带通采样定理
带通采样(欠采样)原理以及其在adc中下变频的应用
带通采样(Under-sampling)是指在采样过程中,采样频率低于信号的最大频率的奈奎斯特频率(Nyquist rate)。
带通采样主要用于对带通信号进行采样,其原理是通过对信号带宽的压缩,实现低采样率下的信号采集。
在ADC(模拟数字转换器)中,带通采样技术可以应用于下变频(down-converting)过程,以降低采样率和系统复杂度。
带通采样原理:1. 信号带宽:信号的带宽是指信号的最高频率与最低频率之差。
对于带通信号,其带宽通常远低于信号的最高频率。
2. 奈奎斯特定理:根据奈奎斯特定理,当采样频率大于等于信号最高频率的两倍时,可以通过采样得到原始信号的完整信息。
3. 带通采样:对于带通信号,可以采用带通采样方法,即将信号带宽压缩到较窄的范围内,从而降低采样率。
带通采样定理指出,当采样频率大于信号带宽的2倍时,可以实现信号的完整重建。
4. 欠采样:带通采样是一种欠采样(under-sampling)方法,采样频率低于奈奎斯特频率。
欠采样可能导致信号失真和混叠,但通过后续的信号处理和滤波,可以降低失真和混叠的影响。
在ADC中,带通采样技术可以应用于下变频过程:1. 带通采样与下变频:在ADC中,带通采样技术可以用于降低采样率,从而降低系统复杂度和成本。
通过将信号带宽压缩到较窄的范围内,可以在较低的采样率下实现信号的采集。
2. 下变频:下变频过程是指将信号从较高的频率转换到较低的频率。
在ADC中,带通采样可以应用于下变频过程,以降低采样率和系统复杂度。
3. 数字滤波:在下变频过程中,可能需要对信号进行数字滤波,以去除混叠和失真。
数字滤波器的设计需要考虑信号的带宽和采样率等因素。
带通采样(欠采样)原理及其在ADC中下变频的应用可以帮助降低采样率和系统复杂度,从而提高ADC的性能和效率。
在实际应用中,需要根据信号特性和系统需求,选择合适的带通采样方法和下变频策略。
带通采样是一种采样率低于奈奎斯特频率的采样方法,主要用于对带通信号进行采样。
几种采样方法
带通采样编辑带通采样又叫IF采样、调和采样、下奈奎斯特采样和下采样等[1]。
实际中遇到的许多信号是带通型信号?这种信号的带宽往往远小于信号中心频率。
若带通信号的上截止频率为fH,下截止频率为fL, 这时并不需要抽样频率高于两倍上截止频率fH,可按照带通抽样定理确定抽样频率。
带通采样定理:设带通信号m(t),其频率限制在fL与fH之间,带宽为B=fH-fL,如果最小抽样速率fs=2fH/m,m是一个不超过fH/B的最大整数,那么m(t),可以完全由其抽样值确定。
降采样:2048HZ对信号来说是过采样了,事实上只要信号不混叠就好(满足尼奎斯特采样定理),所以可以对过采样的信号作抽取,即是所谓的“降采样”。
在现场中采样往往受具体条件的限止,或者不存在300HZ的采样率,或调试非常困难等等。
若R>>1,则Rfs/2就远大于音频信号的最高频率fm,这使得量化噪声大部分分布在音频频带之外的高频区域,而分布在音频频带之内的量化噪声就会相应的减少,于是,通过低通滤波器滤掉fm以上的噪声分量,就可以提高系统的信噪比。
原采样频率为2048HZ,这时信号允许的最高频率是1024HZ(满足尼奎斯特采样定理),但当通过滤波器后使信号的最高频率为16HZ,这时采样频率就可以用到32HZ(满足尼奎斯特采样定理,最低为32HZ,比32HZ高都可以)。
从2048HZ降到32HZ,便是每隔64个样本取1个样本。
这种把采样频率降下来,就是降采样downsample)。
这样做的好处是减少数据样点,也就是减少运算时间,在实时处理时常采用的方法。
过采样:过采样定义:就是用高于nyquist频率进行采样,好处是可以提高信噪比,缺点是处理数据量大。
过采样是使用远大于奈奎斯特采样频率的频率对输入信号进行采样。
设数字音频系统原来的采样频率为fs,通常为44.1kHz或48kHz。
若将采样频率提高到R×fs,R称为过采样比率,并且R>1。
11-2 带通模拟信号的抽样定理
( 2) 当2 B ≤ f L < 3 B时 ( , 0, f L)的区间可以容纳两个 边带 的区间可以容纳两个边带
− fs
-3 正 -2正 1负
Xs ( f )
-1正 2负
fs
3负
2 fs
−fH
− fL
0
2 fs − fL
fL
fH
3 fs − fH
f
2 fs − fL ≤ fL ; 即 fs ≤ fL 2 3 fs − f H ≥ f H ; 即 fs ≥ f H 3
【例】某中频带通信号的中心频率为110MHz,信号带宽为 B=6MHz,对此信号进行带通抽样,在恢复信号时使用理想 带通滤波器。试计算能无失真恢复信号的最低抽样频率 该带通信号的上截止频率: 下截止频率:
f H = 113M H z
f L = 107 M H z
N=⎢ 取 m = N = 17 ⎣107 / 6 ⎥ ⎦ = 17 ⎣ fL / B⎥ ⎦=⎢ 2 × 113 2 × 107 ≤ fS ≤ ⇒ 最低抽样频率为12.56MHz。 17 + 1 17
( − f H + mf s , − f L + mf s )
( − f H + ( m + 1) f s , − f L + ( m + 1) f s )
9
带通模拟信号的抽样定理
C. 带通抽样的抽样频率范围
2 fH 2 fL ≤ fS ≤ m +1 m
D. 如果要求各边带之间等间隔,则 f L − ( mfs − f L ) = [( m + 1) fs − f H ] − f H E. 边带之间等间隔的抽样频率 2( f L + f H ) fs = 2m + 1
带通采样定理
带通采样定理
带通采样,又称为IF采样、调和采样、下奈奎斯特采样和下采样等。
实际中遇到的许多信号都是带通型信号,带通型信号的带宽往往远小于信号的中心频率。
带通采样又叫IF采样、调和采样、下奈奎斯特采样和下采样等。
若带通信号的上截止频率为 fH,下截止频率为fL, 这时并不需要抽样频率高于两倍上截止频率fH,可按照带通抽样定理确定抽样频率。
带通采样定理:设带通信号m(t),其频率限制在fL与fH之间,带宽为B=fH-fL,如果最小采样频率fs=2fH/m,m是一个不超过fH/B 的最大整数,那么m(t),可以完全由其采样值确定。
带通抽样定理教学提纲
带通抽样定理《信号与系统A(2)》课程自学报告实施报告题目:带通采样定理与软件无线电带通抽样定理实际中遇到的许多信号是带通型信号,这种信号的带宽往往远小于信号中心频率。
若带通信号的上截止频率为H f ,下截止频率为L f ,这时并不需要抽样频率高于两倍上截止频率H f ,可按照带通抽样定理确定抽样频率。
[定理] 带通抽样定理:一个频带限制在),(H L f f 内的时间连续信号)(t x ,信号带宽L H f f B -=,令N B f M H -=/,这里N 为不大于B f H /的最大正整数。
如果抽样频率s f 满足条件,10-≤≤N m (3.1-9) )(t x 。
对信号)(t x 以频率s f 抽样后,得到的采样信号)(s nT x 的频谱是)(t x 的频谱经过周期延拓而成,延拓周期为s f ,如图3-3所示。
为了能够由抽样序列无失真的重建原始信号)(t x ,必须选择合适的延拓周期(也就是选择采样频率),使得位于),(H L f f 和),(L H f f --的频带分量不会和延拓分量出现混叠,这样使用带通滤波器就可以由采样序列重建原始信号。
由于正负频率分量的对称性,我们仅考虑),(H L f f 的频带分量不会出现混叠的条件。
在抽样信号的频谱中,在),(H L f f 频带的两边,有着两个延拓频谱分量:),(s L s H mf f mf f +-+-和))1(,)1((s L s H f m f f m f ++-++-。
为了避免混叠,延拓后的频带分量应满足)3.1-11)综合式(3.1-103.1-12) 这里mH s f f 2≥(3.1-13)这时实际上是把带通信号看作低通信号进行采样。
m 取得越大,则符合式(3.1-12)的采样频率会越低。
但是m 有一个上限,因为mff L s 2≤,而为了避免混叠,延拓周期要大于两倍的信号带宽,即B f s 2≥。
因此3.1-14) 由于N 为不大于B f H /B f L /的最大正整数为1-N ,故有10-≤≤N m综上所述,要无失真的恢复原始信号)(t x ,采样频率s f 应满足mff m f L s H 212≤≤+,10-≤≤N m (3.1-15) ffLf Hf H f -Lf -Lf Hf H f -Lf -图3-3 带通采样信号的频谱带通抽样定理在频分多路信号的编码、数字接收机的中频采样数字化中有重要的应用。
带通采样定理证明
带通信号的采样与重建一、带通采样定理的理论基础基带采样定理只讨论了其频谱分布在0,H f 的基带信号的采样问题;作为接收机的模数转换来说:接收信号大多为已调制的射频信号;射频信号相应的频率上限远高于基带信号的频率上限;这时如果想采用基带采样就需要非常高的采样速率这是现实中的A/D 难以实现的;这时,低通采样定理已经不能满足实际中的使用要求;带通采样定理是适用于这样的带通信号的采样理论基础,下面给出定理; 带通采样定理:设一个频率带限信号()x t 其频带限制在(,)L H f f 内,如果其采样速率s f 满足式:s f =2()21L H f f n ++ 2-1 式中, n 取能满足2()s H L f f f ≥-的最大整数0,1,2…,则用s f 进行等间隔采样所得到的信号采样值()s x nT 能准确的确定原信号()x t ;带通采样定理使用的前提条件是:只允许在其中一个频带上存在信号,而不允许在不同的频带同时存在信号,否则将会引起信号混叠1;如图所示,为满足这一条件的一种方案,采用跟踪滤波器的办法来解决,即在采样前先进行滤波1 ,也就是当需要对位于某一个中心频率的带通信号进行采样时,就先把跟踪滤波器调到与之对应的中心频率0n f 上,滤出所感兴趣的带通信号()n x t ,然后再进行采样,以防止信号混叠;这样的跟踪滤波器称之为抗混叠滤波器;图 带通信号采样式2-1用带通信号的中心频率0f 和频带宽度B 也可用式2-2表示: 0214s n f f +=2-2 式中,()0L H f f f =+,n 取能满足2s f B ≥B 为频带宽度的最大正整数;当频带宽带B 一定时,为了能用最低采样速率即两倍频带宽度的采样速率2s f B =,带通信号的中心频率必须满足0212n f B +=;也即信号的最高或最低频率是信号的整数倍; 带通采样理论的应用大大降低了所需的射频采样频率,为后面的实时处理奠定了基础;但是从软件无线电的要求来看,带通采样的带宽应是越宽越好,这样对不同基带带宽的信号会有更好的适应性,在相同的工作频率范围内所需要的“盲区”采样频率数量减少,有利于简化系统设计;另外,当对于一个频率很高的射频信号采样时,如果采样频率设的太低,对提高采样量化的信噪比是不利的;所以在可能的情况下,带通采样频率应该尽可能选的高一些,使瞬时采样带宽尽可能宽;但是随着采样速率的提高带来的一个问题是采样后的数据流速率很高;因此一个实际的无线电通信带宽一般为几千赫兹到几百赫兹;实际对单信号采样时采样率是不高的;所以对这种窄带信号的采样数据流降速是完全可能的;多速率信号处理技术为这种降速处理实现提供了理论依据;二、带通采样过程待采样信号为中频是100MHz,带宽为2MHz 的带通信号:fc0=100e6; //中频频率fc1=99e6; //信号一的频率fc2=101e6; //信号二的频率fs1=3e6; //欠采样的采样频率fs2=4e6; //临界采样采样频率fs3=6e6; //大于2倍带宽的采样速率f0=250e6 //用以模拟连续信号的离散信号采样速率远大于nyquist率t=0:1/f0:1e-6;xt0=2cos2pifc1t+4cos2pifc2t;待采样信号的波形和频谱如图所示:图1 原信号波形及频谱按照如上的三种采样频率对待采样信号进行采样,得到的三个信号及其幅度谱如图所示:1)欠采样条件下得到的采样信号:图2 欠采样信号的波形及幅度谱2 临界采样:图3 临界采样信号的波形及幅度谱3)满足采样条件的采样信号图4 正常采样信号的波形及幅度谱三、信号重建1设计通带为99~101MHz的4阶巴特沃兹一型IIR滤波器来作为信号恢复的模拟滤波器,滤波器的设计过程及幅频响应特性如图所示:fs=250e6;N=4;figure6;Wn = ;b,a=butterN,Wn,'bandpass';h,w=freqzb,a;plotw/pifs/2,absh; grid;title'Amplitude Response';xlabel'Frequency Hz'; ylabel'Amplitude';图1 滤波器的幅度响应2将三种采样信号的到的数据流通过信号恢复滤波器,即上述的巴特沃兹一型滤波器,得到的结果如下:图2欠采样恢复图3 临界采样恢复图3 正常采样恢复四、结果分析从结果可见:欠采样信号进行恢复时,从信号完整角度进行观察便可以发现信号的不同,缺少了原信号的部分信息;而临界采样信号的恢复,在信号周期上有一定的变化,比原信号的信息有所丢失;正常采样下的信号可以恢复出原信号一个完整周期的频谱;但由于所选取信号长度的问题,没能恢复全部信号,但这已经能够证明带通采样定理的正确性,即采样后的信号没有丢失原信号的信息;附:%′í¨2éù¨àíμé%%′í¨DDμêafc=100MHz,Doμêaf1=99MHzoíf2=101MHz%%2éùùê·±ea3MHz4MHz6M Hz%%%%% B=2MHz,àíéμ±2éùμê′μt±′íê±£oDoμμ×2áìμt£%%%%clear all; clc; close all;fc0=100e6;fc1=99e6; %Do1μμêfc2=101e6; %Do2μμêfs1=3e6; %μíóút±′íμ2éùμêfs2=4e6; %áù2éùμêfs3=6e6; %′óóút±′μ2éùμê f0=250e6;%±íê-Doμ2éùμ꣱è2éùμêòêyá%%%μíí¨2éù¨àíμ2éù×÷a-£aDo%%%t=0:1/f0:1e-6;N=1e-6f0;xt0=2cos2pifc1t+4cos2pifc2t;figure1;subplot2,1,1;plott,xt0;title'′y2éùDo2¨D';xlabel'x';ylabel'xt';yjw0=fftxt0,N;absy0=absyjw0;f=0:N-1f0/N;subplot2,1,2;plotf,absy0;title'′y2éùDoμ×'xlabel'êy×μê';ylabel'·ùè×' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%′í¨2éù¨àíμ·2éù2¨D°μ×%%%t=0:1/fs1:5e-5;N=5e-5fs1;xts1=2cos2pifc1t+4cos2pifc2t;figure2;subplot2,1,1;plott,xts1;title'·2éùDo2¨D';xlabel'x';ylabel'xt';yjws1=fftxts1,N;absys1=absyjws1;f=0:N-1fs1/N;subplot2,1,2;plotf,absys1;xlabel'êy×μê';ylabel'·ùè×'title'·2éùDoμ×' %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%′í¨2éù¨àíáù2éùμ2¨D°μ×%%%t=0:1/fs2:5e-5;N=5e-5fs2;xts2=2cos2pifc1t+4cos2pifc2t;figure3;subplot2,1,1;plott,xts2;title'áù2éùDo2¨D';xlabel'x';ylabel'xt';yjws2=fftxts2,N;absys2=absyjws2;f=0:N-1fs2/N;subplot2,1,2;plotf,absys2;xlabel'êy×μê';ylabel'·ùè×'title'áù2éùDoμ×'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%′óóúáù2éùμêμ′í¨2éùμ2¨D°μ×%%%t=0:1/fs3:5e-5;N=5e-5fs3;xts3=2cos2pifc1t+4cos2pifc2t;figure4;subplot2,1,1;plott,xts3;title'′óóúáù2éùDo2¨D';xlabel'x';ylabel'xt';yjws3=fftxts3,N;absys3=absyjws3;f=0:N-1fs3/N;subplot2,1,2;plotf,absys3;xlabel'êy×μê';ylabel'·ùè×'title'′óóúáù2éùDoμ×'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fs=250e6;N=4;figure6;Wn = ;b,a=butterN,Wn,'bandpass';h,w=freqzb,a;plotw/pifs/2,absh; grid;title'Amplitude Response';xlabel'Frequency Hz'; ylabel'Amplitude';%%%·2éùDoμ′%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% figure7;yrets1=filterb,a,xts1;plotyrets1;title'·2éù′'%%%%%áù2éùDoμ′%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% figure8;yrets2=filterb,a,xts2;plotyrets2;xlabel't';ylabel'xt_rebuild';title'áù2éù′'%%%%%%ú×2éù¨àíDoμ′%%%%%%%%%%%%%%%%%%%%%%%%%%%% figure9;yrets3=filterb,a,xts3;plotyrets3;xlabel't';ylabel'xt_rebuild'; title'y3£2éù′'。
带通采样定理和低通采样定理
带通采样定理和低通采样定理模拟信号经过采样转换成数字信号,时域分析为模拟信号与采样的周期冲击串相乘,根据傅里叶变换的时频对应关系可知,频域以采样周期为周期的频谱搬移过程,低通采样定理要求采样频率大于信号最高上限频率的2倍,频谱搬移的过程不会导致频谱混叠,带通采样频率小于这一条件,当满足一定的条件后频谱也不会混叠,但是此时频带发生传动,信号的重构和低通信号有很大差别。
一、低通采样周期性频谱搬移低通采样的原理分析见数字信号处理(西电版)。
首先,低通采样实现的原理是进行周期性的频谱搬移,实际FFT 变换的结果只有(O:fs或者-fs/2:fs/2),周期频谱搬移就是每个周期的信号频谱相同,只是索引值不同带来的结果不同,可以保持一个周期频谱不变,改变对应的真实频率范围获得搬移的效果。
@——fftshift()函数对应的真实频谱范围:fs*(-N/2:N/2-1)/N @------fft()函数对应的真实频谱范围:fs*(0:N-1)/N庚宙IB茸障站霆号的魚谒E 64 2 Q 24€B .:1.■U的耳 IS r/电 £写抽Mil保持原始信号的频谱不变,转换频谱搬移周期,刚好达到两倍采 样频率,谱结构如下:结论:(1) 低通采样定理的周期性频谱搬移以采样频率为周期,采样频率 必须大于信号最高上限的二倍,否则就会导致频谱混叠。
(2) 低通采样后的信号重构只需要经过低通滤波器即可。
二、带通采样定理原理和重构分析 1、带通采样定理原理带通采样定理:一个频带限制在f L ,f H 内的连续时间信号X t ,信号带宽B f H f L ,令N 为不大于f H B 的最大正整数,当采样频率f s 满足一 下条件-]I -1 ir■ qr n 11I 1 : !i i…-一.....r1i ii ii :1 11 1iiJLJi L i*L1JiL ] JL€则可以由采样后的序列无失真的重构原始信号 x t 原理分析:X(f)Xs(f)采样后的信号在频域变现为周期性的频谱搬移,为了能够重构原 始信号,选择合适的采样频率,使f H ,f L 和f L ,f H 的频带分量不会 和延拓分量出现混叠,这样通过升采样后经过带通滤波器即可恢复原 始信号,分析正频率附近无混叠的条件:保证延拓的频谱分量f H mf s , f L mf s 和 f H (m 1)f s , h (m 1)f s 与无拓展频率分量不会混叠,即满足以下关系:整理可得,2f Hf 2fL m 1 s m当m 0时,f s 2f H ,此时为低通采样定理(奈奎斯特采样定理) 延拓周期还要保证f s 2B ,f s2f LfHfL 01)fsf H m 1 f s f H2f L f Lf s B带通采样定理由此而来2、重构分析低通采样后的信号经过低通滤波器后即可恢复原始信号,低通信号的抽样和恢复比起带通信号来要简单。
带通抽样定理
《信号与系统A(2)》课程自学报告实施报告题目:带通采样定理与软件无线电带通抽样定理实际中遇到的许多信号是带通型信号,这种信号的带宽往往远小于信号中心频率。
若带通信号的上截止频率为H f ,下截止频率为L f ,这时并不需要抽样频率高于两倍上截止频率H f ,可按照带通抽样定理确定抽样频率。
[定理] 带通抽样定理:一个频带限制在),(H L f f 内的时间连续信号)(t x ,信号带宽L H f f B -=,令N B f M H -=/,这里N 为不大于B f H /的最大正整数。
如果抽样频率f,10-≤≤N m (3.1-9) )(t x 。
对信号)(t x 以频率s f 抽样后,得到的采样信号)(s nT x 的频谱是)(t x 的频谱经过周期延拓而成,延拓周期为s f ,如图3-3所示。
为了能够由抽样序列无失真的重建原始信号)(t x ,必须选择合适的延拓周期(也就是选择采样频率),使得位于),(H L f f 和),(L H f f --的频带分量不会和延拓分量出现混叠,这样使用带通滤波器就可以由采样序列重建原始信号。
由于正负频率分量的对称性,我们仅考虑),(H L f f 的频带分量不会出现混叠的条件。
在抽样信号的频谱中,在),(H L f f 频带的两边,有着两个延拓频谱分量:),(s L s H mf f mf f +-+-和))1(,)1((s L s H f m f f m f ++-++-。
为了避免混叠,延) 3.1-11)综合式(3.1-12) 这里m m 取零,则上述条件化为 H s f f 2≥(3.1-13)这时实际上是把带通信号看作低通信号进行采样。
m 取得越大,则符合式(3.1-12)的采样频率会越低。
但是m 有一个上限,因为mf f Ls 2≤,而为了避免混叠,延拓周期要大于两倍的信号带宽,即B f s 2≥。
因此3.1-14) 由于N 为不大于B f H /B f L /的最大正整数为1-N ,故有10-≤≤N m综上所述,要无失真的恢复原始信号)(t x ,采样频率s f 应满足mff m f L s H 212≤≤+,10-≤≤N m (3.1-15) ffLf Hf H f -Lf -Lf Hf H f -Lf -图3-3 带通采样信号的频谱带通抽样定理在频分多路信号的编码、数字接收机的中频采样数字化中有重要的应用。
带通抽样定理带通抽样定理
均匀分布信号通过均匀量化器
• 有一M电平的量化器,输入信号区间(-a,a),信号为 均匀分布。求Sq/Nq
S q (qi ) 2
i 1 M mi
m i 1
f ( x )dx ( qi ) 2
i 1
M
mi
m i 1
D dx 2a
q i a iD
1 D 2 ( M 2 1)D2 Sq 12
Nq
( x q
i 1 m i 1 mi
M
mi
i
) 2 f ( x )dx
M
i 1
M
pi
m i 1
( x q i ) dx
2 i 1
1 Dv 3 pi 12
语音信号通过均匀量化器
• 设计量化器的量化范围(-V,V)使过载幅度 2V 所占的概率较小 D M • 未过载量化噪声为:
采用二进制编码
量化器过载问题
• 理想情况,量化器没有过载
mmin mmax
x(t ) mmax maxx(t ) mmin mi n
• 权衡编码速率、动态范围等因素,设计量化器的上下 限如(-V,V),对于随机分布的输入信号,会引起 过载。过载噪声功率为:
N qO ( x V )2 f ( x )dx ( x V )2 f ( x )dx
t
ωs 2ωH
fs 2 fH
m s (t )
t
M S ( )
若fS<2fH(T>1/2fH)会产生混 叠失真。 T=1/2fH是的最大间 隔,被称为奈奎斯特间隔。
H H
2 T
抽样定理(频谱混叠)
采样定理报告
1)采样率的确定,以哪个频率为基础?采样定理:带通采样定理:当连续信号的频带限在ωL到ωH之间,而且ωL≥W=ωH-ωL 时,称为带通信号。
此时并不一定需要采样频率高于两倍最高频率,对于窄带高频信号(W/ωH <<1) ,其采样速率近似等于2W。
这就使我们可以大大降低采样速率,为高频带通信号的数字化传输提供了有利条件。
低通采样定理:对一个低通带限信号进行均匀理想采样,如果采样频率大于等于信号最高频率的两倍,采样后的信号可以精确地重建原信号,可以表示为fs≥2fmax或Ts≤1/2fmax,式中fs=1/Ts,fmax是信号的最高频率。
当f=2fmax 时的采样频率为临界采样频率或称为“奈奎斯特率”。
低通采样定理是带通采样的特殊形式。
采样率的确定:带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是有限的。
采样定理是指,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。
高于或处于奈奎斯特频率的频率分量会导致混叠现象。
一般来说,根据奈奎斯特采样定理,仪器的采样率必须不低于信号带宽的两倍。
而实际上,要还原波形,采样频率仅仅满足采样定理是不够的,采样频率要“大于”信号带宽2倍,才可以得到信号的完整信息。
采样定理是避免信号在频域出现混叠失真的最基本条件,而不是时域信号不失真的条件。
所以,要恢复原信号,采样率是“大于”而非“等于”信号带宽的两倍。
理论上,采样率越高,越能反应原信号的真实情况,但是采样率越高,需要存储和处理的资源也就越大,所以,为了综合考虑,一般选取采样率为信号带宽的3到5倍。
2)采样率太低,会产生假频、混叠效应、波形失真。
进行理论分析数学推导和仿真。
有限带宽信号的数学分析:根据奈奎斯特采样定理,当对一个最高频率为fmax的带限信号进行采样时,采样频率fs必须大于fmax的两倍以上才能确保从采样值完全重构原来的信号。
(完整版)带通抽样定理带通抽样定理
数字 通信系统
译码和低 通滤波
m(t) 模拟随机信号
{sk} 数字随机序列
{sk}
m(t)
数字随机序列 模拟随机信号
数字通信
模拟信号的数字化
抽样: 7
6 5
量化: 4
3 2
编码: 1
0 000 011 011 011 100 101 110 111 111 111 111 110 101 011 010
第五章 模拟信号的数字化传输
• 模拟信号的数字传输简介
– 抽样、量化、编码
• 模拟信号的抽样 • 模拟信号的量化 • 脉冲编码调制PCM • DPCM与DM调制* • 时分复用TDM原理*
模拟信号的量化
x(t) 抽样
xs(t) 或
x(kTS)
量化
xq(t) 或
xq(kTS)=qi
模拟
数字
• 抽样过程是时间上的离散化,量化问题是幅 度上取离散值。从数学上看,量化过程是把 一连续幅度的无限集合映射成一个离散幅度 的有限集合。
fs
2B(1
k) n
2B fs 4B
带通抽 样定理
模拟信号m(t)是窄带信号,即fH>>B时,能恢复出 窄带信号的最小抽样频率为:
fs 2B
带通抽样定理
fS
4B
k 1 n
3B
k 1 n2
k 1
n3
2B
B
k 1 n4
k 1 n5
k 1 n7
窄带高频信号fS 2B
0
B
2B
3B
4B
5B
6B
fL
B
h(t) mS (t)
1 T
sinH t Ht
带通采样定理知识讲解
带通采样定理3.1.3 带通抽样定理实际中遇到的许多信号是带通型信号,这种信号的带宽往往远小于信号中心频率。
若带通信号的上截止频率为H f ,下截止频率为L f ,这时并不需要抽样频率高于两倍上截止频率H f ,可按照带通抽样定理确定抽样频率。
[定理3-2] 带通抽样定理:一个频带限制在),(H L f f 内的时间连续信号)(t x ,信号带宽L H f f B -=,令N B f M H -=/,这里N 为不大于B f H /的最大正整数。
如果抽样频率s f 满足条件mf f m f L s H 212≤≤+,10-≤≤N m (3.1-9) 则可以由抽样序列无失真的重建原始信号)(t x 。
对信号)(t x 以频率s f 抽样后,得到的采样信号)(s nT x 的频谱是)(t x 的频谱经过周期延拓而成,延拓周期为s f ,如图3-3所示。
为了能够由抽样序列无失真的重建原始信号)(t x ,必须选择合适的延拓周期(也就是选择采样频率),使得位于),(H L f f 和),(L H f f --的频带分量不会和延拓分量出现混叠,这样使用带通滤波器就可以由采样序列重建原始信号。
由于正负频率分量的对称性,我们仅考虑),(H L f f 的频带分量不会出现混叠的条件。
在抽样信号的频谱中,在),(H L f f 频带的两边,有着两个延拓频谱分量:),(s L s H mf f mf f +-+-和))1(,)1((s L s H f m f f m f ++-++-。
为了避免混叠,延拓后的频带分量应满足L s L f mf f ≤+- (3.1-10)H s H f f m f ≥++-)1( (3.1-11)综合式(3.1-10)和式(3.1-11)并整理得到mf f m f L s H 212≤≤+ (3.1-12) 这里m 是大于等于零的一个正数。
如果m 取零,则上述条件化为H s f f 2≥ (3.1-13)这时实际上是把带通信号看作低通信号进行采样。
带通信号取样定理
带通信号取样定理一个连续带通信号受限于[]H L f f ,,其信号带宽为L H f f B -=,且有kB mB f H += (1)其中,()[]k f f f m L H H --=,k 为不超过()L H H f f f -的最大正整数,由此可知,必有10<≤m 。
则最低不失真取样频率min s f 为()⎪⎭⎫ ⎝⎛+=+==k m B k kB mB k f f H s 1222min(2)证明:取样不失真的基本要求是样值序列的频谱各个谱块不重叠。
这样就可以采用带通滤波器恢复原来的带通信号。
可见从频域分析,证明直观、清晰。
以下,分两步来证明。
(1)先证明当0=m 时的情况。
由公式(1)和(2),有kB f H =Bf s 2min = (3)分析一个带通信号()t x ,其频谱为()f X ,如图1所示。
sf -sf 2-s f 5.2-s f 3-sf 4-sf s f 2s f 5.2sf 3sf 4()f X 0fL f Hf Lf -H f -I II ss s s s s s sfsf -s f 2-s f 3-s f 4-s f s f 2s f 3sf 4f()f X s sf 2-s f 20fs f 5.2-sf 5.2()f H sf 2-s f 5.2-s f 2sf 5.2()f X 0fIII(a )(b )(c )(d )(e )图1 带通信号kB f H =时的频谱图其中图(a )表示()t x 的带通信号频谱,其特点是最高频率H f 为带宽的整数倍k ,这里5=k ,图(b )表示采用()t sT δ对带通信号()t x 取样,而取样频率()L H s f f B f -==22,其中()t sT δ的频谱为()f sf δ。
图(c )表示()()()f f X f Xsf sδ*=,其中实线表示频谱I ,虚线部分表示频谱II ,由图可见,在这种情况下恰好使得()f X s 中的I 、II 频谱不重叠。
带通信号的采样与重建(优选)甄选.
带通信号的采样与重建#(优选.)带通信号的采样与重建一、带通采样定理的理论基础基带采样定理只讨论了其频谱分布在(0,H f )的基带信号的采样问题。
作为接收机的模数转换来说:接收信号大多为已调制的射频信号。
射频信号相应的频率上限远高于基带信号的频率上限。
这时如果想采用基带采样就需要非常高的采样速率!这是现实中的A/D 难以实现的。
这时,低通采样定理已经不能满足实际中的使用要求。
带通采样定理是适用于这样的带通信号的采样理论基础,下面给出定理。
带通采样定理:设一个频率带限信号()x t 其频带限制在(,)L H f f 内,如果其采样速率s f 满足式:s f =2()21L H f f n ++ (2-1) 式中, n 取能满足2()s H L f f f ≥-的最大整数(0,1,2…),则用s f 进行等间隔采样所得到的信号采样值()s x nT 能准确的确定原信号()x t 。
带通采样定理使用的前提条件是:只允许在其中一个频带上存在信号,而不允许在不同的频带同时存在信号,否则将会引起信号混叠[1]。
如图2.3所示,为满足这一条件的一种方案,采用跟踪滤波器的办法来解决,即在采样前先进行滤波[1] ,也就是当需要对位于某一个中心频率的带通信号进行采样时,就先把跟踪滤波器调到与之对应的中心频率0n f 上,滤出所感兴趣的带通信号()n x t ,然后再进行采样,以防止信号混叠。
这样的跟踪滤波器称之为抗混叠滤波器。
图2.3 带通信号采样式(2-1)用带通信号的中心频率0f 和频带宽度B 也可用式(2-2)表示:0214s n f f +=(2-2)式中,()02L H f f f =+,n 取能满足2s f B ≥(B 为频带宽度)的最大正 整数。
当频带宽带B 一定时,为了能用最低采样速率即两倍频带宽度的采样速率(2s f B =),带通信号的中心频率必须满足0212n f B +=。
也即信号的最高或最低频率是信号的整数倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.3 带通抽样定理
实际中遇到的许多信号是带通型信号,这种信号的带宽往往远小于信号中心频率。
若带通信号的上截止频率为,下截止频率为,这时并不需要抽样频率高于两倍上截止频率,可按照带通抽样定理确定抽样频率。
[定理3-2] 带通抽样定理:一个频带限制在内的时间连续信号,信号带宽,令,这里为不大于的最大正整数。
如果抽样频率满足条件
, (3.1-9) 则可以由抽样序列无失真的重建原始信号。
对信号以频率抽样后,得到的采样信号的频谱是的频谱经过周期延拓而成,延拓周期为,如图3-3所示。
为了能够由抽样序列无失真的重建原始信号,必须选择合适的延拓周期(也就是选择采样频率),使得位于和的频带分量不会和延拓分量出现混叠,这样使用带通滤波器就可以由采样序列重建原始信号。
由于正负频率分量的对称性,我们仅考虑的频带分量不会出现混叠的条件。
在抽样信号的频谱中,在频带的两边,有着两个延拓频谱分量:和。
为了避免混叠,延拓后的频带分量应满足
(3.1-10)
(3.1-11)
综合式(3.1-10)和式(3.1-11)并整理得到
(3.1-12) 这里是大于等于零的一个正数。
如果取零,则上述条件化为
(3.1-13)
这时实际上是把带通信号看作低通信号进行采样。
取得越大,则符合式(3.1-12)的采样频率会越低。
但是有一个上限,因为,而为了避免混叠,延拓周期要大于两倍的信号带宽,即。
因此 (3.1-14) 由于为不大于的最大正整数,因此不大于的最大正整数为,故有
综上所述,要无失真的恢复原始信号,采样频率应满足
, (3.1-15)H f L f H f ),(H L f f )(t x L H f f B -=N B f M H -=/N B f H /s f m
f f m f L s H 212≤≤+10-≤≤N m )(t x )(t x s f )(s nT x )(t x s f )(t x ),(H L f f ),(L H f f --),(H L f f ),(H L f f ),(s L s H mf f mf f +-+-))1(,)1((s L s H f m f f m f ++-++-L s L f mf f ≤+-H s H f f m f ≥++-)1(m
f f m f L s H 212≤≤+m m H s f f 2≥m m m
f f L s 2≤B f s 2≥B
f B f f f m L L s L =≤≤222N B f H /B f L /1-N 10-≤≤N m )(t x s f m
f f m f L s H 212≤≤+10-≤≤N m
图
3-3 带通采样信号的频谱 带通抽样定理在频分多路信号的编码、数字接收机的中频采样数字化中有重要的应用。
作为一个特例,我们考虑()的情况,即上截止频率为带宽的整数倍。
若按低通抽样定理,则要求抽样频率,抽样后信号各段频谱间不重叠,采用低通滤波器或带通滤波器均能无失真的恢复原始信号。
根据带通抽样,若将抽样频率取为(值取为),抽样后信号各段频谱之间仍不会发生混叠。
采用带通滤波器仍可无失真地恢复原始信号,但此时抽样频率远低于低通抽样定理的要求。
图3-4所示为,时抽样信号的频谱。
图3-4 ,时的抽样频谱
在带通抽样定理中,由于,带通抽样信号的抽样频率在到之间变化,如图3-5所示。
f
f L f H
f H f -L f -L f H f H f -L f -
NB
f H =1>N NB f s 2≥B f s 2=m 1-N NB f s
2=B f H 3=B f s 2=f
f
f
f
B f H 3=B f s 2=10<≤M B 2B 4
图3-5 带通抽样定理
由以上讨论可知,低通信号的抽样和恢复比起带通信号来要简单。
通常,当带通信号的带宽大于信号的最低频率时,在抽样时把信号当作低通信号处理,使用低通抽样定理,而在不满足上述条件时则使用带通抽样定理。
模拟电话信号经限带后的频率范围为300Hz ~3400Hz ,在抽样时按低通抽样定理,抽样频率至少为6800Hz 。
由于在实际实现时滤波器均有一定宽度的过渡带,抽样前的限带滤波器不能对3400Hz 以上频率分量完全予以抑制,在恢复信号时也不可能使用理想的低通滤波器,所以对语音信号的抽样频率取为8kHz 。
这样,在抽样信号的频谱之间便可形成一定间隔的保护带,既防止频谱的混叠,又放松了对低通滤波器的要求。
这种以适当高于奈奎斯特频率进行抽样的方法在实际应用中是很常见的。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)
f H
f B
2350B L f。