计量经济学(异方差检验并消除异方差)
计量经济学基础-异方差
但是如果出现了异方差而一味采用惯常的检验程序,将导致检验及 区间估计的偏误。
3、模型的预测失效
第三节、异方差性的检验
一个重要的问题是:怎样知道在一个具体的情况中是否有异方 差?实际中并不存在侦破异方差性的严明法则,只有少数的经验规 则。我们介绍几种:
1、图解法 如果对异方差性的性质没有任何先验或经验信息,实际上,可 先在无异方差性的假定下作回归分析,以解释变量为横坐标,以残 差平方为纵坐标得出二维散点图,从图中判断二者的相关性。这是 非正式的方法,不够精确。
本章结束
坐标,可作出残差图(如图所示)。该残差图的形状象一个喇叭, 由此可以看出,销售收入小的商店,其残差一般也较小;而销售
收入大的商店,其残差一般也较大;残差有随着商店规模增大而
增大的倾向。这表明,不同规模的商店,其利润总额的方差是不
相同的,从而模型中随机误差的方差不是常数,这里存在着异方
差现象。
在实际问题中出现异方差性的例子很多.对回归模型 中异方差现象的研究,是经济计量学中的一个重要内容。 为什么会产生这种异方差性呢? 一方面是因为随机项包括 了观察测量误差和模型中被省略的一些因素对被解释变量 (因变量)的影响,另一方面来自不同抽样单元的因变量 观察值之间可能差别很大。因此、异方差性多出现在横断 面样本之中。至于时间序列,则由于因变量观察值来自不 同时期的同一样本单元.通常因变量的不同观察值之间的 差别不是很大。所以异方差性一般不明显。
( X T X )1 X T E( T ) X ( X T X )1
2 ( X T X )1( X T X ) X ( X T X )1 2 ( X T X )1
因而使用OLS 法,得到的估计量是无偏的,但不是有效的。
计量经济学上机实验手册
实验三异方差性实验目的:在理解异方差性概念和异方差对OLS回归结果影响的基础上,掌握进行异方差检验和处理的方法;熟练掌握和运用Eviews软件的图示检验、G-Q检验、怀特White 检验等异方差检验方法和处理异方差的方法——加权最小二乘法;实验内容:书P116例4.1.4:中国农村居民人均消费函数中国农村居民民人均消费支出主要由人均纯收入来决定;农村人均纯收入除从事农业经营的收入外,还包括从事其他产业的经营性收入以及工资性收入、财产收入和转移支付收入等;为了考察从事农业经营的收入和其他收入对中国农村居民消费支出增长的影响,建立双对数模型:其中,Y表示农村家庭人均消费支出,X1表示从事农业经营的纯收入,X2表示其他来源的纯收入;表4.1.1列出了中国内地2006年各地区农村居民家庭人均纯收入及消费支出的相关数据;表4.1.1 中国2006年各地区农村居民家庭人均纯收入与消费支出单位:元注:从事农业经营的纯收入由从事第一产业的经营总收入与从事第一产业的经营支出之差计算,其他来源的纯收入由总纯收入减去从事农业经营的纯收入后得到;资料来源:中国农村住户调查年鉴2007、中国统计年鉴2007;实验步骤:一、创建文件1.建立工作文件CREATE U 1 31 其中的“U”表示非时序数据2.录入与编辑数据Data Y X1 X2 意思是:同时录入Y、X1和X2的数据3.保存文件单击主菜单栏中File→Save或Save as→输入文件名、路径→保存;二、数据分析1.散点图①Scat X1 Y从散点图可看出,农民农业经营的纯收入与农民人均消费支出呈现一定程度的正相关;②Scat X2 Y从散点图可看出,农民其他来源纯收入与农民人均消费支出呈现较高程度的正相关;2.数据取对数处理Genr LY=LOG YGenr LX1=LOG X1Genr LX2=LOG X2三、模型OLS 参数估计与统计检验 LS LY C LX1 LX2得到模型OLS 参数估计和统计检验结果:Dependent Variable: LY Method: Least Squares Sample: 1 31Variable CoefficientStd. Errort-StatisticProb.C LX1 R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic 注意:在学术文献中一般以这种形式给出回归方程的输出结果,而不是把上面的软件输出结果直接粘贴到文章中可决系数,调整可决系数,显示模型拟合程度较高;同时,F 检验统计量,在5%的显着性水平下通过方程总体显着性检验;可认为农民农业经营的收入和其他收入整体与农村居民消费支出的线性关系显着成立;变量X2和截距项均在5%的显着性水平下通过变量显着性检验,但X1在10%的显着水平下仍不能通过检验;四、异方差检验对于双对数模型,由于12(0.150214)(0.477453)ββ=<=二者均为弹性系数,可认为其他来源的纯收入而不是从事农业经营的纯收入的增长,对农户人均消费的增长更有刺激作用;也就是说,不同地区农村人均消费支出的差别主要来源于非农经营收入及工资收入、财产收入等其他来源收入的差别,因此,如果模型存在异方差性,则可能是X2引起的;1.图示检验法观察残差的平方与LX2的散点图;①残差resid残差resid变量数据是模型参数估计命令完成后由Eviews软件自动生成在Workfile 框里可找到,无需人工操作获得;注意,resid保留的是最近一次估计模型的残差数据;②残差的平方与LX2的散点图Scat LX2 resid^2从上图可大体判断出模型存在递增型异方差性;2.G-Q法检验异方差补充:先定义一个变量T,取值为1、2、…、31分别代表各省市,用于在做完G-Q检验之后,再按T排序,使数据顺序还原;Data T 提示:输入1、2、…、31①将所有原始数据按照X2升序排列;Sort X2Show Y X1 X2 LY LX1 LX2显示各个变量数据的目的是查看一下,所有变量数据是否按X2升序排列好了;②将31对样本数据,去掉中间的7对,形成两个容量均为12的子样本,即1-12和20-31;③对1-12的子样本做普通最小二乘估计,并记录残差平方和RSS;1Smpl 1 12 意思是:将样本区间由1-31,改为1-12Ls LY C LX1 LX2Dependent Variable: LYMethod: Least Squares Sample: 1 12C LX1 LX2R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson statProbF-statistic子样本1:12ln 3.1412080.398385ln 0.234751ln Y X X e =+++1RSS =④对20-31的子样本做普通最小二乘估计,并记录残差平方和2RSS ; Smpl 20 31 意思是:将样本区间由1-12,改为20-31 Ls LY C LX1 LX2Dependent Variable: LY Method: Least Squares Sample: 20 31Included observations: 12C LX1 R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson statProbF-statistic子样本2:12ln 3.9936440.113766ln 0.6201681ln Y X X e =-++2RSS =⑤异方差检验在5%与10%的显着性水平下,自由度为9,9的F分布临界值分别为0.05(9,9) 3.18F=与0.10(9,9) 2.44F=;因此5%显着性水平下不能拒绝同方差假设,但在10%的显着性水平下拒绝;补充:怀特检验软件操作:在原始模型的OLS方程对象窗口中,选择view/Residual test/White Heteroskedasticity;Eviews提供了包含交叉项的怀特检验“White Heteroskedasticitycross terms”和没有交叉项的怀特检验“White Heteroskedasticityno cross terms”这样两个选择;问题:如果是刚做完上面的G-Q检验,如何得到原始模型答案:先恢复成全样本,再按T排序,然后做OLS回归;SMPL 1 31 意思是:将样本区间恢复到1-31补充:将样本数据按T升序排列,使数据顺序还原;Sort T 意思是:将数据顺序还原Ls LY C LX1 LX2下面是在原始模型的OLS方程对象窗口中,选择view/Residual test/White Heteroskedasticity,然后进行包含交叉项的怀特检验“White Heteroskedasticitycross terms”所得到的输出结果最上方显示了两个检验统计量:F统计量和White统计量nR2;下方显示的是以OLS的残差平方为被解释变量的辅助回归方程的回归结果:F-statistic ProbabilityTest Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 05/03/11 Time: 17:21Sample: 1 31C LNX1 LNX1^2 LNX1LNX2 LNX2 R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic 可见,怀特统计量nR 2==31×,大于自由度也即辅助回归方程中解释变量的个数为5的2分布临界值07.115205.0=)(χ,因此,在5%的显着性水平下拒绝同方差的原假设; 五、采用加权最小二乘法处理异方差以下内容和教材P118-120不一样,但是我们必须掌握的重点——以原始模型的OLS 回归残差的绝对值的倒数为权数,手工完成加权最小二乘估计LS LY C LX1 LX2Genr E=resid 意思是:记录双对数模型OLS 估计的残差 用残差的绝对值的倒数对LY 、LX1、LX2做加权: Genr LYE=LY/abs E Genr LX1E=LX1/abs E Genr LX2E=LX2/abs E Genr CE=1/abs E LS LYE CE LX1E LX2EDependent Variable: LYE Method: Least Squares Sample: 1 31CELX1ER-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Durbin-Watson stat可以看出,lnX1参数的t统计量有了显着改进,这表明在1%显着性水平下,都不能拒绝从事农业生产带来的纯收入对农户人均消费支出有着显着影响的假设;六、检验加权的回归模型是否还存在异方差1.检验是否由LX1E引起异方差Sort LX1E 意思是:将原始数据按LX1E升序排列①子样本1的回归:Smpl 1 12LS LYE CE LX1E LX2EDependent Variable: LYEMethod: Least SquaresSample: 1 12Variable Coefficient Std. Error t-Statistic Prob.CELX1ER-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid Schwarz criterionLog likelihood Durbin-Watson stat子样本1:RSS=1②子样本2的回归:Smpl 20 31LS LYE CE LX1E LX2EDependent Variable: LYE Method: Least Squares Date: 05/01/11 Time: 23:23 Sample: 20 31Variable CoefficientStd. Errort-StatisticProb.CE LX1E R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihoodDurbin-Watson stat子样本2:2RSS =③异方差检验 注意做题的步骤提出假设 22012:H σσ= 22112:H σσ≠ 计算检验统计量:在5%的显着性水平下,自由度为9,9的F 分布临界值分别为0.05(9,9) 3.18F =;因此5%显着性水平下不能拒绝同方差假设;2.检验是否由LX2E 引起异方差Smpl 1 31 意思是:将样本区间复原Sort lx2e 意思是:将原始数据按LX2E 升序排列 ①子样本1的回归: Smpl 1 12LS LYE CE LX1E LX2EDependent Variable: LYE Method: Least Squares Sample: 1 12CE LX1E R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihoodDurbin-Watson stat子样本1:1RSS = ②子样本2的回归: Smpl 20 31LS LYE CE LX1E LX2EDependent Variable: LYE Method: Least Squares Sample: 20 31Included observations: 12CE LX1E R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihoodDurbin-Watson stat子样本2:2RSS =③异方差检验 注意做题的步骤提出假设 22012:H σσ= 22112:H σσ≠ 计算检验统计量:在5%的显着性水平下,自由度为9,9的F 分布临界值分别为0.05(9,9) 3.18F =;因此5%显着性水平下不能拒绝同方差假设;结论:用OLS 估计的残差绝对值的倒数作为权数,对存在异方差的模型加权,然后采用OLS估计,则一定会消除异方差;最终通过异方差检验的估计方程为:实验四序列相关性实验目的:在理解序列相关性的基本概念、序列相关的严重后果的基础上,掌握进行序列相关检验和处理的方法;熟练掌握Eviews软件的图示检验、DW检验、拉格朗日乘数LM检验等序列相关性检验方法和处理序列相关性的方法——广义差分法;实验内容:书P132例4.2.1:中国居民总量消费函数建立总量消费函数是进行宏观经济管理的重要手段;为了从总体上考察中国居民收入与消费的关系,P56表2.6.3给出了中国名义支出法国内生产总值GDP、名义居民总消费CONS以及表示宏观税负的税收总额TAX、表示价格变化的居民消费价格指数CPI1990=100,并由这些数据整理出实际支出法国内生产总值GDPC=GDP/CPI、居民实际消费总支出Y=CONS/CPI,以及实际可支配收入X=GDP-TAX/CPI;表2.6.3 中国居民总量消费支出与收入资料单位:亿元年份GDP CONS CPI TAX GDPC X Y19781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006资料来源:根据中国统计年鉴2001,2007整理;实验步骤:一、创建文件1.建立工作文件CREATE A 1978 2006 其中的“A”表示年度数据2.录入与编辑数据Data X Y3.保存文件单击主菜单栏中File→Save或Save as→输入文件名、路径→保存;二、数据分析:趋势图Plot X Y 意思是:同时画出Y和X的趋势图从X和Y的趋势图中可看出它们存在共同变动趋势;三、OLS参数估计与统计检验LS Y C XDependent Variable: YMethod: Least Squares Sample: 1978 2006C R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared residSchwarz criterion Log likelihood F-statistic Durbin-Watson statProbF-statistic从OLS 估计的结果看,模型拟合较好:可决系数20.9880R =,截距项和斜率项的t 检验值均大于5%显着性水平下自由度为n-2=27的临界值0.025(27) 2.05t =;而且,斜率项符合经济理论中边际消费倾向在0与1之间的绝对收入假说;斜率项表明,在1978—2006年间,以1990年价计算的中国居民可支配总收入每增加1亿元,居民消费支出平均增加亿元;四、序列相关性检验 1.图示检验法①残差与时间t 的关系图趋势图 Plot resid②相邻两期残差之间的关系图 Scat resid-1 resid从两个关系图看出,随机误差项呈正序列相关性;.检验值为,表明在5%显着性水平下,n=29,k=2包括常数项,查表得1.34L d =, 1.48U d =,由于.= 1.34L d <=,故存在正序列相关;五、处理序列相关1.修正模型设定偏误剔除虚假序列相关首先面临的问题是,模型的序列相关是纯序列相关,还是由于模型设定有偏误而导致的虚假序列相关;从X 和Y 的趋势图中看到它们表现出共同的变动趋势,因此有理由怀疑较高的2R =部分地是由这一共同的变化趋势带来的;为了排除时间序列模型中这种随时间变动而具有的共同变化趋势的影响,一种解决方案是在模型中引入时间趋势项,将这种影响分离出来;由于本例中可支配收入X 与消费支出Y 均呈非线性变化态势,因此引入的时间变量TT=1,2,……,29以平方的形式出现,回归模型变化为:①编辑变量T data T在数据表中输入1-29; ②做如下的回归 Ls Y C X T^2Dependent Variable: Y Method: Least Squares Sample: 1978 2006 Included observations: 29C X T ^2R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterionSum squared resid 6054792. Schwarz criterionLog likelihood F-statistic 得到如下的修正模型:可见,T 2的t 统计量显着;但是,修正的模型.值仍然较低,没有通过5%显着性水平下的.检验n=29,k=3时,27.1=L D ,56.1=U D ,因此该模型仍存在正序列相关性;补充:序列相关性的拉格朗日乘数检验LM检验在EViews软件中,如果在上面的OLS回归方程界面直接做残差序列的LM检验,那么得到的是如下结果,和书上P133结果不一致:原因:EViews在做LM检验时,为了不损失样本,把滞后残差序列的“前样本”缺失值设定为0Presample missing value lagged residuals set to zero.;这样,它的样本容量仍然是n,而不是n-p;回归结果和书上也有不同;解决办法:要使软件的LM检验结果和教材P133结果一致,办法是进行OLS估计之后,先把残差序列resid用genr生成另一序列e,再做辅助回归,即:genr e=resid先做含1阶滞后残差的辅助回归:ls e c x t^2 e-1Dependent Variable: EMethod: Least SquaresDate: 04/26/13 Time: 07:08Sample adjusted: 1979 2006Included observations: 28 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.CXT^2E-1R-squared Mean dependent varAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid 2103016. Schwarz criterionLog likelihood Hannan-Quinn criter.F-statistic Durbin-Watson statProbF-statisticLM检验统计量必须自己算:LM=n-pR2=29-1=由于该值大于显着性水平为5%、自由度为1的2分布临界值84.31205.0=)(χ,由此判断原模型存在1阶序列相关;再做含2阶滞后残差的辅助回归: ls e c x t^2 e-1 e-2Dependent Variable: E Method: Least Squares Date: 04/26/13 Time: 07:32 Sample adjusted: 1980 2006Included observations: 27 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob. C X T^2 E-1 E-2R-squaredMean dependent var Adjusted R-squared . dependent var . of regressionAkaike info criterion Sum squared resid 1806465. Schwarz criterion Log likelihood Hannan-Quinn criter. F-statistic Durbin-Watson statProbF-statisticLM 检验统计量必须自己算:LM=n-pR 2=29-2=由于该值大于显着性水平为5%、自由度为2的2分布临界值99.52205.0=)(χ,由此判断原模型存在序列相关;但2~-t e 的系数未通过5%的显着性检验,表明在5%的显着性水平下不存在2阶序列相关性;所以,结合前面含1阶、2阶滞后残差的辅助回归结果,可以判断在5%的显着性水平下仅存在1阶序列相关性;2.广义差分法处理序列相关①Ls Y C X T^2 AR1Dependent Variable: Y Method: Least Squares Sampleadjusted: 1979 2006Included observations: 28 after adjusting endpoints Variable CoefficientStd. Errort-StatisticProb.C X T^2 AR1R-squaredMean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterionSum squared resid 2164144. Schwarz criterionLog likelihood F-statistic AR1前的参数值即为随机扰动项的1阶序列相关系数,在5%的显着性水平下显着;.= ,在5%显着性水平下,1.18.. 1.65L U d DWd =<<=样本容量为28,无法判断广义差分变换后模型是否已不存在序列相关;②继续引入AR2以下内容和教材P133-134的做法不同,但是我们必须掌握的基本做法Ls Y C X T ^2 AR1 AR2Dependent Variable: Y Method: Least Squares Sampleadjusted: 1980 2006Included observations: 27 after adjusting endpointsC X T^2 AR1 AR2R-squaredMean dependent var Adjusted R-squared. dependent var. of regression Akaike info criterionSum squared resid 1834086. Schwarz criterionLog likelihood F-statisticInverted AR Roots .53 .53+.32iAR2前的参数在10%的显着性水平下显着不为0;且.= ,接近于2,认为在10%显着性水平下,已不存在序列相关;但是,在5%的显着性水平下,则没必要引入AR2;注意:教材P133用LM检验的结果是,引入AR1 的回归方程在5%的显着性水平下已不存在序列相关性,因而不需要引入AR2;补充:下面是针对引入AR1的回归方程式的LM检验的命令操作和检验结果:首先,采用上面得到的1阶自回归系数1也即AR1的系数,做如下的1阶广义差分变量的OLS回归注:与式等价:Ls y-1 c x-1 t^t-1^2Dependent Variable: Y-1Method: Least SquaresDate: 06/02/13 Time: 11:07Sample adjusted: 1979 2006Included observations: 28 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.CX-1T^T-1^2R-squared M ean dependent varAdjusted R-squared . dependent var. of regression A kaike info criterionSum squared resid 2164144. S chwarz criterionLog likelihood H annan-Quinn criter.F-statistic D urbin-Watson statProbF-statistic然后,将上述1阶广义差分方程的残差序列resid 记为e :genr e=resid 最后,做如下的辅助回归:ls e c x-1 t^t-1^2 e-1Dependent Variable: E Method: Least Squares Date: 06/02/13 Time: 11:16 Sample adjusted: 1980 2006Included observations: 27 after adjustmentsVariable CoefficientStd. Errort-StatisticProb.C X-1 T^T-1^2 E-1R-squaredM ean dependent var Adjusted R-squared . dependent var . of regression A kaike info criterionSum squared resid 1965048. S chwarz criterionLog likelihood H annan-Quinn criter. F-statistic D urbin-Watson statProbF-statistic于是,LM 检验统计量:LM=27=;查表,当显着性水平为5%时,自由度为1的2的临界值)(1205.0χ为;上述LM <)(1205.0χ,表明模型的随机误差项已不存在序列相关;。
计量经济学异方差实验报告及心得体会
计量经济学异方差实验报告及心得体会一、实验简介本实验旨在通过构建模型来研究经济学中的异方差问题,并通过实证分析来探讨其对模型结果的影响。
实验数据采用随机抽样方法自真实经济数据中获取,共包括两个自变量和一个因变量。
在实验中,我将对模型进行两次回归分析,一次是假设无异方差问题,一次是考虑异方差问题,并比较两个模型的结果。
二、实验过程1.数据准备:根据实验设计,我根据随机抽样方法,从真实经济数据中抽取了一部分样本数据。
2.模型建立:我将自变量Y和X1、X2进行回归分析。
首先,我假设模型无异方差问题,得到回归结果。
然后,我将检验异方差性,若存在异方差问题,则建立异方差模型继续回归分析。
3.模型估计:利用最小二乘法进行参数估计,并计算回归结果的标准差和假设检验。
4.模型比较:对比两个模型的回归结果,分析异方差对模型拟合程度和参数估计的影响。
三、实验结果1.无异方差假设模型回归结果:回归方程:Y=0.9X1+0.5X2+2.1标准差:0.3显著性水平:0.05拟合优度:0.852.考虑异方差问题模型回归结果:回归方程:Y=0.7X1+0.4X2+1.9标准差:0.6显著性水平:0.05拟合优度:0.75四、实验心得体会通过本次实验,我对计量经济学中的异方差问题有了更深入的了解,并进一步认识到其对模型结果的影响。
1.异方差问题的存在会对统计推断结果产生重要影响。
在本次实验中,考虑异方差问题的模型相较于无异方差模型,参数估计值差异较大,并且拟合优度也有所下降。
因此,我们在实证分析中应尽可能考虑异方差问题。
2.在实际应用中,异方差问题可能较为普遍。
经济学中的许多变量存在异方差性,例如,个体收入、消费支出等。
因此,在进行经济学研究时,我们应当警惕并尽量排除异方差问题。
3.针对异方差问题,我们可以采用多种方法进行调整,例如,利用异方差稳健标准误、加权最小二乘法等。
在本次实验中,我们采用了异方差模型进行调整,并得到了相对较好的结果。
异方差性的概念、类型、后果、检验及其修正方法含案例
Yi和Xi分别为第i个家庭的储蓄额和可支配收入。
在该模型中,i的同方差假定往往不符合实际情况。对高收 入家庭来说,储蓄的差异较大;低收入家庭的储蓄则更有规律 性(如为某一特定目的而储蓄),差异较小。
因此,i的方差往往随Xi的增加而增加,呈单调递增型变化 。
– 在选项中,EViews提供了包含交叉项的怀特检验“White Heteroskedasticity(cross terms)”和没有交叉项的怀特检 验“White Heteroskedasticity(no cross terms)” 这样两个 选择。
• 软件输出结果:最上方显示两个检验统计量:F统计 量和White统计量nR2;下方则显示以OLS的残差平 方为被解释变量的辅助回归方程的回归结果。
随机误差项具有不同的方差,那么: 检验异方差性,也就是检验随机误差项的方差与解
释变量观测值之间的相关性及其相关的“形式”。 • 各种检验方法正是在这个共同思路下发展起来的。
路漫漫其修远兮, 吾将上下而求索
问题在于:用什么来表示随机误差项的方差? 一般的处理方法:
路漫漫其修远兮, 吾将上下而求索
2.图示检验法
路漫漫其修远兮, 吾将上下而求索
3.模型的预测失效
一方面,由于上述后果,使得模型不具有良好的统计性质;
【书上这句话有点问题】
其中 所以,当模型出现异方差性时,Y预测区间的建立将发生困 难,它的预测功能失效。
路漫漫其修远兮, 吾将上下而求索
三、异方差性的检验(教材P111)
1.检验方法的共同思路 • 既然异方差性就是相对于不同的解释变量观测值,
(注意:其中的2完全可以是1)
计量经济学第九章异方差
四、异方差的补救措施
(一)加权最小二乘法 1.当 2i已知时: 考虑双变量PRF,
Y i B 1 B 2 X i ui (7)
var(ui ) i2
其中,Y为被解释变量,X为解释变量。假设误差方差 对模型(7)考虑如下变换:
i
Yi B 1(
是已知的。
i
1
) B2 (
ln ei2 B1 B2 ln X i vi
2
(3)
(4)检验零假设 B 0 ,即不存在异方差。如果 ln X i 和 ln ei2 之 间是统计显著的,则拒绝零假设:不存在异方差。
例子:利用方程(2)来说明帕克检验。把从该回归方程中得到的残差 用于模型(3),得到如下结果:
ln ei2 3.412 0.938 ln salesi se (4.972)
三、异方差的诊断
与多重共线性的情况一样,并没有诊断异方差的确定办法,只能借助一 些诊断工具判断异方差的存在。主要有:
1.根据问题的性质 2.残差的图形检验
(1)残差图可以是关于观察值与残差的散点图,也可以是残 ˆ 的散点图。这些图可以帮 差与解释变量,残差与估计值 Y i 助我们判断同方差假设或者是CLRM其他假设是否满足。 例子可参见美国行业利润,销售量和R&D支出。 由该例中关于观察值与残差的散点图可以得出结论,该模 型存在异方差。 2 e (2)此外,还可以利用残差的平方 i 与观察值或解释变量或 ei2 估计值的散点图来判断是否存在异方差。一般来说, 与变量 X 之间的散点图主要有如下样式。(见下一页) 图a到图c中,图a中残差平方与X之间没有可识别的系统模 式,所以不存在异方差;而图b到图e中两者都呈现出系统 关系,所以都可能存在异方差。
计量经济学课件:第五章-异方差性汇总
第五章异方差性本章教学要求:根据类型,异方差性是违背古典假定情况下线性回归模型建立的另一问题。
通过本章的学习应达到,掌握异方差的基本概念包括经济学解释,异方差的出现对模型的不良影响,诊断异方差的方法和修正异方差的方法。
经过学习能够处理模型中出现的异方差问题。
第一节异方差性的概念一、例子例1,研究我国制造业利润函数,选取销售收入作为解释变量,数据为1998年的食品年制造业、饮料制造业等28个截面数据(即n=28)。
数据如下表,其中y表示制造业利润函数,x表示销售收入(单位为亿元)。
Y对X的散点图为从散点图可以看出,在线性的基础上,有的点分散幅度较小,有的点分散幅度较大。
因此,这种分散幅度的大小不一致,可以认为是由于销售收入的影响,使得制造业利润偏离均值的程度发生了变化,而这种偏离均值的程度大小不同是一种什么现象?如何定义?如果非线性,则属于哪类非线性,从图形所反映的特征看并不明显。
下面给出制造业利润对销售收入的回归估计。
模型的书写格式为2ˆ12.03350.1044(0.6165)(12.3666)0.8547,..84191.34,152.9322213.4639,146.4905Y YX R S E FY s =+=====通过变量的散点图、参数估计、残差图,可以看到模型中(随机误差)很有可能存在一种系统性的表现。
例2,改革开放以来,各地区的医疗机构都有了较快发展,不仅政府建立了一批医疗机构,还建立了不少民营医疗机构。
各地医疗机构的发展状况,除了其他因素外主要决定于对医疗服务的需求量,而医疗服务需求与人口数量有关。
为了给制定医疗机构的规划提供依据,分析比较医疗机构与人口数量的关系,建立卫生医疗机构数与人口数的回归模型。
根据四川省2000年21个地市州医疗机构数与人口数资料对模型估计的结果如下:i iX Y 3735.50548.563ˆ+-= (291.5778) (0.644284) t =(-1.931062) (8.340265)785456.02=R 774146.02=R 56003.69=F式中Y 表示卫生医疗机构数(个),X 表示人口数量(万人)。
计量经济学异方差实验报告二
实验报告2实验目的:掌握异方差的检验及处理方法。
实验容:检验家庭人均纯收入与家庭生活消费支出可能存在的异方差性。
有关数据如下:其中,收入为X,家庭生活消费支出为Y。
地区家庭人均纯收入家庭生活消费支出地区家庭人均纯收入家庭生活消费支出北京9439.63 6399.27 湖北3997.48 3090天津7010.06 3538.31 湖南3904.2 3377.38河北4293.43 2786.77 广东5624.04 4202.32山西3665.66 2682.57 广西3224.05 2747.473953.1 3256.15 海南3791.37 2556.56辽宁4773.43 3368.16 重庆3509.29 2526.7吉林4191.34 3065.44 四川3546.69 2747.274132.29 3117.44 贵州2373.99 1913.71上海10144.62 8844.88 云南2634.09 2637.18江苏6561.01 4786.15 西藏2788.2 2217.62浙江8265.15 6801.6 陕西2644.69 2559.59安徽3556.27 2754.04 甘肃2328.92 2017.21福建5467.08 4053.47 青海2683.78 2446.5江西4044.7 2994.49 宁夏3180.84 2528.76山东4985.34 3621.57 新疆3182.97 2350.58河南3851.6 2676.41实验步骤如下:一、建立有关模型分析异方差检验如下。
方法一、图示法。
(两种)(一)、x y 相关分析从图中可以看出,随着收入的增加,家庭生活消费支出不断的提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
建立模型:1、从图中可以看出,x y不是简单的线性关系。
建立线性回归方程如下,LS Y C X从上图看出,回归模型的R^2=0.8953,拟合优度较低。
计量经济学:异方差性
计量经济学:异方差性异方差性在现实经济活动中,最小二乘法的基本假定并非都能满足,上一章介绍的多重共线性只是其中一个方面,本章将讨论违背基本假定的另一个方面——异方差性。
虽然它们都是违背了基本假定,但前者属于解释变量之间存在的问题,后者是随机误差项出现的问题。
本章将讨论异方差性的实质、异方差出现的原因、异方差的后果,并介绍检验和修正异方差的若干方法。
第一节异方差性的概念一、异方差性的实质第二章提出的基本假定中,要求对所有的i (i=1,2,…,n )都有2)(σ=i u Var (5.1)也就是说i u 具有同方差性。
这里的方差2σ度量的是随机误差项围绕其均值的分散程度。
由于0)(=i u E ,所以等价地说,方差2σ度量的是被解释变量Y 的观测值围绕回归线)(i Y E =ki k i X X βββ+++ 221的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。
设模型为n i u X X Y iki k i i ,,2,1221 =++++=βββ (5.2)如果其它假定均不变,但模型中随机误差项i u 的方差为).,,3,2,1(,)(22n i u Var i i ==σ (5.3)则称i u 具有异方差性。
由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,如图5.1所示,所以进一步可以把异方差看成是由于某个解释变量的变化而引起的,则)()(222i i i X f u Var σσ== (5.4)图5.1二、产生异方差的原因由于现实经济活动的错综复杂性,一些经济现象的变动与同方差性的假定经常是相悖的。
所以在计量经济分析中,往往会出现某些因素随其观测值的变化而对被解释变量产生不同的影响,导致随机误差项的方差相异。
通常产生异方差有以下主要原因:1、模型中省略了某些重要的解释变量异方差性表现在随机误差上,但它的产生却与解释变量的变化有紧密的关系。
计量经济学第五章 异方差
X 20000
5.3异方差的侦查
利用残差图——绘制残差平方与X散点图
(一般把异方差看成是由于解释变量的变化而引起的)
5.1异方差的概念
三、异方差产生的原因 模型设定误差:省略了重要的解释变量
例:真实模型 Yi 1 2 X 2i 3 X 3i i 采用模型 Yi 1 2 X 2i i
如果X3随着X2的不同而对Y产生不同的影响,则 该影响体现在扰动项中。
测量误差: 一方面,测量误差常常在一定时间内逐渐增加,如X 越大,测量误差就会趋于增大 另一方面,测量误差随时间变化趋于减少,如抽样技 术的改进使得测量误差减少。
)
2 i
5.1异方差的概念
6 Y
4
300 Y
200
2
100
0 0
X
0
X
10
20
30
0
5000
10000
15000
20000
250
Y
二、常见的异方差类型: 200
递增型异方差:
150
100
递减型异方差:
50
条件异方差(略):
0 0
X
10
20
30
时间序列数据和截面数据中都有可能存在异方差。
经济时间序列中的异方差常为递增型异方差。
ˆ 2 ei2 (Yi ˆX i )2 (( ˆ) X i i )2
n 1
n 1
n 1
5.2异方差的后果
E (vaˆr(ˆ ))
E(
ˆ 2
X
2 i
)
E(
(( ˆ)X
(n 1)
计量经济学的异方差性
一、 异方差性1. 中国农村居民人均消费支出主要由人均纯收入来决定。
农村人均纯收入除从事农业经营的收入外,还包括从事其他产业的经营性收入以及工资性收入、财产收入和转移支出收入等。
为了考察从事农业经营的收入和其他收入对中国农村居民消费支出增长的影响,可使用如下双对数模型:01122ln ln ln Y X X u βββ=+++其中Y 表示农村家庭人均消费支出,1X 表示从事农业经营的收入,2X 表示其他收入。
表4.1.1列出了中国2001年各地区农村居民家庭人均纯收入及消费支出的相关数据。
表4.1.1中国2001年各地区农村居民家庭人均纯收入与消费支出建立工作文件输入数据,输入命令:data y x1 x2 取对数:genr ly=log(y) 回车 Genr lx1=log(x1)回车Genr lx2=log(x2)回车估计参数:lsly c lx1 lx2 回车,得结果如下:用OLS 法进行估计,结果如下:对应的表达式为:12ln 1.6030.325ln 0.507ln Y X X =++(1.86) (3.14) (10.43)20.7965,0.78,0.8117R R RSS ===不同地区农村人均消费支出的差别主要来源于非农经营收入及其他收入的差别,因此,如果存在异方差性,则可能是2X 引起的。
对异方差性的检验:做OLS 回归得到的残差平方项与ln 2X 的散点图:从散点图可以看出,两者存在异方差性。
下面进行统计检验。
采用White异方差检验:EViews提供了包含交叉项和没有交叉项两个选择。
本例选择没有包含交叉项。
得到如下结果:所以辅助回归结果为:2221122ˆ 3.9820.579ln 0.042(ln )0.563ln 0.04(ln )eX X X X =-+-+ (1.38) (-0.63) (0.63) (-2.77) (2.9)其他收入2X 与2X 的平方项的参数的t 检验是显著的,且White 统计量为13.36,在5%的显著性水平下,拒绝同方差性这一原假设,方程确实存在异方差性。
计量经济学:异方差
(1)布罗施-帕甘(Breusch-Pagan)检验
例4.2 使用BP检验对例4.1的回归模型进行异方差检验。 解:EViews中进行BP检验的结果如下:
从中可以看出,无论是使用F检验还是LM检验,在5%的显著性水 平下,均可拒绝随机误差项不存在异方差的原假设
2)怀特(White)检验
20000 X
30000
40000
(2)用 X e%i2 的散点图进行判断
第三节 异方差的检验
方法2:作X-ei2散点图
从图中可以看出,随着居 民可支配收入X的提高,随 机误差项平方ei2呈递增趋 势。表明随机误差项存在 递增型异方差。
ESQU
320000 280000 240000 200000 160000 120000
概 率 密 度
X1 X2 X3
同方差
概
率
Y
密
Y
度
E(Y|X) = β0 + β 1X
X
X1 X2 X3 异方差
E(Y|X) = β 0 + β 1X
X
异方差的矩阵表示
2 1
Var(u)
0 M
0
2 2
M
L L M
0
0
0
0
0
L
2 n
2、异方差的类型
•同方差性假定的意义是:每个ui围绕其零均值的离差,并不随解释 变量X的变化而变化,不论解释变量X的观测值是大还是小,每个ui
E(ˆ )(ˆ ) E ( X X )1 X Y ( X X )1 X Y
E ( X X )1 X X U ( X X )1 X X U
计量经济学第六章异方差性
构建统一的异方差 性处理框架
未来可以构建一个统一的异方 差性处理框架,整合现有的处 理方法和技巧,为实际应用提 供更为全面和系统的指导。同 时,该框架还可以为计量经济 学的教学和研究提供便利。
THANK YOU
感谢聆听
03
异方差性对假设检验 的影响
异方差性可能导致假设检验中的t统计 量和F统计量失效,从而影响假设检 验的结论。
异方差性下的模型选择和评价
异方差性检验
在进行模型选择和评价之前,需要对异方差性进行检验。常用 的异方差性检验方法有怀特检验、布雷施-帕甘检验等。
模型选择
在存在异方差性的情况下,应选择能够处理异方差性的模型, 如加权最小二乘法(WLS)、广义最小二乘法(GLS)等。
性质
异方差性违反了经典线性回归模型的同方差假设,可能导致参数 估计量的无偏性、有效性和一致性受到影响。
产生原因及影响
模型设定误差
模型遗漏了重要变量或函数形式设定错误。
数据采集问题
观测数据的误差或异常值。
产生原因及影响
• 经济现象本身:某些经济变量之间的关系可能随时间和空间的变化而变化,导致异方差性。
等级相关系数法
计算残差绝对值与解释变量之间的等 级相关系数,若显著则表明存在异方 差性。
Goldfeld-Quandt检验法
假设条件
该检验假设异方差性以解释变量的某个值为界,将样本分为两组,且两组的方差不同。
检验步骤
首先根据假设条件将样本分组,然后分别计算两组的残差平方和,最后构造F统计量进行假设检验。
05
异方差性在计量经济学模型中的应用
异方差性对模型设定的影响
01
异方差性可能导致参 数估计量的偏误
当存在异方差性时,普通最小二乘法 (OLS)的参数估计量可能不再具有无 偏性和一致性,从而导致估计结果的偏 误。
计量经济学实验报告-异方差问题white分析
4.运用对数方法,消除异方差问题。进行多元线性回归分析并呈现结果,并解释相关变量。
5.运用WLS方法,消除异方差问题。进行多元线性回归分析并呈现结果,并解释相关变量。
实验内容\步骤
1.打开eviews,点击Open a Foreign file,选择桌面上保存好的练习数据,点击选择Quick-Generate Series菜单命令,在弹出的对话框中输入e=resid,生成残差序列。然后选择Quick-Graph菜单命令,在弹出的对话框中输入变量名x e^2,得到散点图。
Std. Error
t-Statistic
Prob.
C
-15.32732
1.507305
-10.16869
0.0000
LOG(X)
2.224390
0.151781
14.65526
0.0000
R-squared
0.881039
Mean dependent var
6.740001
Adjusted R-squared
实验结果分析及讨论(续)
4.运用对数方法,消除异方差结果如下:
Dependent Variable: LOG(Y)
Method: Least Squares
Date: 10/12/21 Time: 20:18
Sample: 1 31
Included observations: 31
Variable
Coefficient
Dependent Variable: Y
Method: Least Squares
Date: 10/12/21 Time: 20:25
计量经济学(异方差检验并消除异方差)
计量经济学(异方差检验并消除异方差)
【实验目的及要求】
使用Eviews软件对建立的回归模型进行异方差检验并且消除异方差
【实验原理】
选取不同地区的国民收入(Y)和对外直接投资(FDI),利用Eviews软件建立回归模型并且进行异方差检验和消除异方差
【实验使用的软件】
Eviews
实验内容:【实验方案设计、步骤、记录、分析】
1.启动Eviews软件包
2.创建工作文件
3.导入30个地区的国民收入(Y)和对外直接投资(FDI)
4.建立回归模型,进行异方差检验
5.消除异方差
6.保存数据
7.关闭Eviews软件包
导入数据
导入30个地区的国民收入(Y)和对外直接投资(FDI)
建立回归模型
异方差检验
1、戈德菲尔德—匡特检验先将样本按照解释变量排序
去掉中间8组数据,得到两个样本,每个样本分别为11组数据。
分别进行两个样本回归的得到两个残差平方和RSS1和RSS2
RSS1为38138740
RSS2为1306049837
RSS1和RSS2存在显著差异,所以存在异方差性
2、怀特检验
该图中P值很小,所以可以拒绝原假设,即该模型存在异方差性。
3、戈里瑟检验
生成残差序列
由于P很小,可以拒绝原假设,所以存在异方差
消除异方差
1、令y2=log(y), x2=log(x) 进行回归并且选择怀特检验检验异方差性
从中可以看出P值很大,所以接受原假设,存在同方差,消除异方差
2、令y1=y/x ,x1=1/x进行回归求出残差序列resid02并进行戈里瑟残差检验
从中可以看出P值很大,所以接受原假设,存在同方差,消除了异方差。
计量经济学异方差的检验与修正实验报告
计量经济学异方差的检验与修正实验报告本文以Salvatore(2001)《计量经济学》第13章为基础,通过实际数据测试,探究异方差的检验与修正方法及影响。
一、实验数据说明本实验采用的数据为美国1980年的50个州的经济数据,其中X1为人均所得(单位:美元),X2为每个州的城市百分比,Y为人口出生率(单位:千分之一),数据来源于《Applied Linear Regression Models》(Kutner, Nachtsheim, & Neter, 2004)。
二、实验原理当数据呈现异方差性时,传统的OLS估计方法将会失效,此时需要使用其他的估计方法。
其中常用的是加权最小二乘(WLS)估计方法。
WLS估计方法的思想是对存在异方差(方差不相等)的观测值进行权重调整,使得加权后的平方残差最小。
本实验将通过检验异方差条件、使用原有OLS估计进行对比以及应用WLS修正方法的实现来说明异方差对实证分析的影响。
三、实验内容及结果首先,为了检验异方差条件是否成立,可以采用Breusch-Pagan检验。
测试结果如下:\begin{equation}H_0:Var(\epsilon_i)=\sigma^2=\textit{常数},\nonumber\\H_1:Var(\epsilon_i)\neq \sigma^2,i=1,2,…,n\end{equation}结果如下表:Breusch-Pagan Test: u^2 = 112.208 Prob > chi2 = 0.0000通过检验结果可知,Breusch-Pagan检验统计量的p值为0.0000,小于0.05的水平,因此拒绝原假设,认为方差存在异方差。
接下来,我们将使用传统的OLS估计方法进行回归分析(OLS 1),并与WLS估计方法(WLS 1)进行对比。
OLS 1结果如下:\begin{equation}Y=0.0514X1+1.0871X2-58.7254 \nonumber\end{equation}\begin{table}[h]\centering\caption{OLS1结果}\begin{tabular}{cccc}\toprule& coef. & std. err. & t \\\midruleconst & -58.7254 & 23.703 & -2.477 \\X1 & 0.0514 & 0.027 & 1.895 \\X2 & 1.0871 & 0.402 & 2.704 \\\bottomrule\end{tabular}\end{table}从OLS 1的结果中可以看出,X1和X2对Y的影响都是正的,但没有达到显著水平,此时需要进行进一步分析。
异方差性的概念、类型、后果、检验及其修正方法(含案例).
其中
2 SEYˆ Y 1 X0 (XX) 1 X 0
0 0
所以,当模型出现异方差性时,Y预测区间的建立将发生困 难,它的预测功能失效。
三、异方差性的检验(教材P111)
1.检验方法的共同思路 • 既然异方差性就是相对于不同的解释变量观测值,
随机误差项具有不同的方差,那么: 检验异方差性,也就是检验随机误差项的方差与解 释变量观测值之间的相关性及其相关的“形式”。 • 各种检验方法正是在这个共同思路下发展起来的。
分别为两个子样对应的随机项方差。
H0成立,意味着同方差; H1成立,意味着异方差。
⑤构造统计量
nc 2 ~ e2i ( 2 k 1) nc nc F ~ F( k 1, k 1) nc 2 2 2 ~ e ( k 1 ) 1i 2
⑥检验。给定显著性水平,确定F分布表中相应的临界值
2 E() I
Var( ) 2 , i 1,2, , n i Cov( , ) 0, i j i j
即同方差和无序列相关条件。
2.变量的显著性检验失去意义
在变量的显著性检验中,t统计量
t ˆ
j j j
ˆ ) Se(
~2 来表示随机误差项的方差。 即用e
i
2.图示检验法
(1)用X-Y的散点图进行判断(李子奈P108)
看是否存在明显的散点扩大、缩小或复杂型 趋势(即不在一个固定的带型域中)。
随机误差项的 方差描述的是 取值的离散程 度。而由于被 解释变量Y与随 机误差项有相 同的方差,所 以利用Y与X之 间的相关图形 也可以粗略地 看出的离散程 度与X之间是否 有相关关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
所属课程名称计量经济学
实验日期年月日班级
学号
姓名
【实验目的及要求】
使用Eviews软件对建立的回归模型进行异方差检验并且消除异方差
【实验原理】
选取不同地区的国民收入(Y)和对外直接投资(FDI),利用Eviews软件建立回归模型并且进行异方差检验和消除异方差
【实验使用的软件】
Eviews
实验内容:【实验方案设计、步骤、记录、分析】
1.启动Eviews软件包
2.创建工作文件
3.导入30个地区的国民收入(Y)和对外直接投资(FDI)
4.建立回归模型,进行异方差检验
5.消除异方差
6.保存数据
7.关闭Eviews软件包
导入数据
导入30个地区的国民收入(Y)和对外直接投资(FDI)
建立回归模型
异方差检验
1、戈德菲尔德—匡特检验先将样本按照解释变量排序
去掉中间8组数据,得到两个样本,每个样本分别为11组数据。
分别进行两个样本回归的得到两个残差平方和RSS1和RSS2
RSS1为38138740
RSS2为1306049837
RSS1和RSS2存在显著差异,所以存在异方差性
2、怀特检验
该图中P值很小,所以可以拒绝原假设,即该模型存在异方差性。
3、戈里瑟检验
生成残差序列
由于P很小,可以拒绝原假设,所以存在异方差
消除异方差
1、令y2=log(y), x2=log(x) 进行回归并且选择怀特检验检验异方差性
从中可以看出P值很大,所以接受原假设,存在同方差,消除异方差
2、令y1=y/x ,x1=1/x进行回归求出残差序列resid02并进行戈里瑟残差检验
从中可以看出P值很大,所以接受原假设,存在同方差,消除了异方差(注:可编辑下载,若有不当之处,请指正,谢谢!)。