最新人教版初中数学教案教程文件
2024年人教版初中数学教案
2024年人教版初中数学教案一、教学内容本节课选自2024年人教版初中数学教材七年级下册第3章《三角形》的第1节“三角形的概念及性质”。
具体内容包括:三角形的定义、三角形的分类、三角形的内角和定理、三角形的不等式性质。
二、教学目标1. 知识与技能:理解三角形的定义,掌握三角形的分类,了解三角形的内角和定理及不等式性质。
2. 过程与方法:通过观察、实践、探究,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:激发学生对数学的学习兴趣,培养学生合作交流、积极参与的精神。
三、教学难点与重点重点:三角形的定义、分类、内角和定理及不等式性质。
难点:三角形内角和定理的推导和应用。
四、教具与学具准备教具:三角板、量角器、直尺。
学具:练习本、铅笔、三角板。
五、教学过程1. 实践情景引入(5分钟)通过展示生活中的三角形实物,引导学生观察并说出三角形的特征。
2. 知识讲解(15分钟)(1)三角形的定义:由三条线段首尾顺次连接所围成的封闭图形。
(2)三角形的分类:按边分为不等边三角形、等腰三角形、等边三角形;按角分为锐角三角形、直角三角形、钝角三角形。
(3)三角形的内角和定理:三角形的内角和等于180度。
(4)三角形的不等式性质:两边之和大于第三边,两边之差小于第三边。
3. 例题讲解(10分钟)讲解教材第63页例1、例2,巩固三角形的定义、分类及内角和定理。
4. 随堂练习(10分钟)学生完成教材第63页练习1、2、3,巩固所学知识。
5. 小组讨论(5分钟)分组讨论三角形内角和定理的推导过程,培养学生合作交流的能力。
六、板书设计1. 三角形的定义、分类、内角和定理。
2. 三角形的不等式性质。
3. 例题及解题步骤。
七、作业设计1. 作业题目:(1)教材第64页习题1、2、3。
(2)画出一个锐角三角形、一个直角三角形和一个钝角三角形,并求出它们的内角和。
2. 答案:(1)见教材答案。
(2)锐角三角形内角和:小于180度;直角三角形内角和:180度;钝角三角形内角和:大于180度。
2024年人教版七年级下册数学教案全册
2024年人教版七年级下册数学教案全册一、教学内容1. 第一章:数的概念与运算第一节:有理数的乘方与开方第二节:实数的概念与运算第三节:数的估算与无理数2. 第二章:代数式与方程第一节:单项式与多项式第二节:一元一次方程第三节:不等式与不等式组3. 第三章:图形的认识与图形的测量第一节:平行线与相交线第二节:三角形的概念与性质第三节:四边形的概念与性质二、教学目标1. 理解有理数乘方、开方及实数的概念,掌握实数的混合运算方法。
2. 学会解一元一次方程,掌握不等式与不等式组的解法。
3. 掌握平行线、相交线、三角形及四边形的性质,提高空间想象能力。
三、教学难点与重点1. 教学难点:实数的概念、一元一次方程的解法、不等式组的解法、图形的性质。
2. 教学重点:实数的运算、方程与不等式的解法、图形的测量。
四、教具与学具准备1. 教具:三角板、直尺、圆规、多媒体设备。
2. 学具:练习本、铅笔、三角板、直尺。
五、教学过程1. 导入:通过生活实例引入数的概念,激发学生学习兴趣。
2. 新课导入:讲解教材内容,结合例题进行讲解。
3. 随堂练习:设计实践情景,让学生动手操作,巩固所学知识。
6. 课后作业:布置适量的作业,巩固所学知识。
六、板书设计1. 板书内容:章节、重要概念、公式、典型例题、解题步骤。
2. 板书要求:条理清晰、层次分明、重点突出。
七、作业设计1. 作业题目:课后习题1.1、1.2、1.3;课后习题2.1、2.2、2.3;课后习题3.1、3.2、3.3。
2. 答案:课后习题答案附后。
八、课后反思及拓展延伸2. 拓展延伸:针对学生的实际情况,设计拓展性练习,提高学生的思维能力。
重点和难点解析一、教学难点与重点1. 实数的概念与运算:实数是数学中的一个基本概念,包括有理数和无理数。
实数的运算是学生容易出错的地方,需要重点关注。
补充说明:在讲解实数的概念时,可以通过具体例子(如π、√2等)来帮助学生理解无理数的存在。
2024年人教版初中数学七年级下册教案全册
2024年人教版初中数学七年级下册教案全册一、教学内容1. 第1章:有理数1.1 有理数的概念与分类1.2 有理数的加减法1.3 有理数的乘除法1.4 有理数的乘方2. 第2章:一元一次方程2.1 方程的概念2.2 一元一次方程的解法2.3 实际问题与一元一次方程3. 第3章:几何图形3.1 线段、射线与直线3.2 角的概念与分类3.3 三角形的性质3.4 平行线的性质与判定二、教学目标1. 理解有理数的概念,掌握有理数的分类、加减乘除及乘方运算。
2. 掌握一元一次方程的解法,并能解决实际问题。
3. 掌握几何图形的基本概念与性质,培养空间想象能力。
三、教学难点与重点1. 教学难点:有理数的乘除法及乘方运算一元一次方程的解法几何图形的性质及判定2. 教学重点:有理数的运算规律方程的解法几何图形的基本性质四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、尺子、圆规等。
2. 学具:练习本、铅笔、直尺、圆规、量角器等。
五、教学过程1. 实践情景引入:通过生活实例引入有理数的概念与运算。
通过实际问题引入方程的概念。
通过观察身边的几何图形,引入几何图形的性质。
2. 例题讲解:讲解有理数的加减乘除、乘方运算的法则与例题。
讲解一元一次方程的解法及实际应用例题。
讲解几何图形的性质与判定方法。
3. 随堂练习:进行有理数运算的练习。
解答一元一次方程的练习题。
识别与判断几何图形的练习。
4. 课堂小结:六、板书设计1. 有理数的概念、分类及运算规律。
2. 一元一次方程的解法及实际应用。
3. 几何图形的性质与判定。
七、作业设计1. 作业题目:有理数运算练习题。
一元一次方程实际应用题。
几何图形的识别与判断题。
答案:见课后练习册。
八、课后反思及拓展延伸1. 反思本次教学过程中的优点与不足,针对学生掌握程度进行查漏补缺。
2. 拓展延伸:引导学生探索有理数的更多运算性质。
介绍更高层次的方程解法,如二元一次方程组。
引导学生观察生活中的几何图形,培养空间想象能力。
2024年人教版初中数学教案
2024年人教版初中数学教案一、教学内容本节课选自2024年人教版初中数学教材七年级下册第十章《数据的收集与整理》,具体包括:章节一“数据的收集与处理”中的10.1.1“收集数据”,10.1.2“整理数据”。
二、教学目标1. 让学生掌握数据收集的基本方法,了解数据整理的步骤,提高数据处理能力。
2. 培养学生运用数学知识解决实际问题的能力,增强数据分析观念。
3. 培养学生合作交流、积极参与的学习态度,提高他们的实践操作能力。
三、教学难点与重点教学难点:数据收集与整理的方法和步骤。
教学重点:如何将实际问题转化为数学问题,运用数学知识解决实际问题。
四、教具与学具准备教具:多媒体设备、黑板、粉笔、直尺、圆规等。
学具:笔记本、铅笔、直尺、圆规、剪刀、胶水等。
五、教学过程1. 实践情景引入(5分钟)利用多媒体展示学校附近的交通情况,提出问题:“如何收集和整理这些交通数据?”引导学生思考。
2. 教学新课(25分钟)(1)讲解数据收集的方法:问卷调查、观察法、访谈法等。
(2)讲解数据整理的步骤:清洗数据、分类整理、汇总统计等。
(3)通过例题讲解,让学生了解如何将实际问题转化为数学问题。
3. 随堂练习(10分钟)发放练习题,让学生独立完成,巩固所学知识。
4. 小组讨论(10分钟)(1)在实际问题中,如何选择合适的数据收集方法?(2)数据整理的步骤中,哪一步骤最容易出错?如何避免?各小组汇报讨论成果,进行课堂交流。
六、板书设计1. 数据收集方法:问卷调查、观察法、访谈法等。
2. 数据整理步骤:清洗数据、分类整理、汇总统计等。
3. 例题:将实际问题转化为数学问题。
七、作业设计1. 作业题目:(1)收集本班同学的身高数据,进行整理和分析。
(2)观察身边的物体,选择合适的方法收集数据,进行整理和分析。
2. 答案:(1)身高数据整理表格。
(2)物体数据整理表格。
八、课后反思及拓展延伸本节课通过实践情景引入,让学生了解数据收集与整理的实际意义。
2024年新人教版 七年级数学下册 全册教案可打印下载
2024年新人教版七年级数学下册全册教案可打印一、教学内容1. 第五章:相交线与平行线5.1 两条直线的位置关系5.2 平行线的判定与性质5.3 生活中的平行线2. 第六章:数据的收集与整理6.1 数据的收集6.2 数据的整理与表示6.3 概率初步二、教学目标1. 理解并掌握相交线与平行线的性质及其在实际中的应用。
2. 学会进行数据的收集、整理和表示,并能够运用概率知识解决实际问题。
3. 培养学生的逻辑思维能力和解决实际问题的能力。
三、教学难点与重点1. 教学难点:平行线的判定与性质的理解数据的整理与概率的计算2. 教学重点:两条直线的位置关系及平行线的应用数据的收集、整理和表示方法四、教具与学具准备1. 教具:直尺、量角器、三角板数据收集表格、统计图表2. 学具:练习题、草稿纸数据收集与整理工具(如计算器、调查问卷等)五、教学过程1. 实践情景引入:通过展示实际生活中的相交线和平行线现象,激发学生对本章学习的兴趣。
2. 例题讲解:讲解相交线与平行线的判定方法和性质,配合实际例题进行分析。
3. 随堂练习:分组讨论并解决实际问题,巩固所学知识。
4. 数据的收集与整理:引导学生进行数据收集、整理和表示的实践操作,解释概率初步概念。
六、板书设计1. 相交线与平行线的判定与性质2. 数据的收集、整理与表示方法3. 概率初步概念及计算七、作业设计1. 作业题目:练习题5.1、5.2、6.1、6.2各2题。
附加题:设计一份调查问卷,收集数据并整理成统计图表。
2. 答案:练习题答案将在课后统一发放。
八、课后反思及拓展延伸1. 反思:2. 拓展延伸:鼓励学生探索生活中的相交线和平行线现象,以及数据的收集与整理的实际应用。
推荐相关阅读材料,加深学生对概率概念的理解。
重点和难点解析1. 教学内容的选择与安排2. 教学目标的设定3. 教学难点与重点的确定4. 教学过程中的实践情景引入和例题讲解5. 板书设计6. 作业设计及答案解析7. 课后反思与拓展延伸一、教学内容的选择与安排在教学内容的选择上,应确保章节的连贯性和逻辑性,将抽象的数学概念与生活实际相结合。
2024年新课标人教版七年级下全册数学教案
2024年新课标人教版七年级下全册数学教案一、教学内容本节课选自2024年新课标人教版七年级下册数学教材第五章《三角形的初步认识》,具体内容包括:5.1三角形的定义及性质,5.2三角形的分类,5.3三角形的周长和面积。
二、教学目标1. 知识目标:使学生掌握三角形的定义,理解三角形的性质,掌握三角形的分类,掌握三角形周长和面积的计算方法。
2. 能力目标:培养学生运用三角形知识解决实际问题的能力,提高学生的空间想象力和逻辑思维能力。
3. 情感目标:激发学生对数学学习的兴趣,培养学生的合作意识和探究精神。
三、教学难点与重点重点:三角形的定义及性质,三角形的分类,三角形周长和面积的计算方法。
难点:三角形性质的理解,三角形面积公式的推导。
四、教具与学具准备教具:三角板、直尺、圆规、多媒体设备。
学具:三角板、直尺、圆规、练习本。
五、教学过程1. 导入:通过展示生活中的三角形实物,引导学生发现三角形的特征,从而引出本节课的主题。
2. 新课导入:(2)三角形的性质:引导学生通过画图、观察、思考,发现三角形的性质,如内角和等于180°等。
(3)三角形的分类:根据三角形的边长和角度,将三角形分为不等边三角形、等腰三角形、等边三角形、直角三角形等。
(4)三角形周长和面积的计算:通过实例讲解,引导学生掌握三角形周长和面积的计算方法。
3. 例题讲解:讲解典型例题,巩固所学知识,引导学生运用所学知识解决实际问题。
4. 随堂练习:设计有针对性的练习题,让学生当堂巩固所学知识。
六、板书设计1. 三角形的定义:由三条线段首尾顺次连接所围成的图形。
2. 三角形的性质:内角和等于180°,两边之和大于第三边等。
3. 三角形的分类:不等边三角形、等腰三角形、等边三角形、直角三角形等。
4. 三角形周长和面积的计算方法。
七、作业设计1. 作业题目:(3)应用题:运用三角形的周长和面积知识,解决实际问题。
2. 答案:见附页。
人教版七年级上册数学教案2024模板
人教版七年级上册数学教案2024模板一、教学目标1.让学生掌握有理数的概念、性质及运算方法。
2.培养学生的逻辑思维能力、分析问题和解决问题的能力。
3.激发学生学习数学的兴趣,提高学生的数学素养。
二、教学重难点1.教学重点:有理数的概念、性质及运算方法。
2.教学难点:有理数的混合运算。
三、教学准备1.教学课件2.练习题3.小组讨论材料四、教学过程第一课时:有理数的概念与性质1.导入新课(1)引导学生回顾小学阶段学习的整数、分数知识,为新课铺垫。
(2)提问:你们知道有理数吗?它有什么性质?2.知识讲解(1)介绍有理数的概念:有理数包括整数和分数,可以表示为两个整数的比。
(2)讲解有理数的性质:有理数有正有负,0既不是正数也不是负数。
(3)举例说明有理数的分类:正有理数、负有理数、0。
3.练习与讨论(1)让学生完成练习题,巩固有理数的概念。
(2)学生反馈学习情况,提出疑问。
第二课时:有理数的运算1.导入新课(1)回顾上节课学习的有理数概念和性质。
(2)提问:你们知道有理数之间可以进行哪些运算吗?2.知识讲解(1)讲解有理数的加法、减法、乘法、除法运算规则。
(2)举例说明有理数的混合运算顺序。
3.练习与讨论(1)让学生完成练习题,巩固有理数的运算方法。
(2)学生反馈学习情况,提出疑问。
第三课时:有理数的混合运算1.导入新课(1)回顾上节课学习的有理数运算方法。
(2)提问:你们知道如何进行有理数的混合运算吗?2.知识讲解(1)讲解有理数的混合运算顺序:先乘除后加减,同级运算从左到右。
(2)举例说明有理数的混合运算过程。
3.练习与讨论(1)让学生完成练习题,巩固有理数的混合运算方法。
(2)学生反馈学习情况,提出疑问。
五、课后作业1.完成课后练习题,巩固有理数的概念、性质及运算方法。
2.收集生活中的有理数例子,下节课分享。
六、教学反思1.本节课是否达到了预期的教学目标?2.学生在学习过程中是否积极参与,课堂氛围是否活跃?3.是否存在教学难点,如何解决?4.课后作业是否合理,能否有效巩固所学知识?重难点补充:第二课时:有理数的运算2.知识讲解(1)讲解有理数的加法、减法、乘法、除法运算规则时,插入具体例子和对话:“同学们,当两个正数相加,结果会是怎样的呢?比如2+3,结果是5,仍然是正数。
2024年最全面新人教版七年级数学下册教案全册精华版
2024年最全面新人教版七年级数学下册教案全册精华版一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面几何初步6.1:三角形的内角和6.2:三角形的性质6.3:全等三角形6.4:等腰三角形6.5:平行四边形二、教学目标1. 理解并掌握相交线和平行线的性质及判定方法。
2. 掌握三角形内角和定理及三角形的性质,学会运用全等三角形的判定。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用全等三角形的判定方法等腰三角形的性质和应用2. 教学重点:掌握三角形内角和定理理解并运用全等三角形的判定四、教具与学具准备1. 教具:三角板、直尺、圆规、量角器2. 学具:练习本、铅笔、三角板、直尺五、教学过程1. 实践情景引入:引导学生观察教室内的平行线和相交线,激发兴趣提问学生:在生活中,你们还见过哪些平行线和相交线?2. 例题讲解:讲解相交线和平行线的判定方法通过例题,展示三角形内角和定理的应用讲解全等三角形的判定方法及等腰三角形的性质3. 随堂练习:让学生独立完成练习题,巩固所学知识引导学生互相讨论,解决问题4. 知识拓展:介绍平面几何的发展历程拓展平行线和相交线在实际生活中的应用六、板书设计1. 相交线与平行线的判定方法2. 三角形内角和定理3. 全等三角形的判定方法4. 等腰三角形的性质七、作业设计1. 作业题目:练习相交线和平行线的判定计算三角形的内角和判断全等三角形运用等腰三角形的性质解决问题2. 答案:八、课后反思及拓展延伸1. 教学反思:分析学生的学习情况,调整教学方法2. 拓展延伸:鼓励学生课后观察生活中的几何图形,发现数学之美推荐相关书籍和资料,激发学生的学习兴趣组织实践活动,提高学生的实际操作能力重点和难点解析1. 教学难点与重点的确定2. 实践情景引入的设计3. 例题讲解的深度和广度4. 随堂练习的针对性和有效性5. 知识拓展的适时性和适度性6. 作业设计的系统性和层次性7. 课后反思及拓展延伸的实践性一、教学难点与重点的确定(1)难点解析:相交线与平行线的判定和应用是学生容易混淆的部分,需通过直观的教具演示和实际例题讲解,帮助学生建立清晰的概念。
2024-2025学年初中数学七年级上册(人教版)教案1.1正数和负数
第一章有理数1.1 正数和负数教学目标课题 1.1 正数和负数授课人素养目标1.理解具有相反意义的量及正数、负数的意义.2.会用正数、负数表示具体情境中具有相反意义的量,体会数学知识与生活的密切联系,进一步增强符号意识,培养应用意识.3.理解0的意义,体会0在解决实际问题中的“基准”作用,初步培养抽象能力.教学重点1.能理解正数、负数的概念,会判断一个数是正数还是负数.2.会用正数、负数表示具体情境中具有相反意义的量.教学难点1.用正数、负数表示具有相反意义的量时描述向指定方向变化的情况.2.理解0的意义,体会0在解决实际问题中的“基准”作用.教学活动教学步骤师生活动活动一:创设情境,导入新课【情境导入】1.观察下面三幅图,这些自然数、分数以及小学时学过的小数是由生活实际的需要产生的,那么它们能否完全满足我们目前生产、生活的需要呢?2.思考教材P1引言中的三个问题.在这三个问题中,“零下3摄氏度”“亏损10万元”“减少0.7%”能够用上面的数表示吗?这说明了什么?【教学建议】引导学生通过观察三幅图,体会小学学过的几个数都是基于现实需要产生的,然后引导学生思考三个问题,提出疑问,使学生产生探索欲望.设计意图先通过图片形式让学生体会已学过的数的产生具有必然性与局限性,然后通过列举的三个问题为引入新知做准备.活动二:实践探究,获取新知探究点1 具有相反意义的量及正数、负数的认识Ⅰ.具有相反意义的量问题1结合下面图示,对于引言中的问题(1),我们如何用数区分“零上3摄氏度”和“零下3摄氏度”呢?观察图①,零上温度和零下温度是以0 ℃为分界点的具有相反意义的量.观察图②中的天气预报可以看出,零上3摄氏度用3 ℃表示,零下3摄氏度用-3 ℃表示.问题2类似地,对于引言中的问题(2)(3),应如何用【教学建议】这里要结合教材引言中的问题进行分析,其中第一个问题与生活实际密切相关,学生通过平时看天气预报已经对此有一定的了解,教师要结合实际情境进行说明.可在最后指出具有相反意义的量的一些特点.“属性相同”,也就是同类量,比如“盈利”与“亏损”是同类量,但“盈利”与“减少”就不是设计意图借助生活实例,引导学生理解具有相反意义的量,通过相应出现的数,进一步引入正数、负数的概念,并借此体会正数、负数的意义.数分别表示“盈利50万元”“亏损10万元”以及“增长7.8%”“减少0.7%”呢?如果用“50万元”表示盈利50万元,就可以用“-10万元”表示亏损10万元.如果用“7.8%”表示增长7.8%,就可以用“-0.7%”表示减少0.7%.问题3通过问题1,2,你认为具有相反意义的量有哪些特点?成对出现、属性相同(同类量)、意义相反.Ⅱ.正数、负数的认识问题1通过上面对“具有相反意义的量”的介绍,我们已经知道有-3,-10,-0.7%这样的数,对于这种类型的数,我们该如何进行定义?概念引入:问题2正数前面的“+”号和负数前面的“-”号是否都可以去掉?为什么?正数前面的“+”号可以去掉也可以不去掉,负数前面的“-”号不能去掉.因为正数就是大于0的,加不加“+”号都没有影响;但对负数而言,只有在正数前面加上“-”号才是负数,所以“-”号不能去掉.如果一个问题中出现具有相反意义的量,就可以用正数和负数分别表示它们.我们一起来看下面的例题.例1(教材P3例1)某校组织学生去劳动实践基地采摘橘子,并称重、封装.一箱橘子的标准质量为2.5 kg.如果用正数表示超过标准的质量,那么(1)比标准质量多65 g和比标准质量少30 g各怎么表示?(2)50 g,-27 g各表示什么意思?填空分析:(1)前面我们讲到“零上温度和零下温度是以0 ℃为分界点的具有相反意义的量”,那么本题中的分界点是标准质量2.5 kg.(2)题目中比标准质量多×× g 和比标准质量少×× g 是具有相反意义的量.解:(1)比标准质量多65 g用+65 g表示,比标准质量少30 g用-30 g表示.(2)50 g表示这箱橘子的质量比标准质量多50 g,-27 g表示这箱橘子的质量比标准质量少27 g.【对应训练】教材P3练习同类量;“意义相反”指变化的方向相反,不要与意义相近混淆(比如增长与增加就不构成具有相反意义的量).另外需注意:具有相反意义的量要求意义相反,但不要求数量相等.如盈利3`000元与亏损400元是具有相反意义的量.【教学建议】这里注意引导学生正确理解正数、负数的概念.注意前面有“-”号的数不一定是负数,比如-(-3)就不是负数,这涉及后面的知识,教师知道即可,如学生有疑问可适当解释,本课时不作要求. 【教学建议】例1可让学生回答下什么是“分界点”,什么是具有相反意义的量,便于加深理解.设计意图探究点20的意义正数和负数在实践中有着广泛的应用.如图,在表示某地的高度时,通常以海平面为基准,用0 m表示海平面的海拔.【教学建议】教师提醒学生注意,生活中有在用正数、负数表示具有相反意义的量的基础上,以海拔说明0的“基准”作用,丰富0的意义. 用正数表示高于海平面的海拔,用负数表示低于海平面的海拔,如图中用正数、负数分别表示世界最高峰的海拔和我国陆地最低处的海拔.问题1结合上面这个实际应用和上面所学知识,你认为0还只仅仅表示“没有”吗?0是正数与负数的分界.0 ℃是一个确定的温度,海拔0 m是一个确定的海拔.0已不只是表示“没有”.问题2(教材P4思考)如图①是地理中的分层设色地形图,图②是手机中的部分收支款账单,其中的正数和负数的意义分别是什么?你能再举一些用正数、负数表示具有相反意义的量的例子吗?图①中的正数表示A地高于海平面4 600 m,负数表示B地低于海平面100 m.图②中的正数表示收入15元,负数分别表示支出10元、支出30元.其他例子:比如叶宇同学向南走20 m记为+20 m,那么他向北走30 m可记为-30 m.例2(教材P4例2)(1)一个月内,李明体重增加1.2 kg,张华体重减少0.5 kg,刘伟体重无变化,写出他们这个月的体重增长值.(2)四种品牌的手机今年第二季度的销售量与第一季度相比,变化率如下:A品牌减少2%,B品牌增长4%,C品牌增长1%,D品牌减少3%.写出今年第二季度这些品牌的手机销售量的增长率.填空分析:第(1)小题要求写出“增长值”,所以,用正数表示体重增加量,用负数表示体重减少量.这样,直接翻译“体重减少1 kg”就是体重增长-1 kg.第(2)小题可以此类推.解:(1)这个月李明体重增长1.2 kg,张华体重增长-0.5 kg,刘伟体重增长0 kg.(2)四种品牌的手机今年第二季度销售量的增长率是:A品牌-2%,B品牌4%,C品牌1%,D品牌-3%.追问增长-2%是什么意思?什么情况下增长率是0?增长-2%就是减少2%.第二季度的手机销售量与第一季度相同时,增长率是0.【对应训练】些具有相反意义的量没有明确的分界,一般把某一个量规定为“0”,即基准,习惯上,超过基准的部分用正数表示,低于基准的部分用负数表示.【教学建议】这个问题2继续说明0作为正数、负数的“分界”,在解决实际问题中的“基准”作用.注意例子中地形图上的海拔一般不标单位,实际采用米作单位W.手机收付款的收支平衡可以用0表示.【教学建议】用正数、负数表示具有相反意义的量时,难点是描述向指定方向变化的情况,即:向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示.这与学生的日常经验有一定的矛盾,需要一个“心理转换”:把“体重减少0.5 kg”,转换为“体重增加-0.5 kg”,需要对“负”与“正”的相对性有较好的理解.实际上,只要问题中包含具有相反意义的量,就可以用正数和负数分别表示,而哪个量用负数表示,可以视实际需要而定,教学时要注意引导.教材P5练习.活动三:知识升华,巩固提升例3(教材P5习题1.1第6题)某班七组同学分别测量同一座楼的高度,测得的数据(单位:m)分别是:79.4,80.6,80.8,79.1,80,79.6,80.5.这些数据的平均值是多少?以平均值为标准,用正数表示超出的部分,用负数表示不足的部分,它们对应的数分别是什么?解:平均值是(79.4+80.6+80.8+79.1+80+79.6+80.5)÷7=560÷7=80.即这些数据的平均值是80 m.它们对应的数分别是-0.6 m,0.6 m,0.8 m,-0.9 m,0 m,-0.4 m,0.5 m.【对应训练】1.体育锻炼标准规定:13岁男生每分钟做22个仰卧起坐为达标,超过标准的个数用正数表示,不足标准的个数用负数表示.八位同学的成绩分别记录为:+3,-1,+1,0,-2,+2,+4,-3.这八位同学中达标的有(B)A.4人B.5人C.6人D.8人2.某校七年级利用劳动实践课开展创意点心制作比赛活动.李龙制作了一盒精美点心(共计6枚),现在他把6枚点心称重(单位:g)后统计列表如下:第1枚第2枚第3枚第4枚第5枚第6枚68.4 g 71.3 g 70.7 g 68.6 g 69.1 g 72 g为了简化运算,李龙依据比赛的标准质量,把超出部分记为正,不足部分记为负,列出下表(数据不完整),请你把表格补充完整:第1枚第2枚第3枚第4枚第5枚第6枚-1.6 g +1.3 g +0.7 g -1.4 g -0.9 g +2 g解:补充表格如上所示.【教学建议】对于例题中求平均值,小学时已经学过,只要将各个数据相加求和再除以7即可,这个可由学生自主完成.难点主要在于以平均值为标准,用负数表示不足的部分.这里没学有理数的加减运算,可让学生用较大数减去较小数,然后根据具有相反意义的量的知识来表示.设计意图安排此例题和对应训练是想让学生体会以平均值为标准,用正数表示超出的部分,用负数表示不足的部分的方法.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是正数,什么是负数,0是什么数?2.怎么表示具有相反意义的量?3.0的意义是什么?【知识结构】【作业布置】1.教材P5习题1.1第1,2,3,4,5题.2.《创优作业》主体本部分相应课时训练.板书设计1.1 正数和负数1.具有相反意义的量:①“零上3摄氏度”与“零下3摄氏度”②“盈利50万元”与“亏损10万元”……2.正数和负数教学反思本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分.学生通过经历讨论、探索、交流、合作等过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,提升学生的能力,促进学生的发展,使每个学生在教学中都能得到收获.解题大招一用正数、负数表示具有相反意义的量当题目中已明确“一种意义”的量对应的是正数(负数)时,我们就可以判断“与之具有相反意义”的量所对应的是负数(正数).如果没有明确哪种意义的量用正数表示,那么我们可以任选一种意义的量用正数表示,而另一种意义的量必须用负数表示.例1(1)在知识竞赛中,如果用-10分表示扣10分,那么加20分记为(C)A.+10分B.-10分C.+20分D.-20分(2)如果风车顺时针旋转66°,记作+66°,那么逆时针旋转78°,记作(A)A.-78°B.78°C.-12°D.12°(3)我国古代数学名著《九章算术》中对正数和负数的概念注有“今两算得失相反,要令正负以名之”.如:库管员把仓库运进30 t粮食记为“+30”,则“-30”表示运出30 t粮食.解题大招二用正负数表示允许偏差例2某品牌饮料外包装上标明“净含量:200 mL ±5 mL”,随机抽取四种口味的这种饮料分别检测如表.其中,净含量不合格的是(B)种类原味草莓味香草味巧克力味净含量/ mL 195 210 200 205A.原味B.草莓味C.香草味D.巧克力味分析:先计算净含量范围,比较即可求解.由题目中200 mL±5 mL可知,200+5=205(mL),200-5=195(mL),所以净含量合格范围是195 mL~205 mL之间.因为210>205,所以净含量不合格的是草莓味.故选B.解题策略:解这类题关键是知道“±××”表示的是允许偏差的范围.以本题为例,200 mL±5 mL表示饮料净含量最大可以是(200+5)mL,最小可以是(200-5)mL.培优点实际问题中“基准”的相对性例如图,已知摩天轮的最高点距地面165 m,最低点距地面5 m.(1)若以地面为基准,则摩天轮最高点和最低点的高度分别如何表示?(2)若以摩天轮最低点的位置为基准,则最高点和地面的高度分别如何表示?分析:(1)以地面为0 m时,高出地面都记为正数;(2)以该摩天轮最低点的位置为0 m时,最高点的高度为正数,地面高度为负数.解:(1)若以地面为基准,该摩天轮最高点和最低点的高度分别表示为+165 m,+5 m.(2)若以该摩天轮最低点的位置为基准,则最高点的高度为165-5=160(m).最高点的高度可表示为+160 m,地面高度表示为-5 m.。
2024年人教版初中数学七年级下册教案全册
2024年人教版初中数学七年级下册教案全册一、教学内容1. 第五章:相交线与平行线1.1 探索直线交点1.2 平行线的判定与性质1.3 平行线的应用2. 第六章:平面几何初步2.1 角的概念与性质2.2 三角形的分类与性质2.3 四边形的性质与判定3. 第七章:一元一次不等式与不等式组3.1 不等式的概念与性质3.2 一元一次不等式的解法3.3 不等式组的解法与应用4. 第八章:实数4.1 实数的概念与分类4.2 实数的运算4.3 实数与数轴二、教学目标1. 理解并掌握相交线、平行线的性质与判定方法,能够解决实际问题。
2. 掌握平面几何图形(角、三角形、四边形)的性质、分类与判定,培养空间想象能力。
3. 学会一元一次不等式与不等式组的解法,能够解决实际问题,提高逻辑思维能力。
4. 理解实数的概念,掌握实数的运算方法,培养运算能力。
三、教学难点与重点1. 教学难点:平行线的判定与性质、三角形与四边形的性质与判定、一元一次不等式与不等式组的解法、实数的概念与运算。
2. 教学重点:相交线与平行线的性质、平面几何图形的性质与判定、不等式的解法、实数的运算。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型。
2. 学具:直尺、圆规、量角器、练习本、笔。
五、教学过程1. 导入:通过实践情景引入,激发学生学习兴趣。
1.1 以生活中的实例(如斑马线、操场跑道等)引入相交线与平行线的概念。
1.2 通过观察几何模型,引导学生发现三角形、四边形的性质。
1.3 以实际问题的形式,让学生感受不等式与实数的应用。
2. 新课导入:讲解新课内容,阐述重点与难点。
2.1 利用多媒体教学设备,展示相交线、平行线的性质与判定方法。
2.2 通过例题讲解,让学生掌握平面几何图形的性质与判定。
2.3 结合实际例题,引导学生学会一元一次不等式与不等式组的解法。
2.4 通过实数的运算练习,让学生掌握实数的概念与运算方法。
3. 随堂练习:巩固所学知识,检验学习效果。
2024年数学初一教案人教版初一数学教学教案
2024年数学初一教案人教版初一数学教学教案教案主题:第一章《有理数》第一节《有理数的概念》教学目标:1.让学生理解有理数的定义和分类。
2.培养学生运用有理数进行简单运算的能力。
3.培养学生的数感和逻辑思维能力。
教学重点:1.有理数的定义和分类。
2.有理数的运算规则。
教学难点:1.正负数的理解。
2.有理数的运算。
教学准备:1.教学课件。
2.练习题。
教学过程:一、导入1.利用课件展示生活中的实例,如温度计、水位、身高、体重等,让学生观察这些实例中出现的数。
2.引导学生思考:这些数有什么共同特点?它们与自然数、整数有什么不同?二、新课讲解1.有理数的定义:整数和分数统称为有理数。
2.有理数的分类:正有理数、0、负有理数。
3.正负数的理解:以温度为例,零上温度为正数,零下温度为负数;以水位为例,水位高于标准水位为正数,低于标准水位为负数。
4.有理数的运算规则:a)同号相加,异号相减。
b)正负号相乘,同号为正,异号为负。
c)0乘任何数都等于0。
三、案例分析1.出示几个实例,让学生判断这些数是有理数还是无理数,并说明原因。
a)3.14b)√2c)5/2d)-√32.让学生举例说明有理数的分类。
四、课堂练习b)将下列有理数按照正负分类:5,-2,0,1/2,-3/4。
c)计算:3+(-2),-5+1,-12,0×(-3)。
2.老师针对学生的答案进行讲解和指导。
五、课堂小结1.回顾本节课学习的有理数的概念、分类和运算规则。
2.强调有理数在生活中的应用,培养学生的数感和实际应用能力。
六、课后作业(课后自主完成)b)将下列有理数按照正负分类:4,-1/2,0,3/4,-5。
c)计算:-3+2,2(-1),-1×(-2),0×5。
2.家长签字确认。
教学反思:1.在讲解有理数的分类时,可能过于简化,未能充分挖掘学生的思维能力。
2.课堂练习环节,部分学生可能因为紧张或理解不深,未能完成练习题。
2024年新课标人教版七年级下全册数学教案
2024年新课标人教版七年级下全册数学教案【教学目标】1.让学生掌握本册教材的重点知识和技能。
2.培养学生的数学思维能力,提高解决问题的能力。
3.增强学生对数学的兴趣,激发学生的自主学习意识。
【教学内容】第一章:相交线与平行线第二章:平面图形的性质与证明第三章:数据的收集、整理与分析第四章:不等式与不等式组第五章:概率初步【教学重点与难点】一、相交线与平行线重点:相交线的性质,平行线的判定与性质。
难点:平行线性质的证明。
二、平面图形的性质与证明重点:三角形、四边形、圆的性质与证明。
难点:几何图形性质的证明。
三、数据的收集、整理与分析重点:数据的收集、整理与分析方法。
难点:数据分析的实际应用。
四、不等式与不等式组重点:不等式的解法,不等式组的解法。
难点:不等式组的解法及应用。
五、概率初步重点:概率的定义,概率的计算。
难点:概率的实际应用。
【教学步骤】一、相交线与平行线1.引入:通过生活中的实例,让学生感受相交线与平行线在实际中的应用。
2.讲解:讲解相交线与平行线的性质,以及判定方法。
3.练习:让学生在练习本上完成相关练习题,巩固知识。
二、平面图形的性质与证明1.引入:通过生活中的实例,让学生感受几何图形在实际中的应用。
2.讲解:讲解三角形、四边形、圆的性质与证明方法。
3.练习:让学生在练习本上完成相关练习题,巩固知识。
三、数据的收集、整理与分析1.引入:通过生活中的实例,让学生感受数据分析在实际中的应用。
2.讲解:讲解数据的收集、整理与分析方法。
3.练习:让学生在练习本上完成相关练习题,巩固知识。
四、不等式与不等式组1.引入:通过生活中的实例,让学生感受不等式与不等式组在实际中的应用。
2.讲解:讲解不等式的解法,不等式组的解法。
3.练习:让学生在练习本上完成相关练习题,巩固知识。
五、概率初步1.引入:通过生活中的实例,让学生感受概率在实际中的应用。
2.讲解:讲解概率的定义,概率的计算。
3.练习:让学生在练习本上完成相关练习题,巩固知识。
2024人教版数学七年级上册教案
2024人教版数学七年级上册教案第一章丰富的图形世界第1节几何图形一、教学目标1.了解几何图形的概念,能够识别生活中的几何图形。
2.培养学生的观察能力和空间想象能力。
3.激发学生对几何学的兴趣,提高学生的数学素养。
二、教学重难点重点:几何图形的基本概念和识别。
难点:空间想象能力的培养。
三、教学准备1.准备一些生活中常见的几何图形实物或图片。
2.准备教学课件。
四、教学过程1.导入新课师:同学们,我们日常生活中经常接触到各种各样的图形,你们能举例说明吗?生:例如三角形、正方形、圆形等。
师:很好,这些图形都属于几何图形,今天我们就来学习几何图形的基本概念。
2.讲解新课(1)几何图形的概念师:几何图形是数学中研究的一种基本对象,它包括点、线、面等元素。
请大家观察一下,我们教室里的物品,哪些是几何图形?生:黑板、窗户、课桌等。
(2)几何图形的分类师:几何图形可以分为平面图形和立体图形两大类。
平面图形包括三角形、四边形、圆等,立体图形包括圆柱、圆锥、球等。
请大家举例说明。
生:三角形、正方形、圆形是平面图形,圆柱、圆锥、球是立体图形。
(3)几何图形的性质师:几何图形具有一些基本性质,如三角形的三边关系、四边形的内角和等。
这些性质对于我们解决实际问题有很大的帮助。
3.实例分析师:下面我们来看一些实例,请大家分析这些实例中包含哪些几何图形。
(1)图片实例:展示一张包含多种几何图形的图片,如建筑、自然景观等。
(2)实物实例:展示一些生活中常见的几何图形实物,如球、立方体等。
4.课堂练习师:现在请大家来做一些练习,巩固我们刚刚学习的知识。
A.篮球B.课桌C.水杯A.正方形B.圆形C.球师:今天我们学习了几何图形的基本概念、分类和性质。
通过学习,我们知道了生活中的许多物品都可以用几何图形来表示。
希望大家能够在日常生活中多观察、多思考,发现更多的几何图形。
五、课后作业1.复习几何图形的基本概念、分类和性质。
2.完成课后练习题。
2024年新人教版七年级数学下册教案全册
2024年新人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线5.1 两条直线的位置关系5.2 平行线的性质与判定5.3 两条平行线的距离2. 第六章:概率初步6.1 概率的基本概念6.2 概率的计算6.3 概率的实际应用3. 第七章:三角形7.1 三角形的性质7.2 三角形的判定7.3 三角形的面积二、教学目标1. 理解并掌握相交线与平行线的性质和判定方法,能够运用相关知识解决实际问题。
2. 了解概率的基本概念,学会计算简单事件的概率,并能应用于实际情境。
3. 掌握三角形的性质、判定和面积计算方法,培养空间想象能力和逻辑思维能力。
三、教学难点与重点1. 教学难点:平行线的判定方法、概率的计算、三角形面积的计算。
2. 教学重点:相交线与平行线的性质、概率的基本概念、三角形的性质和判定。
四、教具与学具准备1. 教具:多媒体教学设备、几何画板、三角板、量角器。
2. 学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 实践情景引入:通过展示生活中常见的相交线与平行线实例,引导学生发现其中的数学问题。
概率部分,通过掷骰子、抽签等游戏,让学生感受概率现象。
三角形部分,利用图片和实物展示,让学生观察三角形的特点。
2. 例题讲解:结合教材中的例题,详细讲解相交线与平行线的性质、判定方法、概率的计算以及三角形的性质、判定和面积计算。
3. 随堂练习:设计相应的练习题,让学生巩固所学知识,并及时给予反馈。
结合实际情境,设计拓展延伸题,提高学生的应用能力。
六、板书设计1. 相交线与平行线:性质、判定方法、应用实例。
2. 概率:基本概念、计算方法、实际应用。
3. 三角形:性质、判定、面积计算。
七、作业设计1. 作业题目:相交线与平行线:判断下列图形中哪些是平行线,并说明理由。
概率:掷两个骰子,求得到两个相同点数的概率。
三角形:已知三角形两边和一角,求第三边。
2. 答案:相交线与平行线:根据判定方法,判断出平行线。
2024-2025学年初中数学七年级上册(人教版)教案第1课时有理数的减法
2.1.2 有理数的减法第1课时有理数的减法教学目标课题 2.1.2 第1课时有理数的减法授课人素养目标1.经历用转化的数学思想探究有理数减法法则的过程,体会有理数减法与加法的关系,强化推理能力.2.理解并掌握有理数减法法则,增强运算能力.3.能利用有理数减法法则解决简单问题,增强应用意识教学重点体会有理数减法与加法的关系,理解并掌握有理数减法法则. 教学难点理解并掌握有理数减法法则.教学活动教学步骤师生活动活动一:知识回顾,导入新课【回顾导入】有理数加法法则是什么?我们小学学过正数的加、减法,如2+3= 5 ,5-3=2 ,5-2= 3 ,现在我们学习了有理数加法法则,引入了负数,知道(-2)+3= 1 ,联想加法与减法之间的关系,1-3=-2 ,1-(-2)= 3 .那么3-(-3)又该怎么计算呢?接下来我们就来学习有理数的减法. 【教学建议】学生口答,带学生回顾有理数加法法则与小学学过的加、减法,让学生明确减法是加法的逆运算,最后留下疑问.设计意图带学生回顾旧知识,为学习有理数的减法做铺垫,并留下疑问,引发学生思考,激发学习兴趣.活动二:问题引入,合作探究探究点有理数减法法则问题北京某一天的气温是-3~3 ℃,这一天的温差(最高气温减最低气温)是多少?应该怎么列式呢?这一天的温差列式为3-(-3).思考:1.要如何计算3-(-3)呢?减法是加法的逆运算,计算3-(-3),就是要求出一个数,使得它与-3相加得 3 .因为 6 与-3相加得3,所以这个数应该是6,即3-(-3)=6 .①另一方面,我们知道3+(+3)=6 .②由①②,得3-(-3)=3+(+3).③2.从③式能看出减-3相当于加哪个数吗?把3分别换成0,-1,-5,用上面的方法再试试看.从③式能看出减-3相当于加 3 .(1)因为0-(-3)=3 ,0+(+3)= 3 ,所以0-(-3)=0+(+3).(2)因为(-1)-(-3)=2 ,【教学建议】结合温度计,通过数格子的方式,可以直观地得到3 ℃比-3 ℃高 6 ℃.对于(-5)-(-3),也可以结合温度计,由-5 ℃在-3 ℃下方两个格子处,得到(-5)-(-3)=-2.设计意图通过实例(温差的计算)引出有理数的减法,再从减法是加法的逆运算出发,通过一些具体算式,以类比和分类的方式探究两个有理数的差,最后归纳出有理数减法法则,提高学生的推理、概括、运算能力.(-1)+(+3)= 2 , 所以(-1)-(-3)=(-1)+(+3).(3)因为(-5)-(-3)= -2 , (-5)+(+3)= -2 ,所以(-5)-(-3)=(-5)+(+3).由此,我们得到:减去一个负数,等于加这个负数的相反数 .3.计算下面几对式子看看.(1)因为9-8= 1 ,9+(-8)= 1 ; 所以9-8=9+(-8).(2)因为15-7= 8 ,15+(-7)= 8 , 所以15-7=15+(-7). 从中有什么发现?减去一个正数,等于加这个正数的相反数. 4.再计算下面几对式子看看.(1)因为4-0= 4 ,4+0= 4 ;所以4-0=4+ 0 . (2)因为(-2)-0=-2 ,(-2)+0=-2 , 所以(-2)-0=(-2)+ 0 .从中又有什么发现? 减去0等于加 0 .由以上探究可以发现,有理数的减法可以转化为加法来进行.归纳总结:有理数减法法则:减去一个数,等于加这个数的相反数.也可以表示成 a -b =a +(-b )注意:减法在转化为加法运算时有2个要素要发生变化:(1)减号变为加号; (2)减数变为它的相反数.显然,两个有理数相减,差是一个有理数. 例1 (教材P31例4)计算:(1)(-3)-(-5);(2)0-7;(3)2-5;(4)7.2-(-4.8);(5)(-312)-514. 解:(1)(-3)-(-5)=(-3)+5=2; (2)0-7=0+(-7)=-7;(3)2-5=2+(-5)=-3;【教学建议】 带学生分情况探究有理数的减法,引导学生一步步归纳出不同情况下与加法的关系,最后总结出有理数减法法则.【教学建议】指定学生代表上台解答,其他同学在纸上作答,教师巡堂,酌情指出问题.让学生注意归纳有理数减法的运算规律,不要只简单机械地将减法化成加法,可引导学生总结:(1)0减去一个数,等于这个数的(4)7.2-(-4.8)=7.2+4.8=12;(5)(-312)-514=(-312)+(-514)=-834.思考:在小学,只有当a 大于或等于b 时(其中a ,b 是0或正数),我们才能计算a -b (如2-1,1-1).现在,当a 小于b 时,你能计算a -b (如1-2,(-1)-1)吗?一般地,在有理数范围内,较小的数减去较大的数,所得差的符号是什么?结合数轴和一些算式实例可以发现:较小的数减去较大的数,所得差的符号是负号.归纳总结:【对应训练】教材P32练习第1题.相反数;(2)小数减大数,等于大数减小数的差的相反数. 若用竖向的数轴理解减法,就是将减数看作运动起点,被减数看作运动终点,运动的方向和距离就是差的结果,借此可让学生理解小数减大数所得的差是负数,因为在数轴上,大数在小数上方,所以大数必须往下运动才能到达小数,也就是差一定是负数.活动三:知识升华,巩固提升 例2 全班学生分为五个组进行答题游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分.游戏结束时,各组的分数如下:(1)第一名超出第四名多少分? (2)第五名比第四名少多少分?解:由上表可以看出,第一名得了350分,第四名得了-100分,第五名得了-400分.(1)350-(-100)=450. 答:第一名超出第四名450分. (2)(-100)-(-400)=300. 答:第五名比第四名少300分. 【对应训练】1.教材P32练习第2题.2.矿井下A ,B ,C 三处的高度分别是-32.4 m ,-139.8 m ,-91.3 m ,那么A 处比B 处高多少米?C 处比B 处高多少米?A 处比C 处高多少米?解:A 处比B 处高(-32.4)-(-139.8)=107.4【教学建议】提醒学生:在实际问题中,要注意“超出”“高、低”“多、少”等关键词,这往往表示需要用到减法.例2中先带学生回顾有理数比较大小的方法,将分数从大到小排序,得到对应的排名与分数,然后利用有理数减法法则进行计算得到结果.设计意图 将新知识应用到实际问题中,学以致用,加深学生对有理数减法意义的体会,提高运算能力与应用意识.(m );C 处比B 处高(-91.3)-(-139.8)=48.5(m ); A 处比C 处高(-32.4)-(-91.3)=58.9(m ). 活动四:随堂训练,课堂总结【随堂训练】 见《创优作业》“随堂小练”册子相应课时训练. 【课堂总结】 师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.有理数减法法则是什么?2.大数减小数得到的差是正数还是负数?小数减大数呢? 【知识结构】【作业布置】1.教材P 34习题2.1第3,4,6,10,11题. 2.《创优作业》主体本部分相应课时训练.板书设计2.1.2 有理数的减法 第1课时 有理数的减法1.有理数减法法则:减去一个数,等于加这个数的相反数,即a -b=a +(-b )2.两数大小与差的符号之间的关系:若a >b ,则a -b >0;若a <b ,则a -b <0;若a =b ,则a -b =03.有理数减法的实际应用教学反思先带学生回顾有理数加法,并铺垫加法与减法的关系,再通过对现实生活中温差的计算引出本节课的目标和重点.探究过程中通过计算各种算式,分类归纳后发现规律,得出减法向加法转化的方法,然后总结出有理数减法法则,有效提高了学生的推理能力、运算能力.后续进一步将新知识应用到实际问题中,加深学生对减法的理解,增强应用意识.解题大招 利用有理数减法法则进行计算有理数减法的运算步骤①把减号变为加号;②把减数变为它的相反数;③按照有理数加法法则及运算律进行运算一般性结论 (1)大数减小数,差为正数;(2)小数减大数,差为负数;(3)0减去一个数等于这个数的相反数注意 减法没有交换律,被减数与减数的位置不能交换.若交换被减数和减数的位置,则所得的差与原来的差互为相反数(1)12-21-9; (2)(3-9)-(21-3); (3)0-4-(-5)-(-6);(4)|(-114 )-(-213 )|-(-112 ); (5)(-32)-(-12)-5-(-15);(6)(-323 )-(-123 )-(-1.75)-(-234).解:(1)原式 =12+(-21)+(-9)=12+[(-21)+(-9)] =12+(-30) =-18;(2)原式 =(-6)-18=(-6)+(-18) =-24;(3)原式 =(-4)+5+6=(-4)+11 =7;(4)原式 =|(-114 )+213 |+112=(-114 )+213 +112=[(-114 )+112 ]+213=14 +213 =2712 ; (5)原式 =(-32)+12+(-5)+15=[(-32)+(-5)]+(12+15) =(-37)+27=-10;(6)原式 =(-323 )-(-123 )-(-134 )-(-234 )=(-323 )+123 +134 +234=[(-323 )+123 ]+(134 +234 )=(-2)+412=212 .培优点 利用分类讨论思想计算有理数的减法 例 已知有理数x ,y 满足|x |=5,|y |=6. (1)若x >0,y <0,则x -y 的值为 11 ;(2)若|x +y |=x +y ,则x -y 的值为 -1或-11 .解析:因为|x |=5,所以x =5或-5.因为|y |=6,所以y =6或-6. (1)当x >0,y <0时,x =5,y =-6,所以x -y =5-(-6)=11. (2)因为|x +y |=x +y ,所以x +y 是正数或0.只有当x=5或-5,y=6时x+y才是正数或0,所以分两种情况讨论:①当x=5,y=6时,x-y=5-6=-1;②当x=-5,y=6时,x-y=(-5)-6=-11.综上,x-y的值为-1或-11.。
2024-2025学年初中数学七年级上册(人教版)教案6.3.1角的概念
6.3 角6.3.1 角的概念教学目标课题 6.3.1角的概念授课人素养目标1.通过丰富的实例,理解角的有关概念,从运动的观点理解平角、周角.经历运用图形描述现实世界的过程,通过由学生观察实物图形抽象出角的概念,培养学生的抽象概括能力.2.掌握角的表示方法及方位角的相关概念和画法.3.认识度、分、秒等角的度量单位,能进行简单的单位换算.教学重点角的概念和表示方法,画表示方位角的射线及度、分、秒的换算.教学难点度、分、秒的换算.教学活动教学步骤师生活动活动一:创设情境,导入新课【情境引入】在日常生活中,角的实例随处可见.例如,钟面上的时针与分针、棱锥相交的两条棱、三角尺两条相交的边线,等等,都给我们以角的形象.小学的时候我们学习过角,你还记得角的概念是什么吗?观察图形,你能在图中找到角吗?(多媒体展示图片)【教学建议】引导学生结合图形,理解角的概念,能准确找出图中包含的角.教学中还可以再举出一些实例帮助学生理解角的概念,也可让学生自己说说生活中还有哪些物体具有角的形象.设计意图回顾小学学过的角的概念,为本节课的学习奠定基础,同时揭示本节课的课题,明确目标.活动二:实践探究,获取新知探究点1角的相关概念问题1我们已经了解了生活中角的形象,那么什么样的图形才是角呢?角及其相关概念(静态):有公共端点的两条射线组成的图形叫作角,这个公共端点是角的顶点,这两条射线是角的两条边问题2角可以怎样表示?试着填一填下面的表格.角的表示方法【教学建议】学生往往不注意角的边是射线,容易误认为角的边画出部分较长的角较大,画出部分较短的角较小.要在分清线段与射线概念的基础上让学生注意角的边是射线,不是线段.【教学建议】教师强调:(1)表中第①点中,表示顶点的字母O必须放在中间,其他两个字母A,B分别表示角的两边上的点.(2)注意表中第③④点中的表示方法必须在图上标注角度弧线和对应的希腊字母或数字后才能使用,并且只能表示单设计意图在小学的基础上进一步认识角,以静态和动态两个角度理解角的概念,并掌握角的表示方法.独的一个角.教学步骤师生活动问题3如图,能把∠α记作∠O吗?为什么?∠α还可以怎样表示呢?不能把∠α记作∠O,因为以O为顶点的角不止一个.∠α还可以用∠AOB来表示.问题4(1)角还有其他的定义方法吗?角的概念(动态):角也可以看作由一条射线绕着它的端点旋转而形成的图形(2)射线OA绕端点O旋转,当终止位置OB和起始位置OA成一条直线时,形成什么角?继续旋转,OB和OA重合时,又形成什么角?如图,射线OA绕端点O旋转,当终止位置OB和起始位置成一条直线时,形成平角;继续旋转,OB和OA重合时,形成周角.【对应训练】1.下面的四个图形是角的是④(填序号).2.下列四个图中,能用∠1,∠ABC,∠B三种方法表示同一个角的是(A)【教学建议】特别强调:唯有在顶点处只有一个角的情况,才可只用顶点的一个字母来表示这个角,否则分不清这个字母究竟表示哪个角.【教学建议】1.对于角的两种描述,不要求学生记忆,但要让学生认识到,角不仅仅看作是有公共端点的两条射线,还应该注意两条射线所夹的平面区域,应该注意两条射线间的相对位置关系,这一点特别可以从角的旋转方式的形成角度来认识.角不能仅仅简单看成是“有公共端点的两条射线”.2.角的表示方法可在今后的学习中让学生进一步掌握,逐步学会正确的书写格式.教学中要注意呈现角的不同位置.设计意图探究点2 角的度量和单位换算问题1如图,我们常用量角器量角,并且知道角的度量单位是度,除了度,还有别的度量单位吗?还有分、秒这样的度量单位.问题2(1)我们如何理解度、分、秒呢?图形相关概念把一个周角360等分,每一份就是1度的角,记作1°把1度的角60等分,每一份叫作1分的角,记作1′把1分的角60等分,每一份叫作1秒的角,记作1″【教学建议】可让学生自己画出1°的角,形成对它的直观认识.【教学建议】如无特别说明,在初中阶段所说的角一般都指还没有旋转成平角时所成的角,这对于本学段角的研究一般就够了.教学中应向学生指明这一点.在学生已有知识的基础上进一步介绍了角度制的另外两种更小的单位:分和秒以及度、分、秒之间的换算.利用学生对时、分、秒及其运算的已有认识,通过类比,使学生理解和掌握角的度、分、秒及其换算.度、分、秒是常用的角的度量单位.教学步骤师生活动(2)比照上面的定义,若∠α的度数是48度56分37秒,则可记作∠α=48°56′37″.问题3 结合上面度、分、秒的相关定义,填一填下面的空.试一试:借助三角尺,可以画出30°,45°,60°,90°等特殊角;借助量角器,可以画出任何给定度数(如36°,108°)的角.大家动手画一画!【对应训练】教材P172练习.【教学建议】教学中可以引导学生类比时间单位的换算,理解和记忆角度单位的换算.时间有时、分、秒的单位,1时=60分,1分=60秒,时间是六十进制的,角的度、分、秒也是六十进制的.弧度制、密位制等其他角度度量方式可简单跟学生提一下,感兴趣的可自行查阅相关资料,课堂中不必展开.设计意图探究点3方位角问题1 在小学我们学过八大方向,它们是如何表示的?学生自由作答.问题2如图中射线OM和射线ON表示的方向,还有些角度不是刚好在八大方向上,这些角度我们如何更为准确地表示其方向呢?学生自由发言即可.知识引入:方位角概念用角度和方向表示方位的角形成以第一个方向(正北或正南)为角的始边向第二个方向(正东或正西)转动所形成的角表示规则(1)一般以正北或正南的方向为基准,再加上偏东或偏西的角度;(2)习惯上把北或南写在前,把东或西写在后,用两个方向表示,方位角的度数为两条射线的夹角的度数问题3 东北、东南、西北、西南四个方向可如何用方位角表示?问题2中射线OM和射线ON表示的方位角是什么?问题2中射线OM表示的方位角为南偏西25°,射线ON表示的方位角为北偏东30°. 【教学建议】可让学生自己画出1°的角,形成对它的直观认识.【教学建议】教师提醒学生用量角器画这样的射线要注意:(1)一般总以正南或正北方向(指北针的方向)作角的始边;(2)分清东、南、西、北,理解偏东、偏西的意义.可以要求学生自己练习一下在操场上以某一个点为基准点,描述学校一些重要位置的方位,体会这种方法的实际作用.通过对方位角的概念、形成以及表示方法的学习,强化学生对角的理解,培养学生的识图、作图以及识别方向、表示方向的能力,并以此培养学生的空间观念.教学步骤师生活动例(教材P171例1)如图(1),货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上.同时,在它北偏东40°、南偏西10°、西北(北偏西45°)方向上又分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出表示客轮B、货轮C和海岛D方向的射线.解:如图(2),以点O为顶点,表示正北方向的射线为角的一边,画40°的角,使它的另一边OB落在东与北之间.射线OB的方向就是北偏东40°,即客轮B所在的方向.同样的方法可以画出货轮C和海岛D,如图(2)所示(让学生动手自己完成).【对应训练】如图,某轮船上午8时在A处,测得灯塔S在北偏东60°的方向上,向东行驶至中午12时,该轮船在B处,测得灯塔S在北偏西30°的方向上,在图上找到灯塔S的位置.解:灯塔S的位置如图所示.活动三:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.对角的概念有哪两种描述?2.如何表示一个角,有哪些注意事项?3.常用的角的度量单位有哪些,它们之间如何换算?4.如何画表示方位角的射线?【知识结构】【作业布置】1. 教材P178习题6.3第1,2(1)(2),3(1)(2),5,6,13题.2.《创优作业》主体本部分相应课时训练.教学步骤师生活动板书设计教学反思本节课让学生从感知身边的数学开始,通过看图找角、举出身边有关角的例子、画角以及利用动态演示角的形成等引导学生从不同角度理解角的概念,激发学生自觉地探究数学问题,体验发现的乐趣.在学习角的表示方法和角的单位及换算时,通过教师讲授、学生自学、独立尝试、组内交流讨论、集体点评等方式让学生自觉发现问题,解决问题,并通过课堂检测巩固所学内容.解题大招一 角的概念的辨析例1 下列关于角的说法正确的有( A )①角是由不共端点的两条射线组成的图形;②角的边越长,角越大;③在角一边延长线上取一点D ;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A.1个B.2个C.3个D.4个 解析:①有公共端点的两条射线组成的图形叫作角,错误;②角的大小与开口大小有关,角的边是射线,没有长短之分,错误;③角的边是射线,不能延长,错误;④角可以看作由一条射线绕着它的端点旋转而形成的图形,正确.解题大招二 角的单位的换算度、分、秒之间的转化:将度用度、分、秒表示的方法:先将度的小数部分化为分,再将分的小数部分化为秒. 将度、分、秒用度表示的方法:先将秒化为分,再将分化为度;也可以直接将分除以60,秒除以3`600,再相加.例2 (1)48.26°=48 °15 ′36 ″;(2)37°24′36″=37.41 °. 解析:(1)48.26°=48°+0.26×60′=48°+15.6′=48°15′+0.6×60″=48°15′36″.(2)根据1°=60′,1′=60″,得36″=(3660 )′=0.6′,24.6′=(24.660)°=0.41°,所以37°24′36″=37.41°.培优点 钟面角问题例 钟表是我们日常生活中常用的计时工具.如图,在圆形钟面上,把一周等分成12个大格,每个大格等分成5个小格.据此回答下列问题:(1)分针每分钟转 6 °,时针每分钟转 0.5 °;当时间为3:30时,时针和分针的夹角为 75 °.(2)从2:00开始,几分钟后分针第一次追上时针?解析:(1)分针每分钟转(36060 )°,即6°,时针每分钟转(36060×12)°,即0.5°,因为钟表上每一大格是30°,3:30时,时针和分针之间有2.5个大格,所以3:30时,时针和分针的夹角为30°×2.5=75°.解:设x 分钟后分针第一次追上时针.2:00时时针与分针之间有2个大格,所以此时时针和分针的夹角为30°×2=60°.由题意得,6x -0.5x =60,解得x =12011 ,所以12011分钟后分针第一次追上时针.。
2024年新版人教版七年级数学下册教案全册
2024年新版人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面直角坐标系6.1:平面直角坐标系6.2:坐标与图形的性质6.3:坐标与图形的变化二、教学目标1. 理解并掌握相交线与平行线的性质和判定方法。
2. 学会运用平面直角坐标系表示点的位置,并分析坐标与图形之间的关系。
3. 能够运用所学知识解决实际问题。
三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用。
平面直角坐标系的建立和点的坐标表示。
2. 教学重点:理解并运用相交线与平行线的性质。
掌握平面直角坐标系的概念和应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规。
2. 学具:练习本、铅笔、直尺、圆规。
五、教学过程1. 导入新课实践情景引入:展示实际生活中相交线与平行线的应用场景,如道路、桥梁等。
提问:同学们在生活中见过这样的图形吗?它们有什么特点?2. 新课讲解讲解第五章相交线与平行线的内容,通过示例和练习进行巩固。
讲解第六章平面直角坐标系的概念,以及坐标与图形的关系。
3. 例题讲解解答第五章相交线与平行线的相关例题。
解答第六章平面直角坐标系的相关例题。
4. 随堂练习学生完成第五章相交线与平行线的随堂练习题。
学生完成第六章平面直角坐标系的随堂练习题。
5. 知识巩固学生互相讨论,加深对知识的理解。
六、板书设计1. 黑板左侧:相交线与平行线的性质、判定方法。
2. 黑板右侧:平面直角坐标系的概念、坐标表示方法。
3. 中间部分:例题解答、随堂练习题。
七、作业设计1. 作业题目:第五章相交线与平行线习题:练习判断相交线与平行线,并解释原因。
第六章平面直角坐标系习题:在坐标系中绘制给定坐标的点,并分析坐标与图形的关系。
答案:见教材课后习题答案。
八、课后反思及拓展延伸2. 拓展延伸:鼓励学生探索相交线与平行线在生活中的应用,以及平面直角坐标系在地理、计算机等领域的应用。
2024年新人教版七年级数学下册教案全册
2024年新人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线5.1:垂直与平分5.2:相交线与平行线的性质5.3:平行线的判定2. 第六章:平面几何初步6.1:三角形的特性6.2:全等三角形6.3:相似三角形二、教学目标1. 理解并掌握相交线、平行线的性质及其判定方法。
2. 掌握三角形的特性,学会运用全等三角形、相似三角形的性质解决问题。
3. 培养学生的空间想象能力、逻辑思维能力和问题解决能力。
三、教学难点与重点1. 教学难点:相交线与平行线的判定方法全等三角形、相似三角形的判定与性质2. 教学重点:掌握垂直与平分、平行线的性质学会运用全等三角形、相似三角形解决问题四、教具与学具准备1. 教具:三角板、量角器、直尺、圆规2. 学具:三角板、量角器、直尺、圆规、练习本五、教学过程1. 引入实践情景:介绍生活中常见的相交线与平行线现象,激发学生学习兴趣。
2. 教学第五章:5.1:讲解垂直与平分的概念,通过例题讲解,让学生掌握相关性质。
5.2:引导学生探索相交线与平行线的性质,进行随堂练习。
5.3:介绍平行线的判定方法,结合例题讲解,巩固知识。
3. 教学第六章:6.1:讲解三角形的特性,通过例题讲解,让学生掌握相关性质。
6.2:介绍全等三角形的判定与性质,结合随堂练习,巩固知识。
6.3:讲解相似三角形的判定与性质,通过例题讲解,让学生学会运用。
六、板书设计1. 相交线与平行线的性质2. 垂直与平分3. 平行线的判定4. 三角形的特性5. 全等三角形、相似三角形的判定与性质七、作业设计1. 作业题目:已知一个三角形的两边和夹角,求第三边。
判断两个三角形是否全等,并说明理由。
2. 答案:八、课后反思及拓展延伸1. 教师应关注学生对相交线、平行线性质的理解,加强随堂练习,巩固知识。
2. 通过拓展延伸,让学生学会运用全等三角形、相似三角形解决实际问题,提高问题解决能力。
3. 鼓励学生进行课后自主学习,探索更多有关平面几何的知识。
2024年七年级下册数学教案人教版
2024年七年级下册数学教案人教版一、教学目标知识与技能:学生应能熟练掌握七年级下册数学教材中的基本概念、公式和定理,能够运用所学知识解决简单的数学问题。
过程与方法:通过引导学生参与探究、合作学习等活动,培养学生的数学思维能力和解题技能,提高他们分析问题和解决问题的能力。
情感、态度与价值观:激发学生对数学学科的兴趣和热情,培养他们严谨的科学态度和探究精神,增强他们的自信心和合作精神。
二、教学重点和难点重点:代数表达式的化简与求值平面几何图形的性质与判定数据的收集与整理难点:复杂代数表达式的化简技巧几何图形证明的逻辑性和条理性数据的统计分析与图表制作三、教学过程1. 导入新课通过生活实例或实际问题引入新课内容,激发学生的学习兴趣。
回顾相关旧知识,为新课学习做好铺垫。
2. 探究学习引导学生通过阅读教材、小组讨论等方式自主探究新课内容。
教师适时点拨,帮助学生理解重点和难点。
3. 讲解示范教师对新课内容进行详细讲解,注重知识点的梳理和解题方法的示范。
通过例题演示,让学生掌握解题的基本步骤和方法。
4. 练习巩固学生完成教材中的练习题,巩固所学知识。
教师巡视指导,及时发现并纠正学生的错误。
5. 课堂总结教师对本节课的知识点进行总结,强调重点和难点。
学生对自己的学习情况进行反思和总结,查漏补缺。
四、教学方法和手段教学方法:采用启发式教学、探究式教学和合作式教学相结合的方法,激发学生的学习兴趣和主动性。
教学手段:利用多媒体课件、实物展示、小黑板等教学工具辅助教学,提高教学效果。
五、课堂练习、作业与评价方式课堂练习:在课堂上进行随堂练习,及时巩固所学知识。
教师巡视指导,及时发现问题并进行纠正。
作业布置:根据教学进度和学生实际情况布置适量作业,要求学生按时完成。
作业内容应包括基础题和提高题,以满足不同层次学生的需求。
评价方式:采用形成性评价和终结性评价相结合的方式进行评价。
形成性评价包括课堂表现、作业完成情况等,以了解学生的学习过程和存在问题;终结性评价则通过期末考试等方式进行,以评估学生的学习成果。
2024年新版人教版七年级数学下册教案全册
2024年新版人教版七年级数学下册教案全册一、教学内容详细内容:1. 第一章:整式的乘法、整式的除法、多项式乘多项式、平方差公式、完全平方公式。
2. 第二章:直线、射线、线段、角的度量、角的分类、相交线与平行线。
3. 第三章:随机事件、概率的定义、概率的计算、事件的独立性。
4. 第四章:数据的收集、数据的整理、统计图表、频数与频率。
5. 第五章:一元一次不等式的解法、一元一次方程的解法、实际问题与一元一次方程。
6. 第六章:三角形的性质、三角形的判定、等腰三角形、直角三角形。
7. 第七章:平行四边形的性质、平行四边形的判定、特殊的平行四边形。
二、教学目标1. 理解并掌握整式的乘除、几何图形的认识、概率初步、数据的收集与整理、一元一次不等式与方程、三角形、平行四边形等基本概念和性质。
2. 培养学生的逻辑思维能力和空间想象力,提高解决问题的能力。
3. 培养学生运用数学知识解决实际问题的能力,增强数学在实际生活中的应用。
三、教学难点与重点1. 教学难点:整式的乘除、概率的计算、一元一次不等式与方程的解法、平行四边形的判定。
2. 教学重点:几何图形的认识、数据的收集与整理、三角形的性质与判定、平行四边形的性质。
四、教具与学具准备1. 教具:多媒体教学设备、几何模型、计算器。
2. 学具:直尺、圆规、量角器、计算器。
五、教学过程1. 实践情景引入:通过生活中的实例,引出整式的乘除、几何图形的认识、概率初步等概念。
2. 例题讲解:详细讲解整式的乘除、几何图形的性质、概率的计算、一元一次不等式与方程的解法等例题。
3. 随堂练习:针对每个知识点设置相应的练习题,巩固所学知识。
4. 小组讨论:分组讨论难点问题,培养学生的合作精神。
六、板书设计1. 2024年新版人教版七年级数学下册教案2. 知识点:按照章节顺序,列出每个章节的知识点。
3. 例题:精选具有代表性的例题,展示解题过程。
4. 练习题:设置随堂练习题,巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学教案第一篇:人教版初中数学平行线的性质教案2.3平行线的性质一、教材分析:本节课是人民教育出版社义务教育课程标准实验教科书七年级上册第2章第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是?空间与图形?的重要组成部分。
二、教学目标:1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
2.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
3.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学重、难点:重点:平行线的性质难点:?性质1?的探究过程四、教学方法:?引导发现法?与?动像探索法?五、教具、学具:教具:多媒体课件学具:三角板、量角器。
六、教学媒体:大屏幕、实物投影七、教学过程:创设情境,设疑激思:1.播放一组幻灯片。
内容:①火车行驶在铁轨上;②游泳池;③横格纸。
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?学生活动:思考回答。
①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;教师:首先肯定学生的回答,然后提出问题。
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?引出课题——平行线的性质。
数形结合,探究性质1.画图探究,归纳猜想任意画出两条平行线,画一条截线c与这两条平行线相交,标出8个角。
问题一:指出图中的同位角,并度量这些角,把结果填入下表:第一组第二组第三组第四组同位角∠1∠5角的度数数量关系学生活动:画图——度量——填表——猜想结论:两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?学生:探究、讨论,最后得出结论:仍然成立。
2.教师用《几何画板》课件验证猜想3.性质1. 两条直线被第三条直线所截,同位角相等。
引申思考,培养创新问题三:请判断内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。
教师活动:评价,引导学生说理。
因为a‖b因为a‖b所以∠1=∠2所以∠1=∠2又∠1=∠3又∠1+∠4=180°所以∠2=∠3所以∠2+∠4=180°语言叙述:性质2两条直线被第三条直线所截,内错角相等。
性质3两条直线被第三条直线所截,同旁内角互补。
实际应用,优势互补1.如图,平行线ab、cd被直线ae所截①若∠1 = 110°,则∠2 =°。
理由:。
②若∠1 = 110°,则∠3 =°。
理由:。
③若∠1 = 110°,则∠4 =°。
理由:。
如图,由ab‖cd,可得∠1=∠2∠2=∠3∠1=∠4∠3=∠4如图,ab‖cd‖ef,那么∠bac+∠ace+∠cef=180°270° 360° 540°谁问谁答:如图,直线a‖b。
如:∠1=54°时,∠2=.学生提问,并找出回答问题的同学。
2.如图是一块梯形铁片的残余部分,量得∠a=100°,∠b=115°,求)梯形另外两角分别是多少度?概括存储1.平行线的性质1、2、3;2.用?运动?的观点观察数学问题;3.用数形结合的方法来解决问题。
作业第69页2、4、7.八、教学反思:①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。
在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。
②学的转变:学生的角色从学会转变为会学。
本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。
③课堂氛围的转变:整节课以?流畅、开放、合作、‘隐’导?为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以?对话?、?讨论?为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
第二篇:人教版初中数学七年级下册《平面直角坐标系复习课》教案平面直角坐标系复习课龙华店中学寇俊平一、教学目标■知识与能力1、理解有序数对,掌握平面直角坐标系的概念2、掌握平面内的点与有序数对的一一对应关系,能熟练地在给定的直角坐标系中,根据坐标描出点的位置,能由点的位置写出点的坐标。
3、了解象限的概念,能根据象限内和坐标轴的特征,熟练地由点的坐标判断点在的象限。
4、在同一平面直角坐标系中,能用坐标表示平移和说出坐标变换的平移。
■过程方法1、由生活事例引入,师生合作。
先从实际中需要确定物体的位置出发,引出有序数对的概念,指出有序数对可以确定物体的位置。
2、用有序数对确定平面内的位置,结合数轴上确定点的方法,引出平面直角坐标系学习平面直角坐标系的概念,如:横轴、纵轴、原点、坐标、象限,建立点与坐标的关系。
3、采用动画和游戏课件,让学生在轻轻松松的环境中掌握重点和难点。
■情感态度价值观1、通过具体情境的创设,使学生在生活中发现数学问题,感受数学知识在生活中的应用,激发学习数学的兴趣。
2、认识“说”“做”“找”中获得数学猜想,进而验证结论,感受“自己不试一试,怎知自己行不行?”3、通过操作、探究、体验平面直角坐标系上的点与有序数对一一对应,感受数形结合思想。
4、通过研究平移与坐标的关系,能看到平面直角坐标系是数与形结合的桥梁,感受代数与几何问题的相互转化,理解数形结合思想。
二、重点、难点■重点:1、掌握点与坐标的一一对应关系,能在坐标系中根据坐标找到点,由点得坐标,掌握各象限的和坐标轴上的点的坐标符号规律。
2、建立适当的坐标系,描述物体的位置,在同一平面直角坐标系中,能用坐标表示平移变换。
■难点:1、能在坐标系中根据坐标找到点,由点得坐标,掌握各象限的和坐标轴上的点的坐标符号规律。
2、点的平移引起坐标的变化,点的坐标的变化引起点的平移。
三、教学方法小组探究、个案教学四、教学准备多媒体、方格纸五、教学过程师生活动一复习:象限的符号、坐标的表示总结:巩固练习:1、点p的坐标是,则点p在第象限.2、若点p的坐标满足xy﹥0,则点p在第象限;若点p的坐标满足xy﹤0,且在x轴上方。
则点p在第象限.3、下列点中,位于直角坐标系第二象限的点是a.b.c.d.4、若点p在第三象限,则点q在a. 第一象限b. 第二象限c. 第三象限d. 第四象限5、点p满足 xy>0, x +y<0,则点p在a. 第一象限b. 第二象限c. 第三象限d. 第四象限师生活动二复习:点到坐标轴的距离总结:____________________________________________________________巩固练习:1、若点a的坐标是,则它到x轴的距离是。
到y轴的距离是到原点的距离是。
2、若点b在x轴上方,y轴右侧,并且到x轴、y轴距离分别是2、4个单位长度,则点b的坐标是.3、点p到x轴、y轴的距离分别是2、1,则点p的坐标可能为.4、点a在第三象限,点a到x轴的距离为4,点a到y 轴的距离为3,那么点a的坐标为a.b.c.d.5、点p到x轴的距离为y轴的距离为。
师生活动三复习:特殊点的坐标表示在x轴上在y轴上平行于x轴平行于y轴关于x、y轴、关于原点对称点总结:巩固练习:1、若点p的坐标满足 xy=0,则点p在a. 原点b. x 轴上c. y轴上d. x轴上或y轴上或原点2、点与点关于对称。
点与点关于对称。
点与点关于对称3、点a关于x轴对称点的坐标是关于原点对称的点坐标是4、若点a在第二象限,则点b在第象限。
5、已知点a与位于第三象限的点b的连线平行与x轴,且点b到点a的距离等于2,则x=y=。
6、已知点a在x轴上,则m= ,此时坐标为。
7、已知点a和点b,且ab∥x轴,则。
8、点p在第二象限,且 x =5,y =3,则p点关于原点对称的点的坐标是。
9、已知点p满足方程+ 2y?6=0。
则点p关于x轴对称的点的坐标是。
10.点p在y轴上,则点p的坐标是11.已知:a,b,ab∥x轴,且b到y轴距离为2,则点b的坐标是。
12.已知点a,b,若三角形abc是正三角形,则c的坐标是师生活动四复习:坐标平移的特点,两坐标轴夹角平分线上点的特点总结:___________________________________________________ _____________巩固练习:1、在直角坐标系中,点p向下平移4个单位长度后的坐标为a.b.c.d.2、将点p向右平移5个单位,再向下平移3个单位,到达点q位置,则h= ,t=3、已知点m在两坐标轴夹角的平分线上, m的坐标4、三角形abc三个顶点的坐标分别是a,b,c将三角形三个顶点的横坐标都减去6,纵坐标不变,三个顶点的坐标变为abc六、应用1、长方形的顶点o在坐标原点oa=3,oc=4求点a,b,c的坐标2、已知点a,b。
求△aob的面积3、四边形abcd各个顶点的坐标分别为,,,。
确定这个四边形的面积,你是怎么做的?如果把原来abcd各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?4、三角形abc三个顶点a、b、c的坐标分别为a在x轴上在y轴上平行于x轴平行于y轴、对称点的坐标特征总结:基础训练1、点与点关于对称。
点与点关于对称。
点与点关于对称2、点a关于x轴对称点的坐标是关于原点对称的点坐标是3、若点a在第二象限,则点b在第象限。
4、已知点a与位于第三象限的点b的连线平行与x轴,且点b到点a的距离等于2,则x=y=。
5、下列点中,位于直角坐标系第二象限的点是a.b.c.d.6、若点p在第三象限,则点q在a. 第一象限b. 第二象限c. 第三象限d. 第四象限7、点a在第三象限,点a到x轴的距离为4,点a到y 轴的距离为3,那么点a的坐标为a.b.c.d.8、在直角坐标系中,点p向下平移4个单位长度后的坐标为a.b.c.d.9、若点p的坐标满足 xy=0,则点p在a. 原点b. x 轴上c. y轴上d. x轴上或y轴上或原点总结:巩固练习1、点p到x轴的距离为y轴的距离为。
2、点p在第四象限,则x的取值范围是。
3、已知点a在x轴上,则m= ,此时坐标为。
4、已知点a和点b,且ab∥x轴,则。
5、将点p向右平移5个单位,再向下平移3个单位,到达点q位置,则h=,t=。
6、点p在第二象限,且 x =5,y =3,则p点关于原点对称的点的坐标是。