《调节阀计算选型培训教材》共10页文档
调节阀选型计算书
调节阀选型计算书(最新版)目录1.调节阀的概述2.调节阀的选型参数3.调节阀的计算方法4.调节阀的选型软件5.调节阀的应用领域6.结论正文一、调节阀的概述调节阀,又称控制阀,是工业自动化过程控制仪表的执行单元,是工业自动化控制的手和足。
它根据控制信号的要求而改变阀门开度的大小来调节流量,是一个局部阻力可以变化的节流元件。
调节阀是自动控制系统中常用的执行器,用来完成被控对象流量的调节。
二、调节阀的选型参数在选择调节阀时,需要考虑以下参数:1.阀前、阀后压力:这是调节阀选型的基本参数,关系到阀门的流量特性和调节精度。
2.介质:不同介质的物理性质和化学性质不同,需要选用不同材质的阀门。
3.温度:温度对阀门材料的选择和使用寿命有很大影响。
4.管道的口径:阀门的口径需要与管道的口径相匹配。
5.动力粘度:动力粘度是流体的一种性质,会影响阀门的流量特性。
6.密度:流体的密度会影响阀门的压力损失和流量特性。
三、调节阀的计算方法调节阀的计算方法主要包括以下两个方面:1.流量计算:根据流体的物理性质和阀门的开度,计算流经阀门的流量。
2.压力损失计算:根据阀门的流量特性和流体的物理性质,计算阀门的压力损失。
四、调节阀的选型软件许多调节阀生产企业都有自己的选型软件,将上述参数输入软件中,就可以进行调节阀的选型。
五、调节阀的应用领域调节阀广泛应用于冶金、电力、化工、石油、轻纺、造纸、建材等工业部门中。
六、结论正确地选择调节阀,是保证整个系统正常运行的关键。
在选型过程中,需要综合考虑各种因素,选择最适合的阀门。
调节阀的计算选型
调节阀的计算选型调节阀的计算选型是指在选用调节阀时,通过对流经阀门介质的参数进行计算,确定阀门的流通能力,选择正确的阀门型式、规格等参数,包括公称通径,阀座直径,公称压力等,正确的计算选型是确保调节阀使用效果的重要环节。
1.调节阀流量系数计算公式 1.1 流量系数符号:Cv —英制单位的流量系数,其定义为:温度60°F (15.6℃)的水,在16/in 2(7KPa)压降下,每分钟流过调节阀的美加仑数。
Kv —国际单位制(SI 制)的流量系数,其定义为:温度5~40℃的水,在105Pa 压降下,每小时流过调节阀的立方米数。
注:Cv ≈1.16 Kv1.2 不可压缩流体(液体)Kv 值计算公式式中:P 1—阀入口绝对压力KPa P 2—阀出口绝对压力KPaQ L —液体流量 m 3/h ρ—液体密度g/cm 3 F L —压力恢复系数,与调节阀阀型有关,附后 F F —流体临界压力比系数,C V FP P F /28.096.0-=P V —阀入口温度下,介质的饱和蒸汽压(绝对压力KPa ) P C —物质热力学临界压力(绝对压力KPa )注:如果需要,本公司可提供部分介质的P V 值和P C 值 1.2.2 高粘度液体Kv 值计算当液体粘度过高时,按一般液体公式计算出的Kv 值误差过大,必须进行修正,修正后的流量系数为R VF K V K ='式中:K ′V—修正后的流量系数 K V —不考虑粘度修正时计算的流量系数 F R —粘度修正系数 (FR 值从F R ~Rev 关系曲线图中确定)计算雷诺数Rev 公式如下:对于只有一个流路的调节阀,如单座阀、套筒阀、球阀等:VL L K F Q v 70700Re =对于有二个平行流路的调节阀,如双座阀,蝶阀,偏心旋转阀等:VL L K F VQ v 49490Re =式中:P 1—阀入口绝对压力KPa P 2—阀出口绝对压力KPaQg —气体流量 Nm 3/h G —气体比重(空气=1)t —气体温度℃ Z —高压气体(PN >10MPa )的压缩系数 注:当介质工作压力≤10MPa 时,Z=1;当介质工作压力>10MPa 时,Z >1,具体值查有关资料。
(完整word版)调节阀选型计算
•调节阀计算与选型指导(一)•2010—12—09 来源:互联网作者:未知点击数:588•热门关键词:行业资讯【全球调节阀网】人们常把测量仪表称之为生产过程自动化的“眼睛”;把控制器称之为“大脑”;把执行器称之为“手脚”。
自动控制系统一切先进的控制理论、巧秒的控制思想、复杂的控制策略都是通过执行器对被控对象进行作用的.调节阀是生产过程自动化控制系统中最常见的一种执行器,一般的自动控制系统是由对象、检测仪表、控制器、执型器等所组成。
调节阀直接与流体接触控制流体的压力或流量。
正确选取调节阀的结构型式、流量特性、流通能力;正确选取执行机构的输出力矩或推力与行程;对于自动控制系统的稳定性、经济合理性起着十分重要的作用。
如果计算错误,选择不当,将直接影响控制系统的性能,甚至无法实现自动控制.控制系统中因为调节阀选取不当,使得自动控制系统产生震荡不能正常运行的事例很多很多。
因此,在自动控制系统的设计过程中,调节阀的设计选型计算是必须认真考虑、将设计的重要环节.正确选取符合某一具体的控制系统要求的调节阀,必须掌握流体力学的基本理论。
充分了解各种类型阀的结构型式及其特性,深入了解控制对象和控制系统组成的特征.选取调节阀的重点是阀径选择,而阀径选择在于流通能力的计算。
流通能力计算公式已经比较成熟,而且可借助于计算机,然而各种参数的选取很有学问,最后的拍板定案更需要深思熟虑。
二、调节阀的结构型式及其选择常用的调节阀有座式阀和蝶阀两类.随着生产技术的发展,调节阀结构型式越来越多,以适应不同工艺流程,不同工艺介质的特殊要求。
按照调节阀结构型式的不同,逐步发展产生了单座调节阀、双座调节阀、角型阀、套筒调节阀(笼型阀)、三通分流阀、三通合流阀、隔膜调节阀、波纹管阀、O型球阀、V型球阀、偏心旋转阀(凸轮绕曲阀)、普通蝶阀、多偏心蝶阀等等。
如何选择调节阀的结构型式?主要是根据工艺参数(温度、压力、流量),介质性质(粘度、腐蚀性、毒性、杂质状况),以及调节系统的要求(可调比、噪音、泄漏量)综合考虑来确定。
调节阀选型计算书
调节阀选型计算书调节阀选型计算书是一份详细的文件,用于指导如何选择和计算适合特定应用的调节阀。
1. 确定系统需求:首先,您需要了解您的系统需求,包括流量、压力、温度、流体类型等。
这些信息将帮助您确定所需的阀门类型和尺寸。
2. 选择合适的阀门类型:根据您的系统需求,选择适当的阀门类型,如蝶阀、球阀、闸阀、角阀等。
每种阀门类型都有其特定的优缺点,因此请确保选择最适合您应用的阀门类型。
3. 计算流量系数(Cv):流量系数是衡量阀门在不同开度下的流量特性的参数。
您可以从制造商提供的数据表中查找流量系数,或者使用经验公式进行估算。
4. 计算阀门尺寸:根据所需的流量和压力,以及选定的阀门类型和流量系数,计算阀门的尺寸。
这通常涉及到调整阀门的直径、长度和行程等参数。
5. 考虑阀门材料:根据您的流体类型和温度,选择合适的阀门材料。
例如,对于高温应用,可能需要使用不锈钢或合金钢材料。
6. 考虑执行器类型和规格:根据您的系统需求和阀门类型,选择合适的执行器类型(如气动、电动或液压)和规格。
执行器的选择将影响阀门的性能和寿命。
7. 考虑附件和安装要求:在选型计算书中,还需要考虑阀门附件(如定位器、过滤器等)和安装要求(如支架、连接方式等)。
8. 列出所有相关数据和参数:在选型计算书的最后,列出所有相关的数据和参数,包括阀门类型、尺寸、材料、执行器类型和规格等。
这将有助于确保您选择了正确的阀门,并为后续的安装和维护提供参考。
9. 审查和确认:在完成选型计算书后,请务必与相关人员(如工程师、项目经理等)审查并确认所选阀门是否满足系统需求。
如有需要,可以根据实际情况进行调整。
调节阀选型计算书
调节阀选型计算书摘要:调节阀选型计算书I.调节阀概述A.调节阀的定义和作用B.调节阀的分类和选型II.调节阀选型计算的必要性A.调节阀选型的重要性B.调节阀选型的影响因素III.调节阀选型计算的方法A.调节阀的选型步骤B.调节阀的计算公式IV.调节阀选型计算的实例A.实例介绍B.计算过程C.结果分析V.调节阀选型计算的注意事项A.选型计算中的常见问题B.解决方法和建议正文:调节阀选型计算书I.调节阀概述调节阀是一种用于控制流体介质流量的阀门,是自动化仪表中的执行器之一。
调节阀的作用是接收来自控制系统信号,通过改变阀门的开度来调节介质的流量,从而实现对工艺过程的自动控制。
调节阀的选型主要根据使用场合、介质性质、流量特性、调节精度等因素进行。
调节阀主要分为气动调节阀、电动调节阀、手动调节阀等,每种类型又有多种结构形式。
选型时需要综合考虑各种因素,选择最适合使用要求的调节阀。
II.调节阀选型计算的必要性调节阀选型的重要性在于,选型是否合理直接影响到自动控制系统的运行效果和设备的安全性、经济性。
如果选型不当,可能导致系统失控、设备损坏、能源浪费等问题。
调节阀选型的影响因素包括使用场合、介质性质、流量特性、调节精度、阀门材质、工作压力等因素。
对这些因素进行详细分析和计算,可以保证选型的合理性和准确性。
III.调节阀选型计算的方法调节阀的选型步骤主要包括:1.根据使用场合和介质性质选择阀门类型。
2.根据流量特性和调节精度选择阀门结构形式。
3.根据工作压力、温度、安装方式等因素选择阀门材质和规格。
调节阀的计算公式主要包括:1.流量系数计算公式。
2.调节阀的Cv 值计算公式。
3.调节阀的Kv 值计算公式。
IV.调节阀选型计算的实例以某化工厂为例,需要选用一种气动调节阀来控制流量。
首先,根据使用场合和介质性质,选择气动调节阀。
然后,根据流量特性和调节精度,选择合适的阀门结构形式。
最后,根据工作压力、温度、安装方式等因素,选择合适的阀门材质和规格。
常用调节阀的计算与选型讲课文档
S=△P全开/ △P总= △Pmin/ △P总
S值越小,实际可调比RT也越小。为了保证调节阀有一定锻可调比,
调节阀超压差应在管路系统中占有一定比例,S宜在0.3~0.6之间。 16、可调比R0:调节阀能够控制的最大流量Qmax与最小流量 Qmin之比。
证电厂运行初期(两年内)零泄漏。
第十六页,共50页。
四、调节阀的术语
级别 Ⅱ级
最大允许泄漏量 0.5%额定通流能力
试验介质
介质压力和温度
空气或水
工作压差ΔP或50lb/in2(3.5巴),取 较小的一个值,温度10-52℃
Ⅲ级
0.1%额定通流能力
空气或水
同上
Ⅳ级
0.01%额定通流能力
空气或水
同上
Ⅴ级
第十页,共50页。特点及运用场合
多级降压阀
大多采用阀芯、阀座采用套筒结构和迷 宫式多级降压结构,泄露量小(IV级) 防空化,耐冲刷;适用于高温高压差水 的场合,如给水最小再循环阀。
偏心旋转阀 (凸轮绕曲阀)
流路简单,泄漏量小(额定流量系数的 0.01%),与单座阀比较,允许压差较 大,稳定性好,可调范围广。
5×10-12m3/秒/巴(压差)/mm (阀座直径) (公制)
水
阀座直径 气泡 in mm 数/分 ml/min
1” 25 1
0.15
1.5” 38 2 Ⅵ级 2” 51 3
2.5” 64 4
0.3
0.45
空气
0.6 或氮气
3” 76 6
0.9
4” 102 27
1.7
6” 152 27
4
8” 203 45 6.75
《调节阀计算选型培训教材》
《调节阀计算选型培训教材》本学习资料由海王仪器仪表技术开发部全体技术人员花费大量精力编制,在编制过程中得到了海王总裁郑云海先生及同行专家的大力指导和帮助,在此表示感谢!调节阀又称控制阀,是工业自动化过程控制仪表的执行单元,是工业自动化控制的手和足。
正确选择和使用调节阀不仅直接关系到整个系统的正常运行,同时涉及到人生和系统的安全、环保及经济效益等方面。
据了解自控系统不能正常投入运行,其中有70%~80%的原因是执行单元的影响。
随着我国生产的发展系统对流量、压力、温度等参数的过程控制要求不断提高;耐蚀性能、调节精度、可靠性要求也越来越高。
所以正确选择、合理使用调节阀对控制系统有着举足轻重的作用。
《调节阀计算选型资料》可供设计院、企业自动化控制室及工程部有关人员,在调节阀计算选型时参考;对从事调节阀生产、销售、使用、维修人员作为调节阀基础知识的培训教材。
一概述在工业生产中,往往要对被调介质的参数,如温度、压力、流量、液位、物位等进行控制,使其稳定并达到预定的要求。
从而实现生产过程的自动化。
其控制过程简化示意如图1-1。
调节阀接受到调节器送来的(偏差)信号时,它是怎样实现对介质的调节的呢?伯努诺方程告诉我们: (1)就是说流动介质处于任意状态(位置)时,它的能量(总水头)是一个定值(常数)(流体内部摩擦热能散失忽略不计)。
它包括三部分:h—位能(位置水头)、—压力能(静压水头)、—动能(动力水头)。
在不同形状、大小的管道内三种能量(水头)只是相互转换而已。
如图1-2,过水断面A、B两点的总能量(水头)都是等于Z。
在水平管道中,而A、B两点的h—位能(位置水头)是一个定值,则公式(1)可写成: (2)从图1-3可以看出A、B两点能量(水头)的转换。
能量转换部分h的大小可用下式表示: (3)因为流量:Q=F1V1=F2V2 (4)F1、F2—分别表示两过流断面面积V1、V2—分别表示两过流断面流体流速。
则将V2代入(3)式设—流体阻力系数。
调节阀的计算与选型参考资料
≤±2.5 ≤1.5 ≤3.0 ≤2.0
≤±2 ≤2.0 ≤0.8 ≤2.5
四、调节阀的术语
10、泄漏量:在规定试验条件下,试验流体通过
调节阀处于关闭位置时的流量。
美国ANSI B16.104调节阀的阀座泄漏量标准 调节阀招标书一般要求:
阀门具有密封好,泄漏小及阀杆不平衡力小等特点。 常闭调节阀泄漏等级不小于ANSI B16.104—Ⅴ级标准, 常开调节阀泄漏等级不小于ANSI B16.104—Ⅳ级标准。 并保证电厂运行初期(两年内)零泄漏。
三、调节阀的类型
名称
特点及运用场合
多级降压阀
大多采用阀芯、阀座采用套筒结构和迷 宫式多级降压结构,泄露量小(IV级) 防空化,耐冲刷;适用于高温高压差水 的场合,如给水最小再循环阀。
偏心旋转阀 (凸轮绕曲阀)
流路简单,泄漏量小(额定流量系数的 0.01%),与单座阀比较,允许压差较 大,稳定性好,可调范围广。
Kv与Cv的关系:Cv=1.16Kv
6、额度流量系数Kvmax或Cvmax:在全开状态时的流 量系数。
四、调节阀的术语
6、基本误差:调节阀是实际上升、下降特性曲
线与规定的特性曲线之间的最大偏差。用额度 行程的百分比表示。
7、回差:同一输入信号上升和下降的两相应行
程值间的最大差值。用额度行程的百分比表示。
Kv,我国的流量系数。定义:在调节阀某给定行程, 阀两端压差为100kPa,介质密度1t/m3时,流过调 节阀的每小时立方米数。
Cv,英制单位的流量系数。定义:在调节阀某给定行 程,阀两端压差为1lb/in2,温度为60华氏度(F) (15.6℃)的水,介质密度8.334lb/USgal时,流过 调节阀的每分钟美加仑数。
调节阀选型计算书
调节阀选型计算书摘要:I.调节阀选型的重要性- 调节阀的作用- 选型的影响II.调节阀选型的计算方法- 计算流程- 需考虑的因素- 参数的意义III.调节阀选型计算的实例- 实例介绍- 计算过程- 结果分析IV.调节阀选型的注意事项- 选型原则- 常见问题及解决方法V.总结- 调节阀选型计算的重要性- 计算方法的实际应用正文:I.调节阀选型的重要性调节阀是工业自动化过程中控制流量的关键设备,选型的合适与否直接影响到整个自动化系统的运行效果。
因此,选择合适的调节阀是工业自动化过程中必不可少的一环。
II.调节阀选型的计算方法调节阀选型计算主要包括以下步骤:1.确定计算公式:根据调节阀的类型和控制系统的要求,选择合适的计算公式。
2.收集数据:收集调节阀所处的工作环境、介质、流量、压力等参数。
3.计算:根据公式和收集的数据进行计算,得出调节阀的选型参数。
4.结果分析:分析计算结果,检查是否符合实际情况,如果不符合,需要重新进行计算或调整参数。
III.调节阀选型计算的实例以某化工厂为例,该厂需要选用一种调节阀来控制流量,已知工作环境温度为-20℃,介质为蒸汽,流量为30t/h,压力为1.0MPa。
1.确定计算公式:根据调节阀的类型和工厂要求,选择合适的计算公式,这里选择DN=2×(流量)/(流速),KV=3.5×(流量)/(开度)。
2.收集数据:根据已知条件和公式,收集调节阀的选型参数,包括流量、压力、温度等。
3.计算:根据公式和收集的数据进行计算,得出调节阀的选型参数,DN=600mm,KV=350。
4.结果分析:分析计算结果,检查是否符合实际情况,如果符合,则可以选用该调节阀。
IV.调节阀选型的注意事项在调节阀选型过程中,需要注意以下几点:1.选择合适的计算方法:根据调节阀的类型和控制系统的要求,选择合适的计算方法。
2.考虑实际情况:在计算过程中,需要考虑实际情况,避免出现计算结果与实际需求不符的情况。
调节阀计算_选型_使用
调节阀计算选型使用一调节阀综述目录1 调节阀的发展历程2 调节阀在系统中的作用与重要性3 调节阀的使用功能4 十大类调节阀的功能优劣比较5 调节阀标准与性能6 调节阀泄漏标准的细分7 调节阀在使用中存在的主要问题8 九十年代调节阀的新发展9 调节阀三代产品的初步划分10电动调节阀的应用前景1、调节阀的发展历程调节阀的发展自20世纪初始至今已有七、八十年的历史,先后产生了十个大类的调节阀产品、自力式阀和定位器等,其发展历程如下:20年代:原始的稳定压力用的调节阀问世。
30年代:以“V”型缺口的双座阀和单座阀为代表产品问世。
40年代:出现定位器,调节阀新品种进一步产生,出现隔膜阀、角型阀、蝶阀、球阀等。
50年代:球阀得到较大的推广使用,三通阀代替两台单座阀投入系统。
60年代:在国内对上述产品进行了系列化的改进设计和标准化、规范化后,国内才才有了完整系列产品。
现在我们还在大量使用的单座阀、双座阀、角型阀、三通阀、隔膜阀、蝶阀、球阀七种产品仍然是六十年代水平的产品。
这时,国外开始推出了第八种结构调节阀——套筒阀。
70年代:又一种新结构的产品——偏心旋转阀问世(第九大类结构的调节阀品种)。
这一时期套筒阀在国外被广泛应用。
70年代末,国内联合设计了套筒阀,使中国有了自己的套筒阀产品系列。
80年代:80年代初由于改革开放,中国成功引进了石化装置和调节阀技术,使套筒阀、偏心旋转阀得到了推广使用,尤其是套筒阀,大有取代单、双座阀之势,其使用越来越广。
80年代末,调节阀又一重大进展是日本的Cv3000和精小型调节阀,它们在结构方面,将单弹簧的气动薄膜执行机构改为多弹簧式薄膜执行机构,阀的结构只是改进,不是改变。
它的突出特点是使调节阀的重量和高度下降30%,流量系数提高30%。
90年代:90年代的重点是在可靠性、特殊疑难产品的攻关、改进、提高上。
到了90年代末,由华林公司推出了第十种结构的产品——全功能超轻型阀。
它突出的特点是在可靠性上、功能上和重量上的突破。
调节阀的计算选型
调型调节阀的计算选型是指在选用调节阀时,通过对流经阀门介质的参数进行计算,确定阀门的流通能力,选择正确的阀门型式、规格等参数,包括公称通径,阀座直径,公称压力等,正确的计算选型是确保调节阀使用效果的重要环节。
1.调节阀流量系数计算公式 1.1 流量系数符号:Cv —英制单位的流量系数,其定义为:温度60°F (15.6℃)的水,在16/in 2(7KPa)压降下,每分钟流过调节阀的美加仑数。
Kv —国际单位制(SI 制)的流量系数,其定义为:温度5~40℃的水,在105Pa 压降下,每小时流过调节阀的立方米数。
注:Cv ≈1.16 Kv1.2 不可压缩流体(液体)Kv 值计算公式式中:P 1—阀入口绝对压力KPa P 2—阀出口绝对压力KPaQ L —液体流量 m 3/h ρ—液体密度g/cm 3 F L —压力恢复系数,与调节阀阀型有关,附后 F F —流体临界压力比系数,C V F P P F /28.096.0-=P V —阀入口温度下,介质的饱和蒸汽压(绝对压力KPa ) P C —物质热力学临界压力(绝对压力KPa )注:如果需要,本公司可提供部分介质的P V 值和P C 值 1.2.2 高粘度液体Kv 值计算当液体粘度过高时,按一般液体公式计算出的Kv 值误差过大,必须进行修正,修正后的流量系数为RV F K VK='式中:K ′V—修正后的流量系数 K V —不考虑粘度修正时计算的流量系数 F R —粘度修正系数 (FR 值从F R ~Rev 关系曲线图中确定)计算雷诺数Rev 公式如下:对于只有一个流路的调节阀,如单座阀、套筒阀、球阀等:VL L K F Q v 70700Re =对于有二个平行流路的调节阀,如双座阀,蝶阀,偏心旋转阀等:VL L K F VQ v 49490Re =值计算式中:P 1—阀入口绝对压力KPa P 2—阀出口绝对压力KPaQg —气体流量 Nm 3/h G —气体比重(空气=1)t —气体温度℃ Z —高压气体(PN >10MPa )的压缩系数 注:当介质工作压力≤10MPa 时,Z=1;当介质工作压力>10MPa 时,Z >1,具体值查有关资料。
调节阀计算-选型-使用
调节阀计算选型使用一调节阀综述目录1 调节阀的发展历程2 调节阀在系统中的作用与重要性3 调节阀的使用功能4 十大类调节阀的功能优劣比较5 调节阀标准与性能6 调节阀泄漏标准的细分7 调节阀在使用中存在的主要问题8 九十年代调节阀的新发展9 调节阀三代产品的初步划分10电动调节阀的应用前景1、调节阀的发展历程调节阀的发展自20世纪初始至今已有七、八十年的历史,先后产生了十个大类的调节阀产品、自力式阀和定位器等,其发展历程如下:20年代:原始的稳定压力用的调节阀问世。
30年代:以“V”型缺口的双座阀和单座阀为代表产品问世。
40年代:出现定位器,调节阀新品种进一步产生,出现隔膜阀、角型阀、蝶阀、球阀等。
50年代:球阀得到较大的推广使用,三通阀代替两台单座阀投入系统。
60年代:在国内对上述产品进行了系列化的改进设计和标准化、规范化后,国内才才有了完整系列产品。
现在我们还在大量使用的单座阀、双座阀、角型阀、三通阀、隔膜阀、蝶阀、球阀七种产品仍然是六十年代水平的产品。
这时,国外开始推出了第八种结构调节阀——套筒阀。
70年代:又一种新结构的产品——偏心旋转阀问世(第九大类结构的调节阀品种)。
这一时期套筒阀在国外被广泛应用。
70年代末,国内联合设计了套筒阀,使中国有了自己的套筒阀产品系列。
80年代:80年代初由于改革开放,中国成功引进了石化装置和调节阀技术,使套筒阀、偏心旋转阀得到了推广使用,尤其是套筒阀,大有取代单、双座阀之势,其使用越来越广。
80年代末,调节阀又一重大进展是日本的Cv3000和精小型调节阀,它们在结构方面,将单弹簧的气动薄膜执行机构改为多弹簧式薄膜执行机构,阀的结构只是改进,不是改变。
它的突出特点是使调节阀的重量和高度下降30%,流量系数提高30%。
90年代:90年代的重点是在可靠性、特殊疑难产品的攻关、改进、提高上。
到了90年代末,由华林公司推出了第十种结构的产品——全功能超轻型阀。
它突出的特点是在可靠性上、功能上和重量上的突破。
培训体系调节阀计算选型培训教材
(培训体系)调节阀计算选型培训教材《调节阀计算选型培训课件》本学习资料由海王仪器仪表技术开发部全体技术人员花费大量精力编制,于编制过程中得到了海王总裁郑云海先生及同行专家的大力指导和帮助,于此表示感谢!调节阀又称控制阀,是工业自动化过程控制仪表的执行单元,是工业自动化控制的手和足。
正确选择和使用调节阀不仅直接关系到整个系统的正常运行,同时涉及到人生和系统的安全、环保及经济效益等方面。
据了解自控系统不能正常投入运行,其中有70%~80%的原因是执行单元的影响。
随着我国生产的发展系统对流量、压力、温度等参数的过程控制要求不断提高;耐蚀性能、调节精度、可靠性要求也越来越高。
所以正确选择、合理使用调节阀对控制系统有着举足轻重的作用。
《调节阀计算选型资料》可供设计院、企业自动化控制室及工程部有关人员,于调节阀计算选型时参考;对从事调节阀生产、销售、使用、维修人员作为调节阀基础知识的培训课件。
壹概述于工业生产中,往往要对被调介质的参数,如温度、压力、流量、液位、物位等进行控制,使其稳定且达到预定的要求。
从而实现生产过程的自动化。
其控制过程简化示意如图1-1。
调节阀接受到调节器送来的(偏差)信号时,它是怎样实现对介质的调节的呢?伯努诺方程告诉我们: (1)就是说流动介质处于任意状态(位置)时,它的能量(总水头)是壹个定值(常数)(流体内部摩擦热能散失忽略不计)。
它包括三部分:h—位能(位置水头)、—压力能(静压水头)、—动能(动力水头)。
于不同形状、大小的管道内三种能量(水头)只是相互转换而已。
如图1-2,过水断面A、B俩点的总能量(水头)均是等于Z。
于水平管道中,而A、B俩点的h—位能(位置水头)是壹个定值,则公式(1)可写成: (2)从图1-3能够见出A、B俩点能量(水头)的转换。
能量转换部分h的大小可用下式表示: (3)因为流量:Q=F1V1=F2V2 (4)F1、F2—分别表示俩过流断面面积V1、V2—分别表示俩过流断面流体流速。
调节阀的计算选型
调节阀的计算选型调节阀的计算选型是指在选用调节阀时,通过对流经阀门介质的参数进行计算,确定阀门的流通能力,选择正确的阀门型式、规格等参数,包括公称通径,阀座直径,公称压力等,正确的计算选型是确保调节阀使用效果的重要环节。
1. 调节阀流量系数计算公式1.1流量系数C V – 英制单位的流量系数,其定义为:温度60°F(15.6°C)的水,在1 lb/in 2 (14kPa)压降下,每分钟流过调节阀的美加仑数。
K V – 国际单位制(SI 制)的流量系数,其定义为:温度5~40°C 的水,在105 Pa 压降下,每小时流过调节阀的立方米数。
注:C V ≈ 1.16 K V1.2 不可压缩流体(液体)K V 值计算公式1.2.1 一般液体的K V 值计算式中: P 1 : 阀入口绝对压力 [kPa] P 2 : 阀出口绝对压力 [kPa] Q L : 液体流量 [m 3/h] ρ : 液体密度 [g/cm 3]F L : 压力恢复系数,与调节阀阀型有关,附后F F : 流体临界压力比系数,CV F P PF 28.096.0-=P V : 阀入口温度下,介质的饱和蒸汽压 [kPa, 绝对压力] P C : 物质热力学临界压力 [kPa, 绝对压力kPa]1.2.2 高粘度液体K V 值计算当液体粘度过高时,按一般液体公式计算出的K V 值误差过大,必须进行修正,修正后的流量系数为:RVV F K K =' 式中:K V ' : 修正后的流量系数 K V : 不考虑粘度修正时计算的流量系数 F R粘度修正系数 (F R 值从F R ~Re[雷诺数]关系曲线图中确定)计算雷诺数Re 的公式如下:对于只有一个流路的调节阀,如单座阀、套筒阀、球阀等:VL L K F Q 70700Re =对于有二个平行流路的调节阀,如双座阀,蝶阀,偏心旋转阀等:VL L K F V Q 49490Re =1.3可压缩流体 - 气体的K V 值计算式中: P 1 : 阀入口绝对压力 [kPa] P 2 : 阀出口绝对压力 [kPa] Q G : 气体流量 [Nm 3/h]G : 气体比重 (空气=1)T : 气体温度 [°C]Z: 高压气体(PN > 10MPa)的压缩系数(当介质工作压力≤10MPa 时,Z=1;当介质工作压力>10MPa 时,Z>1,具体值查有关资料。
《调节阀计算选型使用》:五、调节阀选型指南
《调节阀计算选型使用》:五、调节阀选型指南-CAL-FENGHAI.-(YICAI)-Company One1第五章调节阀选型指南1 调节阀结构型式的选择从使用功能上选阀需注意的问题1)调节功能①要求阀动作平稳;②小开度调节性能好;③选好所需的流量特性;④满足可调比;⑤阻力小、流量比大(阀的额定流量参数与公称通径之比);⑥调节速度。
2)泄漏量与切断压差这是不可分割、互相联系的两个因素。
3)防堵即使是干净的介质,也存在堵塞问题(管道内的不干净介质)、不干净介质更易堵卡。
4)耐蚀它包括耐冲蚀、汽蚀、腐蚀。
主要涉及到材料的选用和阀的使用寿命问题,同时,涉及到经济性问题。
5)耐压与耐温这涉及调节阀的公称压力、工作温度的选定。
常用材质的工作温度、工作压力与公称压力的关系见下表5-1。
6)重量与外观小型化、轻型化、仪表化表5-1 常用材质的工作温度、工作压力与PN关系7)十大类调节阀的功能优劣比较:详见1-1表。
综合经济效果确定阀型1)高可靠性。
2)使用寿命长。
3)维护方便,备品备件有来源。
4)产品价格适宜,性能价格较好。
调节阀型式的优选次序①全功能超轻型调节阀→②蝶阀→③套筒阀→④单座阀→⑤双座阀→⑥偏心旋转阀→⑦球阀→⑧角形阀→⑨三通阀→⑩隔膜阀。
2 执行机构的选择执行机构选择的主要考虑因素①可靠性;②经济性;③动作平稳、足够的输出力;④重量外观;⑤结构简单、维护方便。
电动执行机构与气动执行机构的选择比较1)可靠性方面2)驱动源3)价格方面4)推力和刚度5)防火防爆推荐意见(1)在可能的情况下,建议选用进口电子式执行机构(2)薄膜执行机构虽存在推力不够、刚度小、尺寸大的缺限,但其结构简单。
(3)活塞执行机构选择3 材料的选择材料的选择主要根据介质的温度、腐蚀性、汽蚀、冲蚀四方面决定。
根据介质的腐蚀性选择1)金属耐蚀材料的选择5-2。
2)氟塑料成功地用在耐腐蚀阀上耐磨损材质的选择12对汽蚀、冲蚀严重的阀;切断类硬密封调节阀,也必须保护密封面。
调节阀计算选型培训教材
调节阀计算选型培训教材调节阀是工业管道系统中的重要设备,一般用于控制流体流量,压力和温度等参数。
调节阀的选择和计算选型十分重要,因为它直接影响设备的性能和稳定程度。
本文将介绍调节阀选型的重要性和如何计算调节阀的选型参数,旨在提供一份实用的教材参考。
一、调节阀选型的重要性工业应用场景中,不同的流体需要不同类型的调节阀来进行控制。
因此,在进行调节阀选型时,必须考虑以下因素:管道直径,介质流量,压力,温度和特殊修饰等。
正确的调节阀选型不仅能够提高设备的稳定性和效率,还能降低设备成本和能源浪费。
二、调节阀的评估参数在进行调节阀选择和计算选型时,需要考虑的参数包括:控制流量,压力差,介质温度,阀门的最大开度和密度等。
以下是一些重要参数的详细说明:1、流量控制流量控制是调节阀最重要的功能之一。
在选择调节阀类型时,必须根据管道的直径和预期的最大流量来选择。
对于低流量应用,通常使用节流阀或减压阀控制流量。
而对于高流量应用,则需要选择单座调节阀或双座调节阀。
2、压力差每个调节阀都具有一个特定的压力差,它表示了流体通过阀门内部时产生的压力变化量。
对于高压应用,必须选择特殊设计的阀门以确保其能够承受高压。
在计算压差时,需要输送介质的流速和密度等因素纳入考虑。
3、介质温度介质温度将直接影响调节阀的设计和选择。
高温应用需要选择特殊材料(例如杂金属)制造的阀门,在因高温导致的膨胀和收缩时,其具有更好的耐受性。
温度也将影响阀门的密闭性和耐蚀性。
4、阀门的最大开度每个调节阀都具有一个特定的最大开度,也称为最大流量。
此参数将直接影响阀门对流量的控制能力。
当阀门接近最大开度时,其控制能力将达到最高。
5、密度不同的介质具有不同的密度,这将直接影响流体通过阀门时的压力。
因此,在进行调节阀选型时,需要将介质的密度纳入计算。
特别是在高压和高流量应用中,密度的影响将更为显著。
三、调节阀计算选型在进行调节阀计算选型时,首先需要定义管道的直径和预期的流量。
(完整版)阀门选型与计算
(完整版)阀门选型与计算阀门选型与计算1. 引言本文档旨在介绍阀门的选型与计算。
阀门是流体控制系统中的重要组成部分,用于控制流体的流量、压力和方向。
正确选型和计算阀门是确保流体控制系统正常运行的关键步骤。
2. 阀门选型在选择适合的阀门之前,首先要考虑以下几个因素:- 流体介质:不同的流体介质具有不同的特性,例如温度、压力和化学成分等。
确定流体介质的性质是选择合适阀门的首要因素。
- 操作温度和压力:阀门的材料和结构必须能够适应实际操作条件下的温度和压力。
通过了解系统的温度和压力范围,可以选择适当的阀门。
- 流量要求:根据流体控制系统的需要,确定所需的流量范围。
这有助于选择具有适当通径和流量特性的阀门。
- 泄漏要求:不同的应用有不同对泄漏的要求,例如严密性要求高的系统可能需要选择密封性能良好的阀门。
- 结构类型:根据具体的应用需求选择合适的阀门类型,例如蝶阀、截止阀、球阀等。
3. 阀门计算选型合适的阀门后,还需要进行一些计算,以确保阀门能够满足实际需要。
以下几个方面需要考虑:- 流通能力计算:根据流体的流量要求,确定阀门的流通能力,即可通过阀门的流通系数或公称通径来表示。
- 压力损失计算:根据系统的工作压力和阀门的流通能力,计算阀门的压力损失。
这有助于确定是否需要在系统中加入附加的压力增益设备。
- 动力学计算:考虑流体运动的动力学特性,确定阀门的反应时间和阀门的最大操作频率。
这有助于确保阀门能够适应系统的运行要求。
4. 总结阀门的选型和计算是确保流体控制系统正常运行的重要步骤。
通过考虑流体介质、操作条件、流量需求和泄漏要求等因素,选择适当的阀门类型。
同时,进行阀门的流通能力、压力损失和动力学计算,以保证阀门能够满足实际需要。
请根据实际情况进行具体分析和计算,并选择合适的阀门。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《调节阀计算选型培训教材》本学习资料由海王仪器仪表技术开发部全体技术人员花费大量精力编制,在编制过程中得到了海王总裁郑云海先生及同行专家的大力指导和帮助,在此表示感谢!调节阀又称控制阀,是工业自动化过程控制仪表的执行单元,是工业自动化控制的手和足。
正确选择和使用调节阀不仅直接关系到整个系统的正常运行,同时涉及到人生和系统的安全、环保及经济效益等方面。
据了解自控系统不能正常投入运行,其中有70%~80%的原因是执行单元的影响。
随着我国生产的发展系统对流量、压力、温度等参数的过程控制要求不断提高;耐蚀性能、调节精度、可靠性要求也越来越高。
所以正确选择、合理使用调节阀对控制系统有着举足轻重的作用。
《调节阀计算选型资料》可供设计院、企业自动化控制室及工程部有关人员,在调节阀计算选型时参考;对从事调节阀生产、销售、使用、维修人员作为调节阀基础知识的培训教材。
一概述在工业生产中,往往要对被调介质的参数,如温度、压力、流量、液位、物位等进行控制,使其稳定并达到预定的要求。
从而实现生产过程的自动化。
其控制过程简化示意如图1-1。
调节阀接受到调节器送来的(偏差)信号时,它是怎样实现对介质的调节的呢?伯努诺方程告诉我们: (1)就是说流动介质处于任意状态(位置)时,它的能量(总水头)是一个定值(常压力能(静压水头)、—动能(动力水头)。
在不同形状、大小的管道内三种能量(水头)只是相互转换而已。
如图1-2,过水断面A、B两点的总能量(水头)都是等于Z。
在水平管道中,而A、B两点的h—位能(位置水头)是一个定值,则公式(1)可写成:………………………… (2)从图1-3可以看出A、B两点能量(水头)的转换。
能量转换部分h的大小可用下式表示: (3)因为流量:Q=F1V1=F2V2 (4)F 1、F2—分别表示两过流断面面积V1、V2—分别表示两过流断面流体流速。
则将V2代入(3)式设—流体阻力系数。
(5)当调节阀的口径一定、管道直径一定,其流量Q随阻力系数变化而变化。
而阻力系数的变化直接受管道直径既调节阀开度的影响。
就是说调节阀接收到调节器送来的(偏差)信号后,推动阀杆或轴移(转)动,执行机构根据信号的大小,使阀的开度成一定比例开大或关小。
由于阀芯形状和阀芯的位移(开度)建立了一定的数学关系,从而使调节阀的流量Q随节流孔过水断面面积的变化相应的变化,而迅速补偿(调节)被控对象(流体),直至达到平衡。
调节阀选择主要包括以下几个方面:调节阀结构型式和材质的选择;流量特征的选择;调节阀Cv值的计算及口径的选择;许用压差的计算及执行机构的选择;公称压力及温度等级的选择。
调节阀实际上是一个可调节的节流单元,它直接与戒指接触,使用环境十分恶劣、复杂多变。
选型时既要注意适用、安全、可靠性,又要考虑经济性。
总的来说,应根据介质性质、温度、压力及系统工艺要求和其他有关条件来选择,一般可遵循以下几个原则来选取。
1. 调节阀的结构型式应能满足介质温度、压力、流量特性、流向、毒性、调节范围以及密封等要求。
2. 调节阀的材质应能满足介质温度、压力和腐蚀性要求。
3. 调节阀的流量特性应能对调节阀系统进行合理的补偿。
4. 调节阀的口径应能满足工艺上对流量特性的要求。
5. 调节阀的执行机构,输出力应能满足现场使用压差的要求,其刚度应能满足系统稳定性要求。
6. 在特殊情况下,通过定位器、电磁阀、快速排气阀、手轮机构等辅助装置使调节阀满足动作、换向、分程控制等要求。
二 Cv值计算及口径选择流量系数Cv值是调节阀的重要参数,它反映调节阀的能力(容量),根据Cv值的大小来确定调节阀的公称通径。
Cv值的定义是:阀处于全开状态,两端压差为1磅/寸2的条件下,60℉(15.6℃)的清水,每分钟通过阀的美加仑数。
我国流量系数是按公制定义的。
符号为Kv,Kv与Cv的关系是Cv=1.17Kv。
1.液体介质计算:(英制)(公制)…………………….(1)……………(1′)式中Q=最大流量 gpm(美加仑/分) Q=最大流量 m3/hG=比重(水=1)G=比重(水=1)P1=进口压力psiP1=进口压力 100kpa(kgf/cm2)P2=出口压力psiP2=出口压力 100kpa(kgf/cm2)ΔP=P1-P2注意:P1和P2为最大流量时的压力(1) 粘度修正液体粘度大于100SSU(塞波特秒)或者大于20CST(厘斯)即20mm2/s时,计算所要求的Cv值应按下列次序进行粘度修正。
1)不考虑粘度影响,用公式(1)或(1′)求出Cv2)用公式(2)和(3)或者公式(2′)和(3′),求出系数R。
3)从图2-1粘度修正曲线上,求出系数R相对应的Cv的修正系数。
4)用这个修正系数乘上第一步求出的Cv。
5)然后,从Cv值一览表上,选取合适的调节阀口径。
系数R的计算公式(英制)(公制)……………….(2′)(3′)式中Q=最大流量 gpm Q=最大流量 m3/hMcs——进口温度下液体运动粘度系数cstCv——未修正的CvMssu——进口温度下液体粘度SSU(塞波特秒)备注:液体粘度≥200SSU,使用公式(3)或(3′)计算,粘度<200SSU,请把SSU 粘度单位换算成CST粘度单位,再用公式(2)或(2′)计算。
(2)闪蒸修正当饱和温度或接近饱和温度的液体,在流经调节阀节流口时,由于流速加快,液体压力下降,液体内部会产生瞬间快速蒸发。
即液体会产生大量蒸气。
在这种情况小,仍然采用原液体流动的基本定律(公式)计算就不正确了,必须进行(压差)修正。
修正方法如下:△T<2.8℃(5℉)△Pc=0.06P1 (4)△T>2.8℃(5℉)△Pc=0.9(P1-Ps) (5)式中△T=在进口压力下的液体饱和温度与进口温度之差△Pc=计算流量用的允许压差 100kpa(kgf/cm2) absPs=进口温度下液体的绝对饱和压力100kpa(kgf/cm2) abs只有当公式(4)或(5)计算出的△Pc小于调节阀上的实际压差△P时,公式(1)或(1′)必须用△Pc,而不准用△P。
2.气体(一般气体)介质计算如果已知标准状态,即760mmHg(14.7psia)和15.6℃(60℉)条件下的最大流量,下列公式不需经过修正,可直接计算。
(1)△P<时…………(6)…(6′)(2)△P>时 (7)……(7′)式中Q=标准状态下最大流量 ft 3/h Q=标准状态下最大流量 m 3/hG=比重(空气=1) G=比重(空气=1)T=流体温度 ℉ T=流体温度 ℃P 1=绝对进口压力 Psia P 1=绝对进口压力 100Kpa (kgf/cm 2)P 2=绝对出口压力 Psia P 2=绝对出口压力 100Kpa (kgf/cm 2)△P= P 1—P 2 Psia △P= P 1—P 2 100Kpa (kgf/cm 2) 3.过热蒸气介质计算(1) △P <时……(8) …(8′)(2) △P ≥时 (9)………..(9′)式中W=最大流量 Ib e /h W=最大流量 kg/hP 1=绝对进口压力 Psia P 1=绝对进口压力 100Kpa (kgf/cm 2)P 2=绝对出口压力 Psia P 2=绝对出口压力 100Kpa (kgf/cm 2)K=1+(0.0007×过热温度℉) K=1+(0.0013×过热温度℃)△P= P 1—P 2 Psia △P= P 1—P 2 100Kpa (kgf/cm 2) 注意:P 1和P 2是最大流量时的压力。
4.饱和蒸气介质计算…….(10) …….(10′)说明:当P 2<时,应用代替△P ,V 2要用时相对应的值。
式中W=最大流量 Ib/h W=最大流量 kg/hV 1=进口压力下蒸气比容 ft 3/Lb V 1=进口压力下蒸气比容 cm 3/gV 1=出口压力下蒸气比容 ft 3/Lb V 1=出口压力下蒸气比容 cm 3/gP 1=绝对进口压力 Psia P 1=绝对进口压力 100Kpa (kgf/cm 2)P 2=绝对出口压力 Psia P 2=绝对出口压力 100Kpa (kgf/cm 2)△P= P 1—P 2 Psia △P= P 1—P 2 100Kpa (kgf/cm 2)注意:P 1和P 2是最大流量时的压力。
5.开度验算调节阀的口径选取是根据我们计算出来的Cv 值的大小,从样本上套取的认为合适的口径。
由于调节阀在系统中的压降比S 值和调节阀的固有流量特性等的影响。
所以对已选取的调节阀的口径必须进行开度验算,判断所选阀的口径是否满足工艺条件所需,其最大、最小流量的调节是否处在所选调节阀的最佳开度范围内。
开度验算用下列公式验算。
直线流量特性 (11)等百分比流量特性………………………(11′)K—调节阀相对开度。
S—调节阀压降比(调节阀上压降与系数的压降比值)Cvx—计算后选取的调节阀Cv值。
Cvj—计算出来的Cv值。
希望以上资料对你有所帮助,附励志名言3条:1、生命对某些人来说是美丽的,这些人的一生都为某个目标而奋斗。
2、推销产品要针对顾客的心,不要针对顾客的头。
3、不同的信念,决定不同的命运。
第 11 页。