较大,3.如图,在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于点A ,B ,与y 轴交于点C .且直线6y x =-过点B ,与y 轴交于点D ,点C 与点D 关于x 轴对称,点P 是线段OB 上一动点,过点P 作x 轴的垂线交抛物线于点M ,交直线BD 于点N .(1)求抛物线的函数解析式;(2)当MDB ∆的面积最大时,求点P 的坐标;(3)在(2)的条件下,在y 轴上是否存在点Q ,使得以Q ,M ,N 三点为顶点的三角形是直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由.【分析】(1)由一次函数图象与坐标轴交点B 、D 的坐标,再由对称求得C点坐标,再用待定系数法求抛物线的解析式;(2)设(,0)P m ,则2(,56)M m m m -++,(,6)N m m -,由三角形的面积公式求得MDB ∆的面积关于m 的二次函数,最后根据二次函数的最大值的求法,求得m 的值,进而得P 点的坐标;(3)分三种情况:M 为直角顶点;N 为直角顶点;Q 为直角顶点.分别得出Q 点的坐标.【解答】解:(1)令0y =,得60y x =-=,解得6x =,(6,0)B ∴,令0x =,得66y x =-=-,(0,6)D ∴-,点C 与点D 关于x 轴对称,(0,6)C ∴,把B 、C 点坐标代入2y x bx c =-++中,得36606b c c -++=⎧⎨=⎩,解得,56b c =⎧⎨=⎩,∴抛物线的解析式为:256y x x =-++;(2)设(,0)P m ,则2(,56)M m m m -++,(,6)N m m -,则2412MN m m =-++,MDB ∴∆的面积221312363(2)482MN OB m m m =⋅=-++=--+,30-< ,∴当2m =时,MDB ∆的面积最大,此时,P 点的坐标为(2,0);(3)由(2)知,(2,12)M ,(2,4)N -,当90QMN ∠=︒时,//QM x 轴,则(0,12)Q ;当90MNQ ∠=︒时,//NQ x 轴,则(0,4)Q -;当90MQN ∠=︒时,设(0,)Q n ,则222QM QN MN +=,即2224(12)4(4)(124)n n +-+++=+,解得,415n =±,(0,415)Q ∴+或(0,415)-.综上,存在以Q ,M ,N 三点为顶点的三角形是直角三角形.其Q 点坐标为(0,12)或(0,4)-或(0,415)+或(0,415)-.【点评】本题是二次函数的综合题,主要考查了二次函数的图象与性质,二次函数的最值的应用,待定系数法,直角三角形的性质,三角形的面积计算,分类讨论思想,关键是正确求出函数解析式和分类讨论.4.如图,在平面直角坐标系中,函数223(0)y ax ax a a =-++>的图象交x 轴于点A 、B ,交y 轴于点C ,它的对称轴交x 轴于点E .过点C 作//CD x 轴交抛物线于点D ,连接DE 并延长交y 轴于点F ,交抛物线于点G .直线AF 交CD 于点H ,交抛物线于点K ,连接HE 、GK .(1)点E 的坐标为:(1,0);(2)当HEF ∆是直角三角形时,求a 的值;(3)HE 与GK 有怎样的位置关系?请说明理由.【分析】(1)利用对称轴公式求解即可.(2)连接EC ,分两种情形:当90HEF ∠=︒时,当90HFE ∠=︒,分别求解即可.(3)求出直线HF ,DF 的解析式,利用方程组确定点K ,G 的坐标,再求出直线EH ,GK 的解析式即可判断.【解答】解:(1)对于抛物线223y ax ax a =-++,对称轴212a x a=-=-,(1,0)E ∴,故答案为(1,0).(2)如图,连接EC .对于抛物线223y ax ax a =-++,令0x =,得到3y a =,令0y =,2230ax ax a -++=,解得1x =-或3,(1,0)A ∴-,(3,0)B ,(0,3)C a ,C ,D 关于对称轴对称,(2,3)D a ∴,2CD =,EC DE =,当90HEF ∠=︒时,ED EC = ,ECD EDC ∴∠=∠,90DCF ∠=︒ ,90CFD EDC ∴∠+∠=︒,90ECF ECD ∠+∠=︒,ECF EFC ∴∠=∠,EC EF DE ∴==,//EA DH ,FA AH ∴=,12AE DH ∴=,2AE = ,4DH ∴=,HE DFEF ED ⊥= ,4FH DH ∴==,在Rt CFH ∆中,则有22242(6)a =+,解得3a =或3(不符合题意舍弃),3a ∴=.当90HFE ∠=︒时,OA OE = ,FO AE ⊥,FA FE ∴=,1OF OA OE ∴===,31a ∴=,13a ∴=,综上所述,满足条件的a 的值为3或13.(3)结论://EH GK .理由:由题意(1,0)A -,(0,3)F a -,(2,3)D a ,(2,3)H a -,(1,0)E ,∴直线AF 的解析式33y ax a =--,直线DF 的解析式为33y ax a =-,由23323y ax a y ax ax a =--⎧⎨=-++⎩,解得10x y =-⎧⎨=⎩或621x y a =⎧⎨=-⎩,(6,21)K a ∴-,由23323y ax a y ax ax a =-⎧⎨=-++⎩,解得23x y a =⎧⎨=⎩或312x y a=-⎧⎨=-⎩,(3,12)G a ∴--,∴直线HE 的解析式为y ax a =-+,直线GK 的解析式为15y ax a =--,k 相同,15a a ≠-,//HE GK ∴.【点评】本题属于二次函数综合题,解直角三角形,一次函数的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考压轴题.5.如图,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于(1,0)A ,(4,0)B 两点,与y 轴交于点C ,直线122y x =-+经过B ,C 两点.(1)直接写出二次函数的解析式215222y x x =-+;(2)平移直线BC ,当直线BC 与抛物线有唯一公共点Q 时,求此时点Q 的坐标;(3)过(2)中的点Q 作//QE y 轴,交x 轴于点E .若点M 是抛物线上一个动点,点N 是x 轴上一个动点,是否存在以E ,M ,N 三点为顶点的直角三角形(其中M 为直角顶点)与BOC ∆相似?如果存在,请直接写出满足条件的点M 的个数和其中一个符合条件的点M的坐标;如果不存在,请说明理由.【分析】(1)先求出点C 坐标,利用待定系数法可求解析式;(2)先求出直线BC 平移后的解析式,联立方程组可求解;(3)分两种情况,构造出两三角形相似,得出比例式,进而建立绝对值方程求解即可得出结论.【解答】解:(1) 直线122y x =-+经过B ,C 两点.∴点(0,2)C ,二次函数2(0)y ax bx c a =++≠的图象经过(1,0)A ,(4,0)B ,点(0,2)C ,∴001642a b c a b c c =++⎧⎪=++⎨⎪=⎩,解得:12522a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,∴抛物线解析式为215222y x x =-+,故答案为:215222y x x =-+;(2) 直线BC 解析式为:122y x =-+,∴设平移后的解析式为:122y x m =-++, 平移后直线BC 与抛物线有唯一公共点Q∴215122222x x x m -+=-++,∴△144()02m =-⨯⨯-=,2m ∴=-,∴设平移后的解析式为:12y x =-,联立方程组得:21215222y x y x x ⎧=-⎪⎪⎨⎪=-+⎪⎩,∴21x y =⎧⎨=-⎩,∴点(2,1)Q -;(3)设点M 的坐标为215(,2)22m m m -+, 以E ,M ,N 三点为顶点的直角三角形(其中M 为直角顶点)与BOC ∆相似,∴当MEN OBC ∆∆∽时,MEN OBC ∴∠=∠,过点M 作MH x ⊥轴于H ,90EHM BOC ∴∠=︒=∠,EHM BOC ∴∆∆∽,∴EH OB MH OC=,215|2|22MH m m ∴=-+,|2|EH m =-,4OB = ,2OC =.∴2|2|215|2|22m m m -=-+或12,3m ∴=或2m =或4m =-或1m =-或1m =或12m =,当3m =215222m m -+=,(3M ∴+,1)2+,当3m =21512222m m -+=,(3M ∴,1)2,当2m =+时,2152222m m -+=-,(2M ∴,,当2m =-2152222m m -+=,(2M ∴,2,当4m =-时,21522022m m -+=,(4,20)M ∴-,当1m =-时,2152522m m -+=,(1,5)M ∴-,当1m =时,2152022m m -+=,(1,0)M ∴,当12m =时,21524422m m -+=,(12,44)M ∴,即满足条件的点M 共有8个,其点的坐标为(3+,或(3,或(2+,)2或(2-,2或(4,20)-或(1,5)-或(1,0)或(12,44).【点评】此题是二次函数综合题,主要考查了待定系数法,一元二次方程的解法,相似三角形的判定和性质,解绝对值方程,用方程的思想解决问题是解本题的关键.平行四边形的存在性问题知识导航考虑到求证平行四边形存在,必先了解平行四边形性质:(1)对应边平行且相等;(2)对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中:(1)对边平行且相等可转化为:A B D C AB DC x x x x y y y y -=-⎧⎨-=-⎩,可以理解为点B 移动到点A ,点C 移动到点D,移动路径完全相同.(2)对角线互相平分转化为:2222A CB D AC BD x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,可以理解为AC 的中点也是BD的中点.【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:A B D C A C D B A B D C AC D B x x x x x x x x y y y y y y y y -=-+=+⎧⎧→⎨⎨-=-+=+⎩⎩,2222A CB D AC BD x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩→A C B D A C B D x x x x y y y y +=+⎧⎨+=+⎩.当AC 和BD 为对角线时,结果可简记为:A C B D +=+(各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系中的4个点A 、B 、C 、D 满足“A +C =B +D ”,则四边形ABCD 是否一定为平行四边形?反例如下:之所以存在反例是因为“四边形ABCD 是平行四边形”与“AC 、BD 中点是同一个点”并不是完全等价的转化,故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论:(1)四边形ABCD 是平行四边形:AC 、BD 一定是对角线.(2)以A 、B 、C 、D 四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.方法突破平行四边形存在性问题通常可分为“三定一动”和“两定两动”两大类问题.1.三定一动已知A (1,2)B (5,3)C (3,5),在坐标系内确定点D 使得以A 、B 、C 、D 四个点为顶点的四边形是平行四边形.思路1:利用对角线互相平分,分类讨论:设D 点坐标为(m ,n ),又A (1,2)B (5,3)C (3,5),可得:(1)BC 为对角线时,531352m n +=+⎧⎨+=+⎩,可得()17,6D ;(2)AC 为对角线时,135253m n +=+⎧⎨+=+⎩,解得()21,4D -;(3)AB 为对角线时,153235m n +=+⎧⎨+=+⎩,解得()33,0D .当然,如果对这个计算过程非常熟悉的话,也不用列方程解,直接列算式即可.比如:1=D B C A +-,2=D A C B +-,3D A B C =+-.(此处特指点的横纵坐标相加减)2.两定两动已知A (1,1)、B (3,2),点C 在x 轴上,点D 在y 轴上,且以A 、B 、C 、D 为顶点的四边形是平行四边形,求C 、D 坐标.【分析】设C 点坐标为(m ,0),D 点坐标为(0,n ),又A (1,1)、B (3,2).(1)当AB 为对角线时,130120m n +=+⎧⎨+=+⎩,解得43m n =⎧⎨=⎩,故C (4,0)、D (0,3);(2)当AC 为对角线时,130102m n +=+⎧⎨+=+⎩,解得21m n =⎧⎨=-⎩,故C (2,0)、D (0,-1);(3)当AD 为对角线时,103120m n +=+⎧⎨+=+⎩,解得21m n =-⎧⎨=⎩,故C (-2,0)、D (0,1).【动点综述】“三定一动”的动点和“两定两动”的动点性质并不完全一样,“三定一动”中动点是在平面中,横纵坐标都不确定,需要用两个字母表示,这样的我们姑且称为“全动点”,而有一些动点在坐标轴或者直线或者抛物线上,用一个字母即可表示点坐标,称为“半动点”.从上面例子可以看出,虽然动点数量不同,但本质都是在用两个字母表示出4个点坐标.若把一个字母称为一个“未知量”也可理解为:全动点未知量=半动点未知量×2.找不同图形的存在性最多可以有几个未知量,都是根据图形决定的,像平行四边形,只能有2个未知量.究其原因,在于平行四边形两大性质:(1)对边平行且相等;(2)对角线互相平分.但此两个性质统一成一个等式:A C B D AC BD x x x x y y y y +=+⎧⎨+=+⎩,两个等式,只能允许最多存在两个未知数,即我们刚刚所讲的平行四边形存在性问题最多只能存在2个未知量.由图形性质可知未知量,由未知量可知动点设计,由动点设计可化解问题.专项训练1.已知抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点(0,3)C -,顶点D 的坐标为(1,4)-.(1)求抛物线的解析式.(2)在y 轴上找一点E ,使得EAC ∆为等腰三角形,请直接写出点E 的坐标.(3)点P 是x 轴上的动点,点Q 是抛物线上的动点,是否存在点P 、Q ,使得以点P 、Q 、B 、D 为顶点,BD 为一边的四边形是平行四边形?若存在,请求出点P 、Q坐标;若不存在,请说明理由.2.如图,已知抛物线2y ax =过点9(3,4A -.(1)求抛物线的解析式;(2)已知直线l 过点A ,3(2M ,0)且与抛物线交于另一点B ,与y 轴交于点C ,求证:2MC MA MB =⋅;(3)若点P ,D 分别是抛物线与直线l 上的动点,以OC 为一边且顶点为O ,C ,P ,D 的四边形是平行四边形,求所有符合条件的P 点坐标.3.如图,抛物线2(0)y ax bx c a =++≠的图象经过(1,0)A ,(3,0)B ,(0,6)C 三点.(1)求抛物线的解析式.(2)抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称,直线AN 交抛物线于点D ,直线BE 交AD 于点E ,若直线BE 将ABD ∆的面积分为1:2两部分,求点E 的坐标.(3)P 为抛物线上的一动点,Q 为对称轴上动点,抛物线上是否存在一点P ,使A 、D 、P 、Q 为顶点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,抛物线22(0)y ax bx a =++≠与y 轴交于点C ,与x 轴交于A ,B 两点(点A 在点B 的左侧),且A 点坐标为(,0),直线BC 的解析式为23y x =+.(1)求抛物线的解析式;(2)过点A 作//AD BC ,交抛物线于点D ,点E 为直线BC 上方抛物线上一动点,连接CE ,EB ,BD ,DC .求四边形BECD 面积的最大值及相应点E 的坐标;(3)将抛物线22(0)y ax bx a =++≠个单位,已知点M 为抛物线22(0)y ax bx a =++≠的对称轴上一动点,点N 为平移后的抛物线上一动点.在(2)中,当四边形BECD 的面积最大时,是否存在以A ,E ,M ,N 为顶点的四边形为平行四边形?若存在,直接写出点N 的坐标;若不存在,请说明理由.5.如图,二次函数24y ax bx =++的图象与x 轴交于点(1,0)A -,(4,0)B ,与y 轴交于点C ,抛物线的顶点为D ,其对称轴与线段BC 交于点E ,垂直于x 轴的动直线l 分别交抛物线和线段BC 于点P 和点F ,动直线l 在抛物线的对称轴的右侧(不含对称轴)沿x 轴正方向移动到B 点.(1)求出二次函数24y ax bx =++和BC 所在直线的表达式;(2)在动直线l 移动的过程中,试求使四边形DEFP 为平行四边形的点P 的坐标;(3)连接CP ,CD ,在动直线l 移动的过程中,抛物线上是否存在点P ,使得以点P ,C ,F 为顶点的三角形与DCE ∆相似?如果存在,求出点P 的坐标;如果不存在,请说明理由.6.综合与探究在平面直角坐标系中,抛物线212y x bx c =++经过点(4,0)A -,点M 为抛物线的顶点,点B 在y 轴上,且OA OB =,直线AB 与抛物线在第一象限交于点(2,6)C ,如图①.(1)求抛物线的解析式;(2)直线AB 的函数解析式为,点M 的坐标为,cos ABO ∠=;连接OC ,若过点O 的直线交线段AC 于点P ,将AOC ∆的面积分成1:2的两部分,则点P 的坐标为;(3)在y 轴上找一点Q ,使得AMQ ∆的周长最小.具体作法如图②,作点A 关于y 轴的对称点A ',连接MA '交y 轴于点Q ,连接AM 、AQ ,此时AMQ ∆的周长最小.请求出点Q 的坐标;(4)在坐标平面内是否存在点N ,使以点A 、O 、C 、N 为顶点的四边形是平行四边形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.7.如图,抛物线26y ax bx =+-与x 轴相交于A ,B 两点,与y 轴相交于点C ,2OA =,4OB =,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接AD ,BD ,BC ,CD .(1)求抛物线的函数表达式;(2)若点D 在x 轴的下方,当BCD ∆的面积是92时,求ABD ∆的面积;(3)在(2)的条件下,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点,以BD 为一边的四边形是平行四边形,若存在,求出点N 的坐标;若不存在,请说明理由.8.如图所示,抛物线223y x x =--与x 轴相交于A 、B 两点,与y 轴相交于点C ,点M 为抛物线的顶点.(1)求点C 及顶点M 的坐标.(2)若点N 是第四象限内抛物线上的一个动点,连接BN 、CN ,求BCN ∆面积的最大值及此时点N 的坐标.(3)若点D 是抛物线对称轴上的动点,点G 是抛物线上的动点,是否存在以点B 、C 、D 、G 为顶点的四边形是平行四边形.若存在,求出点G 的坐标;若不存在,试说明理由.(4)直线CM 交x 轴于点E ,若点P 是线段EM 上的一个动点,是否存在以点P 、E 、O 为顶点的三角形与ABC ∆相似.若存在,求出点P 的坐标;若不存在,请说明理由.9.如图所示,拋物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点C ,且点A 的坐标为(2,0)A -,点C 的坐标为(0,6)C ,对称轴为直线1x =.点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<,连接AC ,BC ,DC ,DB .(1)求抛物线的函数表达式;(2)当BCD ∆的面积等于AOC ∆的面积的34时,求m 的值;(3)在(2)的条件下,若点M 是x 轴上一动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.10.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C .(1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积.(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标.(请在图2中探索)平行四边形的存在性问题知识导航考虑到求证平行四边形存在,必先了解平行四边形性质:(1)对应边平行且相等;(2)对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中:(1)对边平行且相等可转化为:A B D C AB DC x x x x y y y y -=-⎧⎨-=-⎩,可以理解为点B 移动到点A ,点C 移动到点D,移动路径完全相同.(2)对角线互相平分转化为:2222A CB D AC BD x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,可以理解为AC 的中点也是BD的中点.【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:A B D C A C D B A B D C AC D B x x x x x x x x y y y y y y y y -=-+=+⎧⎧→⎨⎨-=-+=+⎩⎩,2222A CB D AC B Dx x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩→A C B D A C B D x x x x y y y y +=+⎧⎨+=+⎩.当AC 和BD 为对角线时,结果可简记为:A C B D +=+(各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系中的4个点A 、B 、C 、D 满足“A +C =B +D ”,则四边形ABCD 是否一定为平行四边形?反例如下:之所以存在反例是因为“四边形ABCD 是平行四边形”与“AC 、BD 中点是同一个点”并不是完全等价的转化,故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论:(1)四边形ABCD 是平行四边形:AC 、BD 一定是对角线.(2)以A 、B 、C 、D 四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.方法突破平行四边形存在性问题通常可分为“三定一动”和“两定两动”两大类问题.3.三定一动已知A (1,2)B (5,3)C (3,5),在坐标系内确定点D 使得以A 、B 、C 、D 四个点为顶点的四边形是。
专题06 二次函数中三角形存在性问题(解析版)
挑战2023年中考数学解答题压轴真题汇编专题06 二次函数中三角形存在性问题一.相似三角形的存在性1.(2022•陕西)已知抛物线y=ax2+bx﹣4经过点A(﹣2,0),B(4,0),与y 轴的交点为C.(1)求该抛物线的函数表达式;(2)若点P是该抛物线上一点,且位于其对称轴l的右侧,过点P分别作l,x轴的垂线,垂足分别为M,N,连接MN.若△PMN和△OBC相似,求点P 的坐标.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+bx﹣4得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)如图:∵y=x2﹣x﹣4=(x﹣1)2﹣,∴抛物线y=x2﹣x﹣4的对称轴是直线x=1,在y=x2﹣x﹣4中,令x=0得y=﹣4,∴C(0,﹣4),∴OB=OC=4,∴△BOC是等腰直角三角形,∵△PMN和△OBC相似,∴△PMN是等腰直角三角形,∵PM⊥直线x=1,PN⊥x轴,∴∠MPN=90°,PM=PN,设P(m,m2﹣m﹣4),∴|m﹣1|=|m2﹣m﹣4|,∴m﹣1=m2﹣m﹣4或m﹣1=﹣m2+m+4,解得m=+2或m=﹣+2或m=或m=﹣,∵点P是该抛物线上一点,且位于其对称轴直线x=1的右侧,∴P的坐标为(+2,+1)或(,1﹣).2.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M 点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).3.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y 轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC 相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC 最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),∴c=4,∴抛物线的解析式为y=﹣x2+4;(2)△BCQ是直角三角形.理由如下:将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,∴平移后的抛物线顶点为Q(﹣1,4),令x=0,得y=﹣1+4=3,∴C(0,3),令y=0,得﹣(x+1)2+4=0,解得:x1=1,x2=﹣3,∴B(﹣3,0),A(1,0),如图1,连接BQ,CQ,PQ,∵P(0,4),Q(﹣1,4),∴PQ⊥y轴,PQ=1,∵CP=4﹣3=1,∴PQ=CP,∠CPQ=90°,∴△CPQ是等腰直角三角形,∴∠PCQ=45°,∵OB=OC=3,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠BCO=45°,∴∠BCQ=180°﹣45°﹣45°=90°,∴△BCQ是直角三角形.(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.∵△ABC是锐角三角形,∠ABC=45°,∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,即点T在y轴的右侧,设T(x,0),且x>0,则BT=x+3,∵B(﹣3,0),A(1,0),C(0,3),∴∠ABC=45°,AB=4,BC=3,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+3,由,解得:,,∴M(﹣,),N(,),∴BN=×=,①当△NBT∽△CBA时,则=,∴=,解得:x=,∴T(,0);②当△NBT∽△ABC时,则=,∴=,解得:x=,∴T(,0);综上所述,点T的坐标T(,0)或(,0).(4)抛物线y=﹣x2+4的顶点为P(0,4),∵直线BC的解析式为y=x+3,∴直线BC与y轴的夹角为45°,当抛物线沿着垂直直线BC的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,设平移后的抛物线的顶点为P′(t,4﹣t),则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,由﹣(x﹣t)2+4﹣t=x+3,整理得:x2+(1﹣2t)x+t2+t﹣1=0,∵平移后的抛物线与直线BC最多只有一个公共点,∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,解得:t=,∴平移后的抛物线的顶点为P′(,),平移的最短距离为.二.直角三角形的存在性4.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D(t,t2+t﹣4),连接OD.令y =0,则x 2+x ﹣4=0,解得x =﹣4或2,∴A (﹣4,0),C (2,0),∵B (0,﹣4),∴OA =OB =4,∵S △ABD =S △AOD +S △OBD ﹣S △AOB =×4×(﹣﹣t +4)+×4×(﹣t )﹣×4×4=﹣t 2﹣4t =﹣(t +2)2+4,∵﹣1<0,∴t =﹣2时,△ABD 的面积最大,最大值为4,此时D (﹣2,﹣4);(3)如图2中,设抛物线的对称轴交x 轴于点N ,过点B 作BM ⊥抛物线的对称轴于点M .则N (﹣1.0).M (﹣1,﹣4);∵OA =OB =4,∠AOB =90°,∴∠OAB =∠OBA =45°,当∠P 1AB =90°时,△ANP 1是等腰直角三角形,∴AN =NP 1=3,∴P 1(﹣1,3),当∠ABP 2=90°时,△BMP 2是等腰直角三角形,可得P 2(﹣1,﹣5),当∠APB =90°时,设P (﹣1,n ),设AB 的中点为J ,连接PJ ,则J (﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).5.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC 于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【解答】解:(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=90°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).三.等腰三角形的存在性6.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O 为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,把A(﹣1,0)、B(0,3)、C(3,0)代入得:,解得,∴抛物线的表达式为:y=﹣x2+2x+3;(2)证明:∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;(3)解:∵抛物线交正方形OBDC的边BD于点E,∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,∴E(2,3),①如图,当M在线段BD的延长线上时,∠BDF为锐角,∴∠FDM为钝角,∵△MDF为等腰三角形,∴DF=DM,∴∠M=∠DFM,∴∠BDF=∠M+∠DFM=2∠M,∵BM∥OC,∴∠M=∠MOC,由(2)得∠BOF=∠BDF,∴∠BDF+∠MOC=3∠M=90°,∴∠M=30°,在Rt△BOM中,BM=,∴ME=BM﹣BE=3﹣2;②如图,当M在线段BD上时,∠DMF为钝角,∵△MDF为等腰三角形,∴MF=DM,∴∠BDF=∠MFD,∴∠BMO=∠BDF+∠MFD=2∠BDF,由(2)得∠BOF=∠BDF,∴∠BMO=2∠BOM,∴∠BOM+∠BMO=3∠BOM=90°,∴∠BOM=30°,在Rt△BOM中,BM=,∴ME=BE﹣BM=2﹣,综上所述,ME的值为:3﹣2或2﹣.7.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m 的值;若不存在,请说明理由.【解答】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);(3)存在点P,使得CE=FD,理由如下:过C作CH⊥PD于H,如图:设P(m,﹣m2+m+4),由A(﹣2,0),C(0,4)可得直线AC解析式为y=2x+4,根据PF∥AC,设直线PF解析式为y=2x+b,将P(m,﹣m2+m+4)代入得:﹣m2+m+4=2m+b,∴b=﹣m2﹣m+4,∴直线PF解析式为y=2x﹣m2﹣m+4,令x=0得y=﹣m2﹣m+4,∴F(0,﹣m2﹣m+4),∴OF=|﹣m2﹣m+4|,同(2)可得四边形CODH是矩形,∴CH=OD,∵CE=FD,∴Rt△CHE≌Rt△DOF(HL),∴∠HCE=∠FDO,∵∠HCE=∠CBO,∴∠FDO=∠CBO,∴tan∠FDO=tan∠CBO,∴=,即=,∴﹣m2﹣m+4=m或﹣m2﹣m+4=﹣m,解得m=2﹣2或m=﹣2﹣2或m=4或m=﹣4,∵P在第一象限,∴m=2﹣2或m=4.8.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3;(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小,∵C(0,﹣3),B(3,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,∴Q(1,﹣2);(3)当∠BPM=90°时,PM=PB,∴M点与A点重合,∴M(﹣1,0);当∠PBM=90°时,PB=BM,如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH 交于H,过点M作MG⊥HG交于G,∵∠PBM=90°,∴∠PBH+∠MBG=90°,∵∠PBH+∠BPH=90°,∴∠MBG=∠BPH,∵BP=BM,∴△BPH≌△MBG(AAS),∴BH=MG,PH=BG=2,设P(1,t),则M(3﹣t,﹣2),∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴M(1﹣,﹣2)或(1+,﹣2),∵M点在对称轴的左侧,∴M点坐标为(1﹣,﹣2);如图2,当P点在M点下方时,同理可得M(3+t,2),∴2=(3+t)2﹣2(3+t)﹣3,解得t=﹣2+(舍)或t=﹣2﹣,∴M(1﹣,2);综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).9.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE 的解析式为:y =x ,∴G (m ,m ),∴PG =m ﹣(m 2﹣4m +3)=﹣m 2+5m ﹣3,∴S △OPE =S △OPG +S △EPG=PG •AE=×3×(﹣m 2+5m ﹣3)=﹣(m 2﹣5m +3)=﹣(m ﹣)2+,∵﹣<0,∴当m =时,△OPE 面积最大,此时,P 点坐标为(,﹣);(3)由y =x 2﹣4x +3=(x ﹣2)2﹣1,得抛物线l 的对称轴为直线x =2,顶点为(2,﹣1),抛物线L 向上平移h 个单位长度后顶点为F (2,﹣1+h ).设直线x =2交OE 于点M ,交AE 于点N ,则E (3,3),∵直线OE 的解析式为:y =x ,∴M (2,2),∵点F 在△OAE 内(包括△OAE 的边界),∴2≤﹣1+h ≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,∴P的坐标为(,);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m1=或m2=(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=或(舍),P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).方法二:作直线DE:y=x﹣2,E(1,﹣1)是D点(2,0)绕O点顺时针旋转45°并且OD缩小倍得到,易知直线DE即为对称轴上的点绕O点顺时针旋转45°,且到O点距离缩小倍的轨迹,联立直线DE和抛物线解析式得x2﹣4x+3=x﹣2,解得x1=,x2=,同理可得x3=或x4=;综上所述,点P的坐标是:(,)或(,)或(,)或(,).10.(2023•澄城县一模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,3),直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在对称轴l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)把点A(﹣1,0)、点C(0,3)分别代入y=﹣x2+bx+c,得.解得.故该抛物线解析式为:y=﹣x2+2x+3;(2)由(1)知,该抛物线解析式为:y=﹣x2+2x+3.则该抛物线的对称轴为直线x=﹣=1.故设M(1,m).∵A(﹣1,0)、点C(0,3),∴AC2=10,AM2=4+m2,CM2=1+(m﹣3)2.①若AC=AM时,10=4+m2,解得m=±.∴点M的坐标为(1,)或(1,﹣);②若AC=CM时,10=1+(m﹣3)2,解得m=0或m=6,∴点M的坐标为(1,0)或(1,6).当点M的坐标为(1,6)时,点A、C、M共线,∴点M的坐标为(1,0);③当AM=CM时,4+m2=1+(m﹣3)2,解得m=1,∴点M的坐标为(1,1).综上所述,符合条件的点M的坐标为(1,)或(1,﹣)或(1,0)或(1,1).11.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.【解答】解:(1)将点(﹣1,0),B(4,0)代入y=ax2+bx+2,∴a=﹣,b=,∴y=﹣x2+x+2;(2)∵BM=5﹣2t,∴M(2t﹣1,0),设P(2t﹣1,m),∵PC2=(2t﹣1)2+(m﹣2)2,PB2=(2t﹣5)2+m2,∵PB=PC,∴(2t﹣1)2+(m﹣2)2=(2t﹣5)2+m2,∴m=4t﹣5,∴P(2t﹣1,4t﹣5),∵PC⊥PB,∴×=﹣1,∴t=1或t=2,∴M(1,0)或M(3,0),∴D(1,3)或D(3,2).12.(2023•东洲区模拟)抛物线y =ax 2+bx +3经过A (﹣1,0),B (3,0)两点,与y 轴正半轴交于点C .(1)求此抛物线解析式;(2)如图①,连接BC ,点P 为抛物线第一象限上一点,设点P 的横坐标为m ,△PBC 的面积为S ,求S 与m 的函数关系式,并求S 最大时P 点坐标;(3)如图②,连接AC ,在抛物线的对称轴上是否存在点M ,使△MAC 为等腰三角形?若存在,请直接写出符合条件的点M 的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y =ax 2+bx +3经过A (﹣1,0),B (3,0)两点,∴,解得:,∴抛物线解析式为y =﹣x 2+2x +3;(2)点P 作PF ⊥x 轴于点F ,交BC 于点E ,设BC 直线解析式为:y =kx +b ,∵B (3,0),C (0,3),∴,解得,∴y =﹣x +3,由题意可知P (m ,﹣m 2+2m +3),E (m ,﹣m +3),S =S △PBE +S △PCE ,S=PE•OB=(﹣m2+2m+3+m﹣3)×3,,∵,∴当时,S有最大值,此时P点坐标为;(3)存在,M 1(1,0),,,M4(1,1),①当AC=AM时,如图,设对称轴l与AB交于点E,则,∵AM2=AE2+EM2,∴,解得:,∴M点的坐标为或,②当AC=MC时,则OC为AM的垂直平分线.因此M与E重合,因此,M点的坐标为(1,0),③当AM=CM时,如图,设M点的坐标为(1,n),则AM2=22+n2=4+n2,CM2=12+(3﹣n)2,∴4+n2=12+(3﹣n)2,解得:n=1,∴M点的坐标为(1,1),(1,0),,综上可知,潢足条件的M点共四个,其坐标为M,M 4(1,1).13.(2023•三亚一模)如图,抛物线y =ax 2+3x +c (a ≠0)与x 轴交于点A (﹣2,0)和点B ,与y 轴交于点C (0,8),顶点为D ,连接AC ,CD ,DB ,直线BC 与抛物线的对称轴l 交于点E .(1)求抛物线的解析式和直线BC 的解析式;(2)求四边形ABDC 的面积;(3)P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =S △ABC 时,求点P 的坐标;(4)在抛物线的对称轴l 上是否存在点M ,使得△BEM 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y =ax 2+3x +c (a ≠0)过点A (﹣2,0)和C (0,8),∴,解得,∴抛物线的解析式为y =﹣x 2+3x +8.令y =0,得.解得x 1=﹣2,x 2=8.∴点B 的坐标为(8,0).设直线BC 的解析式为y =kx +b .把点B (8,0),C (0,8)分别代入y =kx +b ,得,解得,∴直线BC 的解析式为y =﹣x +8.(2)如图1,设抛物线的对称轴l 与x 轴交于点H .∵抛物线的解析式为,∴顶点D 的坐标为.∴S 四边形ABDC =S △AOC +S 梯形OCDH +S △BDH ===70.(3)∵.∴.如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.设点.∵点F在直线BC上,∴F(t,﹣t+8).∴.∴.∴.解得t1=2,t2=6.∴点P的坐标为(2,12)或P(6,8).(4)存在.∵△BEM为等腰三角形,∴BM=EM或BE=BM或BE=EM,设M(3,m),∵B(8,0),E(3,5),∴BE==5,EM=|m﹣5|,BM==,当BM=EM时,=|m﹣5|,∴m2+25=(m﹣5)2,解得:m=0,∴M(3,0);当BE=BM时,5=,∴m2+25=50,解得:m=﹣5或m=5(舍去),∴M(3,﹣5);当BE=EM时,5=|m﹣5|,解得:m=5+5或m=5﹣5,∴M(3,5+5)或(3,5﹣5),综上所述,点M的坐标为(3,0)或(3,﹣5)或(3,5+5)或(3,5﹣5).14.(2023•南海区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a>0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC 于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0).。
中考数学 二次函数存在性问题 及参考答案
中考数学二次函数存在性问题及参考答案中考数学二次函数存在性问题及参考答案一、二次函数中相似三角形的存在性问题1.如图,把抛物线 $y=x^2$ 向左平移1个单位,再向下平移4个单位,得到抛物线 $y=(x-h)^2+k$。
所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D。
1)写出h、k的值;2)判断△ACD的形状,并说明理由;3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由。
2.如图,已知抛物线经过A($-2,0$),B($-3,3$)及原点O,顶点为C。
1)求抛物线的解析式;2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;3)P是抛物线上的第一象限内的动点,过点P作PM⊥x 轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由。
二、二次函数中面积的存在性问题3.如图,抛物线 $y=ax^2+bx$ ($a>0$)与双曲线$y=\frac{k}{x}$ 相交于点A,B。
已知点B的坐标为($-2,-2$),点A在第一象限内,且 $\tan\angle AOX=4$。
过点A作直线AC∥x轴,交抛物线于另一点C。
1)求双曲线和抛物线的解析式;2)计算△ABC的面积;3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积。
若存在,请写出点D的坐标;若不存在,请说明理由。
4.如图,抛物线 $y=ax^2+c$ ($a>0$)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A($-2,0$),B($-1,-3$)。
1)求抛物线的解析式;2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;3)在第(2)问的结论下,抛物线上的点P使$\triangle PAD=4\triangle ABM$ 成立,求点P的坐标。
二次函数背景下的三角形相似(全等) (解析版)
备战2020年中考数学压轴题之二次函数专题07 二次函数背景下的三角形相似(全等)【方法综述】三角形全等是三角形相似的特殊情况。
三角形的全等和相似是综合题中的常见要素,解答时注意应用全等三角形和相似的判定方法。
另外,注意题目中“≅”与全等表述、“~”和相似表述的区别。
全等和相似的符号,标志着三角形全等(相似)的对应点的一一对应关系。
解答时,对于确定的对应边角可以直接利用于解题。
而全等、相似的语言表述,标志着对应点之间的组合关系,解答时,要进行对应边的分类讨论。
【典例示范】类型一确定的全等三角形条件的判定应用例1:如图,在平面直角坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D 的坐标分别为(-2,0),(6,-8).(1)求抛物线的解析式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE.若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1) y=12x2-3x-8;(2)点F的坐标为(3+17,-4)或(3-17,-4).【思路引导】(1)根据待定系数法求出抛物线解析式即可求出点B坐标,求出直线OD解析式即可解决点E 坐标.(2)抛物线上存在点F使得△FOE≌△FCE,此时点F纵坐标为-4,令y=-4即可解决问题.【解析】(1)∵抛物线y=ax2+bx-8经过点A(-2,0),D(6,-8),∴4280 {36688a ba b--+--==解得1 {23 ab==∴抛物线的函数表达式为y=12x2−3x−8;∵y=12x2−3x−8=12(x−3)2−252,∴抛物线的对称轴为直线x=3.又抛物线与x轴交于A,B两点,点A的坐标为(-2,0).∴点B的坐标为(8,0),设直线L的函数表达式为y=kx.∵点D(6,-8)在直线L上,∴6k=-8,解得k=-43,∴直线L的函数表达式为y=-43 x,∵点E为直线L和抛物线对称轴的交点,∴点E的横坐标为3,纵坐标为-43×3=-4,∴点E的坐标为(3,-4);(2)抛物线上存在点F,使△FOE≌△FCE.∵OE=CE=5,∴FO=FC,∴点F在OC的垂直平分线上,此时点F的纵坐标为-4,∴12x2-3x-8=-4,解得,∴点F的坐标为(3-4)或(-4).【方法总结】本题考查二次函数综合题、一次函数的性质、待定系数法,等腰三角形的判定和性质等知识,解题的关键是学会分类讨论,不能漏解,学会用方程的思想思考问题,属于中考压轴题针对训练1.综合与探究:已知二次函数y=﹣12x2+32x+2的图象与x轴交于A,B两点(点B在点A的左侧),与y轴交于点C.(1)求点A ,B ,C 的坐标;(2)求证:△ABC 为直角三角形;(3)如图,动点E ,F 同时从点A 出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F AC 方向运动.当点F 停止运动时,点E 随之停止运动.设运动时间为t 秒,连结EF ,将△AEF 沿EF 翻折,使点A 落在点D 处,得到△DEF .当点F 在AC 上时,是否存在某一时刻t ,使得△DCO ≌△BCO ?(点D 不与点B 重合)若存在,求出t 的值;若不存在,请说明理由.【答案】(1)点A 的坐标为(4,0),点B 的坐标为(﹣1,0),点C 的坐标为(0,2);(2)证明见解析;(3)t =34. 【解析】 (1)解:当y =0时,﹣21322x +x +2=0, 解得:x 1=1,x 2=4,∴点A 的坐标为(4,0),点B 的坐标为(﹣1,0),当x =0时,y =2,∴点C 的坐标为(0,2);(2)证明:∵A (4,0),B (﹣1,0),C (0,2),∴OA =4,OB =1,OC =2.∴AB =5,AC ===BC =,∴AC 2+BC 2=25=AB 2,∴△ABC 为直角三角形;(3)解:由(2)可知△ABC 为直角三角形.且∠ACB =90°,∵AE =2t ,AF ,∴AF AB AE AC ==, 又∵∠EAF =∠CAB ,∴△AEF ∽△ACB ,∴∠AEF =∠ACB =90°,∴△AEF 沿EF 翻折后,点A 落在x 轴上点 D 处,由翻折知,DE =AE ,∴AD =2AE =4t ,当△DCO ≌△BCO 时,BO =OD ,∵OD =4﹣4t ,BO =1,∴4﹣4t =1,t =34, 即:当t =34秒时,△DCO ≌△BCO .2.如图,已知抛物线y =√32x 2+bx +6√3与x 轴交于A 、B 两点,其中点A 的坐标为(2,0),抛物线的顶点为P .(1)求b 的值,并求出点P 、B 的坐标;(2)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,请直接写出点M 的坐标;如果不存在,试说明理由.【答案】(1)(6,0)(2)存在,(163,−10√39) 【解析】(1)∵抛物线y =√32x 2+bx +6√3经过A(2,0), ∴√32×22+2b +6√3=0,解得:b =−4√3,∴抛物线的表达式为y =√32x 2−4√3x +6√3. ∵y =√32x 2+bx +6√3=√32(x −4)2−2√3, ∴点P 的坐标为(4,−2√3).令y =0得:√32x 2+bx +6√3=0,解得x =2或x =6,∴B 的坐标为(6,0).(2)存在,点M(163,−10√39). 如图:过点P 作PC ⊥x 轴,垂足为C ,连接AP 、BP ,作∠PAB 的平分线,交PB 与点N ,交抛物线与点M ,连接PM 、BM .∵A(2,0),B(6,0),P(4,−2√3),∴AB =4,AP =√(4−2)2+(−2√3)2=4,BP =√(4−6)2+(−2√3)2=4,∴△ABP 是等边三角形,∵∠APB =∠ABP ,AP =AB .∴AM ⊥PB ,PN =BN ,∠PAM =∠BAM .在△AMP 和△AMB 中,{AP =AB∠PAM =∠BAM AM =AM,∴△AMP ≌△AMB .∴存在这样的点M ,使得△AMP ≌△AMB .∵B(6,0),P(4,−2√3),点N 是PB 的中点,∴N(5,−√3).设直线AM 的解析式为y =kx +b ,将点A 和点N 的坐标代入得:{2k +b =05k +b =−√3 ,解得:{k =−√33b =2√33, ∴直线AM 的解析式为y =−√33x +2√33.将y =−√33x +2√33代入抛物线的解析式得:√32x 2−4√3x +6√3=−√33x +2√33,解得:x =163或x =2(舍去), 当x =163时,y =−10√39, ∴点M 的坐标为(163,−10√39). 类型二 全等三角形的存在性探究例2.如图,抛物线y=ax 2+bx+c 与x 轴的交点分别为A (﹣6,0)和点B (4,0),与y 轴的交点为C (0,3).(1)求抛物线的解析式;(2)点P 是线段OA 上一动点(不与点A 重合),过P 作平行于y 轴的直线与AC 交于点Q ,点D 、M 在线段AB 上,点N 在线段AC 上.①是否同时存在点D 和点P ,使得△APQ 和△CDO 全等,若存在,求点D 的坐标,若不存在,请说明理由; ②若∠DCB=∠CDB ,CD 是MN 的垂直平分线,求点M 的坐标.【答案】(1)y=﹣18x 2﹣14x+3;(2)①点D 坐标为(﹣32,0);②点M (32,0). 【分析】(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ 和△CDO 全等②由已知求点D 坐标,证明DN ∥BC ,从而得到DN 为中线,问题可解【解析】(1)将点(-6,0),C (0,3),B (4,0)代入y=ax 2+bx+c ,得{36a −6b +c =016a +4b +c =0c =0,解得:{a =−18b =−14c =3 , ∴抛物线解析式为:y=-18x 2-14x+3;(2)①存在点D,使得△APQ和△CDO全等,当D在线段OA上,∠QAP=∠DCO,AP=OC=3时,△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,OC OA =ODOC,∴36=OD3,∴OD=32,∴点D坐标为(-32,0).由对称性,当点D坐标为(32,0)时,由点B坐标为(4,0),此时点D(32,0)在线段OB上满足条件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴ANNC =ADDB=1,则点N为AC中点.∴DN 时△ABC 的中位线,∵DN=DM=12BC=52, ∴OM=DM -OD=32∴点M (32,0)【点评】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合 针对训练1.如图,在平面直角坐标系中,以点M (2,0)为圆心的⊙M 与y 轴相切于原点O ,过点B (﹣2,0)作⊙M 的切线,切点为C ,抛物线y =−√33x 2+bx +c 经过点B 和点M .(1)求这条抛物线解析式;(2)求点C 的坐标,并判断点C 是否在(1)中抛物线上;(3)动点P 从原点O 出发,沿y 轴负半轴以每秒1个单位长的速度向下运动,当运动t 秒时到达点Q 处.此时△BOQ 与△MCB 全等,求t 的值.【答案】(1)y =﹣√33x 2+4√33;(2)点C 在(1)的抛物线上;(3)t =2√3.【解析】(1)将点M (2,0)、B (﹣2,0)代入 y =−√33x 2+bx +c 中,得: {−4√33+2b +c =0−4√33−2b +c =0解得:{b =0c =4√33∴抛物线的解析式:y =−√33x 2+4√33. (2)连接MC ,则MC ⊥BC ;过点C 作CD ⊥x 轴于D ,如图,在Rt △BCM 中,CD ⊥BM ,CM =2,BM =4,则:DM =CM 2BM =224=1,CD =√CM 2−DM 2=√22−1=√3,OD =OM ﹣DM =1,∴C (1,√3).当x =1时,y =−√33x 2+4√33=√3,所以点C 在(1)的抛物线上.(3)△BCM 和△BOQ 中,OB =CM =2,∠BOQ =∠BCM =90°,若两三角形全等,则:OQ =BC =√BM 2−CM 2=√42−22=2√3,∴当t =2√3时,△MCB 和△BOQ 全等.2.(广西田阳县实验中学2019届九年级中考一)如图所示,抛物线y =−(x −√3m)2(m >0)的顶点为A ,直线l:y =√33x −m 与y 轴的交点为点B.(1)求出抛物线的对称轴及顶点A 的坐标(用含m 的代数式表示);(2)证明点A 在直线l 上,并求∠OAB 的度数;(3)动点Q 在抛物线对称轴上,问:抛物线上是否存在点P ,使以点P 、Q 、A 为顶点的三角形与△OAB 全等?若存在,求出m 的值,并写出所有符合上述条件的点P 的坐标;若不存在,请说明理由.【答案】(1)抛物线的对称轴为直线x =√3m ,顶点A 的坐标为(√3m ,0);(2)∠OAB=30°;(3)存在,①m =13时, P1(0,-13),P 2(23√3,-13);②m =√3时,P 3(3-√3,-3),P 4(3+√3,-3);③m =2时, P 5(√3,-3),P 6(√33,-3);④m =23时, P 7(√33,-13),P 8(√3,-13).【解析】(1)对称轴:x=√3m ;顶点:A (√3m ,0).(2)将x=√3m 代入函数y=√33x -m ,得y=√33×√3m -m=0∴点A (√3m ,0)在直线l 上.当x=0时,y=-m ,∴B (0,-m )tan ∠OAB=√3m =√33, ∴∠OAB=30度.(3)以点P 、Q 、A 为顶点的三角形与△OAB 全等共有以下四种情况: ①当∠AQP=90°,PQ=√3m ,AQ=m 时,如图1,此时点P 在y 轴上,与点B 重合,其坐标为(0,-m ),代入抛物线y=-(x -√3m )2得-m=-3m 2,∵m >0,∴m=13 这时有P 1(0,-13) 其关于对称轴的对称点P 2(2√33,- 13)也满足条件. ②当∠AQP=90°,PQ=m ,AQ=√3m 时 点P 坐标为(√3m -m ,-√3m ),代入抛物线y=-(x -√3m )2得√3m=m 2,∵m >0, ∴m=√3这时有P 3(3-√3,-3)还有关于对称轴的对称点P 4(3+√3,-3). ③当∠APQ=90°,AP=√3m ,PQ=m 时点P 坐标为(√32m ,−32m ),代入抛物线y=-(x -√3m )2得32m=34m 2, ∵m >0, ∴m=2这时有P 5(√3,-3)还有关于对称轴的对称点P 6(3√3,-3).④当∠APQ=90°,AP=m ,PQ=√3m 时 点P 坐标为(√32m ,−12m ), 代入抛物线y=-(x -√3m )2 得12m=34m 2, ∵m >0, ∴m=23这时有P 7(√33,-13)还有关于对称轴对称的点P 8(√3,-13). 所以当m=13时,有点P 1(0,-13),P 2(2√33,-13);当m=√3时,有点P 3(3-√3,-3),P 4(3+√3,-3); 当m=2时,有点P 5(√3,-3),P 6(3√3,-3); 当m=23时,有点P 7(√33,-13),P 8(√3,-13).3.如图1,抛物线y 1=ax 2﹣12x+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,34),抛物线y 1的顶点为G ,GM ⊥x 轴于点M .将抛物线y 1平移后得到顶点为B 且对称轴为直线l 的抛物线y 2.(1)求抛物线y 2的解析式;(2)如图2,在直线l 上是否存在点T ,使△TAC 是等腰三角形?若存在,请求出所有点T 的坐标;若不存在,请说明理由;(3)点P 为抛物线y 1上一动点,过点P 作y 轴的平行线交抛物线y 2于点Q ,点Q 关于直线l 的对称点为R ,若以P ,Q ,R 为顶点的三角形与△AMG 全等,求直线PR 的解析式. 【答案】(1)y 2=-14x 2+12x -14;(2)存在;(3)y=﹣12x+34或y=﹣12x −14.【解析】(1)由已知,c=34,将B (1,0)代入,得:a ﹣12+34=0, 解得a=﹣14,抛物线解析式为y 1=14x 2-12 x+34,∵抛物线y 1平移后得到y 2,且顶点为B (1,0), ∴y 2=﹣14(x ﹣1)2,即y 2=-14x 2+12 x -14; (2)存在,如图1:抛物线y 2的对称轴l 为x=1,设T (1,t ), 已知A (﹣3,0),C (0,34), 过点T 作TE ⊥y 轴于E ,则 TC 2=TE 2+CE 2=12+(34)2=t 2﹣32t+2516,TA 2=TB 2+AB 2=(1+3)2+t 2=t 2+16, AC 2=15316,当TC=AC 时,t 2﹣32t+2516=15316,解得:t 1=3+√1374,t 2=3−√1374;当TA=AC 时,t 2+16=15316,无解; 当TA=TC 时,t 2﹣32t+2516=t 2+16, 解得t 3=﹣778;当点T 坐标分别为(1,3+√1374),(1,3−√1374),(1,﹣778)时,△TAC 为等腰三角形;(3)如图2:设P (m ,−14m 2−12m +34),则Q (m ,−14m 2+12m −14), ∵Q 、R 关于x=1对称∴R (2﹣m ,−14m 2+12m −14), ①当点P 在直线l 左侧时, PQ=1﹣m ,QR=2﹣2m , ∵△PQR 与△AMG 全等,∴当PQ=GM 且QR=AM 时,m=0, ∴P (0,34),即点P 、C 重合, ∴R (2,﹣14),由此求直线PR 解析式为y=﹣12x+34,当PQ=AM 且QR=GM 时,无解; ②当点P 在直线l 右侧时, 同理:PQ=m ﹣1,QR=2m ﹣2, 则P (2,﹣54),R (0,﹣14), PQ 解析式为:y=﹣12x −14;∴PR 解析式为:y=﹣12x+34或y=﹣12x −14.类型三 确定的相似三角形条件的判定应用例3:如图,已知二次函数22y x x m =-+的图象与x 轴交于点A 、B ,与y 轴交于点C ,直线AC 交二次函数图象的对称轴于点D ,若点C 为AD 的中点.(1)求m 的值;(2)若二次函数图象上有一点Q ,使得tan 3ABQ ∠=,求点Q 的坐标;(3)对于(2)中的Q 点,在二次函数图象上是否存在点P ,使得QBP ∆∽COA ∆?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)3m =-;(2)()4,21Q -或()2,3Q -;(3)不存在,理由见解析. 【思路引导】(1)设对称轴与x 轴交于点E ,如图1,易求出抛物线的对称轴,可得OE 的长,然后根据平行线分线段成比例定理可得OA 的长,进而可得点A 的坐标,再把点A 的坐标代入抛物线解析式即可求出m 的值; (2)设点Q 的横坐标为n ,当点Q 在x 轴上方时,过点Q 作QH ⊥x 轴于点H ,利用tan 3ABQ ∠=可得关于n 的方程,解方程即可求出n 的值,进而可得点Q 坐标;当点Q 在x 轴下方时,注意到tan 3BAC ∠=,所以点Q 与点C 关于直线1x =对称,由此可得点Q 坐标;(3)当点Q 为x 轴上方的点时,若存在点P ,可先求出直线BQ 的解析式,由BP ⊥BQ 可求得直线BP 的解析式,然后联立直线BP 和抛物线的解析式即可求出点P 的坐标,再计算此时两个三角形的两组对应边是否成比例即可判断点P 是否满足条件;当点Q 取另外一种情况的坐标时,再按照同样的方法计算判断即可. 【解析】解:(1)设抛物线的对称轴与x 轴交于点E ,如图1,∴y 轴//ED ,∴::1AC CD AO OE ==, ∵抛物线的对称轴是直线212x -=-=,∴OE =1,∴1AO OE ==,∴()1,0A - ∴将点()1,0A -代入函数表达式得:120m ++=,∴3m =-;(2)设()2,23Q n n n --,①点Q 在x 轴上方时,0n <,如图2,过点Q 作QH ⊥x 轴于点H ,∵tan 3ABQ ∠=,∴22333n n n--=-,解得:4n =-或3n =(舍),∴()4,21Q -;②点Q 在x 轴下方时,∵OA =1,OC =3,∴tan 3BAC ∠=,∵tan 3ABQ ∠=,∴点Q 与点C 关于直线1x =对称,∴()2,3Q -;(3)①当点Q 为()4,21-时,若存在点P ,使QBP ∆∽COA ∆,则∠PBQ =∠COA =90°, 由B (3,0)、Q ()4,21-可得,直线BQ 的解析式为:39y x =-+,所以直线PB 的解析式为:113y x =-,联立方程组:211323y x y x x ⎧=-⎪⎨⎪=--⎩,解得:1130x y =⎧⎨=⎩,2223119x y ⎧=-⎪⎪⎨⎪=-⎪⎩,∴211,39P ⎛⎫-- ⎪⎝⎭, ∵:1:3OA OC =,:1:3BP BQ =≠, ∴::BP BQ OA OC ≠,∴P 不存在;②当点Q 为()2,3-时,如图4,由B (3,0)、Q ()2,3-可得,直线BQ 的解析式为:39y x =-,所以直线PB 的解析式为:113y x =-+, 联立方程组:211323y x y x x ⎧=-+⎪⎨⎪=--⎩,解得:1130x y =⎧⎨=⎩,2243139x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴413,39P ⎛⎫- ⎪⎝⎭,∵:1:3OA OC =,:1:3BP BQ =≠, ∴::BP BQ OA OC ≠,∴P 不存在.综上所述,不存在满足条件的点P ,使QBP ∆∽COA ∆. 【方法总结】本题考查了平行线分线段成比例定理、二次函数图象上点的坐标特征、一元二次方程的解法、相似三角形的判定和性质、锐角三角函数和两个函数的交点等知识,综合性强、具有相当的难度,熟练掌握上述知识、灵活应用分类和数形结合的数学思想是解题的关键.针对训练1.如果一条抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点,那么以抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a ,b ,c ]称为“抛物线系数”. (1)任意抛物线都有“抛物线三角形”是______(填“真”或“假”)命题;(2)若一条抛物线系数为[1,0,-2],则其“抛物线三角形”的面积为________;(3)若一条抛物线系数为[-1,2b ,0],其“抛物线三角形”是个直角三角形,求该抛物线的解析式; (4)在(3)的前提下,该抛物线的顶点为A ,与x 轴交于O ,B 两点,在抛物线上是否存在一点P ,过P 作PQ ⊥x 轴于点Q ,使得△BPQ ∽△OAB ,如果存在,求出P 点坐标,如果不存在,请说明理由. 【答案】(1)假;(2)2√2;(3)y =-x 2+2x 或y =-x 2-2x ;(4)P (1,1)或P (-1,-3)或P (1,-3)或(-1,1).【解析】(1)当△>0时,抛物线与x 轴有两个交点,此时抛物线才有“抛物线三角形”,故此命题为假命题; (2)由题意得:y =x 2−2,令y =0,得:x =±√2,∴ S =12×2√2×2=2√2; (3)依题意:y =-x 2+2bx ,它与x 轴交于点(0,0)和(2b ,0); 当抛物线三角形是直角三角形时,根据对称性可知它一定是等腰直角三角形.∵y=-x2+2bx=−(x−b)2+b2,∴顶点为(b,b2),由直角三角形斜边上的中线等于斜边的一半得到:b2=12×|2b|,∴b2=|b|,解得:b=0(舍去)或b=±1,∴y=-x2+2x 或y=-x2-2x.(4)①当抛物线为y=-x2+2x 时.∵△AOB为等腰直角三角形,且△BPQ∽△OAB,∴△BPQ为等腰直角三角形,设P(a,-a2+2a),∴Q((a,0),则|-a2+2a|=|2-a|,即|a(a−2)|=|a−2|.∵a-2≠0,∴|a|=1,∴a=±1,∴P(1,1)或(-1,-3).②当抛物线为y=-x2-2x 时.∵△AOB为等腰直角三角形,且△BPQ∽△OAB,∴△BPQ为等腰直角三角形,设P(a,-a2-2a),∴Q((a,0),则|-a2-2a|=|2+a|,即|a(a+2)|=|a+2|.∵a+2≠0,∴|a|=1,∴a=±1,∴P(1,-3,)或(-1,1).综上所述:P(1,1)或P(-1,-3)或P(1,-3,)或(-1,1).2.如图1,一次函数y=﹣x+3的图象交x轴于点A,交y轴于点D,抛物线y=ax2+bx+c(a≠0)的顶点为C,其图象过A、D两点,并与x轴交于另一个点B(B点在A点左侧),若ABAD =√23;(1)求此抛物线的解析式;(2)连结AC、BD,问在x轴上是否存在一个动点Q,使A、C、Q三点构成的三角形与△ABD相似.如果存在,求出Q点坐标;如果不存在,请说明理由.(3)如图2,若点P是抛物线上一动点,且在直线AD下方,(点P不与点A、点D重合),过点P作y轴的平行线l与直线AD交于点M,点N在直线AD上,且满足△MPN∽△ABD,求△MPN面积的最大值.【答案】(1)y=x2﹣4x+3;(2)见解析;(3)△MPN的面积的最大值为:24364.【解析】(1)当x=0时,y=﹣x+3=3,则D(3,0);当y=0时,﹣x+3=0,解得x=3,则A(3,0),∵OD=OA,∴△OAD为等腰直角三角形,∴AD=3√2,∵ABAD =√23,∴AB=2,∴B(1,0),设抛物线解析式为y=a(x﹣1)(x﹣3),把D(0,3)代入得a•(﹣1)•(﹣3)=3,解得a=1,∴抛物线解析式为y=(x﹣1)(x﹣3),即y=x2﹣4x+3;(2)作CH⊥x轴,如图1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴C(2,﹣1)∴AH=CH=1,∴△ACH为等腰直角三角形,∴∠CAH=45°,AC=√2,∵△OAD为等腰直角三角形,∴∠DAO=45°,∵∠CAQ=∠DAB,∴当AQAD =ACAB时,△AQC∽△ADB,即3√2=√22,解得AQ=3,此时Q(0,0);当AQAB =ACAD时,△AQC∽△ABD,即AQ2=√23√2,解得AQ=23,此时Q(73,0);综上所述,Q点的坐标为(0,0)或(73,0);(3)作PE⊥AD于E,如图2,∵△MPN∽△ABD,∴MNAD =MPAB,∴MN =3√22MP , 设P (x ,x 2﹣4x+3),则M (x ,﹣x+3),∴MP =﹣x+3﹣(x 2﹣4x+3)=﹣x 2+3x =﹣(x ﹣32)2+94,当x =32时,MP 有最大值94,∴MN 的最大值为3√22×94=27√28, ∵∠PME =45°,∴PE =√22PM ,∴PE 的最大值为√22×94=9√28,∴△MPN 的面积的最大值为12×27√28×9√28=24364 .3.如图,抛物线y=ax 2+bx+c 过原点O 、点A (2,﹣4)、点B (3,﹣3),与x 轴交于点C ,直线AB 交x 轴于点D ,交y 轴于点E .(1)求抛物线的函数表达式和顶点坐标;(2)直线AF ⊥x 轴,垂足为点F ,AF 上取一点G ,使△GBA ∽△AOD ,求此时点G 的坐标;(3)过直线AF 左侧的抛物线上点M 作直线AB 的垂线,垂足为点N ,若∠BMN=∠OAF ,求直线BM 的函数表达式.【答案】(1)y=x 2-4x ;(2,-4);(2)G (2, −83);(3)y=−13x −2或y=-3x+6. 【解析】(1)解:将原点O (0,0)、点A (2,﹣4)、点B (3,﹣3),分别代入y=ax 2+bx+c ,得,解得 ,∴y=x 2-4x=, ∴顶点为(2,-4). (2)解:设直线AB 为y=kx+b ,由点A (2,-4),B (3,-3),得解得,∴直线AB 为y=x -6.当y=0时,x=6,∴点D (6,0).∵点A (2,-4),D (6,0),B (3,-3),∴OA= ,OD=6,AD= ,AF=4,OF=2,DF=4,AB= , ∴DF=AF ,又∵AF ⊥x 轴,∴∠AD0=∠DAF=45°,∵△GBA ∽△AOD ,∴ ,∴, 解得 ,∴FG=AF -AG=4- ,∴点G (2,). (3)解:如图1,∵∠BMN=∠OAF,,∴∠MBN=∠AOF,设直线BM与AF交于点H,∵∠ABH=∠AOD,∠HAB=∠ADO,∴∴,则,解得AH= ,∴H(2,).设直线BM为y=kx+b,∵将点B、G的坐标代入得,解得.∴直线BM的解析式为y= ;如图2,BD=AD -AB= .∵∠BMN=∠OAF ,∠GDB=∠ODA ,∴△HBD ∽△AOD .∴ ,即 ,解得DH=4.∴点H 的坐标为(2,0).设直线BM 的解析式为y=kx+b .∵将点B 和点G 的坐标代入得:,解得k=-3,b=6.∴直线BM 的解析式为y=-3x+6.综上所述,直线MB 的解析式为y=或y=-3x+6. 类型四 相似三角形存在性探究例4.在平面直角坐标系中,已知抛物线L :经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为.(1)求抛物线L 的表达式;(2)点P 在抛物线上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D.若△POD 与△AOB 相似,求符合条件的点P 的坐标.()2y ax c a x c =+-+L 'L '【答案】(1) y =-x 2-5x -6;(2)符合条件的点P 的坐标为(1,2)或(6,12)或(,)或(4,2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数压轴题之全等三角形的存在性(讲义) 课前预习
1.如图,在平面直角坐标系中,点A坐标为(2,1),点B坐标
为(3,0),点D为平面直角坐标系中任一点(与点O,A,B
不重合).
(1)△AOB和△DOB的公共边为_________.
(2)若△DOB与△OAB全等,则点D的坐标为_________.
(3)在下图中画出可能的△DOB,并考虑与△AOB之间的
联系.
知识点睛
全等三角形存在性的处理思路
1.分析特征:分析背景图形中的定点、定线及不变特征,结合
图形形成因素(判定等)考虑分类.
注:全等三角形存在性问题主要结合对应关系及不变特征考虑分类.
2.画图求解:
往往先从对应关系入手,再结合背景中的不变特征分析,综合考虑边、角的对应相等和不变特征后列方程求解.
3.结果验证:回归点的运动范围,画图或推理,验证结果. 精讲精练
1.如图,抛物线C1经过A,B,C三点,顶点为D,且与x轴的
另一个交点为E.
(1)求抛物线C1的解析式.
(2)设抛物线C1的对称轴与x轴交于点F,另一条抛物线C2经过点E(抛物线C2与抛物线C1不重合),且顶点为M(a,b),对称轴与x轴交于点G,且以M,G,E为顶点的三角形与以D,E,F为顶点的三角形全等,求a,b的值.(只需写出结果,不必写出解答过程)
2.如图,抛物线213442
y x x =-++与x 轴的一个交点为A (-2,0),与y 轴交于点C ,对称轴与x 轴交于点B .若点D 在x 轴上,点P 在抛物线上,使得△PBD ≌△PBC ,则点P 的坐标为_____________________________________.
3.如图,抛物线21382
y x x =--与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过原点O ,与抛物线的一个交点为D (6,-8),与抛物线的对称轴交于点E ,连接CE .若点F 在抛物线上,使△FOE ≌△FCE ,则点F 的坐标为____________.
4.如图,抛物线21(2)62
y x =--+与y 轴交于点C ,对称轴与x 轴交于点D ,顶点为M .设点Q 是y 轴右侧该抛物线上的一动点,若经过点Q 的直线QE 与y 轴交于点E ,使得以O ,Q ,E 为顶点的三角形与△OQD 全等,则直线QE 的解析式为_______________.
5.如图,在平面直角坐标系中,直线l1过点A(1,0)且与y轴平
行,直线l2过点B(0,2)且与x轴平行,直线l1与l2相交于点P.点E为直线l2上一点,反比例函数k
y
(k>0)的图象
x
过点E且与直线l1相交于点F.
(1)若点E与点P重合,求k的值.
(2)连接EF.是否存在点E及y轴上的点M,使得以M,E,F为顶点的三角形与△PEF全等?若存在,求出点E的坐标;若不存在,请说明理由.
【参考答案】
课前预习
1.(1)OB
(2)(2,-1),(1,1),(1,-1)
(3)略
精讲精练
1.(1)y =-x 2+2x +3;
(2)a =7,b =2或a =7,b =-2或a =-1,b =2或a =-1,b =-2或a =1,b =-4或a =5,b =-4或a =5,b =4.2.(1418241)-+-+,,(1418241)----,,
126(426)2-+-,,126(426)2
--+,3.
(3174)+-,或(3174)--, 4.
122y x =
+或71724y x -+=-或y =65.(1)2;(2)3(2)8,或8(2)3,.。