光学传感器在医学中的应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光学传感器在医学中的应用

生物医学传感器的研制越来越趋向于无创伤、集成化、智能化的方向发展。研制的多功能血流血氧传感器顺应了这一趋势。它利用先进的激光多普勒技术和光谱技术实现了微循环血流脉搏血氧饱和度人体生理信号的采集和转换该多功能传感器,为医学与生理学研究提供了极大的便利。

随着电子技术、激光技术和计算机技术的飞速发展生物医学仪器也有了长足的进步研究无创伤、集成化和智能化的生物医学传感器已成为国内外学者关注的热点。文中成功地使血流参数、脉搏血氧和脑血氧饱和度的检测传感器一体化研制出多功能血流血氧传感器。测定组织的血流在微循环基础研究和临床检查中具有重要意义

目前测定方法有同位素、荧光示踪、局部温度、红外摄像、超声多普勒、激光多普勒等,其中基于激光多普勒技术的传感器以其无创伤、适应范围广、操作简便而得到广泛的应用。但目前国内外用于临床的该类传感器均存在诸多不足,它们在光源和光电转换元件上分别采用氦氖激光器和光电倍增管,两者均体积庞大,需高压供电,使得整套仪器笨重、不安全、稳定性差。为解决上述技术问题,多功能血流血氧传感器采用体积小巧、低压省电、长寿命的红光、红外半导体激光器作为光源,光电转换采用小巧、廉价而灵敏度高的达林顿光敏三极管,使之具有小型化、灵敏度高、稳定性好、价格低廉等优点。血氧饱和度(SaO2)是血液中氧合血红蛋白(HbO2)的容量占全部血红蛋白(氧合血红蛋白HbO2和还原血红蛋白Hb之和)容量的百分比,它直接反映了人体供氧和氧代谢的状况,是呼吸循环系统的重要生理参数。传统用于血氧饱和度检测的血气分析法有创且步骤繁琐,不能进行连续的监测。而多功能血流血氧检测传感器则实现了脉搏血氧、脑血氧饱和度的无创实时监测。

血流检测原理血流检测原理基于生物组织中的激光多普勒效应。激光光源产生一定波长Κ的激光束进入人体微循环组织,在测量深度内的活动颗粒(主要是快速移动的血红细胞RBC)表面发生散射,其频率会发生改变,这种现象叫做多普勒频移(DopplerShift)效应。多普勒频移幅度与RBC的运动速度成正比,如下式。

由于微循环网络分布的复杂性、各微血管中血流速度的差异性以及激光在组织中散射的随机性,传感器检测到的多普勒频移信号,并不是单一频率的信号,而是有一定频谱宽度的信号。利用该信号的功率谱可以计算出各血流参数,如:流量(Q)、流速(V)、移动红细胞浓度(CMBC)等,在局部组织三者有如下关系:

血氧饱和度的检测基于朗伯—比尔定律(TheLambertBeerLaw)和光散射理论。朗伯—比尔定律是

其中:I0、I分别表示发射光强和接收光强,C表示物质浓度,表示光穿过组织的路径长度,E表示组织的吸光系数,w为光吸收度。HbO2和Hb的吸光系数随波长的变化曲线见上图。显然在红光谱区(600~700nm)HbO2和Hb的吸光系数差别很大,在该波段内,选用合适的波长的激光照射组织,光的吸收程度将很大程度依赖于血氧饱和度;而在红外光谱区(800~1000nm),HbO2和Hb的吸光系数差别不大,若使用等吸收波长805nm左右的激光照射组织,光的吸收程度则主要反映了血红蛋白(HbO2和Hb)的总量。利用氧合和还原血红蛋白吸光系数的差异就可以测量血氧饱和度。多功能血流血氧传感器采用两只半导体激光器作为光源,发射波长Κ1、Κ2分别为810nm、660nm,分别位于近红外光谱区和红光谱区。经推算得到血氧饱和度的计算公式为

其中:WΚ1、WΚ2分别为血液对Κ1、Κ2波长光的吸光度,A、B和C是一定传感器结构和生理条件下的系数通过对实验数据的统计分析来确定。

该算法得到的血氧饱和度是静脉和动脉血氧饱和度的混合平均值,而脉搏血氧信号应是其脉动或交流分量,其计算公式为:

其中:AC1、AC2分别为在Κ1、Κ2波长光的照射下接收器检测到的光信号的交流分量;DC1、DC2则为相应的直流分量。系数Ap、Bp和Cp通过对实验数据的统计分析来确定。

相关文档
最新文档