假设检验例题与习题-课件PP讲义T(精)
合集下载
第8 假设检验(共80张PPT)
第 8 章 假设检验
8.1 8.2 8.3 8.4
假设检验的根本问题 一个总体参数的检验 两个总体参数的检验 假设检验中的其他问题
我认为该企业生产的零件的平
均长度为4厘米!
什么是假设? 对总体 参数的一种看法
总体参数包括总 体均值、比例、方 差等
举例说明假设检验的根本思路
某单位职工上月平均收入为210元,这个 月的情况与上月没有大的变化,我们设想平均 收入还是210元.
样本均值的抽样分布
置信水平
拒绝域
1-
接受域
临界值
H0
样本统计量
如果备择假设具有符号“>〞,拒绝域位于抽样分 布的右侧,故称为右侧检验
样本均值的抽样分布
置信水平
1- 接受域
拒绝域
H0
样本统计量
临界值
请判断它们的拒绝域:
〔1〕假设检验的假设为H0:m=m0 ,H1: m≠m0,那么拒绝域为〔 〕。
〔2〕假设检验的假设为H0:m≥m0 ,H1: m < m0,那么拒绝域为〔 〕。
〔3〕假设检验的假设为H0:m≤m0 ,H1: m > m0,那么拒绝域为〔 〕。
检验统计量:Z > Z;
Z > Z/2 或Z <-Z/2 ;
Z <-Z
决策规那么
给定显著性水平 ,查表得出相应的临界 值 将检验统计量的值与 水平下的临界值进 行比较 双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0 得出拒绝或不拒绝原假设的结论
H0:m=10 H1:m≠10
例 6.2
某品牌洗涤剂在它的产品说明书中声称:平均 净含量不少于500g。从消费者的利益出发, 有关研究人员要通过抽检其中的一批产品来验 证该产品制造商的说明是否属实。试陈述用于 检验的原假设与备择假设。
8.1 8.2 8.3 8.4
假设检验的根本问题 一个总体参数的检验 两个总体参数的检验 假设检验中的其他问题
我认为该企业生产的零件的平
均长度为4厘米!
什么是假设? 对总体 参数的一种看法
总体参数包括总 体均值、比例、方 差等
举例说明假设检验的根本思路
某单位职工上月平均收入为210元,这个 月的情况与上月没有大的变化,我们设想平均 收入还是210元.
样本均值的抽样分布
置信水平
拒绝域
1-
接受域
临界值
H0
样本统计量
如果备择假设具有符号“>〞,拒绝域位于抽样分 布的右侧,故称为右侧检验
样本均值的抽样分布
置信水平
1- 接受域
拒绝域
H0
样本统计量
临界值
请判断它们的拒绝域:
〔1〕假设检验的假设为H0:m=m0 ,H1: m≠m0,那么拒绝域为〔 〕。
〔2〕假设检验的假设为H0:m≥m0 ,H1: m < m0,那么拒绝域为〔 〕。
〔3〕假设检验的假设为H0:m≤m0 ,H1: m > m0,那么拒绝域为〔 〕。
检验统计量:Z > Z;
Z > Z/2 或Z <-Z/2 ;
Z <-Z
决策规那么
给定显著性水平 ,查表得出相应的临界 值 将检验统计量的值与 水平下的临界值进 行比较 双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0 得出拒绝或不拒绝原假设的结论
H0:m=10 H1:m≠10
例 6.2
某品牌洗涤剂在它的产品说明书中声称:平均 净含量不少于500g。从消费者的利益出发, 有关研究人员要通过抽检其中的一批产品来验 证该产品制造商的说明是否属实。试陈述用于 检验的原假设与备择假设。
第五章假设检验01精品PPT课件
1. 与原假设对立的假设, 也称“备择假设”
2. 表示为 H1 3. 总是有符号 , 或
H1 : <某一数值 或 某一数值
例如, H1 : < 10cm, 或 10cm
提出假设
1. 原假设和对立假设是一个完备事件组,而且相互 对立 在一项假设检验中,原假设和对立假设必有一 个成立,而且只有一个成立
然后利用样本信息来判断假设是否成立
2. 类型
总体分布已知,
参数假设检验
检验关于未知参数
非参数假设检验
的某个假设
总体分布未知时的 假设检验问题
假设检验的过程
(提出假设→抽取样本→作出决策)
总体
提出假设
X的均值
作出决策
???
☺☺ ☺
☺☺ ☺☺
☺☺
抽取随机样本
☺
样本 均值
☺
假设检验的思想
假设检验的基本思想:通过提出假设,利用“小 概率原理”和“概率反证法”,论证假设的真伪 的一种统计分析方法。
解:研究者想收集证据予以支持的假设是“该城市中 家庭拥有汽车的比例超过30%”。建立的原假设和对 立假设为
H0 :p 30% H1 : p 30%
双侧检验与单侧检验
1、对立假设没有特定的方向性,并含有符号 “”的假设检验,称为双侧检验或双尾检 验(two-tailed test)
2、对立假设具有特定的方向性,并含有符号 “>”或“<”的假设检验,称为单侧检验或单 尾检验(one-tailed test) 对立假设的方向为“<”,称为左侧检验 对立假设的方向为“>”,称为右侧检验
拒绝H0
拒绝H0
/2
1 -
/2
0 临界值
第八章----假设检验课件PPT
第八章 假设检验
假设检验的基本问题 一个总体参数的检验 两个总体参数的检验
1
学习目标
假设检验的基本思想和原理 假设检验的步骤 一个总体参数的检验 两个总体参数的检验 P值的计算与应用 用Excel进行检验
2
正常人的平均体温是37oC吗?
37.1 36.9 36.9 37.1 36.4
在一次试验中小概率事件一旦发生,我们就有理 由拒绝原假设
8
原假设
(null hypothesis)
1. 又称“0假设”,研究者想收集证据予以反对的假 设,用H0表示
2. 所表达的含义总是指参数没有变化或变量之间没 有关系
3. 最初被假设是成立的,之后根据样本数据确定是否 有足够的证据拒绝它
4. 总是有符号 , 或
原假设为真时拒绝原假设 会产生一系列后果 第一类错误的概率为
❖被称为显著性水平
❖ 2.第二类错误(取伪错误)
原假设为假时接受原假设 第二类错误的概率为(Beta)
12
两类错误的控制
❖ 一般来说,对于一个给定的样本,如果犯第Ι 类错误的代价比犯第Ⅱ类错误的代价相对较 高,则将犯第Ⅰ类错误的概率定得低些较为 合理;反之,如果犯第Ι类错误的代价比犯第 Ⅱ类错误的代价相对较低,则将犯第Ⅰ类错 误的概率定得高些
H0 : = 某一数值 H0 : 某一数值 H0 : 某一数值
例如, H0 : 10cm
9
备择假设
(alternative hypothesis)
1. 也称“研究假设”,研究者想收集证据予以支持的 假设(期望出现的结论作为备选假设),用H1或Ha表 示
2. 所表达的含义是总体参数发生了变化或变量之间 有某种关系
➢ 我们应该放弃“正常人的平均体温是37oC”这个 共识吗?本章的内容就将提供一套标准统计程序 来检验这样的观点
假设检验的基本问题 一个总体参数的检验 两个总体参数的检验
1
学习目标
假设检验的基本思想和原理 假设检验的步骤 一个总体参数的检验 两个总体参数的检验 P值的计算与应用 用Excel进行检验
2
正常人的平均体温是37oC吗?
37.1 36.9 36.9 37.1 36.4
在一次试验中小概率事件一旦发生,我们就有理 由拒绝原假设
8
原假设
(null hypothesis)
1. 又称“0假设”,研究者想收集证据予以反对的假 设,用H0表示
2. 所表达的含义总是指参数没有变化或变量之间没 有关系
3. 最初被假设是成立的,之后根据样本数据确定是否 有足够的证据拒绝它
4. 总是有符号 , 或
原假设为真时拒绝原假设 会产生一系列后果 第一类错误的概率为
❖被称为显著性水平
❖ 2.第二类错误(取伪错误)
原假设为假时接受原假设 第二类错误的概率为(Beta)
12
两类错误的控制
❖ 一般来说,对于一个给定的样本,如果犯第Ι 类错误的代价比犯第Ⅱ类错误的代价相对较 高,则将犯第Ⅰ类错误的概率定得低些较为 合理;反之,如果犯第Ι类错误的代价比犯第 Ⅱ类错误的代价相对较低,则将犯第Ⅰ类错 误的概率定得高些
H0 : = 某一数值 H0 : 某一数值 H0 : 某一数值
例如, H0 : 10cm
9
备择假设
(alternative hypothesis)
1. 也称“研究假设”,研究者想收集证据予以支持的 假设(期望出现的结论作为备选假设),用H1或Ha表 示
2. 所表达的含义是总体参数发生了变化或变量之间 有某种关系
➢ 我们应该放弃“正常人的平均体温是37oC”这个 共识吗?本章的内容就将提供一套标准统计程序 来检验这样的观点
第十一章 假设检验.ppt
H0.若H0成立,
X
~
N
269.
22 30
则有
Z
30 X 269
2
则在下Z~N(0,1),即Z的分布已知,因而Z可以做检验统计量, 偏小等价于Z偏小,从而得到拒绝域的形式如下
2019-11-27
R
30
X
2
269
k
其中k待定,称之为临界值.
感谢你的阅读
估计值大于5000呢?也就是说从观察数据得到的结果 ˆ 5001
与参考值5000的差异仅仅是偶然的呢?还是总体均值μ确实 有大于5000的“趋势”?
这些问题是以前没有研究过的。一般而言,估计问题是 回答总体分布的未知参数是多少?或范围有多大?而假设检 验问题则是回答观察到的数据差异只是机会差异,还是反映 了总体的真实差异?因此两者对问题的提法有本质不同。
2019-11-27
感谢你的阅读
3
第十一章 假设检验
二.原假设和备择假设
下面通过一个例子介绍 原假设和备择假设
2019-11-27
感谢你的阅读
4
例1(酒精含量) 一种无需医生处方即可达到的治 疗咳嗽和鼻塞的药。按固定其酒精含量为5﹪.今从 一出厂的一批药中随机抽取10瓶,测试其酒精含量 得到的10个含量的百分数:
μ=5”这样一个待检验的假设记作“H0:μ=5”称为 “原假设”或 “零假设”.表明数据的“差异”是偶
然的,总体没有 “变异”发生.
2019-11-27
感谢你的阅读
5
原假设的对立面是“X的均值μ≠10”记作
“H1:μ≠10”称为“对立假设”或“备择假设”.表 明数据的“差异”不是偶然的,是总体 “变异”的
第六章 假设检验PPT课件
4.一批成品按不重复方法抽选200件, 其中废品10件,又知道抽样单位数是成 品量的1/22。当概率为0.9545时,可否 认为这一批产品的废品率不超过6%? (20分)
解:已p 知n1:n 1 02 100 % ;0 n 10 5 % 1;U 0/22,N n2 12
n 200
pP ( 1 n P )( 1 N n )0 .0 ( 2 1 5 0 .0 0 )( 1 0 5 2 1 ) 2 0 .01 1 .5 5 %
解 由题意可知:化肥重量X~N(,2),0=100 方差未知,要求对均值进行检验,采用T检验法。
假设 H0:=100; H1: ≠100
构造T统计量,得T的0.1双侧分位数为
t0.05 (8) 1 . 8 6
例3 化工厂用自动包装机包装化肥,每包重量服从正态 分布,额定重量为100公斤。某日开工后,为了确定包 装机这天的工作是否正常,随机抽取9袋化肥,称得平 均重量为99.978,均方差为1.212,能否认为这天的包 装机工作正常?(=0.1)
3、在Variables栏中,键入C2,在Test Mean栏中 键入750,打开Options选项,在Confidence level 栏中键入95,在Alternative中选择not equal,点击 每个对话框中的OK即可。
显示结果
结(1)因为 750 746.98,754.58所以接受原假设
表达:原假设:H0:EX=75;备择假设: H1:EX≠75
判断结果:接受原假设,或拒绝原假设。
基本思想
参数的假设检验:已知总体的分布类型,对分布函数或 密度函数中的某些参数提出假设,并检验。
基本原则——小概率事件在一次试验中是不可能发生的。
思想:如果原假设成立,那么某个分布已知的统计 量在某个区域内取值的概率应该较小,如果样本的观 测数值落在这个小概率区域内,则原假设不正确,所以, 拒绝原假设;否则,接受原假设。
假设检验问题讲解(ppt 47页)
2.82 3.01 3.11 2.71 2.93 2.68 3.02 3.01 2.93 2.56 2.78 3.01 3.09 2.94 2.82 2.81 3.05 3.01 2.85 2.79
其样本均值为2.8965,样本标准为0.148440135,
你可以拒绝原假设吗?
拒绝域为:
x3
s
t0.05(n1)
H0: 3 H1: > 3
H0: 3 H1: 3
Rejection Regions
0 0
Critical Value(s)
/2
0
P-值的应用
p=Pr(t<-3.118)=0.0028
0.45
0.4
0.35 比它小的概率 0.3 是多少?P-值
0.25
0.2
0.15
比它小的概率是0.05
0.15
0.1
0.05
0
-1
0
31-c0 2
3
4
5
6
7
8
大样本下的解决方案(3)
如果2未知,则
x ~ N (0 , 1) s n
选择拒绝域为
x3
s
z 0 . 05
n
假定由36听罐头所组成的一个样本的样 本均值 x 2.92 磅,样本标准差 s=0.18 ,你能拒绝原假设吗?
x
s
3
2.92 0.18
影响 b 的因素
True Value of Population Parameter
Increases When Difference Between Hypothesized Parameter & True Value Decreases
其样本均值为2.8965,样本标准为0.148440135,
你可以拒绝原假设吗?
拒绝域为:
x3
s
t0.05(n1)
H0: 3 H1: > 3
H0: 3 H1: 3
Rejection Regions
0 0
Critical Value(s)
/2
0
P-值的应用
p=Pr(t<-3.118)=0.0028
0.45
0.4
0.35 比它小的概率 0.3 是多少?P-值
0.25
0.2
0.15
比它小的概率是0.05
0.15
0.1
0.05
0
-1
0
31-c0 2
3
4
5
6
7
8
大样本下的解决方案(3)
如果2未知,则
x ~ N (0 , 1) s n
选择拒绝域为
x3
s
z 0 . 05
n
假定由36听罐头所组成的一个样本的样 本均值 x 2.92 磅,样本标准差 s=0.18 ,你能拒绝原假设吗?
x
s
3
2.92 0.18
影响 b 的因素
True Value of Population Parameter
Increases When Difference Between Hypothesized Parameter & True Value Decreases
统计学试验假设检验PPT(完整版)
统计学试验假设检验
一、单个样本的统计假设检验
• σ已知时单个平均数的显著性检验——u检验
2)。在改善栽培条件后,随机抽取9粒,得平 均籽粒重 379.2g。若粒重标准差s仍为3.3g, 问改善栽培条件后是否显著提高了豌豆籽粒 重?
建立工作表
添加数据
• σ未知时平均数的显著性检验——t检验
[例] 已知玉米单交种“群单105”的平均穗重m0= 300g。喷洒植物生长促进剂后,随机抽取9个果穗, 测得穗重为:308、305、311、298、315、300、 321、294、320g。问喷药后与喷药前的果穗重差 异是否显著?
若粒重标准差s仍为3. 问喷药后与喷药前的果穗重差异是否显著?
一、单个样本的统计假设检验 σ未知时平均数的显著性检验——t检验 3g,问改善栽培条件后是否显著提高了豌豆籽粒重? [例] 已知玉米单交种“群单105”的平均穗重m0=300g。 喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。 一、单个样本的统计假设检验
1(X2)
感谢观看
ห้องสมุดไป่ตู้
建立工作表
添加数据
二、两个样本的差异显著性检验 喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。
喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。 问喷药后与喷药前的果穗重差异是否显著?
问喷药后与喷药前的果穗重差异是否显著?
在改善栽培条件后,随机抽取9粒,得平均籽粒重 379. 标准差σ1和σ2未知,但σ1=σ2 —t 检验 若粒重标准差s仍为3.
一、单个样本的统计假设检验
• σ已知时单个平均数的显著性检验——u检验
2)。在改善栽培条件后,随机抽取9粒,得平 均籽粒重 379.2g。若粒重标准差s仍为3.3g, 问改善栽培条件后是否显著提高了豌豆籽粒 重?
建立工作表
添加数据
• σ未知时平均数的显著性检验——t检验
[例] 已知玉米单交种“群单105”的平均穗重m0= 300g。喷洒植物生长促进剂后,随机抽取9个果穗, 测得穗重为:308、305、311、298、315、300、 321、294、320g。问喷药后与喷药前的果穗重差 异是否显著?
若粒重标准差s仍为3. 问喷药后与喷药前的果穗重差异是否显著?
一、单个样本的统计假设检验 σ未知时平均数的显著性检验——t检验 3g,问改善栽培条件后是否显著提高了豌豆籽粒重? [例] 已知玉米单交种“群单105”的平均穗重m0=300g。 喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。 一、单个样本的统计假设检验
1(X2)
感谢观看
ห้องสมุดไป่ตู้
建立工作表
添加数据
二、两个样本的差异显著性检验 喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。
喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。 问喷药后与喷药前的果穗重差异是否显著?
问喷药后与喷药前的果穗重差异是否显著?
在改善栽培条件后,随机抽取9粒,得平均籽粒重 379. 标准差σ1和σ2未知,但σ1=σ2 —t 检验 若粒重标准差s仍为3.
假设检验例题与习题课件
比例
方差
Z 检验
t 检验
Z 检验
(单尾和双尾) (单尾和双尾) (单尾和双尾)
2检验
(单尾和双尾)
学习交流PPT
10
总体均值检验
学习交流PPT
11
•【例】某机床厂加工一种零件,根 据经验知道,该厂加工零件的椭圆 度近似服从正态分布,其总体均值 为 0=0.081mm , 总 体 标 准 差 为 = 0.025 。今换一种新机床进行加工,
第 7章 假设检验例题与习题
学习交流PPT
1
假设检验在统计方法中的地位
统计方法
描述统计
推断统计
参数估计
假设检验
学习交流PPT
2
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 对实际问题作假设检验 4. 利用置信区间进行假设检验
5. 利用P - 值进行假设检验
学习交流PPT
3
拒绝 H0
.025
-1.96 0 1.96 Z
检验统计量:
z=x0 =0.0760.08=12.83 n 0.025200
决策:
在 = 0.05的水平上拒绝H0
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
学习交流PPT
13
2 已知均值的检验
(P 值的计算与应用)
•第1步:进入Excel表格界面,选择“插入”下拉菜单
显著地高于1200小时
学习交流PPT
18
•【 例 】 某 机 器 制 造 出 的 肥 皂厚度为5cm,今欲了解机 器性能是否良好,随机抽 取 10 块 肥 皂 为 样 本 , 测 得 平均厚度为5.3cm,标准差 为0.3cm,试以0.05的显著 性水平检验机器性能良好 的假设。
第五章 假设检验ppt课件
第三节
t检验(t test)
t检验,亦称student t检验(Student’s t
test),主要用于样本含量较小(例如n<30), 总体标准差σ未知的正态分布资料。 一、样本均数与总体均数的比较 二、配对资料的比较 三、两样本均数的比较 四、大样本均数比较的u检验 五、正态性检验与两方差齐性检验
H0成立 H0不成立
(1-b)即把握度(power of a test):两总 体确有差别,被检出有差别的能力 (1-a)即可信度(confidence level):重复 抽样时,样本区间包含总体参数(m)的百分数 2018年11月7日
通常情况下Ⅱ型错误未知
对于一般的假设检验, a 定为 0.05 (或 0.01 ), b 的大小 取决于H1。通常情况下,比较总体间有 无差异并不知道,即H1不明确, b值的 大小无法确定,也就是说,对于一般的 假设检验,我们并不知道犯Ⅱ型错误的 概率b有多大。
2018年11月7日
第二节 假设检验的基本步骤
总体间差异: 1. 个体差异,抽样误差所致; 2. 总体间固有差异 判断差别属于哪一种情况的统计学检验, 就是假设检验(test of hypothesis)。 t检验是最常用的一种假设检验之一。
小概率思想: P<0.05(或P<0.01)是小概率事件。在 一次试验中基本上不会发生。 P≤α(0.05) 样本差 别有统计学意义;P >α(0.05) 样本差别无统计学意 义
2018年11月7日根据专 Nhomakorabea知识确定单、双侧检验
È û ç ¹ Ó Ð À í Ó É È Ï Î ª Ä Ñ ² ú ¶ ù ³ ö É ú Ì å Ö Ø µ Ä × Ü Ì å ¾ ù Ê ý Ò » ¶ ¨ ´ ó Ó Ú Ò » ° ã ¤¶ Ó ù Ô ò ¿ É Ã Ó µ ¥ ² à ¼ ì Ñ é £ ¨one-sided £ ©£ ¬ ¼ ´ £ º H0 £ º m 3.30 £ ¨Ä Ñ ² ú ¶ ù ³ ö É ú Ì å Ö Ø µ Ä × Ü Ì å ¾ ù Ê ý Ó ë Ò » ° ã Ó ¤¶ ù Ï à µ È £ © H1 £ º m 3.30 £ ¨Ä Ñ ² ú ¶ ù ³ ö É ú Ì å Ö Ø µ Ä × Ü Ì å ¾ ù Ê ý ´ ó Ó Ú Ò » ° ã Ó ¤¶ ù £ © ¥ ² µ à ¼ ì Ñ é £ ¬ ì Ñ ¼ é Ë ® × ¼ :¦ Á =0.05 é ¸ ² ½ ± í 2µ ¥ ² à t½ ç Ö µ t 0.05,34 1.691£ ¬ t 1.77 t 0.05,34 £ ¬ P < 0.05 £ ¬ ´ ¦ ° Á =0.05 Ë ® × ¼ £ ¬ ¾ Ü ¾ ø H0 £ ¬ ½ Ó Ê Ü H1 £ ¬ Á ½ Õ ß µ Ä ² î ± ð Ó Ð Í ³ ¼ Æ Ñ § Ò â Ò å £ ¬ Ñ ² Ä ú ¶ ù Æ ½ ¾ ù ³ ö É ú Ì å Ö Ø ´ ó Ó Ú Ò » ° ã Ó ¤¶ ù ¡ £ Ô É Ò Ï Ë « ² à ¼ ì Ñ é º Í µ ¥ ² à ¼ ì Ñ é µ Ä ½ á Â Û ½ Ø È » ² » Í ¬ ¡ £ Ë ù Ò Ô Ñ ¡ Ô ñ µ ¥ ² à ¼ ì Ñ é » ¶ Ò ¨Ò ª Ó Ð ¹ ý Ó ² µ Ä × ¨Ò µ Ò À ¾ Ý £ ¬ ¶ ø Ç Ò Ô Ú · ¢ ± í Â Û Î Ä Ê ±Ò ª Ì Ø ± ð × ¢ à ÷¡ £ Ò » ° ã Ç é ö ¶ ¿ ¼ Ò » Â É ² É Ó Ã Ë « ² à ¼ ì Ñ é £ ¨two-sided £ ©¡ £
假设检验例题与习题40页PPT
H0: 2% H1: < 2%
8 -6
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
某灯泡制造商声称,该企业所生产的灯泡 的平均使用寿命在1000小时以上。如果 你准备进一批货,怎样进行检验
▪ 检验权在销售商一方
▪ 作为销售商,你总是想收集证据证明生产商 的说法(寿命在1000小时以上)是不是正确的
统计学 假设检验在统计方法中的地位
(第二版)
统计方法
描述统计
பைடு நூலகம்推断统计
参数估计
假设检验
8 -1
统计学
(第二版)
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 对实际问题作假设检验 4. 利用置信区间进行假设检验 5. 利用P - 值进行假设检验
8 -2
统计学
(第二版)
双侧检验
H0: 1500 H1: 1500
8 -5
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
一项研究表明,改进生产工艺后,会使 产品的废品率降低到2%以下。检验这一 结论是否成立
研究者总是想证明自己的研究结论(废品率 降低)是正确的
备择假设的方向为“<”(废品率降低) 建立的原假设与备择假设应为
3. 先确立备择假设H1
8 -4
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
一项研究表明,采用新技术生产后,将 会使产品的使用寿命明显延长到1500小 时以上。检验这一结论是否成立
研究者总是想证明自己的研究结论(寿命延 长)是正确的
备择假设的方向为“>”(寿命延长) 建立的原假设与备择假设应为
8 -6
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
某灯泡制造商声称,该企业所生产的灯泡 的平均使用寿命在1000小时以上。如果 你准备进一批货,怎样进行检验
▪ 检验权在销售商一方
▪ 作为销售商,你总是想收集证据证明生产商 的说法(寿命在1000小时以上)是不是正确的
统计学 假设检验在统计方法中的地位
(第二版)
统计方法
描述统计
பைடு நூலகம்推断统计
参数估计
假设检验
8 -1
统计学
(第二版)
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 对实际问题作假设检验 4. 利用置信区间进行假设检验 5. 利用P - 值进行假设检验
8 -2
统计学
(第二版)
双侧检验
H0: 1500 H1: 1500
8 -5
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
一项研究表明,改进生产工艺后,会使 产品的废品率降低到2%以下。检验这一 结论是否成立
研究者总是想证明自己的研究结论(废品率 降低)是正确的
备择假设的方向为“<”(废品率降低) 建立的原假设与备择假设应为
3. 先确立备择假设H1
8 -4
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
一项研究表明,采用新技术生产后,将 会使产品的使用寿命明显延长到1500小 时以上。检验这一结论是否成立
研究者总是想证明自己的研究结论(寿命延 长)是正确的
备择假设的方向为“>”(寿命延长) 建立的原假设与备择假设应为