工业机械手设计

合集下载

低负荷六轴工业机械手的设计与仿真

低负荷六轴工业机械手的设计与仿真

低负荷六轴工业机械手的设计与仿真设计与仿真低负荷六轴工业机械手引言六轴工业机械手是现代制造业中广泛使用的自动化设备之一,能够完成各种复杂的任务。

在设计和仿真低负荷六轴工业机械手时需要考虑机械结构、电气系统、控制系统等多个方面的因素。

本文将介绍如何进行低负荷六轴工业机械手的设计与仿真。

机械结构设计1.功能需求:首先需要确定机械手需要完成的任务以及所需的工作空间大小,确定六个关节的自由度。

2.结构选择:根据功能需求选择机械手的结构类型,例如串联关节、并联关节等。

3.关节参数设计:确定机械手的关节参数,如关节旋转角度范围、关节长度、负载能力等。

4.运动学分析:进行机械手的运动学分析,确定机械手的运动范围和工作精度。

电气系统设计1.电机选择:根据机械手的负载需求选择合适的电机,需考虑转矩、功率、速度等参数。

2.传感器选择:选择合适的传感器用于感知机械手的位置、力矩以及其他需要的信息。

3.电气线路设计:设计机械手的电气线路,包括电机驱动器、编码器等设备的连接以及电源的供应等。

控制系统设计1.控制算法选择:选择合适的控制算法,如PID控制、模糊控制等。

2.控制器选择:根据控制算法选择合适的控制器,如PLC或者单片机等。

3.控制系统实现:将控制算法和控制器实现到机械手的控制系统中,编写相应的软件。

仿真实验设计完成后,需要进行仿真实验来验证机械手的性能。

在仿真实验中可以模拟机械手的工作场景,评估机械手的工作性能并进行调整。

仿真实验可以通过使用机器人仿真软件,如MATLAB、SolidWorks等来进行。

结论本文介绍了低负荷六轴工业机械手的设计与仿真过程。

在进行设计时需要考虑机械结构、电气系统和控制系统等多个方面的因素。

通过仿真实验可以验证机械手的性能并进行调整。

通过这些步骤的设计与仿真过程可以有效地设计和优化低负荷六轴工业机械手的性能。

工业机械手控制系统设计和调试

工业机械手控制系统设计和调试

工业机械手控制系统设计和调试首先,工业机械手控制系统设计的第一步是确定机械手的动作范围和控制要求。

根据具体的应用场景,确定机械手需要执行的任务和动作,例如抓取、转动、举升等。

同时,还需要确定机械手的工作空间和可移动范围,以及机械手的负载能力和精度要求。

接下来,设计人员需要选择适合的控制器和传感器。

工业机械手通常使用伺服控制系统来实现精密控制。

在选择控制器时,需要考虑其处理能力、稳定性和可靠性。

传感器方面,通常使用编码器、力传感器和视觉传感器等来实现对机械手位置、力量和对象识别的监测和反馈。

一旦控制器和传感器确定后,就可以进行控制系统的软件设计和编程。

通常,控制系统采用实时操作系统来控制机械手的运动。

软件设计过程包括建立机械手的运动模型、编写控制算法和生成控制指令。

在编程过程中,还需要考虑到安全性和故障处理机制,以保证机械手在异常情况下能够正确应对。

完成软件设计后,就可以进行控制系统的调试和优化。

首先,需要对控制系统进行初始化和参数设置,包括配置机械手的初始位置和速度等。

然后,通过观察机械手的运动和传感器的反馈数据,调整控制器参数和算法,以实现更准确的控制。

在调试过程中,还需要进行系统的稳定性分析和性能评估,以确保机械手能够稳定运行并满足控制要求。

最后,为了保证工业机械手控制系统的可靠性和安全性,还需要进行系统的验证和测试。

在系统验证中,需要验证控制系统能够准确地实现机械手的运动和控制要求。

而在系统测试中,需要对系统进行全面的功能和性能测试,包括验证系统在不同工作负载和环境条件下的稳定性和可靠性。

综上所述,工业机械手控制系统设计和调试是一个复杂而关键的过程,需要综合考虑机械工程、电气工程和自动化控制等多个领域的知识。

只有通过合理的设计和精确的调试,才能实现工业机械手的准确和稳定控制。

轻型平动工业机械手de设计

轻型平动工业机械手de设计




伸缩液压缸驱动力计算

驱动力 F F摩 F惯 F摩 为摩擦阻力,手臂运动时,运动件表面的摩擦阻力。 F惯 为起动或者制动时活塞杆所受的平均惯性力。 (1)摩擦阻力计算。 如右图分析可得:
F摩 Fa摩 Fb摩 ' Fa ' Fb
La F摩 G总 ( ) 900 N a
致谢


在本论文的设计中,自始自终得到了河南 科技学院机电学院牛爱青老师的精心指导 和亲切关怀。导师严谨的治学态度、严于 律己宽以待人的做人风范是本人终身学习 的榜样。在此表示由衷的感谢! 同时对这四年来给了我教育和帮助的机电 学院老师表示感谢。最后向关心帮助我的 朋友、同班同学表示感谢。
轻型平动工业机械手设计
机电学院 机电技术教育052 高自永
摘要

本文将设计一部三自由度的工业机械手, 能够实现上下空间,平面伸缩以及机身回 转的动作,用于给设备运送物料。介绍机 械手的作用,机械手的组成和分类,说明 自由度和机械手整体座标的形式。分析搬 运机械手的设计理论与方法。全面分析搬 运机械手的手部、手臂以及机身等主要部 件的结构设计,本文将分析计算机械手的 手部,臂部,机身的结构选择合适的驱动 机构。

如图所示,手臂在 G总 的作用下有顺时针方向倾斜的趋势,而在立柱 导套可阻止手臂倾斜。导套对升降立柱的作用力如图示 FR1 和 FR 2 ,根据
升降立柱的力平衡条件,经过推导可得出:h 2 f h即为立柱导套的高度,此为不自锁条件

液压回路的设计分析

本设计中,都是采用的液压驱动。具体的液压回路设计如 Nhomakorabea图所示。

机械手的组成

《2024年基于PLC的工业机械手运动控制系统设计》范文

《2024年基于PLC的工业机械手运动控制系统设计》范文

《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,机械手运动控制系统在工业生产中扮演着越来越重要的角色。

传统的机械手控制系统通常采用单片机或嵌入式系统进行控制,但由于其处理能力和稳定性的限制,已经无法满足现代工业生产的高效、精确和可靠的要求。

因此,本文提出了一种基于PLC(可编程逻辑控制器)的工业机械手运动控制系统设计。

该系统采用先进的PLC技术,能够有效地提高机械手的控制精度、稳定性和可靠性,满足现代工业生产的需求。

二、系统设计1. 硬件设计本系统硬件部分主要包括PLC控制器、机械手本体、传感器、执行器等部分。

其中,PLC控制器是整个系统的核心,采用高性能的PLC模块,能够实现对机械手的精确控制。

机械手本体包括手臂、手腕、抓手等部分,通过执行器进行驱动和控制。

传感器则用于检测机械手的运动状态和位置信息,为控制系统的精确控制提供支持。

2. 软件设计软件部分是整个系统的关键,它决定了机械手的运动方式和控制精度。

本系统采用PLC编程软件进行程序设计,通过编写梯形图或指令代码来实现对机械手的控制。

程序包括主程序和控制程序两部分。

主程序负责控制整个系统的运行流程,而控制程序则负责实现对机械手的精确控制。

3. 控制策略本系统采用基于位置的控制策略,通过传感器实时检测机械手的位置信息,将位置信息与目标位置进行比较,计算出位置偏差,并通过执行器对机械手进行精确的控制。

同时,系统还具有速度控制和力控制等功能,能够根据实际需求进行灵活的调整和控制。

三、系统实现1. 硬件连接硬件连接是整个系统实现的基础。

首先需要将PLC控制器与机械手本体、传感器、执行器等部分进行连接,确保各部分之间的通信和信号传输畅通。

同时,还需要对硬件设备进行调试和测试,确保其正常工作。

2. 程序设计程序设计是整个系统的核心部分。

根据实际需求和机械手的运动特性,编写相应的梯形图或指令代码,实现对机械手的精确控制。

毕业设计工业机械手设计

毕业设计工业机械手设计
本次毕业设计的任务:工业机械手的设计
二、工业机械手简介
❖ 工业机械手是工业生产发展中的必然产物。它 是一种模仿人体上肢的部分功能,按照预定要 求输送工件或握持工具进行操作的自动化技术 装备。这种新颖技术装备的出现和应用,对实 现工业生产自动化,推动工业生产的进一步发 展起着重要作用,因而具有强大的生命力,受 到人们的广泛重视和欢迎。
工业机械手的规格参数 工业机械手的规格参数是说明机械手规格和性能
的具体指标,一般包括以下几个方面:
⑴抓重(又称臂力):额定抓取重力或称额定负荷, 单位为N(必要时注明限定运动速度下的抓重)。 ⑵自由度数目和坐标形式:机身、臂部和腕部等运 动共有几个自由度,并说明坐标形式。
⑶定位方式:固定机械挡块、可调机械挡块、行程 开关、电位器及其它各种位置设定和检测装置;各 自由度所设定的位置数目或位置信息容量;点位控 制或连续轨迹控制。 ⑷驱动方式:气动、液动、电动或机械传动。 ⑸臂部运动参数:可列成表1-1形式。 ⑹腕部运动参数:可列成表1-2形式。
计算及说明ຫໍສະໝຸດ 书四、主要部件设计

1、轴系部件设计

(1)轴承类型的选择 (2)传动件

(3)轴

1)轴的结构设计

: 说明书中还应包括:
结果
主要参数:
1) 设计小结; 2)参考资料(资料的编号【】及书名、作者、出版单位、出版年 月)。
必须用钢笔(或碳素笔)工整地书写在规定格式的设计计算说 明书上,要求计算正确,论述清楚、文字精炼、插图简明、书写整 洁。
❖ 1)与单机一起实现自动化
❖ 生产上出现的许多高效专用加工设备(如各种 专用机床等),如果工件的装卸等辅助作业, 继续由人工操作,不仅会增加工人劳动强度, 同时亦不能充分发挥专用设备的效能,必然会 影响劳动生产率的提高。若采用机械手代替人 工上、下料,则可改变上述不相适应的情况, 实现单机自动化生产,并为实现多机床看管提 供了条件。如:自动机床及其上下料机械手、 冲压机械手、注塑机及其取料机械手等。

机械手设计方案

机械手设计方案

机械手设计方案机械手设计方案引言:机械手是一种能模拟人手动作、完成复杂而重复的工作的机械装置。

本方案旨在设计一种功能全面、结构合理、操作简便的机械手。

一、功能设计:该机械手主要用于工业生产中的自动化操作。

设计中考虑到以下几个方面的功能需求:1.抓取能力:机械手需要具备稳定的抓取能力,能够根据需要抓取各种形状的物体。

2.运动自由度:机械手需要具备足够多的运动自由度,能够在空间中灵活操作。

3.力度控制:机械手需要根据不同任务的要求,能够对抓取力度进行精确控制。

4.操作平稳性:机械手的运动应平稳、精确,以实现高效的生产操作。

5.可编程性:机械手应具备可编程功能,可以根据不同任务需求进行多样化的操作。

二、结构设计:机械手主要分为下列几个部分:1.机械臂:机械臂是机械手的核心部分,应具备足够多的关节,以实现多自由度的运动。

同时,机械臂需要采用轻量化设计,以减小自身质量,提高运动效率。

2.末端执行器:末端执行器是机械手抓取物体的部分,应设计可自由伸缩的抓取夹具,以适应不同尺寸的物体。

3.传动系统:传动系统是机械手的动力系统,应选择高效可靠的传动装置,如电机和减速器组合,以保证机械手运动的精确性和稳定性。

4.控制系统:控制系统是机械手的智能核心,应具备高速、高精度、可编程的控制器,以实现机械手的自动化操作。

同时,控制系统应提供友好的人机界面,方便操作者使用。

三、操作流程:机械手的操作流程可分为如下几个步骤:1.输入任务指令:操作者通过控制系统输入任务指令,包括抓取位置、力度等参数。

2.开机准备:机械手启动后,进行预热和校准动作,以确保机械手处于正常工作状态。

3.感应物体:机械手的传感器感应物体位置和大小,确定抓取位置和姿态。

4.抓取物体:机械手根据输入的指令和感应到的物体信息,进行相应的运动和力度控制,将物体抓取起来。

5.完成任务:机械手将抓取的物体移动到指定位置,完成任务,并将完成情况通过控制系统反馈给操作者。

工业机械手设计

工业机械手设计

摘要在机械制造业中,机械手已被广泛应用,从而大大的改善了工人的劳动条件,显著的提高劳动生产率,加快实现工业生产机械化和自动化的步伐,本设计通过对机械手各主要组成部分(手部、手腕、手臂和机身等)分析,从而确定各主要组成部分的结构,在此基础上对机械手进行设计计算,从而确定装配总图。

通过此次机械手设计,掌握相关机械手设计的主要步骤,对于CAD/CAM软件应用方面有了进一步的提高。

关键词:机械手,设计,手部,手腕,手臂,机身,结构The Design of Industry ManipulatorAbstractIn the mechanical manufacturing industry, the manipulator has been widely applied, thus the big improvement worker's work condition, the remarkable enhancement labor productivity, sped up realizes the industrial production mechanization and the automated step, this design through to the manipulator each main constituent (hand, skill, arm and fuselage and so on) analyzes, thus determined each main constituent the structure, carries on the design calculation in this foundation to the manipulator, thus determination assembly assembly drawing.Designs through this manipulator, the grasping correlation manipulator designs the main step, had the further enhancement regarding the CAD/CAM software application aspect.Keywords:Manipulator, design, hand, skill, arm, fuselage, structure目录1 绪论............................................................. 12 机械手设计要求................................................... 13 机械手总体设计方案............................................... 13.1 机械手的组成............................................... 13.1.1 执行机构............................................. 13.1.2 驱动机构............................................. 23.1.3 控制机构............................................. 23.2 机械手在生产中的应用....................................... 23.3 机械手的主要特点........................................... 23.4 机械手的技术发展方向....................................... 33.5 机械手坐标形式与自由度选择................................. 43.5.1 机械手坐标形式选择................................... 43.5.2 机械手自由度选择..................................... 43.6 机械手的规格参数........................................... 43.7 机械手手部设计计算......................................... 53.7.1 手部设计基本要求..................................... 53.7.2 手部力学分析......................................... 53.7.3 夹紧力与驱动力的计算................................. 73.7.4 手抓夹持范围计算..................................... 93.7.5 手抓夹持精度的分析计算............................... 93.8 机械手腕部设计计算.........................................103.8.1 腕部设计基本要求..................................... 103.8.2 腕部的结构选择....................................... 103.8.3 腕部回转力矩计算..................................... 113.8.4 腕部工作压力计算..................................... 133.8.5 液压缸盖螺钉计算..................................... 143.8.6 动片和输出轴联接螺钉计算............................. 153.9 机械手臂部设计计算......................................... 153.9.1 臂部设计基本要求..................................... 153.9.2 臂部的结构选择....................................... 163.9.3 手臂伸缩驱动力计算................................... 163.9.4 手臂伸缩液压缸参数计算............................... 183.10 机身升降机构计算...........................................193.10.1 手臂偏重力矩计算.....................................193.10.2 升降导向立柱不自锁条件...............................213.10.3 手臂升降驱动力计算...................................213.10.4 手臂升降液压缸参数计算...............................223.11 机身回转机构计算.......................................... 233.11.1 手臂回转液压缸驱动力矩计算...........................233.11.2 手臂回转液压缸参数计算...............................243.11.3 液压缸盖螺钉计算.....................................243.11.4 动片和输出轴间联接螺钉计算...........................254 机械手装配总图...................................................265 结论.............................................................27 致谢.............................................................27 参考文献.........................................................281 绪论工业机械手设计是机械制造、机械设计等方面的一个重要的教学环节,是学完技术基础课及有关专业课以后的一次综合设计,通过这一环节把有关课程中所获得的理论知识在实际中综合的加以应用,使这些知识能够得到巩固和发展,并使理论知识和生产密切的结合起来,通过设计培养学生独立思考能力,树立正确的设计思想,掌握机械产品设计的基本方法和步骤,为自动机械设计打下良好的基础。

机械手的设计

机械手的设计

机械手的设计机械手是一种具有高度灵活性和准确性的自动化设备,广泛应用于工业生产线、医疗手术、装配和包装等领域。

机械手的设计需要考虑多方面因素,包括机械结构、电气控制和运动学算法等,下面我将从这几个方面详细介绍机械手的设计。

一、机械结构机械结构是机械手设计的核心,主要包括机械臂、关节和执行器三部分。

机械臂是机械手的主体,负责完成各种运动和动作。

关节是连接机械臂的组件,能够使机械臂在多个方向进行运动。

执行器负责将机械臂传输的运动信号转化为物理动作,例如抓取、旋转等。

机械结构的设计需要考虑以下因素:1. 功能需求:根据机械手的应用需求,确定机械手需要具备哪些功能和动作,例如抓取、旋转、移动等。

2. 机械臂的结构:机械臂的结构决定了机械手的可达性、波动和抗外力等性能。

通常有三种设计方式:串联式、并联式和混合式。

3. 关节和执行器选型:需要考虑负载、精度、速度、控制方式等因素,选择合适的关节和执行器。

4. 材料选择和加工:需要根据机械手的负载、速度和精度要求,选择合适的铝合金、碳纤维等材料,并采用先进的加工技术进行制造。

二、电气控制电气控制是机械手的另一个重要组成部分。

它负责将机械手进行的任何运动和动作转换为电信号,从而实现自动化控制和精确调节。

电气控制主要包括传感器、执行器和控制系统三个方面。

电气控制的设计需要考虑以下因素:1. 传感器:传感器能够感知机械手周围的环境信息,例如位置、速度、力矩等。

需要选择合适的传感器,避免传感器数据的误差,提高机械手的运动精度和稳定性。

2. 执行器:执行器是将电信号转换为物理动作的组件。

采用先进的执行器能够提高机械手的运动速度和精度。

3. 控制系统:控制系统是机械手的大脑,负责控制机械手的运动和动作。

需要采用先进的控制系统来保证机械手的运动稳定性和精度。

三、运动学算法运动学算法是机械手设计的重要组成部分。

它的作用是根据机械手的运动学模型,计算机械手各关节的运动轨迹和角度,从而实现机械手的各种动作和运动。

工业机械手设计

工业机械手设计

1 绪论机械工业是国民的装备部,是为国民经济提供装备和为人民提供耐用消费品的产业,不论是传统产业,还是新兴产业,都离不开各种各样的机械设备。

机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。

机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要指标。

因此,世界各国都把发展机械工业作为发展本国经济战略重点之一。

工业机械手是近几十年发展起来的一种高科技自动化生产设备,工业机械手的工业机器人的一个重要分支,它的特点是通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性,机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。

机械手是在机械化,自动化生产过程中发展起来的一种新型装置,在现代化生产过程中,机械手被广泛的运用于自动化生产线中,机器人的研制和生产已成为高技术领域内,迅速发展起来的一门新兴技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。

机械手虽然目前还不如人手那样灵活,但它具有能不断重复和劳动,不知疲劳,不惧危险,抓举重物的力量比人手大的特点,因此机械手已受到许多部门的重视,并越来越广泛的得到了应用。

机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。

机械手技术涉及到力学,机械学,电气液压技术,自动控制技术,传感器技术和计算机技术等科学领域,是一门跨多种学科的综合技术。

机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多个自由度,可用来搬运物体以完成在各个不同环境中工作。

机械手的结构设计及控制

机械手的结构设计及控制

机械手的结构设计及控制机械手是一种能像人手一样完成各种工作任务的装置。

它具有高精度、高速度和可编程性等特点,广泛应用于工业自动化领域。

机械手的结构设计和控制是实现其功能的关键。

一、机械手的结构设计1. 关节型机械手关节型机械手是由一系列的关节连接而成,每个关节都有自己的自由度。

它的结构类似于人的手臂,能够模拟人的运动,灵活度较高。

关节型机械手的结构设计注重关节的精确度和稳定性,同时需要考虑到机械手的负载能力和工作范围。

2. 直线型机械手直线型机械手由一组平行移动的臂组成,可以在一个平面内进行线性运动。

它的结构设计简单,适合进行一些简单的工作任务。

直线型机械手的关键是确保臂的平移精确度和平稳度,以及确保工作范围的有效覆盖。

3. 平行四边形机械手平行四边形机械手是一种特殊的机械手结构,它由四个平行运动的臂组成。

平行四边形机械手的结构设计需要确保四个臂的平移精确度和平稳度,以及实现机械手的高速度和高精度。

二、机械手的控制机械手的控制是指通过编程控制机械手完成各种工作任务。

机械手的控制系统一般包括硬件控制模块和软件控制模块。

1. 硬件控制模块硬件控制模块包括电机驱动器、传感器、编码器等设备。

电机驱动器用于控制机械手的运动,传感器用于获取机械手与物体的位置和姿态信息,编码器用于测量电机的位置和速度。

2. 软件控制模块软件控制模块是机械手控制系统的核心部分,负责编写控制程序并实时更新机械手的运动状态。

软件控制模块可以使用编程语言如C++、Python等来实现。

控制程序需要根据任务需求编写,包括运动规划、轨迹控制、碰撞检测等功能。

机械手控制的关键是实现精确的运动控制和优化的路径规划。

在控制程序中,需要考虑到机械手的动力学模型、碰撞检测算法以及运动规划算法等。

同时还需要考虑到外部环境的变化以及机械手与物体之间的互动。

三、机械手的应用机械手广泛应用于工业自动化领域,可以完成包括搬运、装配、焊接、喷涂、夹持等多种工作任务。

工业机械手设计基础

工业机械手设计基础

工业机械手设计基础
工业机械手是机器人工程学和控制工程学中极其重要的一个分支,它以其灵活、可重复及快速等优势得以广泛应用于工业生产现场以及
实验室检测和测量。

根据不同的应用需求,工业机械手的设计理念可
以总结为:安全性、灵活性、精度、功率、速度、耐久性以及成本等
多方面的考虑。

安全性是工业机械手设计中最重要的考虑因素,在设计时要重视
采用安全设施来防止人员受到机械手的损伤,保护人员及其工作环境。

灵活性与控制机械手的技术和软件有关,它不仅要求机械手具有快速
位置控制和精确位置控制功能,而且要求机械手能够快速从一个工作
任务切换到另一个任务,以及动态示教靠位等。

精度是指控制机械手
执行任务时,其位置精度和角度精度,是评价机械手功能的重要指标。

功率一方面要考虑控制机械手的总体功耗;另一方面,要考虑每一轴
的传动功率和力矩,以满足机械手的操作功能。

速度是指控制机械手
完成工作过程中的运动速度,是工业机械手效率提升的重要因素之一。

耐久性是指控制机械手在一定条件下执行工作时,其结构和电气性能
能够长期可靠使用的指标。

成本是指控制机械手的总投入,主要是考
虑硬件设备的采购、安装和维护等,以及软件运行的费用。

工业机械手控制系统硬件设计

工业机械手控制系统硬件设计

工业机械手控制系统硬件设计随着科技的不断发展,工业机械手控制系统在现代化生产过程中扮演着愈发重要的角色。

机械手控制系统的主要任务是引导机械手进行精确的操作,从而实现生产过程的自动化和高效化。

以下是关于工业机械手控制系统硬件设计的主要内容和要点。

在硬件设计之前,首先要明确机械手控制系统的需求。

例如,系统的输入类型、输出类型、处理速度、精度、抗干扰能力等。

根据这些具体需求,才能确定所需的硬件设备和组件。

微处理器:微处理器是控制系统的核心,它负责接收输入信号、处理数据并给出输出信号。

常用的微处理器有单片机、嵌入式处理器等。

选择微处理器时,需要考虑处理速度、内存容量、外设接口等因素。

传感器:传感器用于检测机械手的运动状态和位置信息。

常见的传感器有光电编码器、光栅尺、角度传感器等。

选择传感器时,需要考虑精度、响应速度、量程等因素。

驱动器:驱动器用于驱动机械手的运动机构。

常见的驱动器有电机驱动器、气缸驱动器等。

选择驱动器时,需要考虑驱动能力、控制精度、响应速度等因素。

I/O接口:I/O接口用于连接外部设备和控制系统。

常见的I/O接口有RS-RS-CAN等。

选择I/O接口时,需要考虑通讯速率、稳定性、抗干扰能力等因素。

根据已选择的硬件设备和组件,进行硬件电路设计。

设计中需要注意信号的匹配、电平的转换、电源的稳定性等问题。

对于复杂的控制系统,可以采用模块化的设计方法,将整个系统划分为多个功能模块,每个模块设计独立的电路,最后进行模块间的连接和调试。

工业环境中的干扰因素较多,如电磁干扰、电源波动等。

为了提高控制系统的稳定性和可靠性,需要进行抗干扰设计。

常见的抗干扰措施有:选用低噪声器件、合理布线、添加滤波电容、使用磁珠等。

硬件设计完成后,需要进行调试和测试,以确保系统的功能和性能符合预期。

调试过程中,需要对每个硬件设备和组件进行逐一测试,观察其工作状态和参数是否正常。

同时,要测试整个控制系统的协调性和稳定性,以确保机械手在各种工况下都能正常运行。

《2024年基于PLC的工业机械手运动控制系统设计》范文

《2024年基于PLC的工业机械手运动控制系统设计》范文

《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化程度的不断提高,机械手运动控制系统在生产制造过程中发挥着越来越重要的作用。

其中,基于PLC(可编程逻辑控制器)的工业机械手运动控制系统已经成为当前的主流选择。

该系统凭借其强大的逻辑处理能力和可靠的运行稳定性,被广泛应用于各类工业制造场景中。

本文将探讨基于PLC的工业机械手运动控制系统的设计思路、关键技术和应用实践。

二、系统设计目标在设计基于PLC的工业机械手运动控制系统时,主要目标是实现高精度、高效率、高稳定性的运动控制。

具体而言,该系统应具备以下特点:1. 精确控制:确保机械手在执行各种动作时,能够精确地达到预定位置和姿态。

2. 高效运行:通过优化控制算法和程序,提高机械手的运行效率,降低能耗。

3. 稳定可靠:系统应具备较高的抗干扰能力和故障自恢复能力,确保长时间稳定运行。

三、系统设计原理基于PLC的工业机械手运动控制系统主要由PLC控制器、传感器、执行器等部分组成。

其中,PLC控制器是整个系统的核心,负责接收上位机的指令,并根据指令控制机械手的运动。

传感器用于检测机械手的当前状态和位置,以便PLC控制器进行实时调整。

执行器则负责驱动机械手完成各种动作。

四、关键技术1. PLC控制器选型与设计:选择合适的PLC控制器是整个系统设计的关键。

应考虑控制器的处理速度、内存容量、I/O接口数量等因素。

同时,根据机械手的运动需求,设计合理的控制程序,确保系统能够准确、快速地响应各种指令。

2. 传感器技术应用:传感器在机械手运动控制系统中起着至关重要的作用。

常用的传感器包括位置传感器、力传感器、速度传感器等。

这些传感器能够实时检测机械手的当前状态和位置,为PLC控制器提供准确的反馈信息。

3. 执行器选型与驱动:执行器是驱动机械手完成各种动作的关键部件。

应根据机械手的运动需求,选择合适的执行器,并设计合理的驱动电路和驱动策略,确保执行器能够准确、快速地响应PLC控制器的指令。

机械毕业设计1203气动工业机械手毕业设计

机械毕业设计1203气动工业机械手毕业设计

第一章绪论1.1 工业机械手概述工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。

特别适合于多品种、变批量的柔性生产。

它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。

机器人应用情况,是一个国家工业自动化水平的重要标志。

生产中应用机械手可以提高生产的自动化水平,可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。

因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用。

机械手的结构形式开始比较简单,专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。

随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。

由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。

气压传动机械手是以压缩空气的压力来驱动执行机构运动的机械手。

其主要特点是:介质李源极为方便,输出力小,气动动作迅速,结构简单,成本低。

但是,由于空气具有可压缩的特性,工作速度的稳定性较差,冲击大,而且气源压力较低,抓重一般在30公斤以下,在同样抓重条件下它比液压机械手的结构大,所以适用于高速、轻载、高温和粉尘大的环境中进行工作。

气动技术有以下优点:(1)介质提取和处理方便。

气压传动工作压力较低,工作介质提取容易,而后排入大气,处理方便,一般不需设置回收管道和容器:介质清洁,管道不易堵存在介质变质及补充的问题.(2)阻力损失和泄漏较小,在压缩空气的输送过程中,阻力损失较小(一般不卜浇塞仅为油路的千分之一),空气便于集中供应和远距离输送。

工业机械手设计

工业机械手设计

经过计算得M总力矩=13.1N· m
2.6.3 腕部工作压力计算
由于实际回转液压缸所产生的驱动力矩必须大于总的阻 力矩,即 经计算P≥0.16MPa 取P=1MPa。 所以腕部回转液压缸主要参数为:
工作压力P 1MPa 缸体内径R 输出轴半径r 回转力矩M 110mm 22.5mm 13.1N· m 动片宽度b 66mm
一般来说,夹紧力必须克服工件重力所产生的静载荷以及 工件运动状态变化所产生的动载荷,以使工件保持可靠的 夹紧状态,因此手指对工件的夹紧力可按下式计算
式中:K1 ——安全系数,通常1.2~2.0。 K2 ——工作情况系数,主要考虑惯性力的影响。 K3 ——方位系数,根据手指与工件位置不同进行选择。 G ——被抓取工件所受重力。
谢谢各位老师的指导
液压缸内径D 活塞杆直径d 工作压力P 50mm 25mm 0.8MPa 驱动力F 859.06N
2.6 机械手腕部设计计算
2.6.1 腕部的结构选择
(1)具有一个自由度的回转缸驱动腕部结构 直接用回转液压缸驱动,实现腕部的回转运动,因具有结 构紧凑、灵活等优点而被广泛使用。 (2)用齿条活塞驱动的腕部结构 在要求回转角大于270°的情况下,可采用齿条活塞驱动 腕部结构。 (3)具有两个自由度的回转缸驱动腕部结构 它使腕部具有绕垂直和水平轴转动的两个自由度。 (4)机—液结合的腕部结构 此手腕具有传动简单、轻巧等特点,但结构有点复杂。
作用在活塞上 外力F(N) <5000 5000~10000 10000~20000 液压缸工作压 力MPa 0.8~1 1.5~2.0 2.5~3.0 作用在活塞上 外力F(N) 20000~30000 30000~50000 >50000 液压缸工作压 力MPa 2.0~4.0 4.0~5.0 5.0~8.0

机械手的结构设计

机械手的结构设计

机械手的结构设计引言机械手是一种通过伺服驱动和控制系统来模拟人手的机械装置。

它在工业生产和其他领域中有着广泛的应用,能够完成繁重、危险或需要高精度操作的任务。

机械手的结构设计是其性能和功能的关键因素之一。

本文将介绍机械手的结构设计要点,并详细讨论机械手的关节和末端执行器设计。

机械手的结构设计要点机械手的结构设计要点包括机械结构的刚性和稳定性、关节的运动范围和精度、末端执行器的定位精度和负载能力等。

以下是具体的设计要点:1.机械结构的刚性和稳定性机械手的机械结构必须具有足够的刚性和稳定性,以确保在运动过程中不会出现过大的变形和振动。

为了提高机械结构的刚性,可以采用优质材料和适当的结构设计,例如增加加强筋和加强支撑结构。

2.关节的运动范围和精度关节是机械手中用于连接各个部件的关键部分,其运动范围和精度对机械手的性能影响很大。

关节的运动范围应能够覆盖所需操作的工作空间,并且需要具备足够的精度,以保证准确的定位和操作。

为了提高关节的精度,可以采用高精度的传感器和控制系统。

3.末端执行器的定位精度和负载能力末端执行器是机械手的工具部分,用于实际操作和执行任务。

末端执行器的定位精度和负载能力直接影响机械手的功能和应用范围。

为了提高末端执行器的定位精度,可以采用精密的传动机构和驱动系统,并进行合理的校准和校验。

为了提高末端执行器的负载能力,可以采用足够强度和刚度的材料,适当加强结构设计。

4.安全和可靠性机械手在工业生产中常常承担重要和危险的任务,因此安全和可靠性是非常重要的设计要点。

机械手的结构设计应考虑到不同应用场景的安全需求,例如设置安全保护装置、优化布局和减少潜在风险。

关节的设计关节是机械手中的关键组成部分,直接影响机械手的运动范围和精度。

以下是关节设计的要点:1.关节类型和结构关节可以分为旋转关节和平移关节两种类型。

旋转关节允许机械手在某个轴向上进行旋转运动,而平移关节允许机械手在某个轴向上进行线性运动。

工业机器人(机械手)设计

工业机器人(机械手)设计

优秀设计摘要在当今大规模制造业中,企业为提高生产效率,保障产品质量,普遍重视生产过程的自动化程度,工业机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用。

工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平,目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动强度极大的工作,工作方式一般采取示教再现的方式。

本文将设计一台四自由度的工业机器人,用于给冲压设备运送物料。

首先,本文将设计机器人的底座、大臂、小臂和机械手的结构,然后选择合适的传动方式、驱动方式,搭建机器人的结构平台;在此基础上,本文将设计该机器人的控制系统,包括数据采集卡和伺服放大器的选择、反馈方式和反馈元件的选择、端子板电路的设计以及控制软件的设计,重点加强控制软件的可靠性和机器人运行过程的安全性,最终实现的目标包括:关节的伺服控制和制动问题、实时监测机器人的各个关节的运动情况、机器人的示教编程和在线修改程序、设置参考点和回参考点。

关键词:机器人,示教编程,伺服,制动ABSTRACTIn the modern large-scale manufacturing industry, enterprises pay more attention on the automation degree of the production process in order to enhance the production efficiency, and guarantee the product quality. As an important part of theautomation production line, industrial robots are gradually approved and adopted byenterprises. The technique level and the application degree of industrial robots reflect the national level of the industrial automation to some extent, currently, industrial robots mainly undertake the jops of welding, spraying, transporting and stowing etc. , which are usually done repeatedly and take high work strength, and most of these robots work in playback way.In this paper I will design an industrial robot with four DOFs, which is used to carry material for a punch. First I will design the structure of the base, the big arm, the small arm and the end manipulator of the robot, then choose proper drive method and transmission method, building the mechanical structure of the robot. On this foundation, I will design the control system of the robot, including choosing DAQ card, servo control, feedback method and designing electric circuit of the terminal card and control software. Great attention will be paid on the reliability of the control software and the robot safety during running. The aims to realize finally include: servocontrol and brake of the joint, monitoring the movement of each joint in realtime, playback programming and modifying the program online, setting reference point and returning to reference point.KEY WORDS: robot, playback, servocontrol, brake目录第1章绪论……………………………………………………………………1.1 机器人概述……………………………………………………………1.2 机器人的历史、现状…………………………………………………1.3 机器人的发展趋势............................................................第2章机器人实验平台介绍及机械手的设计 (3)2.1自由度及关节……………………………………………………………2.2 基座及连杆……………………………………………………………2.2.1 基座………………………………………………………………2.2.2 大臂………………………………………………………………2.2.3 小臂………………………………………………………………2.3 机械手的设计……………………………………………………………2.4 驱动方式…………………………………………………………………2.5 传动方式…………………………………………………………………2.6 制动器……………………………………………………………………第3章控制系统硬件……………………………………………………………3.1 控制系统模式的选择……………………………………………………3.2 控制系统的搭建………………………………………………………3.2.1 工控机……………………………………………………………3.2.2 数据采集卡………………………………………………………3.2.3 伺服放大器………………………………………………………3.2.4 端子板……………………………………………………………3.2.5电位器及其标定…………………………………………………3.2.6电源………………………………………………………………第4章控制系统软件…………………………………………………………4.1预期的功能……………………………………………………………4.2 实现方法………………………………………………………………4.2.1实时显示各个关节角及运动范围控制………………………4.2.2直流电机的伺服控制………………………………………………4.2.3电机的自锁…………………………………………………………4.2.4示教编程及在线修改程序…………………………………………4.2.5设置参考点及回参考点……………………………………………第5章总结………………………………………………………………………5.1 所完成的工作…………………………………………………………5.2 设计经验………………………………………………………………5.3 误差分析………………………………………………………………5.4 可以继续探索的方向…………………………………………………致谢………………………………………………………………………………参考文献…………………………………………………………………………第1章绪论1.1 机器人概述在现代工业中,生产过程的机械化、自动化已成为突出的主题。

工业机器人设计(含全套CAD图纸)

工业机器人设计(含全套CAD图纸)

工业机器人设计(含全套CAD图纸)工业机器人设计摘要在生产过程工业机械手是模拟人手动作的机械设备,它可以替代人工搬运重物或单调,在高粉尘,高温,有毒,易燃,放射性和其他相对较差的工作环境。

机器人可用于在生产过程中的自动化抓住并移动工件自动化设备,它是在生产过程的机械化和自动化,开发出一种新的类型的设备。

近年来,随着电子技术,特别是计算机的广泛使用机器人的开发和生产的高科技领域已成为迅速发展起来的一项新兴技术,它更促进机器人的发展,使得机械手能更好地实现与机械化和自动化的有机结合。

机械手能够代替人类完成危险、减轻人类劳动强度、重复枯燥的工作,提高劳动生产力。

本设计是关于三自由度的圆柱形机械手。

利用Auto CAD软件对制件进行设计绘图。

其包括夹持器、小臂、大臂和底座。

明确合理的设计思路,确定了机械手工作原理并对然夹持器、气缸、步进电机、轴承进行了校核计算并附带了简图并对零件的质量、重心、惯性主轴和惯性力矩进行辅助设计计算,可以大大减轻在设计过程中繁琐计算及校核步骤。

关键字:机械手,气缸,校核。

IIIAbstractIndustrial manipulator is the mechanical equipment which is used in the production process and simulate to the behave of hands withelectrical integration. It can carry heavy objects and work in the harsh environment which is high temperature, poisonous ,full of dust,flammable and combustible monotonous and full of radioactive substance instead of people. Manipulator is a automatic device which is used in the automatic production process and it can carry and move things. It is a new device which is developed in the mechanization and automatic production process. In recent years , with the widely used of electronic technique especially the electronic computer. The research and production of robot has became a new technology which is developing rapidly in the high-tech industry . It promotes the development of manipulator. It makes the combination of the manipulator with mechanization and automation become easier . Manipulator can complete the dangerous and boring work instead of people. It can reduce labour intensity of people and raise the labour productivity .This design is a cylindrical manipulator which is related to delta degrees of freedom. It designs and draws the picture with Auto cad software ,it includes holder, a small arm, the big arm and the base. The clear and reasonable thinking determines the working principle of the manipulator . This also checks and calculates the holder, cylinder, stepper motor and bearing. Apart from this , it contains some pictures and design and measure the quality , barycentre principal axis ofinertia and force of parts. It can greatly reduce the complicated calculation and check in the design process.Keywords: robot, cylinder, checkingIV目录摘要 (III)ABSTRACT ............................................................... .... IV 目录 ..................................................................... ... V 1 绪论 ......................................................................1 1.1 本课题研究的内容和意义 ................................................. 1 1.2 国内外发展概况 ......................................................... 1 1.3 工业机械手设计内容 (2)1.4 机械手设计的作用 ....................................................... 2 1.5 工业机械手的分类和组成 ................................................. 2 2手部的设计 (5)2.1 机械手设计参数和运动方案 (5)2.1.1 运动方案 (5)2.1.2 驱动系统和位置检测装置的选择: ..................................... 5 2.2 手部设计的结构和计算 (6)2.2.1 机械手的基本要求 ................................................... 6 2.3 手部力的计算 .. (7)2.3.1 夹紧力的计算 (7)2.3.2 手爪驱动气缸的设计 (8)2.3.3 手部误差的分析 .................................................... 10 3 机械手臂的设计 ........................................................... 12 3.1 机械小臂设计 ..........................................................123.1.1 小臂驱动力的计算 (12)3.1.2 小臂驱动气缸的设计 (13),3.1.3 气缸筒壁厚的计算 (14)3.1.4 气缸的选用 (14)3.1.5 校核活塞的稳定性 (14)3.1.6 小臂刚度校核 (15)3.1.7 端盖的连接方式及强度计算 .......................................... 15 3.2 大臂的结构设计 (16)3.2.1 大臂的结构和要求 (16)3.2.2 驱动力的计算 (17)3.2.3 大臂驱动气缸的设计 (17)3.2.4 气缸的选择 (18)3.2.5 校核活塞的稳定性 (18)大臂刚度校核 .......................................................18 3.2.64 驱动系统设计 ............................................................. 20 4.1 轴承的设计 ............................................................204.1.1 轴承的选择 (20)轴承的计算: .......................................................20 4.1.24.1.3 轴承的寿命校核: (21)电机的基本情况和选择 .................................................. 22 4.24.2.1 电机的选则与计算 (22)4.2.2 注意事项 (23)4.2.3 工作原理 (23)4.2.4 步进电机的特点 ..................................................... 24 4.3 谐波减速器 (24)4.3.1 谐波减速器的简介 (24)4.3.2 谐波减速器的设计 ................................................... 25 4.4 腰座的结构 ............................................................ 26 5 总结 (27)致谢 ....................................................................28 参考文献 ...................................................................29 附录 .....................................................................30VI工业机器人设计1 绪论1.1 本课题研究的内容和意义机械工业是国民的基本部分。

《2024年基于PLC的工业机械手运动控制系统设计》范文

《2024年基于PLC的工业机械手运动控制系统设计》范文

《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,机械手运动控制系统在工业生产中扮演着越来越重要的角色。

为了提高生产效率、降低人工成本以及提高产品质量,基于PLC(可编程逻辑控制器)的工业机械手运动控制系统设计成为了研究的热点。

本文将详细介绍基于PLC的工业机械手运动控制系统的设计,包括系统架构、硬件设计、软件设计以及系统测试等方面。

二、系统架构设计基于PLC的工业机械手运动控制系统主要由机械手本体、传感器、PLC控制器、上位机等部分组成。

其中,PLC控制器作为核心部件,负责接收上位机的指令,控制机械手的运动。

整个系统采用分层结构设计,包括感知层、控制层和应用层。

感知层通过传感器获取机械手的状态信息;控制层通过PLC控制器对机械手进行精确控制;应用层则负责与上位机进行通信,实现人机交互。

三、硬件设计1. 机械手本体设计:机械手本体包括手臂、腕部、夹具等部分,根据实际需求进行设计。

在设计过程中,需要考虑到机械手的运动范围、负载能力、精度等因素。

2. 传感器选型与布置:传感器用于获取机械手的状态信息,包括位置传感器、力传感器、速度传感器等。

选型时需要考虑传感器的精度、可靠性以及抗干扰能力。

布置时需要根据机械手的实际结构进行合理布置,以确保能够准确获取机械手的状态信息。

3. PLC控制器选型:PLC控制器是整个系统的核心部件,选型时需要考虑到控制器的处理速度、内存大小、I/O口数量等因素。

同时,还需要考虑到控制器的可靠性以及与上位机的通信能力。

4. 电源与接线设计:为了保证系统的稳定运行,需要设计合理的电源与接线方案。

电源应采用稳定可靠的电源,接线应采用抗干扰能力强的电缆,并合理布置接线位置,以减少电磁干扰对系统的影响。

四、软件设计1. 编程语言选择:PLC编程语言主要包括梯形图、指令表、结构化控制语言等。

在选择编程语言时,需要考虑到编程的便捷性、可读性以及系统的运行效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要在机械制造业中,机械手已被广泛应用,从而大大的改善了工人的劳动条件,显著的提高劳动生产率,加快实现工业生产机械化和自动化的步伐,本设计通过对机械手各主要组成部分(手部、手腕、手臂和机身等)分析,从而确定各主要组成部分的结构,在此基础上对机械手进行设计计算,从而确定装配总图。

通过此次机械手设计,掌握相关机械手设计的主要步骤,对于CAD/CAM软件应用方面有了进一步的提高。

关键词:机械手,设计,手部,手腕,手臂,机身,结构The Design of Industry ManipulatorAbstractIn the mechanical manufacturing industry, the manipulator has been widely applied, thus the big improvement worker's work condition, the remarkable enhancement labor productivity, sped up realizes the industrial production mechanization and the automated step, this design through to the manipulator each main constituent (hand, skill, arm and fuselage and so on) analyzes, thus determined each main constituent the structure, carries on the design calculation in this foundation to the manipulator, thus determination assembly assembly drawing.Designs through this manipulator, the grasping correlation manipulator designs the main step, had the further enhancement regarding the CAD/CAM software application aspect.Keywords:Manipulator, design, hand, skill, arm, fuselage, structure目录1 绪论............................................................. 12 机械手设计要求................................................... 13 机械手总体设计方案............................................... 13.1 机械手的组成............................................... 13.1.1 执行机构............................................. 13.1.2 驱动机构............................................. 23.1.3 控制机构............................................. 23.2 机械手在生产中的应用....................................... 23.3 机械手的主要特点........................................... 23.4 机械手的技术发展方向....................................... 33.5 机械手坐标形式与自由度选择................................. 43.5.1 机械手坐标形式选择................................... 43.5.2 机械手自由度选择..................................... 43.6 机械手的规格参数........................................... 43.7 机械手手部设计计算......................................... 53.7.1 手部设计基本要求..................................... 53.7.2 手部力学分析......................................... 53.7.3 夹紧力与驱动力的计算................................. 73.7.4 手抓夹持范围计算..................................... 93.7.5 手抓夹持精度的分析计算............................... 93.8 机械手腕部设计计算.........................................103.8.1 腕部设计基本要求..................................... 103.8.2 腕部的结构选择....................................... 103.8.3 腕部回转力矩计算..................................... 113.8.4 腕部工作压力计算..................................... 133.8.5 液压缸盖螺钉计算..................................... 143.8.6 动片和输出轴联接螺钉计算............................. 153.9 机械手臂部设计计算......................................... 153.9.1 臂部设计基本要求..................................... 153.9.2 臂部的结构选择....................................... 163.9.3 手臂伸缩驱动力计算................................... 163.9.4 手臂伸缩液压缸参数计算............................... 183.10 机身升降机构计算...........................................193.10.1 手臂偏重力矩计算.....................................193.10.2 升降导向立柱不自锁条件...............................213.10.3 手臂升降驱动力计算...................................213.10.4 手臂升降液压缸参数计算...............................223.11 机身回转机构计算.......................................... 233.11.1 手臂回转液压缸驱动力矩计算...........................233.11.2 手臂回转液压缸参数计算...............................243.11.3 液压缸盖螺钉计算.....................................243.11.4 动片和输出轴间联接螺钉计算...........................254 机械手装配总图...................................................265 结论.............................................................27 致谢.............................................................27 参考文献.........................................................28 英文文献名称(工业机械手)1 绪论工业机械手设计是机械制造、机械设计等方面的一个重要的教学环节,是学完技术基础课及有关专业课以后的一次综合设计,通过这一环节把有关课程中所获得的理论知识在实际中综合的加以应用,使这些知识能够得到巩固和发展,并使理论知识和生产密切的结合起来,通过设计培养学生独立思考能力,树立正确的设计思想,掌握机械产品设计的基本方法和步骤,为自动机械设计打下良好的基础。

2 机械手设计要求要求本设计能鲜明体现设计构思,并在规定的时间内完成以下工作:1)拟定机械手的整体设计方案,特别是机械手各主要组成部分的方案。

2)根据给定的自由度和技术参数选择合适的手部、腕部、臂部和机身的结构。

3)各主要部件(手部、腕部、臂部)的设计计算。

4)工业机械手装配图的绘制。

5)编写设计计算说明书。

3 机械手总体设计方案3.1 机械手的组成工业机械手由执行机构、驱动机构和控制机构三部分组成。

3.1.1 执行机构1)手部即直接与工件接触的部分,一般是回转型或平移型,(多为回转型,因其结构简单),手部多为二指(也由多指),根据需要分为外抓式和内抓式两种,也可以用负压式或真空式的空气吸盘和电磁吸盘。

传力机构形式也很多,常用的有:滑槽杠杆式、连杆杠杆式、齿轮齿条式、丝杠螺母式、弹簧式、重力式。

2)腕部是联接手部和手臂的部件,并可用来调整被抓物体的方位,以扩大机械手的动作范围,并使机械手变的更灵巧,适应性更强。

目前,应用最为广泛的手腕回转运动机构为回转液压缸,它的结构紧凑、灵巧,但回转角度小,并且要求严格密封,否则就难保证稳定的输出扭矩。

3)手臂是支撑被抓物体手部、腕部的重要部件,并带动它们做空间运动,它的主要作用是带动手指去抓取工件,并按预定要求将其搬运到给定的位臵,一般手臂需要三个给定自由度才能满足要求,即手臂的伸缩、左右旋转、升降运动。

4)行走机构有的工业机械手带有行走机构,我国正处于仿真阶段。

相关文档
最新文档