系统辨识—最小二乘法
航空航天飞行器动力学模型参数辨识方法对比
航空航天飞行器动力学模型参数辨识方法对比航空航天飞行器的动力学模型参数辨识是飞行器设计、控制和仿真过程中的重要环节。
通过对飞行器的动力学特性进行建模和参数辨识,可以更好地理解和预测其飞行行为,并为飞行器的性能优化和控制提供可靠的依据。
在实际应用中,有多种方法可以用于航空航天飞行器动力学模型参数的辨识,本文将就常见的几种方法进行对比分析。
1. 最小二乘法(Least Squares Method)最小二乘法是一种经典的参数估计方法,在航空航天领域被广泛应用于动力学模型参数的辨识。
该方法通过最小化观测值与模型预测值之间的误差平方和,来确定参数的最佳估计值。
最小二乘法简单易用,计算效率高,能够处理噪声和测量误差的影响。
然而,该方法对数据的要求较高,需要大量高质量的测量数据。
此外,最小二乘法对数据的分布情况较为敏感,当数据存在离群点或者异常值时,估计结果可能不准确。
2. 基于频域的方法(Frequency-domain Methods)基于频域的方法是一种常用的动力学模型参数辨识方法,采用系统的频率响应数据进行模型参数的估计。
该方法通过对输入-输出频率特性的分析,可以得到系统的衰减特性、共振频率等重要参数。
基于频域的方法在辨识非线性系统和具有频率特性的系统上表现出良好的性能。
然而,该方法需要较为复杂的实验设置和信号处理技术,对测量设备和环境条件要求较高。
3. 系统辨识方法(System Identification Methods)系统辨识方法是一种通过对系统的输入-输出数据进行分析,确定系统动态行为和特性的方法。
该方法可以采用多种数学模型和算法,如ARMA模型、ARMAX模型、神经网络模型等,来描述系统的动力学特性。
系统辨识方法具有较高的灵活性和适用性,能够处理非线性系统和时变系统的参数辨识问题。
然而,系统辨识方法的参数辨识过程和计算复杂度较高,需要对模型结构和参数进行合理选择,以获得准确的辨识结果。
第五章 最小二乘法辨识
服从正态分
❖ 4)有效性
❖ 定理4:假设 (k) 是均值为零,方差为 2I 的正态
白噪声,则最小二乘参数估计量
^
是有效估计
量,即参数估计误差的协方差达到Cramer-Rao不
等式的下界
E (^
^
)(
)T
2E
(
T N
N
) 1
M 1
❖ 其中M为Fisher信息矩阵。
4、适应算法
❖ 随着更多观测数据的处理,递推最小二乘法对线性 定常系统的参数估计并非越来越精确,有时会发现
❖ 现举例说明最小二乘法的估计精度 ❖ 例5.1:设单输入-单输出系统的差分方程为
y(k) a1y(k 1) a2 y(k 2) b1u(k 1) b2u(k 2) (k)
❖ 设 u(k)是幅值为1的伪随机二位式序列,噪声 (k)是 一个方差 2可调的正态分布 N(0, 2 )随机序列。
❖ 为了克服数据饱和现象,可以用降低旧数据影响的 办法来修正算法。而对于时变系统,估计k时刻的 参数最好用k时刻附近的数据估计较准确。否则新 数据所带来的信息将被就数据所淹没。
❖ 几种算法:渐消记忆法,限定记忆法与振荡记忆法
❖ 矩阵求逆引理:设A为 n n 矩阵,B和C为 n m 矩阵,
并且A, A和 BCT I CT都A是1B 非奇异矩阵,则有矩
阵恒等式
A BCT 1 A1 A1B(I CT A1B)1CT A1
❖
令
A
PN1
,B
N 1
,C
T N 1
,根据引理有
PN1
T N 1 N 1
1
❖ 算法中,^ N 为2n+1个存贮单元(ai ,bi ,i 1,2, , n), 而 PN 是 (2n 1) (2n 1)维矩阵,显然,将 N 换成 PN 后,存贮量大为减少(因为n为模型的阶数,一般 远远小于N)
控制系统设计中的模型鉴别方法综述
控制系统设计中的模型鉴别方法综述在控制系统设计中,模型鉴别方法是一项关键性工作。
模型鉴别方法可以帮助工程师准确地识别出待控系统的数学模型,为后续的控制器设计和性能优化提供基础。
本文将对控制系统设计中常用的模型鉴别方法进行综述。
一、最小二乘法最小二乘法是一种常见的模型鉴别方法,它通过最小化误差的平方和来拟合实际测量数据和理论模型之间的差异。
最小二乘法可以用于线性和非线性模型的鉴别。
对于线性模型,最小二乘法可以通过矩阵运算求解最优解。
而对于非线性模型,最小二乘法可以通过迭代优化算法求解。
二、频域方法频域方法是一种将系统响应与频率特性相关联的模型鉴别方法。
它通常基于输入和输出信号的频谱分析,可以用于连续时间和离散时间系统。
频域方法可以采用傅里叶变换、拉普拉斯变换等数学工具,通过求解传递函数或频率响应函数来获得系统模型。
频域方法适用于具有周期性输入和输出信号的系统。
三、时域方法时域方法是一种将系统响应与时间域特性相关联的模型鉴别方法。
它通常基于实际采集到的离散时间数据,通过插值、拟合等技术来获得离散时间系统的模型。
时域方法可以采用多项式插值、曲线拟合等数学工具,通过建立系统差分方程或状态空间模型来进行模型鉴别。
时域方法适用于实际工程中获得的离散时间数据。
四、系统辨识方法系统辨识方法是一种通过试验数据来识别系统动态特性的模型鉴别方法。
它可以通过对系统施加特定的输入信号,观测系统输出响应来获得系统模型。
系统辨识方法可以分为参数辨识和非参数辨识两种方法。
参数辨识方法假设系统具有某种结构,通过最小化残差的平方和来确定模型参数。
非参数辨识方法不对系统结构进行假设,通过直接拟合试验数据来获得系统模型。
五、神经网络方法神经网络方法是一种基于人工神经网络的模型鉴别方法。
它可以通过输入输出数据训练神经网络,从而获得系统的模型。
神经网络方法可以适用于非线性系统的建模和鉴别。
神经网络方法具有较强的自适应能力和非线性拟合能力,但对于网络结构和训练样本的选择具有一定的要求。
系统辨识最小二乘法大作业 (2)
系统辨识大作业最小二乘法及其相关估值方法应用学院:自动化学院学号:姓名:日期:基于最小二乘法的多种系统辨识方法研究一、实验原理1.最小二乘法在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。
设单输入-单输出线性定长系统的差分方程为(5.1.1)式中:为随机干扰;为理论上的输出值。
只有通过观测才能得到,在观测过程中往往附加有随机干扰。
的观测值可表示为(5.1.2)式中:为随机干扰。
由式(5.1.2)得(5.1.3)将式(5.1.3)带入式(5.1.1)得(5.1.4)我们可能不知道的统计特性,在这种情况下,往往把看做均值为0的白噪声。
设(5.1.5)则式(5.1.4)可写成(5.1.6)在观测时也有测量误差,系统内部也可能有噪声,应当考虑它们的影响。
因此假定不仅包含了的测量误差,而且包含了的测量误差和系统内部噪声。
假定是不相关随机序列(实际上是相关随机序列)。
现分别测出个随机输入值,则可写成个方程,即上述个方程可写成向量-矩阵形式(5.1.7) 设则式(5.1.7)可写为(5.1.8)式中:为维输出向量;为维噪声向量;为维参数向量;为测量矩阵。
因此式(5.1.8)是一个含有个未知参数,由个方程组成的联立方程组。
如果,方程数少于未知数数目,则方程组的解是不定的,不能唯一地确定参数向量。
如果,方程组正好与未知数数目相等,当噪声时,就能准确地解出(5.1.9)如果噪声,则(5.1.10)从上式可以看出噪声对参数估计是有影响的,为了尽量较小噪声对估值的影响。
在给定输出向量和测量矩阵的条件下求系统参数的估值,这就是系统辨识问题。
可用最小二乘法来求的估值,以下讨论最小二乘法估计。
2.最小二乘法估计算法设表示的最优估值,表示的最优估值,则有(5.1.11)写出式(5.1.11)的某一行,则有(5.1.12) 设表示与之差,即-(5.1.13)式中成为残差。
把分别代入式(5.1.13)可得残差。
设则有(5.1.14) 最小二乘估计要求残差的平方和为最小,即按照指数函数(5.1.15) 为最小来确定估值。
最小二乘参数辨识方法
《系统辨识基础》第17讲要点第5章 最小二乘参数辨识方法5.9 最小二乘递推算法的逆问题辨识是在状态可测的情况下讨论模型的参数估计问题,滤波是在模型参数已知的情况下讨论状态估计问题,两者互为逆问题。
5.10 最小二乘递推算法的几种变形最小二乘递推算法有多种不同的变形,常用的有七种情况:① 基于数据所含的信息内容不同,对数据进行有选择性的加权; ② 在认为新近的数据更有价值的假设下,逐步丢弃过去的数据; ③ 只用有限长度的数据;④ 加权方式既考虑平均特性又考虑跟综能力; ⑤ 在不同的时刻,重调协方差阵P (k ); ⑥ 设法防止协方差阵P (k )趋于零; 5.10.1 选择性加权最小二乘法 把加权最小二乘递推算法改写成[]⎪⎪⎩⎪⎪⎨⎧--=+--=--+-=-)1()]()([)(1)()1()()()()1()()()]1(ˆ)()()[()1(ˆ)(ˆ1k k k k k k k k k k k k k k k z k k k P h K P h P h h P K h K τττθθθI ΛΛ算法中引进加权因子,其目的是便于考虑观测数据的可信度.选择不同的加权方式对算法的性质会有影响,下面是几种特殊的选择:① 一种有趣的情况是Λ()k 取得很大,在极限情况下,算法就退化成正交投影算法。
也就是说,当选择⎩⎨⎧=-≠-∞=0)()1()(,00)()1()(,)(k k k k k k k h P h h P h ττΛ 构成了正交投影算法⎪⎪⎩⎪⎪⎨⎧--=--=--+-=)1()]()([)()()1()()()1()()]1(ˆ)()()[()1(ˆ)(ˆk k k k k k k k k k k k k z k k k P h K P h P h h P K h K τττθθθI 算法初始值取P ()0=I 及 ()θε0=(任定值),且当0)()1()(=-k k k h P h τ时,令K ()k =0。
系统辨识—最小二乘法_3
---------------------------------------------------------------最新资料推荐------------------------------------------------------系统辨识—最小二乘法最小二乘法参数辨识 1 引言系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。
现代控制理论中的一个分支。
通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。
而系统辨识所研究的问题恰好是这些问题的逆问题。
通常,预先给定一个模型类={M}(即给定一类已知结构的模型),一类输入信号 u 和等价准则 J=L(y,yM)(一般情况下,J 是误差函数,是过程输出 y 和模型输出 yM 的一个泛函);然后选择使误差函数J 达到最小的模型,作为辨识所要求的结果。
系统辨识包括两个方面:结构辨识和参数估计。
在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。
2 系统辨识的目的在提出和解决一个辨识问题时,明确最终使1 / 17用模型的目的是至关重要的。
它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。
通过辨识建立数学模型通常有四个目的。
①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。
这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。
②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。
用于系统分析的仿真模型要求能真实反映系统的特性。
最小二乘法
y (k ) = x(k ) + v(k )
y (k ) +
x(k ) = y (k ) − v(k )
n i=0
∑
n
i =1
ai y (k − i) =
∑
biu ( k − i ) + v ( k ) +
∑
n
i =1
aiv (k − i)
ξ (k ) = v(k ) +
∑
n
i =1
a iv (k − i)
系统辨识——最小二 (n) L − y (1) u (n + 1) L y (n + 1) y (n + 2) − y (n + 1) L − y (2) u (n + 2) L = M M M M M y (n + N ) − y (n + N − 1) L − y ( N ) u (n + N ) L a1 a 2 u (1) M ξ (n + 1) u (2) an ξ (n + 2) + b0 M u ( N ) b1 ξ (n + N ) M bn
系统辨识——最小二乘算法 系统辨识——最小二乘算法
系统参数a 系统参数a
a 1.5 a1 a2
^
1
a1 = −1.5003
a2 = 0.7006
^
0.5
a1=-1.5, a2= 0.7
0 theta -0.5 -1 -1.5 -2 0
10
20
30 time steps
40
50
系统辨识各类最小二乘法汇总
yk(k)=1.5*yk(k-1)-0.7*yk(k-2)+uk(k-1)+0.5*uk(k-2)+y1(k); end figure(3); plot(yk); title('对应输出曲线');
theta=[0;0;0;0]; p=10^6*eye(4);
9
for t=3:N h=([-yk(t-1);-yk(t-2);uk(t-1);uk(t-2)]); x=1+h'*p*h; p=(p-p*h*1/x*h'*p); theta=theta+p*h*(yk(t)-h'*theta);
12
p=(p-p*h*1/x*h'*p); theta=theta+p*h*(yk(t)-h'*theta);
a1t(t)=theta(1); a2t(t)=theta(2); b1t(t)=theta(3); b2t(t)=theta(4); d1t(t)=theta(5); d2t(t)=theta(6);
end 5、RGLS 试验程序(部分) for t=3:N
he=([-e(t-1);-e(t-2)]); xe=1+he'*pe*he; pe=(pe-pe*he*1/xe*he'*pe); thete=thete+pe*he*(e(t)-he'*thete);
c1t(t)=thete(1); c2t(t)=thete(2);
7
RELS: 当噪声模型: e k = D Z −1 ∗ v k ( v(k) 为白噪声 )时,我们采用增广最 小二乘方法。能辨识出参数(包括噪声参数)的无偏估计。 RGLS: 当噪声模型: e k =
系统辨识最小二乘法
课 程 设 计 报 告学 院: 自动化学院 专业名称: 自动化 学生姓名: ** 指导教师: *** 时 间:2010年7月课程设计任务书一、设计内容SISO 系统的差分方程为:)()2()1()2()1()(2121k k u b k u b k z a k z a k z υ+-+-=-+-+参数取真值为:[]0.35 0.39 0.715 1.642=T θ,利用MATLAB 的M 语言辨识系统中的未知参数1a 、2a 、1b 、2b 。
二、主要技术要求用参数的真值及差分方程求出)(k z 作为测量值,)(k υ是均值为0,方差为0.1、0.5和0.01的不相关随机序列。
选取一种最小二乘算法利用MATLAB 的M 语言辨识参数。
三、进度要求2周(6月28日-7月11日)完成设计任务,撰写设计报告3000字以上,应包含设计过程、 计算结果、 图表等内容。
具体进度安排:◆ 6月28日,选好题目,查阅系统辨识相关最小二乘法原理的资料。
◆ 6月29日,掌握最小二乘原理,用MATLAB 编程实现最小二乘一次完成算法。
◆ 6月30日,掌握以最小二乘算法为基础的广义最小二乘递推算法。
◆ 7月1日,用MATLAB 编程实现广义最小二乘递推算法。
◆ 7月2日,针对题目要求进行参数辨识,并记录观察相关数据。
◆ 7月3日-7月5日,对参数辨识结果进行分析,找出存在的问题,提出改进方案,验证改进优化结果。
◆ 7月6日-7月7日,撰写课程设计报告。
◆ 7月8日,对课程设计报告进行校对。
◆ 7月9日,打印出报告上交。
学 生王景 指导教师 邢小军1. 设计内容设SISO 系统的差分方程为:)()2()1()2()1()(2121k k u b k u b k z a k z a k z υ+-+-=-+-+ 式(1-1)参数取真值为:[]0.35 0.39 0.715 1.642=Tθ,利用MATLAB 的M 语言辨识系统中的未知参数1a 、2a 、1b 、2b 。
三线性系统最小二乘法辨识方法优化
三线性系统最小二乘法辨识方法优化在控制系统中,对系统进行辨识是一个重要的任务,因为准确地了解系统的特性可以帮助我们设计出更好的控制策略。
而对于三线性系统的辨识,最小二乘法是一个常用的方法。
然而,在实际应用中,我们发现传统的最小二乘法在三线性系统的辨识中存在一些问题,因此需要进行优化。
一、传统最小二乘法在三线性系统辨识中存在的问题传统的最小二乘法是一种基于误差平方和最小化的方法,通过拟合实测数据与模型预测值之间的差异来辨识系统。
然而,对于三线性系统,由于三个自变量之间的相互作用,传统的最小二乘法在辨识时可能会存在以下问题:1. 非线性对称性问题:对于三线性系统,变量之间的相互作用可能导致辨识结果受到非线性对称性的影响。
即使在实际系统中,系统参数的变化是对称的,最小二乘法得到的辨识结果也可能出现偏差。
2. 峰值宽度问题:在三线性系统辨识中,传统最小二乘法可能无法准确地辨识出峰值的宽度,导致对系统特性的估计不准确。
3. 高维度问题:由于三个自变量之间的相互作用,三线性系统的辨识问题存在高维度的特点。
传统的最小二乘法在高维度问题上可能存在计算复杂度高的问题。
二、三线性系统最小二乘法优化方法为了解决上述问题,可以采用以下优化方法来进行三线性系统的最小二乘法辨识:1. 对称性约束优化:针对非线性对称性问题,可以在最小二乘法的优化目标中添加对称性约束。
通过限制辨识结果的对称性,可以减小非线性对称性带来的误差。
2. 峰值宽度优化:针对峰值宽度问题,可以在最小二乘法的目标函数中添加峰值宽度约束。
通过限制辨识结果的峰值宽度,可以提高对系统特性的准确估计。
3. 维度约简优化:针对高维度问题,可以采用维度约简的方法来简化辨识问题。
可以通过特征提取、主成分分析等方法来降低辨识问题的维度,减小计算复杂度。
三、优化方法的实验验证为了验证以上优化方法的有效性,可以进行实验。
首先,选取一个具有明显三线性特性的系统作为被辨识对象,收集其输入-输出数据。
系统辨识相关分析和最小二乘
bnu k n k
n(k ) 是均值为0的白噪声, 其中: k n k a n k i , 现分别测出n+N个输出输入值y(1),y(2)......y(n+N), u(1),u(2)......u(n+N),则可写出N个方程,写成向量 1 y n y 1 u n 1 u 1 -矩阵形式 yy nn 2 y n 1 y 2 u n2 u 2
J ˆ 0 2T y ˆ
ˆ y 得: 1 T ˆ 推出: T y 其中,J为极小值的充分条件是: 2 J
T T
ˆ2
T 0
即矩阵ΦTΦ为正定矩阵,或者说是非奇异的。
ΦTΦ正定的必要条件是:输入u(k)为持续激励信号。
T1 * K1 * T1 * ( E1 1) T0 * u ( k ) u (k 1) / T0 ; T2 * T2 * ( E2 1) T0 * x(k ) x(k 1) / T0 ;
2)白噪声生成: 利用U[0,1]均匀分布的随机数生成正态分布的白噪 声 12 2
1
N
于是
ˆ P T Y N N N
N
如果再获得1组新的观测值,则又增加1个方程 T yN 1 N 1 N 1 得新的参数估计值
ˆ P T Y y N 1 N 1 N N N 1 N 1
N 1 1 T T PN N 1 N 1 N 1
3)M序列生成: 用M序列作为辨识的输入信号,循环周期取 N 时钟节拍 t 1Sec ,幅度 a 1 . 生成M序列的结构图:
matlab系统辨识工具箱使用的算法
matlab系统辨识工具箱使用的算法MATLAB的系统辨识工具箱使用多种算法来进行系统辨识。
这些算法通常包括以下几种:
1. 最小二乘法(Least Squares):这是最常用的系统辨识方法。
最小二乘法试图找到一组参数,使得实际数据和模型预测之间的误差平方和最小。
2. 极大似然估计(Maximum Likelihood Estimation):这种方法基于数据生成的模型概率密度函数,通过最大化似然函数来估计模型参数。
3. 递归最小二乘法(Recursive Least Squares):这是一种在线算法,可以在数据流中实时更新模型参数。
4. 扩展最小二乘法(Extended Least Squares):这种方法可以处理包含噪声和异常值的数据,通过引入权重来调整误差平方和。
5. 非线性最小二乘法(Nonlinear Least Squares):对于非线性系统,需要使用非线性最小二乘法来估计参数。
6. 遗传算法(Genetic Algorithms):这是一种启发式搜索算法,通过模拟自然选择和遗传过程来寻找最优解。
7. 粒子群优化算法(Particle Swarm Optimization):这是一种基于群体智能的优化算法,通过模拟鸟群、鱼群等生物群体的行为来寻找最优解。
以上这些算法都是MATLAB系统辨识工具箱中常用的算法,根据具体的问题和数据,可以选择最适合的算法来进行系统辨识。
系统辨识—最小二乘法
最小二乘法参数辨识1 引言系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。
现代控制理论中的一个分支。
通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。
而系统辨识所研究的问题恰好是这些问题的逆问题。
通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。
系统辨识包括两个方面:结构辨识和参数估计。
在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。
2 系统辨识的目的在提出和解决一个辨识问题时,明确最终使用模型的目的是至关重要的。
它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。
通过辨识建立数学模型通常有四个目的。
①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。
这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。
②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。
用于系统分析的仿真模型要求能真实反映系统的特性。
用于系统设计的仿真,则强调设计参数能正确地符合它本身的物理意义。
③预测这是辨识的一个重要应用方面,其目的是用迄今为止系统的可测量的输入和输出去预测系统输出的未来的演变。
例如最常见的气象预报,洪水预报,其他如太阳黑子预报,市场价格的预测,河流污染物含量的预测等。
预测模型辨识的等价准则主要是使预测误差平方和最小。
系统辨识第5章 线性动态模型参数辨识 最小二乘法
度函数
,则称uS(uk()为) “持续激励”信号。
● 定义4 一个具有谱密度 Fn (为z 1的) 平f1z稳1 信f2号z 2u(k)称fn为z nn 阶
“持续激励”Fn信(e号j ),2 S若u (对) 一0 切形如 Fn (e j ) 0
的滤波器,关系式
,意味着
。
● 定理2 设输入信号u(kR)u是(0)平稳R随u (1机) 信号,Ru (如n 果1)相关函数矩阵
式中
zL H L nL
nzHLLL[[zn(h(hh11TT)T),((,(zL12n())()22)),,,,znz(((LzLzL)(()]10]))1)
z(1 na ) z(2 na )
z(L na )
u(0) u(1)
u(L 1)
u(1 nb )
u(2
nb
)
u(L nb )
5.2 最小二乘法的基本概念
● 两种算法形式
① 批处理算法:利用一批观测数据,一次计算或经反复迭代,
以获得模型参数的估计值。
②
递推算法:在上次模型参数估计值
ˆ
(k
1)的基础上,根据当
前获得的数据提出修正,进而获得本次模型参数估计值ˆ (k ),
广泛采用的递推算法形式为
(k ) (k 1) K (k )h(k d )~z (k )
z(k ) h (k ) n(k )
式中z(k)为模型输出变量,h(k)为输入数据向量, 为模型参
数向量,n(k)为零均值随机噪声。为了求此模型的参数估计值, 可以利用上述最小二乘原理。根据观测到的已知数据序列
和{z(k)} ,{h极(k小)} 化下列准则函数
L
J ( ) [z(k ) h (k ) ]2
系统辨识—最小二乘法概要
最小二乘法参数辨识1 引言系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。
现代控制理论中的一个分支。
通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。
而系统辨识所研究的问题恰好是这些问题的逆问题。
通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。
系统辨识包括两个方面:结构辨识和参数估计。
在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。
2 系统辨识的目的在提出和解决一个辨识问题时,明确最终使用模型的目的是至关重要的。
它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。
通过辨识建立数学模型通常有四个目的。
①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。
这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。
②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。
用于系统分析的仿真模型要求能真实反映系统的特性。
用于系统设计的仿真,则强调设计参数能正确地符合它本身的物理意义。
③预测这是辨识的一个重要应用方面,其目的是用迄今为止系统的可测量的输入和输出去预测系统输出的未来的演变。
例如最常见的气象预报,洪水预报,其他如太阳黑子预报,市场价格的预测,河流污染物含量的预测等。
预测模型辨识的等价准则主要是使预测误差平方和最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小二乘法参数辨识1 引言系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。
现代控制理论中的一个分支。
通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。
而系统辨识所研究的问题恰好是这些问题的逆问题。
通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。
系统辨识包括两个方面:结构辨识和参数估计。
在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。
2 系统辨识的目的在提出和解决一个辨识问题时,明确最终使用模型的目的是至关重要的。
它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。
通过辨识建立数学模型通常有四个目的。
①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。
这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。
②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。
用于系统分析的仿真模型要求能真实反映系统的特性。
用于系统设计的仿真,则强调设计参数能正确地符合它本身的物理意义。
③预测这是辨识的一个重要应用方面,其目的是用迄今为止系统的可测量的输入和输出去预测系统输出的未来的演变。
例如最常见的气象预报,洪水预报,其他如太阳黑子预报,市场价格的预测,河流污染物含量的预测等。
预测模型辨识的等价准则主要是使预测误差平方和最小。
只要预测误差小就是好的预测模型,对模型的结构及参数则很少再有其他要求。
这时辨识的准则和模型应用的目的是一致的,因此可以得到较好的预测模型。
④控制为了设计控制系统就需要知道描述系统动态特性的数学模型,建立这些模型的目的在于设计控制器。
建立什么样的模型合适,取决于设计的方法和准备采用的控制策略。
3 系统辨识的方法经典方法:经典的系统辨识方法的发展已经比较成熟和完善,他包括阶跃响应法、脉冲响应法、频率响应法、相关分析法、谱分析法、最小二乘法和极大似然法等。
其中最小二乘法(LS)是一种经典的和最基本的,也是应用最广泛的方法。
但是,最小二乘估计是非一致的,是有偏差的,所以为了克服他的缺陷,而形成了一些以最小二乘法为基础的系统辨识方法:广义最小二乘法(GI S)、辅助变量法(IV)、增广最小二乘法(EI,S)和广义最小二乘法(GI S),以及将一般的最小二乘法与其他方法相结合的方法,有最小二乘两步法(COR—I S)和随机逼近算法等。
经典的系统辨识方法还存在着一定的不足:(1)利用最小二乘法的系统辨识法一般要求输入信号已知,并且必须具有较丰富的变化,然而,这一点在某些动态系统中,系统的输入常常无法保证;(2)极大似然法计算耗费大,可能得到的是损失函数的局部极小值;(3)经典的辨识方法对于某些复杂系统在一些情况下无能为力。
现代方法:随着系统的复杂化和对模型精确度要求的提高,系统辨识方法在不断发展,特别是非线性系统辨识方法。
主要有:1、集员系统辨识法在1979年集员辨识首先出现于Fogel 撰写的文献中,1982年Fogel和Huang 又对其做了进一步的改进。
集员辨识是假设在噪声或噪声功率未知但有界UBB(Unknown But Bounded)的情况下,利用数据提供的信息给参数或传递函数确定一个总是包含真参数或传递函数的成员集(例如椭球体、多面体、平行六边体等)。
不同的实际应用对象,集员成员集的定义也不同。
集员辨识理论已广泛应用到多传感器信息融合处理、软测量技术、通讯、信号处理、鲁棒控制及故障检测等方面。
2、多层递阶系统辨识法多层递阶方法的主要思想为:以时变参数模型的辨识方法作为基础,在输入输出等价的意义下,把一大类非线性模型化为多层线性模型,为非线性系统的建模给出了一个十分有效的途径。
3、神经网络系统辨识法由于人工神经网络具有良好的非线性映射能力、自学习适应能力和并行信息处理能力,为解决未知不确定非线性系统的辨识问题提供了一条新的思路。
与传统的基于算法的辨识方法相比较,人工神经网络用于系统辨识具有以下优点:(1)不要求建立实际系统的辨识格式,可以省去对系统建模这一步骤;(2)可以对本质非线性系统进行辨识;(3)辨识的收敛速度仅与神经网络的本身及所采用的学习算法有关;(4)通过调节神经元之间的连接权即可使网络的输出来逼近系统的输出;(5)神经网络也是系统的一个物理实现,可以用在在线控制。
4、模糊逻辑系统辨识法模糊逻辑理论用模糊集合理论,从系统输入和输出的量测值来辨识系统的模糊模型,也是系统辨识的一个新的和有效的方法,在非线性系统辨识领域中有十分广泛的应用。
模糊逻辑辨识具有独特的优越性:能够有效地辨识复杂和病态结构的系统;能够有效地辨识具有大时延、时变、多输入单输出的非线性复杂系统;可以辨识性能优越的人类控制器;可以得到被控对象的定性与定量相结合的模型。
模糊逻辑建模方法的主要内容可分为两个层次:一是模型结构的辨识,另一个是模型参数的估计。
典型的模糊结构辨识方法有:模糊网格法、自适应模糊网格法、模糊聚类法及模糊搜索树法等。
5、小波网络系统辨识法小波网络是在小波分解的基础上提出的一种前馈神经网络口 ,使用小波网络进行动态系统辨识,成为神经网络辨识的一种新的方法。
小波分析在理论上保证了小波网络在非线性函数逼近中所具有的快速性、准确性和全局收敛性等优点。
小波理论在系统辨识中,尤其在非线性系统辨识中的应用潜力越来越大,为不确定的复杂的非线性系统辨识提供了一种新的有效途径,其具有良好的应用前景。
1. 设计内容设SISO 系统的差分方程为:)()2()1()2()1()(2121k k u b k u b k z a k z a k z υ+-+-=-+-+ 式(1-1) 参数取真值为:[]0.42 0.57 0.483 1.376=Tθ,利用MATLAB 的M 语言辨识系统中的未知参数1a 、2a 、1b 、2b 。
2. 设计过程2.1建立系统设SISO 系统的差分方程为:)()2()1()2()1()(2121k k u b k u b k z a k z a k z υ+-+-=-+-+ 式(2-1)参数取真值为:[]0.42 0.57 0.483 1.376=T θ,利用MATLAB 的M 语言辨识系统中的未知参数1a 、2a 、1b 、2b 。
要求:用参数的真值利用差分方程求出)(k z 作为测量值,)(k υ是均值为0,方差为0.1、0.5和0.01的不相关随机序列。
选取一种最小二乘算法辨识。
2.2 最小二乘简介2.2.1 最小二乘法的概念与应用对工程实践中测得的数据进行理论分析,用恰当的函数去模拟数据原型是一类十分重要的问题,最常用的逼近原则是让实测数据和估计数据之间的距离平方和最小,这即是最小二乘法。
最小二乘法是一种经典的数据处理方法。
在系统辨识领域中 ,最小二乘法是一种得到广泛应用的估计方法 ,可用于动态系统 ,静态系统 , 线性系统 ,非线性系统。
可用于离线估计,也可用于在线估计。
这种辨识方法主要用于在线辨识。
在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。
MATLAB 是一套高性能数字计算和可视化软件 ,它集成概念设计 ,算法开发 ,建模仿真 ,实时实现于一体 ,构成了一个使用方便、界面友好的用户环境 ,其强大的扩展功能为各领域的应用提供了基础。
对于比较复杂的生产过程 ,由于过程的输入输出信号一般总是可以测量的 ,而且过程的动态特性必然表现在这些输入输出数据中 ,那么就可以利用输入输出数据所提供的信息来建立过程的数学模型。
这种建模方法就称为系统辨识。
把辨识建模称作“黑箱建模”。
2.2.2 最小二乘法系统辨识结构:本文把待辨识的过程看作“黑箱”。
只考虑过程的输入输出特性,而不强调过程的内部机理。
图中,输入u(k)和输出z(k)是可以观测的;G (错误!未找到引用源。
)是系统模型,用来描述系统的输入输出特性;N (错误!未找到引用源。
)是噪声模型,v(k)是白噪声,e(k)是有色噪声,根据表示定理: 可以表示为e(k) =N (错误!未找到引用源。
)v(k))(1-zG )()(11--=z A z B)(1-zN )()(11--=z C z D 1121211212()1()a a b b n n n n A z a z a z a z B z b z b z b z --------⎧=++++⎪⎨=+++⎪⎩⎪⎩⎪⎨⎧+++=++++=--------b b a a n n n n z d z d z d z D z c z c z c z C 2211122111)(1)(2.2.3 准则函数设一个随机序列{}),,2,1(),(L k k z ∈的均值是参数θ的线性函数: {}θ)()(k h k z E T =,其中)(k h 是可测的数据向量,那么利用随机序列的一个实现,使准则函数:+ + e (k )图1 SISO 系统辨识“黑箱”结构图 y (k ) u (k ) z (k ) v (k ) )(1-z N )(1-z G21])()([)(∑=-=Lk T k h k z J θθ (式2-2)达到极小的参数估计值∧θ称作θ的最小二乘估计。
最小二乘格式:)()()(k e k h k z t+=θ,θ为模型参数向量,()k e 为零均值随机噪声。
2.3 广义最小二乘法2.3.1 广义最小二乘数学模型)()(1)()()()(111k v z C k u z B k z z A ---+= 式中,u(k)和)(k z 表示系统的输入输出;v(k)是均值为零的不相关的随机序列;且⎪⎩⎪⎨⎧++++=+++=++++=------------c c b b a a n n n n n n z c z c z c z C z b z b z b z B z a z a z a z A 2211122111221111)()(1)(2.3.2 广义最小二乘递推算法如下[][]⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--=+--=--+-=--=+--=--+-=--)1()]()([)(1)()1()()()1()()]1(ˆ)()(ˆ)[()1(ˆ)(ˆ)1()]()([)(1)()1()()()1()()]1(ˆ)()()[()1(ˆ)(ˆ11k k k k k k k k k k k k k ek k k k k k k k k k k k k k k k z k k k ee e e ee e e e e ee e e e ff f f ff f f f f fffP h K P h P h h P K h K P h K P h P h h P K h K ττττττθθθθθθI I式中⎪⎩⎪⎨⎧-=----=------=)(ˆ)()()(ˆ)](ˆ,),1(ˆ[)()](,),1(),(,),1([)(k k k z k en k e k e k n k u k u n k z k z k ce bffafffθτττh h h2.3.3 广义最小二乘递推算法的计算步骤:1.给定初始条件 ⎪⎪⎩⎪⎪⎨⎧====I )0(P )0(ˆ)(I )0(P )()0(ˆe e 2f 0θθ为充分大的数充分小的实向量a a ε2利用式)()(z )()()(z )(11k z C k u k z C k z ff--==,计算)(k z f 和)(k u f;3利用式⎩⎨⎧------==ττ)](,),1(),(,),1([)(],,,,,[f f f f f 11ba n n n k u k u n k z k z kb b a a bah θ,构造)(fk h ;4利用式[]⎪⎪⎩⎪⎪⎨⎧--=+--=--+-=-)1()]()([)(1)()1()()()1()()]1(ˆ)()()[()1(ˆ)(ˆ1k k k k k k k k k k k k k z k k k ff f f ff f f f f fffP h K P h P h h P K h K τττθθθI 递推计算)(ˆk θ; 5利用)(ˆ)()()(ˆk k k z k eθτh -=和 τ)](,),1(),(,),1([)(ban k u k u n k z k z k ------= h 计算)(ˆk e; 6根据τ)](ˆ,),1(ˆ[)(c e n k e k ek ----= h 来构造)(k e h ; 7利用[]⎪⎩⎪⎨⎧--=+--=--+-=-)1()]()([)(1)()1()()()1()()]1(ˆ)()(ˆ)[()1(ˆ)(ˆ1k k k k k k k k k k k k k e k k k ee e e ee e e e e eeeeeP h K P h P h h P K h K τττθθθI返回第2步进行迭代计算,直至获得满意的辨识结果。