机械能守恒定律 典型例题的解题技巧
高中物理---机械能守恒定律-----典型例题(含答案)【经典】
![高中物理---机械能守恒定律-----典型例题(含答案)【经典】](https://img.taocdn.com/s3/m/052f54f7af45b307e9719718.png)
第五章:机械能守恒定律第一讲:功和功率考点一:恒力功的分析与计算1.(单选)起重机以1 m/s2的加速度将质量为1 000 kg的货物由静止开始匀加速向上提升,g取10 m/s2,则在1 s内起重机对货物做的功是( ).答案D A.500 J B.4 500 J C.5 000 JD.5 500 J2.(单选)如图所示,三个固定的斜面底边长度相等,斜面倾角分别为30°、45°、60°,斜面的表面情况都一样。
完全相同的三物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部,在此过程中( ) 选DA.物体A克服摩擦力做的功最多B.物体B克服摩擦力做的功最多C.物体C克服摩擦力做的功最多D.三物体克服摩擦力做的功一样多3、(多选)在水平面上运动的物体,从t=0时刻起受到一个水平力F的作用,力F和此后物体的速度v随时间t的变化图象如图所示,则( ).答案ADA.在t=0时刻之前物体所受的合外力一定做负功B.从t=0时刻开始的前3 s内,力F做的功为零C.除力F外,其他外力在第1 s内做正功D .力F 在第3 s 内做的功是第2 s 内做功的3倍 4.(单选)质量分别为2m 和m 的A 、B 两种物体分别在水平恒力F 1和F 2的作用下沿水平面运动,撤去F 1、F 2后受摩擦力的作用减速到停止,其v -t 图象如图所示,则下列说法正确的是( ).答案 CA .F 1、F 2大小相等B .F 1、F 2对A 、B 做功之比为2∶1C .A 、B 受到的摩擦力大小相等D .全过程中摩擦力对A 、B 做功之比为1∶25. (单选)一物体静止在粗糙水平地面上.现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v .若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v .对于上述两个过程,用W F 1、W F 2分别表示拉力F 1、F 2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( )A .W F 2>4W F 1,W f2>2W f1B .W F 2>4W F 1,W f2=2W f1C .W F 2<4W F 1,W f2=2W f1D .W F 2<4W F 1,W f2<2W f1 答案 C6.如所示,建筑工人通过滑轮装置将一质量是100 kg 的料车沿30°的斜面由底端匀速地拉到顶端,斜面长L 是4 m ,若不计滑轮的质量和各处的摩擦力,g 取10 N/kg ,求这一过程中:(1)人拉绳子的力做的功;(2)物体的重力做的功;(3)物体受到的各力对物体做的总功。
机械能守恒定律-典型例题的解题技巧
![机械能守恒定律-典型例题的解题技巧](https://img.taocdn.com/s3/m/6ba2a4458f9951e79b89680203d8ce2f01666555.png)
一、单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。
(2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。
所涉及到的题型有四类:(1)阻力不计的抛体类。
(2)固定的光滑斜面类。
(3)固定的光滑圆弧类。
(4)悬点固定的摆动类。
(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。
那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。
例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小?分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等2202121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。
例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少?分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等θsin 2120⋅==mgs mgh mv 得:θsin 220g v s = (3)固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。
例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等22021221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:Rg v t = 所以 gR v 50=(4)悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。
机械能守恒定律常考题型及解题方法
![机械能守恒定律常考题型及解题方法](https://img.taocdn.com/s3/m/5da3480b4b73f242326c5f04.png)
机械能守恒定律常考题型及解题方法要点一机械能守恒的判断(系统摩擦力做功,系统机械能一定不守恒)例1.木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是()A.子弹的机械能守恒B.木块的机械能守恒C.子弹和木块的总机械能守恒D.以上说法都不对跟踪训练1.如图所示,一轻弹簧左端固定在长木板M的左端,右端与木块m连接,且m与M及M与地面间光滑.开始时,m与M均静止,现同时对m、M施加等大反向的水平恒力F1和F2.在两物体开始运动以后的整个运动过程中,对m、M和弹簧组成的系统(整个过程弹簧形变不超过其弹性限度),下列说法正确的是()A.由于F1、F2等大反向,故系统机械能守恒B.由于F1、F2分别对m、M做正功,故系统的动能不断增加C.由于F1、F2分别对m、M做正功,故系统的机械能不断增加D.当弹簧弹力大小与F1、F2大小相等时,m、M的动能最大要点二机械能守恒定律的简单应用(熟练理解“守恒”)例2.如图所示,一轻杆可绕O点的水平轴无摩擦地转动,杆两端各固定一个小球,球心到O轴的距离分和r2,球的质量分别为m1和m2,且m1>m2,r1>r2,将杆由水平位置从静止开别为r始释放,不考虑空气阻力,求小球m1摆到最低点时的速度是多少?跟踪训练2.如图所示,在长为L的轻杆中点A和端点B各固定一质量为m的球,杆可绕无摩擦的轴O转动,使杆从水平位置无初速度释放摆下.求当杆转到竖直位置时,轻杆对A、B两球分别做了多少功?要点三应用机械能守恒定律处理竖直平面内的圆周运动(整体分析)例3.如图所示是为了检验某种防护罩承受冲击力的装置,M是半径为R=1.0 m的固定在竖直平面内的14光滑圆弧轨道,轨道上端切线水平.N为待检验的固定曲面,该曲面在竖直面内的截面为半径r=0.69 m的14圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点.M的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量为m=0.01 kg的小钢珠.假设某次发射的钢珠沿轨道恰好能经过M的上端点,水平飞出后落到曲面N的某一点上,取g=10 m/s2.问:(1)发射该钢珠前,弹簧的弹性势能E p多大?(2)钢珠落到圆弧N上时的动能E k多大?(结果保留两位有效数字)跟踪训练3.如图所示,ABC和DEF是在同一竖直平面内的两条光滑轨道,其中ABC的末端水平,DEF 是半径为r=0.4 m的半圆形轨道,其直径DF沿竖直方向,C、D可看作重合的点.现有一可视为质点的小球从轨道ABC上距C点高为H的地方由静止释放.(g取10 m/s2)(1)若要使小球经C处水平进入轨道DEF且能沿轨道运动,H至少要有多高?(2)若小球静止释放处离C点的高度h小于(1)中H的最小值,小球可击中与圆心等高的E点,求h.课堂分组训练A组机械能守恒的判断1.[多选]一个轻质弹簧,固定于天花板的O点处,原长为L,如图所示.一个质量为m的物块从A点竖直向上抛出,以速度v与弹簧在B点相接触,然后向上压缩弹簧,到C点时物块速度为零,在此过程中()A.由A到C的过程中,物块的机械能守恒B.由A到B的过程中,物块的动能和重力势能之和不变C.由B到C的过程中,弹性势能的变化量与克服弹力做的功相等D.由A到C的过程中,重力势能的减少量等于弹性势能的增加量2.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中()A.圆环机械能守恒B.弹簧的弹性势能先增大后减小C.弹簧的弹性势能变化了mghD.弹簧的弹性势能最大时圆环动能最大3.[多选]如图所示,细绳跨过定滑轮悬挂两物体M和m,且M>m,不计摩擦,系统由静止开始运动过程中()A.M、m各自的机械能分别守恒B.M减少的机械能等于m增加的机械能C.M减少的重力势能等于m增加的重力势能D.M和m组成的系统机械能守恒B组机械能守恒的简单应用4.如图是一个横截面为半圆、半径为R的光滑柱面,一根不可伸长的细线两端分别系物体A、B,且m A=2m B,从图示位置由静止开始释放A物体,当物体B到达半圆顶点时,求绳的张力对物体B所做的功.C组应用机械能守恒定律处理竖直平面内的圆周运动5.如图所示,一根跨过光滑定滑轮的轻绳,两端各有一杂技演员(可视为质点).a 站在地面上,b从图示的位置由静止开始向下摆动,运动过程中绳始终处于伸直状态.当演员b摆至最低点时,a刚好对地面无压力,则演员a的质量与演员b的质量之比为()A.1∶1 B.2∶1 C.3∶1 D.4∶16.为了研究过山车的原理,物理兴趣小组提出了下列设想:如图所示,取一个与水平方向夹角为30°,长L=0.8 m的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道都是光滑的.其中AB与BC轨道以微小圆弧相接,竖直圆轨道的半径R=0.6 m.现使一个质量m=0.1 kg的小物块从A点开始以初速度v0沿倾斜轨道滑下,g取10 m/s2.问:(1)若v0=5.0 m/s,则小物块到达B点时的速度为多大?(2)若v0=5.0 m/s,小物块到达竖直圆轨道的最高点时对轨道的压力为多大?(3)为了使小物块在竖直圆轨道上运动时能够不脱离轨道,v0大小应满足什么条件?7. 如图所示,将一端带有半圆形光滑轨道的凹槽固定在水平面上,凹槽的水平部分AB粗糙且与半圆轨道平滑连接,AB长为2L。
高中力学中的机械能守恒定律有哪些典型例题
![高中力学中的机械能守恒定律有哪些典型例题](https://img.taocdn.com/s3/m/b59e7e45fd4ffe4733687e21af45b307e971f901.png)
高中力学中的机械能守恒定律有哪些典型例题在高中力学的学习中,机械能守恒定律是一个非常重要的知识点。
它不仅在解决物理问题时经常用到,也是理解能量转化和守恒的关键。
下面,我们就来一起探讨一些机械能守恒定律的典型例题。
例题一:自由落体运动一个质量为 m 的物体从高度为 h 的地方自由下落,忽略空气阻力,求物体下落至地面时的速度 v。
解析:在自由落体运动中,物体只受到重力的作用,重力势能逐渐转化为动能。
初始时刻,物体的机械能为重力势能 mgh,下落至地面时,物体的机械能为动能 1/2mv²。
因为机械能守恒,所以有 mgh =1/2mv²,解得 v =√2gh 。
这个例题是机械能守恒定律的最基本应用之一,它清晰地展示了重力势能如何转化为动能。
例题二:竖直上抛运动一个质量为 m 的物体以初速度 v₀竖直上抛,忽略空气阻力,求物体上升的最大高度 h。
解析:物体竖直上抛时,动能逐渐转化为重力势能。
在初始时刻,物体的机械能为动能 1/2mv₀²,当物体上升到最大高度时,速度为 0,机械能为重力势能 mgh。
由于机械能守恒,所以 1/2mv₀²= mgh,解得 h = v₀²/ 2g 。
这个例题与自由落体运动相反,是动能转化为重力势能的过程。
例题三:光滑斜面运动一个质量为 m 的物体从光滑斜面的顶端由静止开始下滑,斜面的高度为 h,斜面的长度为 L,求物体滑到底端时的速度 v。
解析:物体在斜面上运动时,重力势能转化为动能。
初始时刻,物体的机械能为重力势能 mgh,滑到底端时,物体的机械能为动能1/2mv²。
因为斜面光滑,没有摩擦力做功,机械能守恒。
根据几何关系,物体下落的高度 h 与斜面长度 L 和斜面倾角θ 有关,h =Lsinθ。
所以mgh = 1/2mv²,解得 v =√2gh =√2gLsinθ 。
这个例题展示了在斜面这种常见的情境中机械能守恒定律的应用。
部编版高中物理必修二第八章机械能守恒定律题型总结及解题方法
![部编版高中物理必修二第八章机械能守恒定律题型总结及解题方法](https://img.taocdn.com/s3/m/a98758717275a417866fb84ae45c3b3566ecdd5f.png)
(名师选题)部编版高中物理必修二第八章机械能守恒定律题型总结及解题方法单选题1、如图所示,分别用力F1、F2、F3将质量为m的物体,由静止开始沿同一光滑斜面以相同的加速度,从斜面底端拉到斜面的顶端.用P1、P2、P3分别表示物体到达斜面顶端时F1、F2、F3的功率,下列关系式正确的是()A.P1=P2=P3B.P1>P2=P3C.P1>P2>P3D.P1<P2<P3答案:A由于物体沿斜面的加速度相同,说明物体受到的合力相同,由物体的受力情况可知拉力F在沿着斜面方向的分力都相同;由v2=2ax可知,物体到达斜面顶端时的速度相同,由瞬时功率公式P=Fvcosθ可知,拉力的瞬时功率也相同,即P1=P2=P3故选A。
2、如图所示,在水平地面上方固定一水平平台,平台上表面距地面的高度H=2.2m,倾角θ= 37°的斜面体固定在平台上,斜面底端B与平台平滑连接。
将一内壁光滑血管弯成半径R=0.80m的半圆,固定在平台右端并和平台上表面相切于C点,C、D为细管两端点且在同一竖直线上。
一轻质弹簧上端固定在斜面顶端,一质量m=1.0kg的小物块在外力作用下缓慢压缩弹簧下端至A点,此时弹簧的弹性势能E p=2.8J,AB长L=2.0m。
现撤去外力,小物块从A点由静止释放,脱离弹簧后的小物块继续沿斜面下滑,经光滑平台BC,从C点进入细管,由D点水平飞出。
已知小物块与斜面间动摩擦因数μ=0.80,小物块可视为质点,不计空气阻力及细管内径大小,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8。
求小物块到达D点时细管内壁对小物块的支持力大小;()A.42NB.45NC.48ND.55N答案:D小物块从A点到C点的过程,由动能定理可得W弹+mgLsinθ−μmgLcosθ=12mv2C−0弹簧弹力做功数值等于弹簧弹性势能的变化量数值,故W弹=2.8J 解得小物块达到C点速度为v C=2m/s 小物块从C点到D点的过程,由机械能守恒得2mgR=12mv2D−12mv2C在D点,以小物块为研究对象,由牛顿第二定律可得F N−mg=m v2D R解得细管内壁对小物块的支持力为F N=55N故选D。
机械能守恒定律的综合应用经典例题
![机械能守恒定律的综合应用经典例题](https://img.taocdn.com/s3/m/94d756c4a58da0116d174912.png)
机械能守恒定律的综合应用例1、如图所示,质量分别为2 m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴。
AO 、BO 的长分别为2L 和L 。
开始时直角尺的AO 部分处于水平位置而B 在O 的正下方。
让该系统由静止开始自由转动,求:⑴当A 到达最低点时,A 小球的速度大小v ;⑵ B 球能上升的最大高度h ;⑶开始转动后B 球可能达到的最大速度v m 。
解析:以直角尺和两小球组成的系统为对象,由于转动过程不受摩擦和介质阻力,所以该系统的机械能守恒。
⑴过程中A 的重力势能减少, A 、B 的动能和B 的重力势能增加,A 的即时速度总是B 的2倍。
222321221322⎪⎭⎫ ⎝⎛⋅+⋅⋅+⋅=⋅v m v m L mg L mg ,解得118gL v = ⑵B 球不可能到达O 的正上方,它到达最大高度时速度一定为零,设该位置比OA 竖直位置向左偏了α角。
2mg ∙2L cos α=3mg ∙L (1+sin α),此式可化简为4cos α-3sin α=3,解得sin (53°-α)=sin37°,α=16°⑶B 球速度最大时就是系统动能最大时,而系统动能增大等于系统重力做的功W G 。
设OA 从开始转过θ角时B 球速度最大,()223212221v m v m ⋅⋅+⋅⋅=2mg ∙2L sin θ-3mg ∙L (1-cos θ) =mgL (4sin θ+3cos θ-3)≤2mg ∙L ,解得114gL v m =例2、如图所示,半径为R 的光滑半圆上有两个小球B A 、,质量分别为M m 和,由细线挂着,今由静止开始无初速度自由释放,求小球A 升至最高点C 时B A 、两球的速度?解析:A 球沿半圆弧运动,绳长不变,B A 、两球通过的路程相等,A 上升的高度为R h =;B 球下降的高度为242R R H ππ==;对于系统,由机械能守恒定律得:K P E E ∆=∆- ;2)(212v m M mgR R Mg E P +=+-=∆∴π m M mgR RMg v c +-=∴2π例3、如图所示,均匀铁链长为L ,平放在距离地面高为L 2的光滑水平面上,其长度的51悬垂于桌面下,从静止开始释放铁链,求铁链下端刚要着地时的速度? 解:选取地面为零势能面:2212)102(51254mv L mg L L mg L mg +=-+ 得:gL v 7451=v 1⑴ ⑵⑶例4、如图所示,粗细均匀的U 形管内装有总长为4L 的水。
《机械能守恒定律》题型探究及方法总结
![《机械能守恒定律》题型探究及方法总结](https://img.taocdn.com/s3/m/9df4ab070740be1e650e9afe.png)
《机械能守恒定律》题型探究及方法总结湖北省襄樊市第四中学 任建新 441021题型一 机械能守恒的判断例1 下面列举的各个实例中,那些情况下机械能是守恒的?( )①一小球在粘滞性较大的液体中匀速下落;②用细线拴着一个小球在竖直平面内做圆周运动;③用细线拴着一个小球在光滑水平面内做匀速圆周运动;④拉着一个物体沿光滑的斜面匀速上升;⑤一物体沿光滑的固定斜面向下加速运动A .②③⑤B .①②④C .①③④D .②③④解析 ①④中的物体匀速运动,必然是有外力与重力或重力的分力相平衡,且在该力方向上发生了位移,故机械能不守恒;②③⑤中的物体在运动过程中只有重力做功,满足机械能守恒.答案 A .解后思悟对机械能守恒的条件应从以下几个方面来理解:(1)只是系统内动能和势能的相互转化,没有其它形式能(如热能)转化;(2)只有重力做功的具体表现:①只受重力(或弹簧弹力),例如所有做抛体运动的物体;②受其它力,但其它力不做功,例如光滑斜面上下滑动的物体,竖直平面内圆周运动等;③其它力做功,但做功的代数和为零,物体初、末状态机械能不变.题型二 两个及以上物体组成的系统机械能守恒问题例2如图1所示,质量均为m 的小球A 、B 、C ,用两条长为l 的细绳相连,置于高为h 的光滑水平桌面上,l >h ,A 球刚跨过桌边,若A 球、B 球相继下落着地后均不再反弹,则C 球离开桌边时的速度大小是_____. 解析 在A 、B 、C 三球动过程中,除A 、B 两球与地面碰撞有机械能损失外,过程的其余时间里,因没有摩擦力和其他外力做功,机械能守恒.即A 球从桌边下落到着地之前,A 的重力势能的减少等于A 、B 、C 三球动能的增加.A 落地后,B 从桌边下落期间,B 的重力势能的减少又等于B 、C 两球动能的增加.由此即可求出C 球的速度.设A 球落地时速率为v 1,从A 球开始运动到落地的过程中,A 、B 、C 三球组成的系统机械能守恒,所以mgh =21 (3m )v 12得:v 1= gh 32 从A 球落地到B 球落地的过程中,B 、C 两球组成的系统机械能守恒.所以mgh + 21(2m )v 12=21 (2m )v 22得:v 2= gh 35,即为C 球离开桌边时速度的大小. 解后思悟如何选择研究对象,是解题最基础的一步,也是最关键的一步.对多个物体组成的系统,研究对象的选取要慎重,要灵活.根据实际需要,有时选用整个系统为研究对象,有时选用系统中的某一部分为研究对象.在具体应用过程中,守恒定律的表述如下:(1)用系统状态量的增量表述:ΔE =0,即研究过程中系统的机械能增量为零;(2)用系统动能增量和势能增量间的关系表述:ΔE K =图1-ΔE P ,即系统动能的增加等于它势能的减少;(3)ΔE A =-ΔE B ,即系统中相互作用的A 物体机械能的增加,等于B 物体机械能的减少.解答此题的容易犯的错误是没有注意到A 、B 两球与地面碰撞过程有机械能损失,却以为整个过程中机械能都是守恒的.【备用例题】如图1所示,固定在竖直面内的半径为R 的1/4光滑圆弧轨道AB 底端的切线水平,并和水平光滑轨道BC 连接.一根轻杆两端和中点分别固定有相同的小铁球(铁球可看作质点),静止时两端的小铁球恰好位于A 、B 两点.释放后杆和小球最终都滑到水平面上,这时它们的速度大小为多少?解析 A 、B 、C 三个小球组成的系统机械能守恒,由机械能守恒定律,23212v m mgR R mg ⋅⨯=+⋅,解得v =gR .解后思悟如何选择研究对象,是解题最基础的一步,也是最关键的一步.对多个物体组成的系统,研究对象的选取要慎重,要灵活.根据实际需要,有时选用整个系统为研究对象,有时选用系统中的某一部分为研究对象.在具体应用过程中,守恒定律的表述如下:(1)用系统状态量的增量表述:ΔE =0,即研究过程中系统的机械能增量为零;(2)用系统动能增量和势能增量间的关系表述:ΔE K =-ΔE P ,即系统动能的增加等于它势能的减少;(3)ΔE A =-ΔE B ,即系统中相互作用的A 物体机械能的增加,等于B 物体机械能的减少.题型三 机械能守恒与速度的分解相结合问题例3一半径为R 的半圆形竖直圆柱面,用轻质不可伸长的细绳连接的A 、B 两球,悬挂在圆柱面边缘两侧,A 球质量为B 球质量的2倍,现将A 球从圆柱边缘处由静止释放,如图2所示,已知A 始终不离开球面,且细绳足够长,若不计一切摩擦.(1)求A 球沿圆柱面滑至最低点时速度的大小. (2)求A 球沿圆柱面运动的最大位移.解析 (1)设A 球沿圆柱面滑至最低点时速度的大小为v A ,将此速度分别沿着细绳和垂至于细绳方向分解,如图3所示.则沿着细绳方向的分速度大小等于B 球此时上升的速度.对A 、B 系统,由机械能守恒定律可得:222122122B mv mv mgR mgR +=- 又因为v A =2v B 解得gR v 5222-= 图3图2C 图10 图1(2)当A 球的速度为0时,A 球沿圆柱面运动的位移最大,设为s ,则据机械能守恒定律可得:042222=--⋅mgs s R Rs mg 解得R s 3=解后思悟处理此类问题尤其关键的是正确进行速度分解,从而确定相牵连的物体之间的速度关系,其次,无论速度如何分解,物体的动能是与物体此时的合速度相对应,将分速度代入21mv 2是最容易犯的错误.。
机械能守恒定律知识点和典型例题
![机械能守恒定律知识点和典型例题](https://img.taocdn.com/s3/m/1e3210f8e109581b6bd97f19227916888486b9d9.png)
机械能守恒定律知识点和典型例题机械能守恒定律复习【知识要点】⼀功1、做功的两个必要因素⼀个⼒作⽤在物体上,物体在⼒的⽅向上发⽣了位移,就说此⼒对物体做了功.功是⼒在其作⽤空间上的累积,过程量,是能量转化的标志和量度.做功的两个必要因素:⼒和在⼒的⽅向上发⽣的位移.2公式W=Fscosα(恒⼒求功)即式中的F必须为恒⼒,s是对地的位移,α指的是⼒与位移间的夹⾓.功的国际单位:焦⽿,符号J.3、正功和负功功是标量,但也有正,负之分.功的正负仅表⽰⼒在物体运动过程中,是起动⼒还是阻⼒的作⽤.从表达式看,功的正,负取决于⼒F与位移s的夹⾓α.当0≤α<90°时,W为正,表⽰⼒F对物体做正功,这时的⼒是动⼒.当a=90°时,W=0,表⽰⼒对物体不做功,这时的⼒既不是动⼒,也不是阻⼒.当90°<α≤180°时,W为负,表⽰⼒F对物体做负功,这时的⼒是阻⼒.4、总功的计算总功的计算有两种⽅法:(1)若合⼒是恒⼒,先求合⼒F的⼤⼩和⽅向,再求合⼒F所做的功,即为总功.W=Fscosα(合⼒为恒⼒)(2)先求作⽤在物体上的各个⼒所做的功,再求其代数和.(不要⽤平⾏四边形定则,要带⼊正负)W=W1+ W2+ W3+ W4+……(⼀般情况下采⽤第⼆种⽅法计算总功)5、变⼒做功(1)对于随位移均匀变化的⼒F,可先求平均⼒F,再利⽤W=F平均s cosα求功;或利⽤F-S图像与(必是⼀条倾斜的直线)坐标轴围成的图形⾯积表⽰功例:物体A所受的⼒F随位移S发⽣如图8所⽰的变化,求在这⼀过程中,⼒F对物体做的功是多少?物体A所受的⼒F随位移S发⽣如图8所⽰的变化,求在这⼀过程中,⼒F对物体做的功是多少?(2)若⼒是⾮均匀变化的,则⼀般⽤动能定理间接地求功.⼆功率功与完成这些功所⽤时间的⽐值叫做功率,它是描述⼒做功快慢的物理量.在国际单位制中,功率的单位是w(⽡特).1、平均功率:P平均=W/t ,由W=FScosα可知,平均功率也可表⽰为P平均=Fv平均cosα,其中v平均为时间t内的平均速度,α则为⼒与平均速度之间的夹⾓。
机械能守恒问题的解题技巧
![机械能守恒问题的解题技巧](https://img.taocdn.com/s3/m/f2700a9327fff705cc1755270722192e453658c5.png)
机械能守恒问题的解题技巧机械能守恒是物理学中的一个重要原理,用于解决与能量转化和守恒相关的问题。
本文将介绍机械能守恒问题的解题技巧,帮助读者更好地掌握它。
一、了解机械能守恒原理机械能守恒原理指出,在无外力做功的封闭系统中,刚体所具有的动能和势能之和保持不变。
这意味着系统内能量的转化只会导致动能和势能的相互转换,而总能量是守恒的。
二、确定系统边界在解决机械能守恒问题之前,我们首先要明确定义我们所关注的系统。
该系统可能是一个简单的物体,也可能是多个物体的集合。
确切地界定系统边界是解题的基础。
三、计算初始机械能与最终机械能在问题给出的初始条件下,计算系统的初始机械能。
机械能由动能和势能两部分组成,动能可通过物体的质量和速度来计算,势能可通过物体的高度和重力加速度来计算。
同样地,根据问题给出的最终条件,计算系统的最终机械能。
通过比较初始和最终机械能的差异,我们可以得出能量转化的结论。
四、考虑能量转化方式在机械能守恒问题中,能量可以通过多种方式进行转化,例如势能转化为动能,动能转化为势能,或者机械能转化为其他形式的能量损失。
根据问题的描述和给定条件,确定能量的转化方式,并正确计算每种转化的量。
这样一来,我们就能更好地理解能量在系统内的转换过程。
五、利用机械能守恒方程求解问题在确定了系统的边界、计算了初始和最终机械能,并考虑了能量转化方式之后,我们可以利用机械能守恒的方程来解决问题。
根据机械能守恒原理,系统的初始机械能等于最终机械能,即初始机械能 = 最终机械能通过代入相应的数值和符号,我们可以求解出未知量,解决问题。
六、注意能量损失在实际情况下,机械能守恒往往不完全成立。
系统可能会存在能量损失,例如由于摩擦力的作用导致能量转化为热能。
在解题过程中,我们应该注意这些能量损失,并根据问题描述进行相应的修正。
这样可以使解题结果更为准确和合理。
七、多练习,熟能生巧机械能守恒问题涉及到多个概念和计算步骤,因此多做练习是掌握解题技巧的重要方法。
机械能守恒定律典型例题
![机械能守恒定律典型例题](https://img.taocdn.com/s3/m/fce3a7321fb91a37f111f18583d049649b660eae.png)
机械能守恒定律典型例题一、单物体在重力作用下的机械能守恒1. 例题- 质量为m = 1kg的物体从离地面h = 5m高处以初速度v_0= 10m/s水平抛出,不计空气阻力,求物体落地时的速度大小。
2. 解析- (1)首先分析物体的运动过程,物体在平抛运动过程中,只有重力做功。
- (2)取地面为零势能面,根据机械能守恒定律E_1=E_2。
- (3)物体抛出时的机械能E_1包括动能E_k1和重力势能E_p1。
- 动能E_k1=(1)/(2)mv_0^2=(1)/(2)×1×10^2 = 50J。
- 重力势能E_p1=mgh = 1×10×5=50J。
- 所以E_1=E_k1 + E_p1=50 + 50 = 100J。
- (4)物体落地时的机械能E_2只有动能E_k2(因为重力势能E_p2 = 0)。
- (5)由E_1=E_2,即100=(1)/(2)mv^2,解得v=√(frac{2×100){1}} =10√(2)m/s。
二、系统内物体间机械能守恒(轻绳连接)1. 例题- 如图所示,一轻绳跨过定滑轮,两端分别系着质量为m_1和m_2的物体(m_1,m_2开始时静止在地面上,当m_1由静止释放下落h高度时(m_1未落地),求此时m_2的速度大小。
(不计滑轮质量和摩擦)2. 解析- (1)对于m_1和m_2组成的系统,只有重力做功,系统机械能守恒。
- (2)设m_1下落h高度时,m_1和m_2的速度大小均为v。
- (3)以地面为零势能面,系统初始机械能E_1为m_1的重力势能m_1gh。
- (4)系统末态机械能E_2为m_1的动能(1)/(2)m_1v^2、m_1的重力势能m_1g(h - h)(此时m_1相对于初始位置下降了h),以及m_2的动能(1)/(2)m_2v^2和m_2的重力势能m_2gh。
- (5)根据机械能守恒定律E_1=E_2,即m_1gh=(1)/(2)m_1v^2+(1)/(2)m_2v^2+m_2gh。
高中物理能量守恒问题解题方法分享
![高中物理能量守恒问题解题方法分享](https://img.taocdn.com/s3/m/62b07ac6c9d376eeaeaad1f34693daef5ef71391.png)
高中物理能量守恒问题解题方法分享在高中物理学习中,能量守恒是一个非常重要的概念。
学生在解题过程中,往往会遇到各种各样与能量守恒相关的问题。
本文将分享一些解决这类问题的方法和技巧,并通过具体题目的分析和说明,帮助高中学生更好地理解和应用能量守恒原理。
一、机械能守恒问题机械能守恒是能量守恒的一种特殊形式,适用于没有非弹性损失的力学系统。
在解决机械能守恒问题时,首先需要确定系统的初态和末态,并找出两者之间的能量转化方式。
例如,有一个质量为m的物体从高度h处自由落下,落地后弹起到高度h/2,求物体在落地前的速度。
解题思路:1. 确定初态和末态:初态为物体在高度h处,末态为物体在高度h/2处。
2. 分析能量转化:在初态时,物体具有重力势能和动能;在末态时,物体具有弹性势能和动能。
3. 利用能量守恒原理:物体在自由落下过程中,重力势能转化为动能;物体在弹起过程中,动能转化为弹性势能。
4. 列出能量守恒方程:mg*h = (1/2)*mv^2 + (1/2)*k*(h/2)^2,其中k为弹簧的劲度系数。
5. 解方程求解:根据已知条件,解方程得到物体在落地前的速度v。
通过以上步骤,我们可以得到物体在落地前的速度,从而解决了该问题。
这个例子展示了机械能守恒问题的解题思路,即确定初态和末态,分析能量转化,利用能量守恒原理,列出能量守恒方程,最后解方程求解。
二、能量守恒问题的一般解题思路除了机械能守恒问题,还有其他类型的能量守恒问题,如热能守恒、电能守恒等。
解决这些问题时,我们可以采用以下一般的解题思路:1. 确定系统和能量转化方式:首先确定问题中涉及的物体或系统,以及能量的转化方式。
例如,在热能守恒问题中,需要确定热能的传递方式,如传导、辐射或对流。
2. 列出能量守恒方程:根据问题中的已知条件和能量守恒原理,列出能量守恒方程。
方程中包括能量的初始状态和最终状态。
3. 解方程求解:根据已知条件,解方程求解未知量。
可以利用代数方法或图像法解方程,得到问题中所需的答案。
高考物理一轮复习第六单元机械能第3讲机械能守恒定律及其应用练习(含解析)新人教版
![高考物理一轮复习第六单元机械能第3讲机械能守恒定律及其应用练习(含解析)新人教版](https://img.taocdn.com/s3/m/0e7203cd9b89680202d82510.png)
第3讲机械能守恒定律及其应用1 重力做功与重力势能(1)重力做功的特点:重力做功与路径无关,只与初、末位置的高度差有关。
(2)重力做功与重力势能变化的关系①定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加。
②定量关系:物体从位置A到位置B的过程中,重力对物体做的功等于物体重力势能的减少量,即W G=-ΔE p。
③重力势能的变化量是绝对的,与参考面的选取无关。
湖南长沙雅礼中学月考)(多选)质量为m的物体,从静止开始以2g的加速度竖直向下运动h高度,下列说法正确的是()。
A.物体的重力势能减少2mghB.物体的机械能保持不变C.物体的动能增加2mghD.物体的机械能增加mgh【答案】CD2 弹性势能(1)定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能。
(2)大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大。
(3)弹力做功与弹性势能变化的关系:类似于重力做功与重力势能变化的关系,用公式可表示为W=-ΔE p。
【温馨提示】弹性势能是由物体的相对位置决定的。
同一根弹簧的伸长量和压缩量相同时,弹簧的弹性势能相同。
(2018江苏南京10月模拟)如图所示,在光滑水平面上有一物体,它的左端固定连接一弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去F后,物体将向右运动,在物体向右运动的过程中,下列说法正确的是()。
A.弹簧的弹性势能逐渐减少B.弹簧的弹性势能逐渐增加C.弹簧的弹性势能先增加再减少D.弹簧的弹性势能先减少再增加【答案】D3 机械能守恒定律(1)内容:在只有重力或弹力做功的系统内,动能与势能可以互相转化,而总的机械能保持不变。
(2)机械能守恒定律的三种表达形式及应用①守恒观点:a.表达式,E k1+E p1=E k2+E p2或E1=E2。
b.意义,系统初状态的机械能等于末状态的机械能。
高中物理机械能守恒和动量守恒问题解析
![高中物理机械能守恒和动量守恒问题解析](https://img.taocdn.com/s3/m/c19f46e3d05abe23482fb4daa58da0116c171f0b.png)
高中物理机械能守恒和动量守恒问题解析在高中物理学习中,机械能守恒和动量守恒是两个重要的概念。
理解这两个概念对于解题非常关键。
本文将通过具体题目的举例,分析和说明机械能守恒和动量守恒的考点,并提供解题技巧,帮助高中学生和家长更好地理解和应用这些知识。
一、机械能守恒问题解析机械能守恒是指在没有外力做功的情况下,系统的机械能保持不变。
在解决机械能守恒问题时,我们需要考虑势能和动能的转化。
例如,一道常见的题目是:一个质量为m的物体从高度为h处自由落下,落地后弹起到高度为h/2。
求物体弹起的最高点离地面的高度。
解题思路:首先,我们可以根据机械能守恒定律,将物体在自由落下和弹起过程中的机械能相加,即势能和动能之和保持不变。
在自由落下过程中,物体的势能转化为动能;在弹起过程中,动能转化为势能。
因此,我们可以列出等式:mgh = mgh/2通过简化计算,得出最高点离地面的高度为h/4。
这道题目的考点是机械能守恒的应用。
学生需要理解机械能的定义和转化过程,并能正确列出等式进行计算。
在解题过程中,化简计算是关键步骤,学生需要注意运算的准确性和合理性。
二、动量守恒问题解析动量守恒是指在没有外力作用的情况下,系统的总动量保持不变。
在解决动量守恒问题时,我们需要考虑物体的质量和速度变化。
例如,一道常见的题目是:一个质量为m1的物体以速度v1向右运动,与一个质量为m2的物体以速度v2向左运动碰撞,碰撞后两个物体分别以v3和v4的速度运动。
求碰撞后两个物体的速度。
解题思路:根据动量守恒定律,我们可以列出等式:m1v1 + m2v2 = m1v3 + m2v4通过化简计算,可以得出碰撞后两个物体的速度。
这道题目的考点是动量守恒的应用。
学生需要理解动量的定义和守恒定律,能够正确列出等式进行计算。
在解题过程中,化简计算是关键步骤,学生需要注意运算的准确性和合理性。
三、解题技巧和应用在解决机械能守恒和动量守恒问题时,有一些常用的解题技巧和应用方法可以帮助学生更好地理解和应用这些知识。
机械能守恒典型例题带详解【范本模板】
![机械能守恒典型例题带详解【范本模板】](https://img.taocdn.com/s3/m/ea17283576a20029bc642d78.png)
第七章 机械能同步练习(一)例1 以20m/s 的速度将一物体竖直上抛,若忽略空气阻力,g 取10m/s 2,试求: (1) 物体上升的最大高度;(2) 以水平地面为参考平面,物体在上升过程中重力势能和动能相等的位置。
解析 (1) 设物体上升的最大高度为H ,在物体整个上升过程中应用机械能守恒定律,有2021mv mgH =, 解得102202220⨯==g v H m=20m 。
(2) 设物体重力势能和动能相等的位置距地面的高度为h ,此时物体的速度为v ,则有221mv mgh =。
在物体被抛出到运动至该位置的过程中应用机械能守恒定律,有2022121mv mv mgh =+。
由以上两式解得104204220⨯==g v h m=10m. 点拨 应用机械能守恒定律时,正确选取研究对象和研究过程,明确初、末状态的动能和势能,是解决问题的关键。
本题第(2)问也可在物体从重力势能与动能相等的位置运动至最高点的过程中应用机械能守恒定律,由221mv mgh =,mgH mv mgh =+221, 解得 2202==H h m=10m 。
例2 如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时下端A 、B 相平齐,当略有扰动时其一端下落,则当铁链刚脱离滑轮的瞬间,铁链的速度为多大?解析 这里提供两种解法。
解法一(利用E 2=E 1求解):设铁链单位长度的质量为ρ,且选取初始位置铁链的下端A 、B 所在的水平面为参考平面,则铁链初态的机械能为 21414gL L Lg E ρρ=⋅=, 末态的机械能为 2222121Lv mv E ρ==.根据机械能守恒定律有 E 2=E 1, 即224121gL Lv ρρ=,解得铁链刚脱离滑轮时的速度 2gLv =。
解法二(利用△E k =-△E p 求解):如图所示,铁链刚离开滑轮时,相当于原来的BB ’部分移到了AA ’的位置。
重力势能的减少量241221gL L Lg E p ρρ=⋅=∆-, 动能的增加量 221Lv E k ρ=∆。
机械能守恒定律的应用和解题技巧{有详细答案}
![机械能守恒定律的应用和解题技巧{有详细答案}](https://img.taocdn.com/s3/m/9f7242bc81c758f5f61f67f8.png)
机械能守恒定律的应用和解题技巧{有详细答案}能量转化和守恒定律是自然界四大基本规律之一,机械能守恒定律又是能量守恒定律在机械运动中的具体表现形式,由于机械能守恒定律不涉及运动过程中的加速度和时间,用它来处理动力学问题要远比牛顿运动定律方便。
机械能守恒定律适用的对象可以是单个物体(弹簧)和地球组成的系统,也可以是多个物体(弹簧)和地球组成的系统。
不过,对象不同,在守恒的判断上、运用的方式上略有差异。
机械能包括动能、重力势能和弹性势能三种,由于重力势能属于物体和地球组成的系统,因此,只要涉及重力势能,地球就必定是研究对象的一部分,也正因为如此,在交代研究对象时地球可以不特别指明。
一、单个物体(弹簧)和地球组成的系统机械能守恒条件:(1)只受重力或系统内弹簧弹力;(注意:从研究对象的组成可知,重力也属内力)(2)受其它外力,但其它外力不做功;(3)其它外力做功,但其它外力做功的代数和始终为0。
满足上述三个条件中任何一个,该系统的机械能都守恒。
其中第三个条件需要进行一点补充说明,以沿水平公路匀速直线运动的汽车为例,运行过程中,发动机内部燃烧汽油,一部分化学能转化为机械能,同时,汽车克服阻力做功,一部分机械能又转化为内能,两个转化过程中机械能变化的数值相等,因此汽车机械能的总量保持不变。
正因如此,严格地讲,第三个条件不属于机械能守恒的条件之列,只是研究过程中机械能的数值始终保持不变而已。
例:如图所示,小球从某一高处自由下落到竖直放置的轻弹簧上,在将弹簧压缩到最短的过程中,下列关于机械能的叙述中正确的是()(A)重力势能和动能之和总保持不变(B)重力势能和弹性势能之和总保持不变(C)动能和弹性势能之和总保持不变(D)重力势能、弹性势能和动能之和总保持不变分析:这是一个经典问题,难点在于研究对象的选择。
若以小球、地球组成的系统为对象,弹簧弹力属于外力,系统机械能不守恒;若以小球、弹簧、地球组成的系统为对象,弹簧弹力属于内力,系统机械能守恒。
机械能守恒定律题型
![机械能守恒定律题型](https://img.taocdn.com/s3/m/496fee4aa36925c52cc58bd63186bceb18e8ed56.png)
机械能守恒定律题型一、题型概述机械能守恒定律是物理学中的重要定律之一,也是高中物理考试中常见的题型之一。
该题型主要考察学生对机械能守恒定律的理解和应用能力。
二、机械能守恒定律的基本概念机械能守恒定律是指在一个封闭系统内,当只有重力做功和弹力做功时,系统的机械能守恒不变。
其中,机械能包括动能和势能两部分。
三、题目类型及解题思路1. 物体从高处自由落下,在某一高度上撞击地面后反弹,求反弹高度。
解题思路:根据机械能守恒定律,物体在自由落下过程中失去的势能全部转化为动能,并且在撞击地面后全部转化为势能。
因此可以列出以下方程:mgh = 1/2mv^21/2mv^2 = mgh'h' = (v^2)/(2g)其中,m为物体质量,g为重力加速度,h为初始高度,v为物体落地时的速度,h'为反弹高度。
2. 物体沿斜面从高处滑下,在底部撞击地面后弹起,求弹起的最高点。
解题思路:根据机械能守恒定律,物体在滑下过程中失去的势能全部转化为动能,并且在撞击地面后全部转化为势能。
因此可以列出以下方程:mgh = 1/2mv^21/2mv^2 = mgh'h' = h + (v^2)/(2g)其中,m为物体质量,g为重力加速度,h为初始高度,v为物体滑到底部时的速度,h'为弹起的最高点。
3. 物体沿水平面从A点以初速度v0匀速运动到B点,在B点突然受到一个水平方向上的恒定力F作用,求物体运动到C点时的速度。
解题思路:由于恒定力F只做功用于物体的动能,并且系统没有发生机械能的损失或增加,因此可以列出以下方程:1/2mv0^2 + 0 = 1/2mvc^2 + Fd其中,m为物体质量,v0为初始速度,vC为物体运动到C点时的速度,d为BC之间的距离。
四、注意事项1. 在解题过程中要注意单位换算,保证方程中的所有物理量都使用相同的单位。
2. 在列方程时要注意选择参照系,通常选择重心系或质心系为参照系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。
(2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。
所涉及到的题型有四类:(1)阻力不计的抛体类。
(2)固定的光滑斜面类。
(3)固定的光滑圆弧类。
(4)悬点固定的摆动类。
(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。
那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。
例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时的速度大小?分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等2202121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。
例,以初速度v 0 冲上倾角为θ光滑斜面,求物体在斜面上运动的距离是多少?分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等θsin 2120⋅==mgs mgh mv 得:θsin 220g v s = (3)固定的光滑圆弧类在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。
例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低点至少具有多大的速度才能作一个完整的圆周运动?分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等22021221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度为:Rg v t = 所以 gR v 50=(4)悬点固定的摆动类和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。
由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。
因此只有重力做功,物体的机械能守恒。
例:如图,小球的质量为m ,悬线的长为L ,把小球拉开使悬线和竖直方向的夹角为θ,然后从静止释放,求小球运动到最低点小球对悬线的拉力分析:物体在运动过程中受到重力和悬线拉力的作用,悬线的拉力对物体不做功,所以只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体开始运动时和到达最低点时的机械能相等221)cos 1(t mv mgL =-θ 得:)cos 1(22θ-=gL v t 由向心力的公式知: Lmv mg T t 2=-可知θcos 23mg mg T -= 作题方法:一般选取物体运动的最低点作为重力势能的零势参考点,把物体运动开始时的机械能和物体运动结束时的机械能分别写出来,并使之相等。
注意点:在固定的光滑圆弧类和悬点定的摆动类两种题目中,常和向心力的公式结合使用。
这在计算中是要特别注意的。
习题:1、三个质量相同的小球悬挂在三根长度不等的细线上,分别把悬线拉至水平位置后轻轻释放小球,已知线长L a >L b >L c ,则悬线摆至竖直位置时,细线中张力大小的关系是( )A T c >T b >T aB T a >T b >T cC T b >T c >T aD T a =T b =T c2、一根长为l 的轻质杆,下端固定一质量为m 的小球,欲使它以上端o 为转轴刚好能在竖直平面内作圆周运动(如图),球在最低点A 的速度至少多大?如将杆换成长为L 的细线,则又如何?3、如图,一质量为m 的木块以初速V 0从A 点滑上半径为R的光滑圆弧轨道,它通过最高点B 时对轨道的压力FN 为多少?4、一质量m = 2千克的小球从光滑斜面上高h = 3.5米高处由静止滑下斜面底端紧接着一个半径R = 1米的光滑圆环(如图)求:(1)小球滑至圆环顶点时对环的压力;(2)小球至少要从多高处静止滑下才能越过圆环最高点;(3)小球从h0= 2米处静止滑下时将在何处脱离圆环(g =9.8米/秒2)。
二、系统的机械能守恒由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面(1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。
不做功,系统的机械能就不变。
(2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。
系统内物体的重力所做的功不会改变系统的机械能系统间的相互作用力分为三类:1)刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等2)弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。
3)其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。
在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。
虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。
但在第三种情况下,由于其它形式的能参与了机械能的转换,系统的机械能就不再守恒了。
归纳起来,系统的机械能守恒问题有以下四个题型:(1)轻绳连体类(2)轻杆连体类(3)在水平面上可以自由移动的光滑圆弧类。
(4)悬点在水平面上可以自由移动的摆动类。
(1)轻绳连体类这一类题目,系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。
例:如图,倾角为 的光滑斜面上有一质量为M 的物体,通过一根跨过定滑轮的细绳与质量为m 的物体相连,开始时两物体均处于静止状态,且m 离地面的高度为h ,求它们开始运动后m 着地时的速度?分析:对M 、m 和细绳所构成的系统,受到外界四个力的作用。
它们分别是:M 所受的重力Mg ,m 所受的重力mg ,斜面对M 的支持力N ,滑轮对细绳的作用力F 。
M 、m 的重力做功不会改变系统的机械能,支持力N 垂直于M 的运动方向对系统不做功,滑轮对细绳的作用力由于作用点没有位移也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是细绳的拉力,拉力做功只能使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。
在能量转化中,m 的重力势能减小,动能增加,M 的重力势能和动能都增加,用机械能的减少量等于增加量是解决为一类题的关键222121sin mv Mv Mgh mgh ++=θ 可得- 需要提醒的是,这一类的题目往往需要利用绳连物体的速度关系来确定两个物体的速度关系例:如图,光滑斜面的倾角为θ,竖直的光滑细杆到定滑轮的距离为a ,斜面上的物体M 和穿过细杆的m 通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m 的轻绳处于水平状态,放手后两物体从静止开始运动,求m 下降b 时两物体的速度大小? (2)轻杆连体类这一类题目,系统除重力以外的其它力对系统不做功,物体的重力做功不会改变系统的机械能,系统内部的相互作用力是轻杆的弹力,而弹力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。
例:如图,质量均为m 的两个小球固定在轻杆的端,轻杆可绕水平转轴在竖直平面内自由转动,两小球到轴的距离分别为L 、2L ,开始杆处于水平静止状态,放手后两球开始运动,求杆转动到竖直状态时,两球的速度大小分析:由轻杆和两个小球所构成的系统受到外界三个力的作用,即A 球受到的重力、B 球受到的重力、轴对杆的作用力。
两球受到的重力做功不会改变系统的机械能,轴对杆的作用力由于作用点没有位移而对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是轻杆的弹力,弹力对A 球做负功,对B 球做正功,但这种做功只是使机械能在系统内部进行等量的转换也不会改变系统的机械能,故满足系统机械能守恒的外部条件。
在整个机械能当中,只有A 的重力势能减小,A 球的动能以及B 球的动能和重力势能都增加,我们让减少的机械能等于增加的机械能。
有:2221212B A mv mv mgL L mg ++= 根据同轴转动,角速度相等可知B A v v 2=所以:⎩⎨⎧==gL v gL v B A 52522 需要强调的是,这一类的题目要根据同轴转动,角速度相等来确定两球之间的速度关系 (3)在水平面上可以自由移动的光滑圆弧类。
光滑的圆弧放在光滑的水平面上,不受任何水平外力的作用,物体在光滑的圆弧上滑动,这一类的题目,也符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明例:四分之一圆弧轨道的半径为R ,质量为M ,放在光滑的水平地面上,一质量为m 的球(不计体积)从光滑圆弧轨道的顶端从静止滑下,求小球滑离轨道时两者的速度?分析:由圆弧和小球构成的系统受到三个力作用,分别是M 、m 受到的重力和地面的支持力。
m 的重力做正功,但不改变系统的机械能,支持力的作用点在竖直方向上没有位移,也对系统不做功,所以满足系统机械能守恒的外部条件,系统内部的相互作用力是圆弧和球之间的弹力,弹力对m 做负功,对M 做正功,但这种做功只是使机械能在系统内部进行等量的转换,不会改变系统的机械能,故满足系统机械能守恒的外部条件。
在整个机械能当中,只有m 的重力势能减小,m 的动能以及M 球的动能都增加,我们让减少的机械能等于增加的机械能。
有:222121m M mv Mv mgR += 根据动量守恒定律知 M m Mv mv -=0所以:⎩⎨⎧+=+=)(2)(2m M M gR M v m M M gR m v M m(4)悬点在水平面上可以自由移动的摆动类。
悬挂小球的细绳系在一个不受任何水平外力的物体上,当小球摆动时,物体能在水平面内自由移动,这一类的题目和在水平面内自由移动的光滑圆弧类形异而质同,同样符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明例:质量为M 的小车放在光滑的天轨上,长为L 的轻绳一端系在小车上另一端拴一质量为m 的金属球,将小球拉开至轻绳处于水平状态由静止释放。