消除系统误差的方法
牛顿第二定律实验中系统误差的消除方法
牛顿第二定律是指质点受到外力作用时,其加速度与外力的大小成正比,与质量成反比,即:F=ma。
这个定律是物理学中非常重要的定律之一,在实验中常用来测量质点的质量和加速度。
在进行牛顿第二定律实验时,系统误差是指实验中出现的各种不确定因素导致的误差。
为了消除系统误差,我们可以采取以下方法:
1.使用精确的仪器。
应使用精确的仪器,包括精密的力计、加速度计等,以减少测量
误差。
2.增加测量次数。
应尽量增加测量次数,并对测量结果进行平均,以减少随机误差。
3.控制实验条件。
应尽量控制实验条件,包括温度、湿度、气压等因素,以减少环境
误差。
4.减小操作误差。
应经过训练,使操作人员具备良好的操作技巧,以减小操作误差。
5.合理设计实验方案。
应合理设计实验方案,确保实验流程的顺畅和高效,以减少实
验中的误差。
减免系统误差的方法
减免系统误差的方法
首先,要减免系统误差,我们需要对数据采集和处理过程进行严格的控制和规范。
在数据采集阶段,应确保采集设备的准确性和稳定性,避免因设备故障或不良条件导致的误差。
在数据处理过程中,应建立严格的数据处理流程和规范,确保数据的准确性和一致性。
此外,还应对数据进行多次重复实验,以验证数据的可靠性和稳定性,从而减少系统误差的影响。
其次,要减免系统误差,我们需要对实验条件和环境进行严格的控制和调节。
实验条件和环境的变化会对实验结果产生影响,导致系统误差的产生。
因此,在实验过程中,应尽量控制实验条件和环境的稳定性,避免外部因素对实验结果的影响。
同时,还应对实验条件和环境进行充分的调节和优化,以减少系统误差的产生。
此外,要减免系统误差,我们还可以采用一些先进的数据处理和分析方法。
例如,可以利用先进的数据处理软件和算法,对数据进行高效的处理和分析,提高数据处理和分析的准确性和可靠性。
同时,还可以采用一些先进的数据校正和修正方法,对数据进行精细的校正和修正,从而减少系统误差的影响。
综上所述,减免系统误差的方法包括严格控制和规范数据采集和处理过程,对
实验条件和环境进行严格的控制和调节,以及采用先进的数据处理和分析方法。
通过这些方法的应用,我们可以有效地减少系统误差的影响,提高数据处理和分析的准确性和可靠性,为科研工作和实验研究提供更加可靠的数据支持。
如何消除实验中的系统误差?
如何消除实验中的系统误差?系统误差是指在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。
它往往是由不可避免的因素造成的。
产生系统误差的原因系统误差是由固定不变的或按确定规律变化的因素所造成,主要包括以下几个方面的因素:1、仪器和装置方面的因素因使用的仪器本身不够精密所造成的测定结果与被测量真值之间的偏差,如使用未经检定或校准的仪器设备、计量器具等都会造成仪器误差。
或因检测仪器和装置结构设计原理上的缺点,如齿轮杠杆测微仪直线位移和转角不成比例而产生的误差;由仪器零件制造和安装不正确,如标尺的刻度偏差、刻度盘和指针的安装偏心、天平的臂长不等所产生的误差。
2、环境因素待测量值在实际环境温度和标准环境温度下测量所产生的偏差、在测量过程中待测量随温度、湿度和大气压按一定规律变化的产生的偏差。
3、测定方法方面的因素是由测定方法本身造成的误差,或由于测试方法本身不完善、使用近似的测定方法或经验公式引起的误差。
例如,在重量分析中,由于沉淀的溶解,共沉淀现象,灼烧时沉淀分解或挥发等原因都会引起测定的系统误差。
4、人员因素由于操作人员的生理缺陷、主观偏见、不良习惯等到个人特点或不规范操作,如在刻度上估计读数时,习惯上偏于某一方向、读滴定管数值时偏高或偏低,滴定终点颜色辨别偏深或偏浅而产生的误差。
由于人员因素而产生的误差一般称为操作误差。
5、使用试剂方面的因素由于检验中所用蒸馏水含有杂质或所使用的试剂不纯所引起的测定结果与实际结果之间的偏差。
系统误差减小和消除方法为了尽量减小或消除系统误差对测定结果的影响,可以用以下方法来减小和消除系统误差。
1、从产生误差的根源上消除系统误差这是消除系统误差的根本方法。
在测定之前,要求检测人员在检测过程中可能产生的系统误差进行认真的分析,必须尽可能预见一切可能产生系统误差的来源,并设法消除或尽量减弱其影响。
例如,测量前对仪器本身性能进行检查,使仪器的环境条件和安装位置符合检验技术要求的规定;对仪器在使用前进行正确的调整;严格检查和分析测量方法是否正确等来消除仪器、检测方法、环境等因素而产生的系统误差;为防止因仪器长期使用而使其精度降低,及时送计量部门进行周期检定。
测量中系统误差的消除
测量中系统误差的消除发表时间:2019-08-08T11:13:28.657Z 来源:《防护工程》2019年9期作者:朱文成[导读]尚志市检验检测中心黑龙江尚志 150600 系统误差通常是由于测量设备的缺陷,不准确或安放位置不当,环境条件变化,个人习惯以及近似计算等原因造成的。
消除或碱少系统误差有两个基本方法,一是事先研究系统误差的性质和大小,以修正量的方式,从测量结果中予以修正;二是根据系统误差的性质,在测量时选择适当的测量方法,使系统误差相互抵消而不带入测量结果。
1 消除系统误差的措施消除系统误差对测量结果的影响是测量工作中头等重要的事情。
由于人们不可能全部掌握所有系统误差的出现规律和数值的大小,网而也就不可能全部消除它们对于测量果的影响。
但是我们应当尽可能地把已经掌握到的些规律用于消除我们所能认识到的那些系统误差。
通常可以采取如下两个措施:①事先研究系统误差的性质和大小,用加修正值的方法从测量结果中予以消除;②在测量过程中,根据系统误差的性质,选择适当的操作力法,使测得值中的系统误差在测量过程中相互抵消而不带入测量结果之中。
系统误差按其数值的表现形式,可以分为定值系统误差和变值系统误差两种。
所谓定值系统误差是测量中误差值的大小固定不变的系统误差;变值系统误差则是随着测量的进行,误差值按某一规律发生变化的一种系统误差。
定值系统误差可以用上述两种措施予以消除。
但是变值系统误差由于其数据按一定规律发生变化,所以通常不能采用加修正值的方法来消除。
2 用交换法消除系统误差将测量中的某些条件相互交换使产生系统误差的因原对测量结果相反的作用,可以消除固定的系统误差,如用电桥测电阻,电桥平衡时Rx=R0(R1/R2)。
保持R1、R2不变,把Rx、R0的位置互换,电桥再次平衡时,R0变成RO',此时Rx=R0'(R2/R1)。
于是有:就可以消除由R1、R2带来的系统误差。
3 用加修正值的方法消除定值系统误差对于某些事先通过分析或实验可以得知系统误差数值大小的定值系统误差,可以用加修正值的方法,从测量结果中予以扣除。
谈谈系统误差的产生原因及其消除或减少的方法(精)
谈谈系统误差的产生原因及其消除或减少的方法在讨论随机误差时,总是有意忽略系统误差,认为它等于零。
若系统误差不存在,期望值就是真值。
但是,在实际工作中系统误差是不能忽略的。
所以要研究系统误差,发现和消除系统误差。
一、系统误差产生的原因在长期的测量实践中人们发现,系统误差的产生一般的与测量仪器或装置本身的准确程度有关;与测量者本身的状况及测量时的外界条件有关。
1、在检定或测试中,标准仪器或设备的本身存在一定的误差。
在进行计量检定,向下一级标准量值传递时,标准值的误差是固定不变的,属于系统误差。
又称为工具误差或仪器误差。
如:标称值为100g的砝码,经检定实际值为99.997g,即误差为 0.003g。
用此砝码去秤量其他物体的质量,按标称值使用,则始终把被测量秤大,产生 0.003g的恒定系统误差。
某些仪器或设备,在测量前须先进行调零位,若因测量前未调零位或存在调零偏差,使得标准仪器在测量前即具有某一初始值,该初始值必然直接影响测量结果,给测量结果带来误差。
这种误差,一般称零位误差,或简称零差。
某些仪器或设备,如未按要求放置,特别是某些电磁测量和无线电测量仪器或设备,未正确接地或屏蔽,或未用专用连接导线,也会给测量结果带来误差。
这种误差称为装置误差。
2、测量时的客观环境条件(如温度、湿度、恒定磁场等),也会给测量结果带来误差。
如,重力加速度因地点不同而异,若与重力加速度有关的某些测量,未按测量地点的不同加以适当的修正,也会给测量结果带来误差。
因这种误差是由客观环境因素引起的,一般把它称为环境误差。
3、由于某些测量方法的不完善,特别是检定与测试中所使用的某些仪器或设备,在设计制造时受某些条件的限制(如元器件,制造工艺等),不得不降低某些指标,采用一些近似公式,这也会给测量结果带来误差。
这种误差称方法误差或称理论误差。
4、在测量中,测量者本身生理上的某些缺陷,如听觉、视力等缺陷,也会给测量结果带来误差。
此项误差又称为人员误差。
电气测量中系统误差的产生原因分析及消除方法
电气测量中系统误差的产生原因分析及消除方法1.仪器仪表的误差:仪器仪表在制造、校准和使用过程中都会存在一定的误差,如指示误差、滞后误差、非线性误差等。
这些误差会直接影响到测量结果的准确性。
2.环境因素的影响:环境因素如温度、湿度、电磁干扰等都会对测量系统产生影响。
例如,温度变化会导致仪器的灵敏度变化,湿度变化会导致电阻器的阻值变化,电磁干扰会产生电磁场噪声。
3.测量对象本身的特性:测量对象的非理想特性也会引起系统误差。
例如,元件的温度系数、非线性特性、频率响应不均匀等都会对测量结果产生影响。
4.测量电路的影响:测量电路的参数对测量结果也会产生一定的误差。
例如,电源电压的波动、电源电阻、线路阻抗等都会影响测量的准确性。
针对系统误差的产生原因,可以采取以下措施来消除或减小系统误差:1.使用高精度的仪器仪表:选择精度高、性能稳定的仪器仪表可以减小仪器本身的误差。
在测量之前对仪器进行校准和调整,可以提高测量的准确性。
2.控制环境因素:在测量过程中尽量控制环境因素的影响。
例如,保持温度稳定、控制湿度、避免电磁干扰等。
3.选择合适的测量方法:根据测量对象的特性选择合适的测量方法,以减小测量误差。
例如,对于频率响应不均匀的测量对象,可以采用频率补偿技术来减小误差。
4.进行校正和补偿:通过对测量系统进行校正和补偿,可以减小测量误差。
例如,使用校准仪对仪器进行周期性校准,对测量电路进行补偿等。
5.重复测量和数据处理:通过多次重复测量并进行数据处理,可以减小随机误差,并提高测量结果的准确性。
例如,采用平均法、拟合方法等。
综上所述,电气测量中的系统误差是由多种原因所引起的,可以通过选择合适的仪器仪表、控制环境因素、采用合适的测量方法、进行校正和补偿以及重复测量和数据处理等方法来消除或减小误差,提高测量结果的准确性。
减小系统误差的三种方法
减小系统误差的三种方法在现代科学技术的发展中,精度和准确性是非常重要的考量因素。
系统误差是影响精度和准确性的主要因素之一,因此减小系统误差具有非常重要的意义。
本文将介绍三种减小系统误差的方法。
方法一:校准仪器校准仪器是减小系统误差的最常见方法之一。
仪器的精度和准确性在一定程度上取决于它的校准。
因此,定期校准仪器是非常必要的。
校准仪器的方法有很多种,如零点校准、比较校准、标准物质校准等。
在校准仪器时,需要注意仪器的环境温度、湿度、电压等因素,以确保校准的准确性和可靠性。
方法二:改进测量方法改进测量方法也是减小系统误差的有效方法之一。
例如,在测量长度时,传统的方法是使用直尺或卷尺。
但由于直尺或卷尺的精度和准确性有限,因此可能会引入较大的系统误差。
为了减小这种误差,可以使用激光测距仪或光学测距仪等高精度测量仪器。
这些仪器的精度和准确性比传统的测量方法更高,可以减小系统误差的影响。
方法三:提高数据处理能力提高数据处理能力也是减小系统误差的重要方法之一。
数据处理能力包括数据采集、处理和分析等方面。
在数据采集时,需要选择高精度的传感器和数据采集设备,以确保数据的准确性和可靠性。
在数据处理和分析时,需要使用高精度的计算机和软件,以确保数据的处理和分析结果的准确性和可靠性。
通过提高数据处理能力,可以减小系统误差的影响,提高测量精度和准确性。
综上所述,减小系统误差是提高测量精度和准确性的重要方法之一。
三种减小系统误差的方法分别是校准仪器、改进测量方法和提高数据处理能力。
通过采用这些方法,可以有效减小系统误差的影响,提高测量精度和准确性。
系统误差消除三种方法
系统误差消除三种方法
1. 校准:通过使用已知的标准来检验和调整仪器或测量设备的读数,以消除系统误差。
校准可以在设备使用前或定期进行。
例如,通过使用标准的质量量、长度测量、温度测量和其他标准测量进行校准,可以消除可重复的误差。
2. 调零:指在测量前将仪器或设备的读数归零,以消除系统误差。
例如,使用电子秤进行重量测量时,应该在测量前将秤盘置空,然后将读数调零。
3. 重叠检测:重叠检测是在相邻的测量范围内进行双重检查的方法,以消除系统误差。
例如,在实验中,可以对同一样本进行重复测量,在数据范围之间重叠的数据范围内,检查是否存在数据相关性和一致性,以消除系统误差。
论述系统误差产生的原因及消除方法。
论述系统误差产生的原因及消除方法。
系统误差是指在测量或实验中,由于测量仪器、实验条件等各种因素的影响而引起的一种固定偏差。
其值不随测量次数的增加而改变,且对测量结果具有一定的影响。
系统误差的产生原因主要包括以下几个方面:
1.测量仪器的误差:测量仪器的精度、灵敏度、分辨率等会影响测量结果的准确度。
2.环境条件的影响:实验室的温度、湿度、气压等环境条件的变化会引起测量结果的偏差。
3.人为因素:操作者的技术水平、操作方法、操作顺序等都会对测量结果产生影响。
4.样品自身的特性:样品的形态、成分、结构等都会影响测量结果的准确性。
消除系统误差的方法主要包括以下几点:
1.在测量前进行校准:对测量仪器进行校准可以消除仪器本身的误差。
2.控制环境条件:保持实验室的温度、湿度、气压等环境条件的稳定,可以减少环境因素对测量结果的影响。
3.制定标准操作程序:规范操作者的操作方法和顺序,可以减少人为因素对测量结果的影响。
4.选择合适的样品处理方法:针对不同样品的特性,选择适当的处理方法可以减少样品本身对测量结果的影响。
综上所述,消除系统误差需要多方面的考虑和措施,只有在综合考虑各种因素并采取相应的措施时,才能获得精确、可靠的测量结果。
简述系统误差产生的原因及误差消除的方法
简述系统误差产生的原因及误差消除的方法系统误差一般指计算机系统中的数据处理出现的偏差,它会对系统的准确性和可靠性造成负面影响,下面简要介绍系统误差产生的原因及误差消除的方法。
一、系统误差的原因
1、计算机硬件错误:计算机芯片上的电路板,或者软件中的算法失误,会导致系统产生误差;
2、操作系统错误:操作系统中的软件函数,或者对系统参数的调整不当,也会导致计算误差;
3、数据错误:输入的数据错误,或者输入数据的顺序导致的计算结果出现偏差,都会引发系统误差;
4、算法错误:算法的选择和使用是否正确,会影响系统精度和准确性,容易引发系统误差。
二、误差消除的方法
1、重新检查系统硬件:重新校验系统的硬件,如内存、硬盘、CPU、显卡等,确保硬件的正确,消除硬件导致的系统误差;
2、调整操作系统参数:可根据系统的要求,正确调整操作系统中的参数,消除操作系统参数调整不当导致的误差;
3、检验输入数据:在输入数据之前,先检查数据的正确性,确保输入的数据处于正确的格式,避免输入数据错误导致的误差;
4、选择适当的算法:算法的选择非常重要,应根据系统的实际要求,选择恰当的算法,才能正确计算出系统精度要求的结果,避免
算法使用失误导致的误差。
系统误差及减免的方法
系统误差及减免的方法系统误差是指测量结果与真值之间的偏差。
系统误差会对实验结果的准确性和可靠性产生重要影响,因此需要进行准确的误差分析和合理的减免方法。
本文将就系统误差及其减免方法进行详细探讨。
一、系统误差的类型及其影响因素系统误差可以分为常量误差和比例误差。
常量误差指测量结果与真值之间的恒定偏差,而比例误差则是指测量结果在不同测量条件下的不同偏差。
系统误差的产生主要与以下几个因素有关:1. 仪器的精度和准确度:仪器的设计、制造和校准水平直接决定了测量结果的精度和准确度。
如果仪器存在固有的偏差,那么所有的测量结果都会受到影响。
2. 环境条件的变化:环境条件的变化,如温度、湿度、压力等,都会对测量结果产生一定的影响。
例如,温度变化会导致某些物质的体积发生变化,从而影响测量结果的准确性。
3. 操作人员的技术水平和主观因素:操作人员的技术水平和主观因素也是系统误差产生的重要因素。
操作不当、读数不准确、个体差异等都会对测量结果产生一定的影响。
二、系统误差的减免方法为了减少系统误差的影响,可以采取以下几种方法:1. 选择合适的仪器和设备:在进行测量实验时,应选择精度高、准确度高的仪器和设备,以保证测量结果的准确性和可靠性。
2. 进行仪器的校准和修正:定期对仪器进行校准和修正,以消除仪器的固有偏差。
校准的方法有多种,如零点校准、线性校准等,具体选择应根据实际情况决定。
3. 控制环境条件的稳定性:为了减少环境条件变化对测量结果的影响,可以采取一些措施,如控制温度、湿度等环境参数的稳定性,或者在测量过程中同时测量和记录环境条件的变化。
4. 提高操作人员的技术水平:操作人员的技术水平直接影响系统误差的大小,因此应加强对操作人员的培训和教育,提高其技术水平和认识水平,减少主观因素对测量结果的影响。
5. 进行多次测量和数据分析:进行多次测量和数据分析可以降低系统误差的影响。
通过多次测量,可以减少偶然误差的影响,并得到更加可靠和准确的测量结果。
消除系统误差的方法
减少系统误差的方法消除或减少系统误差有两个基本方法。
一是事先研究系统误差的性质和大小,以修正量的方式,从测量结果中予以修正;二是根据系统误差的性质,在测量时选择适当的测量方法,使系统误差相互抵消而不带入测量结果。
1.采用修正值方法对于定值系统误差可以采取修正措施。
一般采用加修正值的方法。
对于间接测量结果的修正,可以在每个直接测量结果上修正后,根据函数关系式计算出测量结果。
修正值可以逐一求出,也可以根据拟合曲线求出。
应该指出的是,修正值本身也有误差。
所以测量结果经修正后并不是真值,只是比未修正的测得值更接近真值。
它仍是被测量的一个估计值,所以仍需对测量结果的不确定度作出估计。
2.从产生根源消除用排除误差源的办法来消除系统误差是比较好的办法。
这就要求测量者对所用标准装置,测量环境条件,测量方法等进行仔细分析、研究,尽可能找出产生系统误差的根源,进而采取措施。
采用专门的方法(1)交换法:在测量中将某些条件,如被测物的位置相互交换,使产生系统误差的原因对测量结果起相反作用,从而达到抵消系统误差的目的。
如用电桥测电阻,电桥平衡时,R X=R0(R1/R2),保持R1、R2不变,把Rx、R0的位置互换,电桥再次平衡时,R0变成R’,此时Rx=R0’(R2/R1)。
于是有Rx=R0`(R2/R1),由此算出的Rx就可以消除由R1、R2带来的系统误差。
(2)替代法:替代法要求进行两次测量,第一次对被测量进行测量,达到平衡后,在不改变测量条件情况下,立即用一个已知标准值替代被测量,如果测量装置还能达到平衡,则被测量就等于已知标准值。
如果不能达到平衡,修整使之平衡。
替代法是指直截了当地测定物理量的方法。
如:利用精密天平的称重。
设待测重量为x ,当天平达到平衡时所加砝码重量为Q ,天平的两臂长度各为l1 和l2 ,平衡时有x = Q ·l2/ ll 。
再用已知标准砝码P 代替x , 平衡时有P = Q ·l2/ l1 ,得到x = P。
误差修正方法
误差修正方法
误差修正方法是一种用于消除或减小测量误差的技术。
根据误差的性质和来源,误差修正方法可以分为以下几种:
1. 校准法:通过使用已知的标准量值对测量系统进行校准,以得出测量系统的误差大小和方向,并在测量过程中进行修正。
2. 反复测量法:通过多次重复测量来减小系统误差,以提高测量精度。
3. 数据修正法:通过数据处理来消除系统误差。
例如,使用平均值或中位数来消除系统误差,从而提高数据的精度。
4. 建立误差模型修正系统误差:先通过理论分析来建立系统误差模型,由误差模型求出误差修正表达式,然后利用误差因子和修正公式来消除或减小系统误差的影响。
5. 利用校正曲线通过查表法修正系统误差:通过实验求得校准曲线,然后将曲线上各校准点的数据存入存储器的校准表格中,在以后的实际测量中,通过查表来求得修正后的测量结果。
在实际应用中,应根据具体的测量系统和误差来源选择合适的误差修正方法。
同时,还需要注意一些细节问题,例如测量环境的稳定性和测量人员的专业水平等,以避免其他因素对测量结果的影响。
消除系统误差的方法
消除系统误差的方法
系统误差是指机器或系统在实际运行中的性能,因系统内容的设计、制造或操作原因,而影响系统的性能。
系统误差是在使用合格的产品和服务中,产品和服务的质量稳定性、可靠性和有效性的主要来源之一。
消除系统误差是每个系统中都必须面对的一个重要问题,一般来说,消除系统误差的方法可以分为两类:一是提高系统的质量,二是增加系统的容错性。
1、提高系统的质量。
要求系统所有部件完全按照图纸要求制造,确保其符合要求的精度,并定期进行检测和维护。
另外,在系统的设计和制造过程中,尽可能使用高质量、高精度的零部件,以减少系统误差。
2、增加系统的容错性。
一是采用抗干扰技术,增强系统对外部干扰的抵抗能力;二是采用传感器技术,使用传感器可以检测系统的实时状态,及时发现系统存在的误差,及时纠正;三是通过自动控制技术,使系统可以自动监测、调整,以减少系统中的误差。
此外,系统的维护和检测也可以有效消除系统误差。
系统的维护工作主要包括清洁保养、更换零部件、定期检查和更换润滑油等,这些工作可以有效防止系统的损坏,阻止系统中的误差的产生和发展。
此外,还要定期进行系统的检测,以确保系统的正常运行,及时发现系统中存在的误差,并及时进行纠正。
以上就是消除系统误差的方法,要想有效消除系统误差,就需要在系统的设计、制造和操作过程中,采取有效的措施,对系统的质量进行提升,增强系统的容错性,并定期进行系统的维护和检测,以确保系统的正常运行。
系统误差可消除
系统误差可消除系统误差又叫做规律误差。
它是在一定的测量条件下,对同一个被测尺寸进行多次重复测量时,误差值的大小和符号(正值或负值)保持不变;或者在条件变化时,按一定规律变化的误差。
“伏安法”测电阻无论采用安培表的外接法还是内接法,都会出现误差。
如何消除?系统误差又叫做规律误差。
它是在一定的测量条件下,对同一个被测尺寸进行多次重复测量时,误差值的大小和符号(正值或负值)保持不变;或者在条件变化时,按一定规律变化的误差。
其特点是测量结果向一个方向偏离,其数值按一定规律变化,具有重复性、单向性。
“伏安法”测电阻指用伏特表与安培表分别测待测阻值的电压u和电流i,然后据r=u/i的值求出阻值r.由于两表均不是理想表,所以无论采用安培表的外接法还是内接法,都会出现系统误差.在安培表的外接法中,由于伏特表不是理想表要分流,使安培表的示数偏大造成了误差, Rx的测量值比真实值偏小,若把Rv与Rx 当成一等效待测电阻,R′= Rx Rv/Rx+Rv, 当Rx≤Rv 时采用安培表外接法好.(如图1),在安培表的内接法中,由于安培表的分压作用,使得伏特表的示数偏大造成了误差.Rx的测量值比真实值偏大,若把Ra与Rx当成一等效待测电阻,R=Rx+Ra ,当RX≥RA 时采用安培表内接法.定量判定:①Rx2=RaRv 时安培表内、外接法均可。
②Rx2RaRv 时看成大电阻,采用安培表内接法。
在具体问题中,不少学生一遇到此问题第一反应就是比较Rx2与RaRv的关系。
例1:在用伏安法测电阻的实验中,所用的伏特表的内阻约为20KΩ安培表的内阻为1Ω,待测电阻的阻值大约20Ω。
请选择一个误差较小的电路进行实验,并作出电路图。
错析:因为Rx≤ Rv因此采用安培表外接法,电路图如下所示:其实在本题中安培表内阻准确知道,就不必采用安培表外接法了,而采用安培表内接法就可以对造成的误差进行修正,从而得到准确值。
因R=u/I=Rx+Ra,所以本题准确值为Rx=R-Ra=u/I-Ra。
消除恒定系统误差的方法
消除恒定系统误差的方法
嘿,你知道咋消除恒定系统误差不?其实不难!可以采用标准量对比法呀,拿已知准确的标准量和要测量的量对比,就像拿一把标准尺子去量布一样,一下子就能看出误差有多大。
然后调整测量系统,让它更准确。
还有替换法呢,把可能有误差的部分替换成已知准确的部件,这就好比给汽车换个好零件,立马跑得更顺溜。
这过程安全不?那当然啦!只要操作得当,根本不用担心出啥问题。
稳定性也是杠杠的,一旦消除了误差,测量结果就会稳稳当当的。
那啥时候能用这方法呢?哎呀,多了去啦!在实验室做精密测量的时候,可不能有恒定系统误差,不然实验结果就不靠谱啦。
工业生产中也得注意,不然产品质量咋保证呢?优势可明显了,能让测量结果更准确,就像有了一双火眼金睛,啥误差都能找出来。
我就知道一个实验室的例子,他们之前测量总是有误差,后来用了这些方法,嘿,测量结果一下子就准了,实验也顺利多了。
消除恒定系统误差的方法真不错,能让测量更靠谱。
消除系统误差的一般方法
消除系统误差的一般方法我折腾了好久消除系统误差这事儿,总算找到点门道。
说实话,一开始我也是瞎摸索,走了不少弯路呢。
我尝试的第一个方法就是校准仪器。
就拿测量长度的尺子来说,它要是不准了,那测出来的结果肯定有系统误差。
我之前就碰到过这种情况,量个东西老是觉得结果不太对。
后来我才知道尺子在使用一段时间后,可能会因为磨损或者其他原因变不准了。
这时候就需要拿它和更精确的标准尺子对比校准。
这就像你给时钟对时间一样,你得找一个准的时钟来校准你不太准的那个。
但是这校准也不是那么容易的,你得很细心很小心,一不留神还是会有小误差。
就像我有一次校准的时候,没有把尺子放得完完全全平整,结果校准出来还是有点偏差,后来量的东西结果还是不对,我这才恍然大悟之前做错了。
还有一个重要的方法就是改进实验方法或者测量方法。
比如说我曾经做过一个化学实验,要测量某种反应生成的气体量。
最初的测量方法很粗糙,误差特别大。
后来我查阅了好多资料,还请教了一些有经验的人,换了一种测量装置和方法。
这就好比你本来是走一条坑坑洼洼的小路去目的地,误差就像路上的坑洼,让你总到不了准确的地方。
而换一种测量方法就是找了一条平坦的大路直通向准确结果。
不过改进方法也不是随便改的,要考虑很多因素,像实验条件啊、成本啊之类的。
我就曾经想了一个特别复杂和昂贵的改进方法,实际操作起来根本不可行,白忙活了一场。
另外呢,进行多次测量取平均值也是个减少系统误差的办法。
我以前在测量一个物体的重量时,只测量了一次就当作结果。
后来发现同样的东西每次测出来重量会有点不一样,我就多测了几次,这么一来测量的结果就更接近真实值了。
就像你挑苹果,如果只看一个苹果就判断这一堆苹果的好坏,很可能判断错误,但要是多看看几个,就能更准确地知道这堆苹果大概是什么样的质量。
但这也有个问题,就是有时候多次测量后发现数据波动特别大,这时候就要重新审视测量过程,看看是不是有没注意到的系统误差来源。
反正这消除系统误差啊,真得一步步来,很多时候要同时采用好几种方法,还得不断地测试检查才能尽量减少那讨厌的系统误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
减少系统误差的方法
消除或减少系统误差有两个基本方法。
一是事先研究系统误差的性质和大小,以修正量的方式,从测量结果中予以修正;二是根据系统误差的性质,在测量时选择适当的测量方法,使系统误差相互抵消而不带入测量结果。
1.采用修正值方法
对于定值系统误差可以采取修正措施。
一般采用加修正值的方法。
对于间接测量结果的修正,可以在每个直接测量结果上修正后,根据函数关系式计算出测量结果。
修正值可以逐一求出,也可以根据拟合曲线求出。
应该指出的是,修正值本身也有误差。
所以测量结果经修正后并不是真值,只是比未修正的测得值更接近真值。
它仍是被测量的一个估计值,所以仍需对测量结果的不确定度作出估计。
2.从产生根源消除
用排除误差源的办法来消除系统误差是比较好的办法。
这就要求测量者对所用标准装置,测量环境条件,测量方法等进行仔细分析、研究,尽可能找出产生系统误差的根源,进而采取措施。
采用专门的方法
(1)交换法:在测量中将某些条件,如被测物的位置相互交换,使产生系统误差的原因对测量结果起相反作用,从而达到抵消系统误差的目的。
如用电桥测电阻,电桥平衡时,
R X=R0(R1/R2),保持R1、R2不变,把Rx、R0的位置互换,电桥
再次平衡时,R0变成R’,此时Rx=R0’(R2/R1)。
于是有
Rx=R0`(R2/R1),由此算出的Rx就可以消除由R1、R2带来的系
统误差。
(2)替代法:替代法要求进行两次测量,第一次对被测量进行测量,达到平衡后,在不改变测量条件情况下,立即用一个已知标准值替代被测量,如果测量装置还能达到平衡,则被测量就等于已知标准值。
如果不能达到平衡,修整使之平衡。
替代法是指直截了当地测定物理量的方法。
如:利用精密天平的称重。
设待测重量为x ,当天平达到平衡时所加砝码重量为Q ,天平的两臂长度各为l1 和l2 ,平衡时有x = Q ·l2/ ll 。
再用已知标准砝码P 代替x , 平衡时有P = Q ·l2/ l1 ,得到x = P。
若用标准砝码置换未知重量后,天平失去平衡,需加一差值△P , 才出现平衡, 这时有P + △P = Q ·l2/ l1 ,所以x = P + △P( △P 可正可负) 。
这样就可消除由于天平两臂不等而带来的系统误差。
(3)补偿法:补偿法要求进行两次测量,改变测量中某些条件,使两次测量结果中,得到误差值大小相等、符号相反,取这两次测量的算术平均值作为测量结果,从而抵消系统误差。
如读数显微镜、千分尺等都存在空行程,这是系统误差,设其为l,为消除这一误差,可从两个方向分别读数,第一次顺时针旋转,读得数据为L1,则被测量长度D为:D=L1+l:第二次逆时针旋转读得数据为L2,则被测量长度为D=L2-l,于是D=(L1+L2)/2,这样系统误差l被消除,某些不等
位电势、温度引起的温差电势、磁场对磁电系仪表的影响等也可以用这种办法来消除。
(4)对称测量法:即在对被测量进行测量的前后,对称地分别对同一已知量进行测量,将对已知量两次测得的平均值与被测量的测得值进行比较,便可得到消除线性系统误差的测量结果。
(5)半周期偶数测量法:对于周期性的系统误差,可以采用半周期偶数观察法,即每经过半个周期进行偶数次观察的方法来消除。
(6)组合测量法:由于按复杂规律变化的系统误差,不易分析,采用组合测量法可使系统误差以尽可能多的方式出现在测得值中,从而将系统误差变为随机误差处理。
(7) 相对测量法:相对测量法也称为比较法,是利用已知其精确
数据的标准样品,在同样的条件下与待测样品进行对比实验。
此方法可消除一些已知或未知的系统误差。
如:早期测量摆的周期是利用一个与待测摆周期相近的标准摆,用重合法进行比较,这样可以减小计
时器、摆角、阻尼等因索引起的系统误差。
(8) 零示法:在零点、平衡点或是相互抵偿的状态附近,实验会保持原始的条件,将免去一些附加的系统误差,而且观测往往会有较高
的分辨率和灵敏度。
如:电位差计就是利用电压补偿的原理, 实现零示的一种方法。
(9) 交替法:交替法就是把测量对象的位置相互交替而进行两次测量。
如用平衡电桥测量未知电阻值,为消除电桥比例臂电阻值不等给测量结果带来的系统误差,可使用交替法进行测量。
(10) 累积法:用尺子去测量一张很薄的纸的厚度,是很不准的。
如果把许多张同样的纸叠成一叠进行测量,那么就可以测得比较准确。
令一张纸的厚度为d , 测量误差为△d , 则测量的相对误差为△d/ d ;如果把n 张纸叠起来测量, 则其总厚度为nd 。
然而,在基本相同的测量条件下, 测量误差还足d 。
于是测量的相对误差为: △d/ ( nd) , 即相对误差减小为只测一张纸时的1/ n 。
(11)外延修正法外延修正法的基本思想是将真实的物理实验过程外推到进行得无限快的情况, 因而也就不存在系统误差的作用。
补充:
1、可以对仪器进行调整和检定。
2、对观测顺序进行设计,使系统误差可以全部或部分被抵消。
3、让同一个人观测全部观测值,避免换人带来的观测习惯变化带来的系统误差。
4、对电离层和对流层进行观测和建模,在观测值中进行改正,可以避免其带来的系统误差。