2019年三角函数和解三角形大题
三角函数及解三角形测试题(含答案)
![三角函数及解三角形测试题(含答案)](https://img.taocdn.com/s3/m/20773978ff4733687e21af45b307e87101f6f8f1.png)
三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。
根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。
根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。
根据正切的定义,$\tan A=\frac{a}{b}$。
根据余切的定义,$\cotA=\frac{b}{a}$。
根据正割的定义,$\sec A=\frac{c}{a}$。
根据余割的定义,$\csc A=\frac{c}{b}$。
2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。
2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。
4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。
5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。
6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。
2019年全国各地中考数学试题分类汇编(第二期) 专题28 解直角三角形(含解析)
![2019年全国各地中考数学试题分类汇编(第二期) 专题28 解直角三角形(含解析)](https://img.taocdn.com/s3/m/f9988024f242336c1fb95e0d.png)
解直角三角形一.选择题1. (2019•广东省广州市•3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.2. (2019•广西北部湾经济区•3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A. 米B. 米C. 米D. 米【答案】C【解析】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=xtan65°,∴BD=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.二.填空题1. (2019•江苏宿迁•3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是<BC <.【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,构造特殊情况下,即直角三角形时的BC的值.【解答】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=2,∠A=60°∴∠ABC1=30°∴AC1=AB=1,由勾股定理得:BC1=,在Rt△ABC2中,AB=2,∠A=60°∴∠AC2B=30°∴AC2=4,由勾股定理得:BC2=2,当△ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.【点评】本题考查解直角三角形,构造直角三角形,利用特殊直角三角形的边角关系或利用勾股定理求解.考察直角三角形中30°的角所对的直角边等于斜边的一半,勾股定理等知识点.2. (2 019·江苏盐城·3分)如图,在△ABC 中,BC =26+,∠C =45°,AB =2AC ,则AC 的长为________.【答案】2【解析】过A 作AD ⊥BC 于D 点,设AC =x 2,则AB =x 2,因为∠C =45°,所以AD =AC =x ,则由勾股定理得BD =x AD AB 322=-,因为AB =26+,所以AB =263+=+x x ,则x =2.则AC =2.3. (2 019·江苏盐城·3分)如图,在平面直角坐标系中,一次函数y =2x -1的图像分别交x 、y 轴于点A 、B ,将直线AB 绕点B 按顺时针方向旋转45°,交x 轴于点C ,则直线BC 的函数表达式是__________.【答案】131-=x y 【解析】因为一次函数y =2x -1的图像分别交x 、y 轴于点A 、B ,则A (21,0),B (0,-1),则AB =25. 过A 作AD ⊥BC 于点D ,因为∠ABC =45°,所以由勾股定理得AD =410,设BC =x ,则AC =OC -OA =2112--x ,根据等面积可得:AC ×OB =BC ×AD ,即2112--x =410x ,解得x =10.则AC =3,即C (3,0),所以直线BC 的函数表达式是131-=x y .4. (2019•浙江湖州•4分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD =α.若AO =85cm ,BO =DO =65cm .问:当α=74°时,较长支撑杆的端点A 离地面的高度h 约为 120 cm .(参考数据:sin 37°≈0.6,cos 37°≈0.8,sin 53°≈0.8,cos 53°≈0.6.)【分析】过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF ,利用等腰三角形的三线合一得到OE 为角平分线,进而求出同位角的度数,在直角三角形AFB 中,利用锐角三角函数定义求出h 即可.【解答】解:过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF , ∵BO =DO , ∴OE 平分∠BOD ,∴∠BOE =∠BOD =×74°=37°, ∴∠F AB =∠BOE =37°,在Rt △ABF 中,AB =85+65=150cm , ∴h =AF =AB •cos ∠F AB =150×0.8=120cm , 故答案为:120【点评】此题考查了解直角三角形的应用,弄清题中的数据是解本题的关键.三.解答题1. (2019•江苏宿迁•10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)【分析】(1)作EM⊥CD于点M,由EM=ECsin∠BCM=75sin46°可得答案;(2)作E′H⊥CD于点H,先根据E′C=求得E′C的长度,再根据EE′=CE﹣CE′可得答案【解答】解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=ECsin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C==≈71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).【点评】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.2. (2019•江西•8分)图1是一台实物投影仪,图2是它的示意图,折线B-A-O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到0.1)(1)如图2,∠ABC=70°,BC∥OE。
2019年高考数学大二轮复习专题三三角函数3-2三角变换与解三角形练习
![2019年高考数学大二轮复习专题三三角函数3-2三角变换与解三角形练习](https://img.taocdn.com/s3/m/6c58d853763231126edb11f4.png)
3.2三角变换与解三角形【课时作业】A 级1.(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =()A .42B .30 C.29D .25解析: ∵cos C 2=55,∴cos C =2cos 2C2-1=2×⎝ ⎛⎭⎪⎫552-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝ ⎛⎭⎪⎫-35=32,∴AB =32=4 2. 故选A. 答案: A2.(2018·山东菏泽2月联考)已知α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,则tan(π+2α)=()A.427B .±225C .±427D .225解析: ∵α∈⎝⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,∴cos α=13,sin α=-223,由同角三角函数的商数关系知tan α=sin αcos α=-2 2.∴tan(π+2α)=tan2α=2tan α1-tan2α=-421--22=427,故选A. 答案: A3.已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于() A.32B .34C.36D .38解析: 由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =π3=B ,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.答案: B 4.若α∈⎝ ⎛⎭⎪⎫π4,π,且3cos2α=4sin ⎝⎛⎭⎪⎫π4-α,则sin2α的值为()A.79B .-79 C .-19D .19解析: 3(cos 2α-sin 2α)=22(cos α-sin α),因为α∈⎝ ⎛⎭⎪⎫π4,π,所以cos α-sin α≠0,所以3(cos α+sin α)=22,即cos α+sin α=223,两边平方可得1+sin2α=89⇒sin2α=-19.答案: C5.(2018·南昌市第一次模拟测试卷)已知台风中心位于城市A 东偏北α(α为锐角)的150千米处,以v 千米/时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)的200千米处,若cos α=34cos β,则v =() A .60B .80 C .100D .125解析: 如图,台风中心为B,2.5小时后到达点C ,则在△ABC中,AB sin α=AC sin β,即sin α=43sin β,又cos α=34cos β.∴sin 2α+cos 2α=169sin 2β+916cos 2β=1=sin 2β+cos 2β,∴sin β=34cos β, ∴sin β=35,cos β=45,∴sin α=45,cos α=35,∴cos(α+β)=cos αcos β-sin αsin β=35×45-45×35=0,∴α+β=π2,∴BC 2=AB 2+AC 2,∴(2.5v )2=1502+2002,解得v =100,故选 C. 答案: C 6.化简:π-α+sin 2αcos2α2=________.解析:π-α+sin 2αcos2α2=2sin α+2sin α·cos α12+cos α=2sin α+cos α12+cos α=4sinα.答案: 4sin α7.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C =________.解析:sin 2A sin C =2sin Acos A sin C =2a c ·b2+c2-a22bc =2×46·25+36-162×5×6=1. 答案: 18.(2018·开封市高三定位考试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,b tan B +b tan A =2c tan B ,且a =5,△ABC 的面积为23,则b +c 的值为________.解析: 由正弦定理及b tan B +b tan A =2c tan B ,得sin B ·sin B cos B +sin B ·sin A cos A =2sin C ·sin Bcos B ,即cos A sin B +sin A cos B =2sin C cos A ,亦即sin(A +B )=2sin C cos A ,故sin C =2sin C cos A .因为sin C ≠0,所以cos A =12,所以A =π3.由面积公式,知S △ABC =12bc sin A =23,所以bc =8.由余弦定理,知a 2=b 2+c 2-2bc cos A =(b +c )2-3bc ,代入可得b +c =7.答案: 79.(2018·浙江卷)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎪⎫-35,-45.(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.解析: (1)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得sin α=-45.所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35,由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.10.(2018·北京卷)在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ;(2)求AC 边上的高.解析: (1)在△ABC 中,因为cos B =-17,所以sin B =1-cos2B =437. 由正弦定理得sin A =asin B b =32.由题设知π2<∠B <π,所以0<∠A <π2.所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =3314,所以AC 边上的高为a sin C =7×3314=332.B 级1.(2018·河南濮阳一模)已知△ABC 中,sin A ,sin B ,sin C 成等比数列,则sin 2Bsin B +cos B 的取值范围是() A.⎝ ⎛⎦⎥⎤-∞,22B .⎝ ⎛⎦⎥⎤0,22C .(-1,2)D .⎝⎛⎦⎥⎤0,3-32解析: 由sin A ,sin B ,sin C 成等比数列,知a ,b ,c ,成等比数列,即b 2=ac ,∴cos B =a2+c2-b22ac =a2+c2-ac 2ac =⎝ ⎛⎭⎪⎫a2c +c 2a -12≥2a 2c ·c 2a -12=12,当且仅当a =c 时等号成立,可知B ∈⎝⎛⎦⎥⎤0,π3,设y =sin 2B sin B +cos B =2sin Bcos B sin B +cos B,设sin B +cos B =t ,则2sin B cos B =t 2-1.由于t =sin B +cos B =2sin ⎝ ⎛⎭⎪⎫B +π4,B ∈⎝ ⎛⎦⎥⎤0,π3,所以t ∈(1,2],故y =sin 2B sin B +cos B =2sin Bcos B sin B +cos B =t2-1t =t -1t ,t ∈(1,2],因为y =t -1t 在t ∈(1,2]上是增函数,所以y ∈⎝⎛⎦⎥⎤0,22.故选B. 答案: B2.(2018·石家庄质量检测(一))如图,平面四边形ABCD 的对角线的交点位于四边形的内部,AB =1,BC =2,AC =CD ,AC ⊥CD ,当∠ABC 变化时,对角线BD 的最大值为________.解析: 设∠ABC =θ,θ∈(0,π),则由余弦定理得AC 2=3-22cos θ,由正弦定理得1sin∠ACB =AC sin θ,得sin ∠ACB =sin θAC .在△DCB 中,由余弦定理可得,BD 2=CD 2+2-22CD cos ⎝ ⎛⎭⎪⎫π2+∠ACB =AC 2+2+22AC sin ∠ACB =3-22cos θ+2+22AC ×sin θAC =5+22(sin θ-cos θ)=5+4sin ⎝ ⎛⎭⎪⎫θ-π4,当θ=3π4时,⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫θ-π4max =1,∴BD 2m ax =9,∴BD max =3.答案: 33.已知向量a =⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫π2+x ,sin ⎝ ⎛⎭⎪⎫π2+x ,b =(-sin x ,3sin x ),f (x )=a ·b . (1)求函数f (x )的最小正周期及f (x )的最大值;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=1,a =23,求△ABC 面积的最大值.解析: (1)易得a =(-sin x ,cos x ), 则f (x )=a ·b =sin 2x +3sin x cos x =12-12cos2x +32sin2x =sin ⎝ ⎛⎭⎪⎫2x -π6+12,所以f (x )的最小正周期T =2π2=π, 当2x -π6=π2+2k π,k ∈Z 时,即x =π3+k π(k ∈Z )时,f (x )取最大值是32.(2)因为f ⎝ ⎛⎭⎪⎫A 2=sin ⎝⎛⎭⎪⎫A -π6+12=1,所以sin ⎝ ⎛⎭⎪⎫A -π6=12⇒A =π3.因为a 2=b 2+c 2-2bc cos A , 所以12=b 2+c 2-bc , 所以b 2+c 2=bc +12≥2bc ,所以bc ≤12(当且仅当b =c 时等号成立),所以S =12bc sin A =34bc ≤3 3.所以当△ABC 为等边三角形时面积取最大值是3 3.4.如图,在一条海防警戒线上的点A 、B 、C 处各有一个水声检测点,B 、C 两点到A 的距离分别为20千米和50千米,某时刻B 收到发自静止目标P 的一个声波信号,8秒后A 、B 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B 、C 到P 的距离,并求出x 的值; (2)求P 到海防警戒线AC 的距离.解析: (1)依题意,有PA =PC =x ,PB =x -1.5×8=x -12. 在△PAB 中,AB =20,cos ∠PAB =PA2+AB2-PB22PA·AB =x2+202--2x·20=3x +325x,同理,在△PAC 中,AC =50,cos ∠PAC =PA2+AC2-PC22PA·AC =x2+502-x22x·50=25x .∵cos ∠PAB =cos ∠PAC ,∴3x +325x =25x, 解得x =31.(2)作PD ⊥AC 于点D ,在△ADP 中, 由cos ∠PAD =2531,得sin ∠PAD =1-cos2∠PAD=42131,∴PD =PA sin ∠PAD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米.。
专题15 解三角形综合-2019年高考理数母题题源系列(天津专版)(原卷版)
![专题15 解三角形综合-2019年高考理数母题题源系列(天津专版)(原卷版)](https://img.taocdn.com/s3/m/9174d74b27284b73f2425091.png)
【母题原题1】【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2) 【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =, 又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =. 由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅. (2)由(1)可得sin 4B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.【母题原题2】【2018年高考天津卷理数】在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知专题15 解三角形综合sin cos()6b A a B π=-.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2)A B -的值.【答案】(1)π3;(2)b sin(2)A B - 【解析】本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.(1)在△ABC 中,由正弦定理sin sin a bA B =,可得sin sin b A a B =, 又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =又因为(0π)B ∈,,可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b .由πsin cos()6b A a B =-,可得sin A =因为a <c ,故cosA =.因此sin 22sin cos A A A ==21cos 22cos 17A A =-=.所以,sin(2)sin 2cos cos 2sin A B A B A B -=-=11727214-⨯= 【名师点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.【母题原题3】【2017年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (1)求b 和sin A 的值;(2)求πsin(2)4A +的值.【答案】(1)b sin A 的值为13;(2)26. 【解析】(1)在ABC △中,因为a b >,故由3sin 5B =,可得4cos 5B =. 由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b =由正弦定理sin sin a b A B =,得sin sin 13a B Ab ==.所以,b sin A(2)由(1)及a c <,得cos 13A =, 所以12sin 22sin cos 13A A A ==,25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 44426A A A +=+=. 【名师点睛】(1)利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.(2)利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题.【命题意图】主要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题,常与同角三角函数的关系、诱导公式、和差角公式,甚至三角函数的图象和性质等交汇命题.主要考查考生的数学运算能力. 【命题规律】考查正弦定理、余弦定理和三角形面积公式的应用.解三角形是高考的一个必考热点,多为解答题,试题难度不大,多为中低档题.主要命题角度有:(1)以斜三角形为背景求三角形的基本量、求三角形面积或判断三角形形状,主要考查正弦定理、余弦定理以及三角函数公式的应用;(2)以实际生活为背景(如测量、航海、几何、天体运行和物理学上的应用等)考查解三角形问题,此类考题在近两年高考中虽没涉及,但此类题深受高考命题者的青睐,应给予关注;(3)解三角形与其他知识相交汇问题,常与三角恒等变换、不等式、平面向量等知识相交汇,这一直是高考考查的重点和热点.此类问题出现在解答题的第二问中,属于中档题.【知识总结】1.正弦、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC的外接圆半径,则2.三角形中的常见结论在△ABC中,常有下列结论:(1)A+B+C=π.(2)大边对大角,大角对大边,如a>b⇔A>B⇔sin A>sin B.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)有关三角形内角的三角函数关系式:sin (A+B )=sin C ;cos (A+B )=–cos C ;tan (A+B )=–tanC ;sin2A B +=cos 2C ;cos 2A B +=sin 2C. (5)在△ABC 中,内角A ,B ,C 成等差数列⇔B=π3,A+C=2π3. (6)在斜△ABC 中,tan A+tan B+tan C=tan A ·tan B ·tan C . 3.三角形的面积公式(1)已知三角形一边及该边上的高:S=12ah (h 表示边a 上的高); (2)已知三角形的两边及其夹角:S=12ab sin C=12ac sin B=12bc sin A ;(3)已知三角形的三边:(p=12(a+b+c )); (4)已知三角形的三边及内切圆半径:S=12r (a+b+c )(r 表示三角形内切圆半径).【方法总结】1.判断三角形的形状,主要有如下两种方法:(1)角化边.利用正弦、余弦定理把已知条件转化为边的关系,通过因式分解、配方等得出边的相应关系,如:①若a=b ,则三角形为等腰三角形;②若c 2=a 2+b 2,则三角形为以角C 为直角的直角三角形; ③若c 2>a 2+b 2,则三角形为以角C 为钝角的钝角三角形;④若c 2<a 2+b 2,则只能得到三角形中角C 为锐角,如果同时有a 2<c 2+b 2,b 2<a 2+c 2都成立,此三角形为锐角三角形;⑤有时可能得到两个结论a=b ,且c 2=a 2+b 2,此时三角形为等腰直角三角形.化简过程中不能随便约分,要把关系找充分,从而正确判断三角形的形状.(2)边化角.利用正弦、余弦定理把已知条件转化为内角三角函数间的关系,通过三角恒等变换,得出内角的关系,常见的关系有: ①sin 2A=sin 2B ,即A=B 或A+B=π2,三角形为等腰三角形或直角三角形; ②A+B=π2,三角形为以角C 为直角的直角三角形; ③A=B=C ,三角形为等边三角形.在这里要注意应用A+B+C=π这个结论,从而判断出三角形的形状.注意:(1)判断三角形形状要对所给的边角关系式进行转化,使之变为只含边或只含角的式子然后判断.注意不要轻易两边同除以一个式子.(2)要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.2.与三角形面积有关的问题主要有两种:一是解三角形求出有关量,利用公式求面积;二是将面积作为已知条件之一,与正弦定理和余弦定理一起求解三角形中的其他量.解题时主要应用三角形面积公式S=12ab sin C ,此公式既与边长的乘积有关,又与角的三角函数值有关,因此可以将正弦定理和余弦定理综合起来求解问题.3.解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.注意:(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解,已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A+B+C=π,0<A<π,b –c<a<b+c ,三角形中大边对大角等.1.【天津市新华中学2019届高三下学期第八次统练(一模)数学】在ABC △中,46,cos ,54AC B C π===. (1)求AB 的长;(2)求cos 26A ⎛⎫- ⎪⎝⎭π的值.2.【天津市南开区2019届高三第二学期模拟考试(二)数学】在ABC △中,,,a b c 分别是三个内角,,A B C 的对边,若3,4,2b c C B ===,且a b ¹. (1)求cos B 及a 的值; (2)求cos 23B ⎛⎫+⎪⎝⎭π的值. 3.【天津市南开区2019届高三下学期模拟考试数学】在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,B =2C ,sin C =4(1)求cos A 的值;(2)设bc =24,求边a 的长.4.【天津市河西区2019届高三一模数学】在ABC △中,,,A B C 对应的边为,,a b c .已知1cos 2a C cb +=. (1)求A ;(2)若4,6b c ==,求cos B 和()cos 2A B +的值.5.【天津市部分区2019届高三联考一模数学】在ABC △中,内角,,A B C 的对边分别为,,a b c ,已知2b A B A π===+. (1)求a 的值;(2)求cos2C 的值.6.【天津市河北区2019届高三一模数学】已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,满足a c -=,sin B C =.(1)求cos A 的值;(2)求πsin 26A ⎛⎫+ ⎪⎝⎭的值.7.【天津市红桥区2019届高三一模数学】在ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c .已知sin 3sin b A c B =,3a =,2cos 3B =. (1)求b 的值; (2)求πcos 23B ⎛⎫-⎪⎝⎭的值. 8.【2019年塘沽一中、育华中学高三毕业班第三次模拟考试数学】在ABC △中,角,,A B C 的对边分别为,,a b c ,已知5cos (cos cos )3A b C c B a +=,sin 62bc A π⎛⎫-= ⎪⎝⎭.(1)求ABC △的面积; (2)若2c =,求cos 4B π⎛⎫+⎪⎝⎭的值.9.【天津市实验中学2019届高三第六次阶段考数学】已知函数21()2cos 2f x x x =--.(1)求()f x 的最小正周期;(2)设ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,且c =()0f C =,若s i n 2s i n B A =,求a ,b 的值.10.【天津市北辰区2019届高考模拟考试数学】在ABC △中,角,,A B C 的对边分别为,,a b c ,已知45B =,b =cos C =. (1)求边a ;(2)求()sin 2A B -.11.【天津市南开中学2019届高三模拟数学】已知在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且1c =,)()cos sin sin cos 0B C B A B +-+=.(1)求角C 的大小;(2)若3a b =,求()cos 2B C -的值.12.【天津市北辰区2019届高考模拟考试数学】在ABC △中,角A B C ,,的对边分别为a b c ,,,已知145tan 2B bC =︒==,.(1)求边a ; (2)求()sin 2A B -.13.【天津市河北区2019届高三二模数学】已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,满足sin 1sin sin b Ca c A B=-++. (1)求角A 的值;(2)若3a =,b =()sin 2B A +的值.14.【天津市红桥区2019届高三二模数学】在ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知sin sin sin a b a c C A B+-=-. (1)求角B ;(2)若3b =,cos A =,求ABC △的面积. 15.【天津市和平区2019届高三下学期第一次质量调查数学】设ABC △的内角,,A B C 的对边分别为,,a b c ,且3,1,2b c A B ===. (1)求a 的值;(2)求cos(2)6A π+的值.16.【天津市和平区2018–2019学年第二学期高三年级第二次质量调查数学】已知函数2()sin cos f x x x x =-.(1)求()f x 在[]0,π上的单调递增区间;(2)在ABC △中,,,a b c 分别是角,,A B C 的对边,A 为锐角,若()sin(2)16f A A π+-=,且ABC △的面积为b c +的最小值.17.【天津市和平区2018–2019学年度第二学期高三年级第二次质量调查数学】已知三角形ABC △中,角,,A B C 的对边分别是,,a b c ,且)cos c B -=cos b C . (1)求角B 的大小及πcos(2)3B +的值;(2)若ABC △的面积为a c +的最小值.18.【天津市十二重点中学2019届高三下学期毕业班联考(二)数学】在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,且=tan 2sin a bA B. (1)求角A 的值;(2)若6a =,2b c =,求ABC △的面积.19.【天津市十二重点中学2019届高三下学期毕业班联考(二)数学】在ABC △中,角,,A B C 所对的边分别为,,a b c ,已知2sin sin cos 2,a A B b A a += (1)求ab的值;(2)若c =,求πsin(2)3C -的值.20.【天津市2019年3月九校联考高三数学】已知ABC △的内角,,A B C 的对边分别为,,,a b c 若7a =,60A ∠=︒,且sin sin B C +=(1)求bc 的值;(2)若b c <,求cos(2)B A +的值.。
高考数学大二轮复习 专题一 平面向量、三角函数与解三角形 第二讲 三角函数的图象与性质限时规范训练
![高考数学大二轮复习 专题一 平面向量、三角函数与解三角形 第二讲 三角函数的图象与性质限时规范训练](https://img.taocdn.com/s3/m/0138e4a6294ac850ad02de80d4d8d15abf230056.png)
第二讲 三角函数的图象与性质1.(2019·豫南九校联考)将函数y =sin ⎝⎛⎭⎪⎫x -π4的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移π6个单位,则所得函数图象的解析式为( )A .y =sin ⎝ ⎛⎭⎪⎫x 2-5π24B .y =sin ⎝ ⎛⎭⎪⎫x 2-π3C .y =sin ⎝ ⎛⎭⎪⎫x 2-5π12 D.y =sin ⎝⎛⎭⎪⎫2x -7π12 解析:函数y =sin ⎝ ⎛⎭⎪⎫x -π4经伸长变换得y =sin ⎝ ⎛⎭⎪⎫x 2-π4,再作平移变换得y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x -π6-π4=sin ⎝ ⎛⎭⎪⎫x 2-π3.答案:B2.(2019·某某亳州一中月考)函数y =tan ⎝ ⎛⎭⎪⎫12x -π3在一个周期内的图象是( )解析:由题意得函数的周期为T =2π,故可排除B ,D.对于C ,图象过点⎝ ⎛⎭⎪⎫π3,0,代入解析式,不成立,故选A. 答案:A3.(2019·某某某某十校期末测试)要得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x的图象( )A .向左平移π3个单位长度B .向左平移π6个单位长度C .向右平移π6个单位长度D .向右平移π3个单位长度解析:∵y =cos ⎝ ⎛⎭⎪⎫2x +π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6,∴要得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x 的图象向左平移π6个单位长度.答案:B4.(2019·东北三省三校一模)已知函数f (x )=3sin ωx +cos ωx (ω>0)的图象的相邻两条对称轴之间的距离是π2,则该函数的一个单调增区间为( )A.⎣⎢⎡⎦⎥⎤-π3,π6 B.⎣⎢⎡⎦⎥⎤-5π12,π12 C.⎣⎢⎡⎦⎥⎤π6,2π3D.⎣⎢⎡⎦⎥⎤-π3,2π3解析:由题意得2πω=2×π2,解得ω=2,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6.令-π2+2k π≤2x +π6≤π2+2k π(k ∈Z),解得-π3+k π≤x ≤π6+k π.当k =0时,有x ∈⎣⎢⎡⎦⎥⎤-π3,π6.故选A.答案:A5.(2019·高考全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( ) A .2B.32 C .1D.12解析:由题意及函数y =sin ωx 的图象与性质可知, 12T =3π4-π4,∴T =π,∴2πω=π,∴ω=2. 故选A. 答案:A6.(2019·某某某某一模)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,其中ω为常数,且ω∈(1,3).若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( ) A .1 B.π2C .2D.π解析:∵函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,∴π3ω+π3=k π,k ∈Z ,∴ω=3k -1,k ∈Z ,由ω∈(1,3),得ω=2.由题意得|x 1-x 2|的最小值为函数的半个周期,即T 2=πω=π2.答案:B7.(2019·某某平遥中学调研)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,已知点A (0,3),B ⎝ ⎛⎭⎪⎫π6,0,若将它的图象向右平移π6个单位长度,得到函数g (x )的图象,则函数g (x )图象的一条对称轴方程为( ) A .x =π12B.x =π4C .x =π3D.x =2π3解析:由题意知图象过A (0,3),B ⎝ ⎛⎭⎪⎫π6,0, 即f (0)=2sin φ=3,f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫π6·ω+φ=0,又ω>0,|φ|<π,并结合图象知φ=2π3,π6·ω+φ=π+2k π(k ∈Z),得ω=2,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +2π3, 移动后g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+2π3=2sin ⎝ ⎛⎭⎪⎫2x +π3,所以对称轴满足2x +π3=π2+k π(k ∈Z),解得x =π12+k π2(k ∈Z),所以满足条件的一条对称轴方程是x =π12,故选A.答案:A8.(2019·某某某某适应性统考)已知A ,B ,C ,D ,E 是函数y =sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<π2一个周期内的图象上的五个点,如图所示,A ⎝ ⎛⎭⎪⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B.ω=2,φ=π6C .ω=12,φ=π3D.ω=12,φ=π12解析:由题意知T =4×⎝⎛⎭⎪⎫π12+π6=π,所以ω=2.因为A ⎝ ⎛⎭⎪⎫-π6,0,所以0=sin ⎝ ⎛⎭⎪⎫-π3+φ. 又0<φ<π2,所以φ=π3.答案:A9.(2019·某某某某3月模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2,若f (x )在⎝⎛⎭⎪⎫0,π2上有且仅有三个零点,则ω的可能取值为( )A.23 B.2 C.143D.263解析:∵函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2, ∴sin ⎝ ⎛⎭⎪⎫-π6=-sin ⎝ ⎛⎭⎪⎫π2ω-π6=-12,∴π2ω-π6=2k π+π6或π2ω-π6=2k π+5π6,k ∈Z ,∴ω=4k +23或ω=4k +2,k ∈Z.∵函数f (x )在⎝⎛⎭⎪⎫0,π2上有且仅有三个零点,∴ωx -π6∈⎝ ⎛⎭⎪⎫-π6,ωπ2-π6,∴2π<ωπ2-π6≤3π,∴133<ω≤193,∴ω=143或ω=6.故选C.答案:C10.(2019·贺州一模)已知函数f (x )=sin(2x +φ)(φ∈R),若f ⎝ ⎛⎭⎪⎫π3-x =f (x ),且f (π)>f ⎝ ⎛⎭⎪⎫π2,则函数f (x )取得最大值时x 的可能值为( )A.π6B.π5C.π3D.π2解析:因为f ⎝ ⎛⎭⎪⎫π3-x =f (x ), 即y =f (x )的图象关于直线x =π6对称,即函数f (x )在x =π6时取得最值,①当函数f (x )在x =π6时取得最大值时,又因为函数f (x )的周期为π,所以f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π3=f (π),满足题意, ②当函数f (x )在x =π6时取得最小值时,又因为函数f (x )的周期为π,所以f ⎝ ⎛⎭⎪⎫π2>f ⎝ ⎛⎭⎪⎫π3=f (π),不满足题意, 综合①②得:函数f (x )取得最大值时x 的可能值为π6.故选A. 答案:A11.(2019·某某一模)若函数f (x )=sinωx2·sin ⎝⎛⎭⎪⎫ωx 2+π2(ω>0)在⎣⎢⎡⎦⎥⎤-π3,π2内有且仅有一个最大值,则ω的取值X 围是( ) A .(0,5)B.[1,5)C.⎝ ⎛⎭⎪⎫0,92 D.⎣⎢⎡⎭⎪⎫1,92 解析:f (x )=sinωx2sin ⎝⎛⎭⎪⎫ωx 2+π2=12sin ωx ,当ωx =2k π+π2,即x =2k π+π2ω(k ∈Z)时函数取最大值,又函数f (x )在⎣⎢⎡⎦⎥⎤-π3,π2内有且仅有一个最大值,即有两种情况,一是区间⎣⎢⎡⎦⎥⎤-π3,π2内只有一个极值点,二是函数f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π2内单调递增,所以有⎩⎪⎨⎪⎧π2≤ωπ2<5π2,-3π2<-ωπ3或⎩⎪⎨⎪⎧π2≥ωπ2,-π2≤-ωπ3,解得ω∈⎣⎢⎡⎭⎪⎫1,92或ω∈(-∞,1],又∵ω>0,所以ω∈⎝ ⎛⎭⎪⎫0,92,故选C. 答案:C12.(2019·某某一模)函数f (x )=sin(2x +θ)+cos 2x ,若f (x )最大值为G (θ),最小值为g (θ),则( )A .∃θ0∈R ,使G (θ0)+g (θ0)=πB .∃θ0∈R ,使G (θ0)-g (θ0)=πC .∃θ0∈R ,使|G (θ0)·g (θ0)|=πD .∃θ0∈R ,使⎪⎪⎪⎪⎪⎪G (θ0)g (θ0)=π解析:f (x )=sin(2x +θ)+cos 2x =cos θ·sin 2x +⎝ ⎛⎭⎪⎫sin θ+12·cos 2x +12=54+sin θsin(2x +φ)+12,所以G (θ)=54+sin θ+12,g (θ)=-54+sin θ+12, ①对于选项A ,G (θ0)+g (θ0)=54+sin θ+12-54+sin θ+12=1,显然不满足题意,即A 错误,②对于选项B ,G (θ0)-g (θ0)=54+sin θ+12+54+sin θ-12=254+sin θ∈[1,3],显然不满足题意,即B 错误, ③对于选项C ,G (θ0)·g (θ0)=⎝ ⎛⎭⎪⎫54+sin θ+12·⎝ ⎛⎭⎪⎫54+sin θ-12=1+sin θ∈[0,2],显然不满足题意,即C 错误,④对于选项D ,⎪⎪⎪⎪⎪⎪G (θ)g (θ)=⎪⎪⎪⎪⎪⎪⎪⎪154+sin θ-12+1∈[2,+∞),即∃θ0∈R ,使⎪⎪⎪⎪⎪⎪G (θ0)g (θ0)=π,故D 正确, 故选D. 答案:D13.(2019·某某模拟)函数f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1(x ∈R)的最大值为________.解析:∵f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1=4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1=23sin x cos x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,∴f (x )max =2. 答案:214.设函数f (x )=A sin(ωx +φ)(A >0,ω>0).若函数f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则函数f (x )的最小正周期为________. 解析:∵f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3, ∴x =π2和x =2π3均不是f (x )的极值点,其极值应该在x =π2+2π32=7π12处取得,∵f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,∴x =π6也不是函数f (x )的极值点,又f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性, ∴x =π6-⎝⎛⎭⎪⎫7π12-π2=π12为f (x )的另一个相邻的极值点,故函数f (x )的最小正周期T =2×⎝⎛⎭⎪⎫7π12-π12=π.答案:π15.(2019·某某某某武邑中学模拟)将f (x )=2sin ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π4ω个单位,得到y =g (x )的图象,若y =g (x )在⎣⎢⎡⎦⎥⎤-π6,π4上为增函数,则ω的最大值为________.解析:将f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π4ω个单位,得到y =g (x )=2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π4ω+π4=2sin ωx 的图象,若y =g (x )在⎣⎢⎡⎦⎥⎤-π6,π4上为增函数,则满足T 4≥π4,即T ≥π,即2πω≥π,所以0<ω≤2,即ω的最大值为2.答案:216.已知函数f (x )=2a sin(πωx +φ)⎝ ⎛⎭⎪⎫a ≠0,ω>0,|φ|≤π2,直线y =a 与f (x )的图象的相邻两个距离最近的交点的横坐标分别是2和4,现有如下命题: ①该函数在[2,4]上的值域是[a ,2a ];②在[2,4]上,当且仅当x =3时函数取得最大值; ③f (x )的图象可能过原点. 其中真命题的个数为________.解析:对于①,∵直线y =a 与函数f (x )=2a sin(πωx +φ)的图象的相邻两个距离最近的交点的横坐标分别为2和4,∴结合图象可以看出,当a >0时,f (x )在[2,4]上的值域为[a ,2a ],当a <0时,f (x )在[2,4]上的值域为[2a ,a ],①错误;对于②,根据三角函数图象的对称性,显然x =2和x =4的中点是x =3,即当a >0时,f (x )在x =3处有最大值f (3)=2a ,当a <0时,f (x )在x =3处有最小值f (3)=2a ,②错误; 对于③,f (0)=2a sin φ,令f (0)=0,得φ=0,此时f (x )=2a sin πωx ,由2a sin πωx =a 得sin πωx =22,则πωx =2k π+π4(k ∈Z)或πωx =2k π+3π4(k ∈Z),∴x =2k +14ω(k ∈Z)或x =2k +34ω(k ∈Z),∵直线y =a 与函数f (x )=2a sin(πωx +φ)的图象的相邻两个距离最近的交点的横坐标分别为2和4,∴令⎩⎪⎨⎪⎧2k +14ω=2,2k +34ω=4,解得k =18∉Z ,即不存在这样的k 符合题意,③错误. 综上,没有真命题. 答案:0。
(完整)2019-2020年高考数学大题专题练习——三角函数(一)(含解析).doc
![(完整)2019-2020年高考数学大题专题练习——三角函数(一)(含解析).doc](https://img.taocdn.com/s3/m/67572c5e0975f46526d3e170.png)
2019-2020 年高考数学大题专题练习 —— 三角函数(一)1. 【山东肥城】 已知函数 f ( x) 2sin 2 x 2sin 2 ( x) , x R .( 1)求函数 yf ( x) 的对称中心;6( 2)已知在 △ABC 中,角 A 、B 、C 所对的边分别为 a , b , c ,且f (B6 ) b c, ABC 的外接圆半径为 3 ,求 △ABC 周长的最大值 . 22a【解析】f ( x) 1 cos2 x1 cos2( x) cos(2 x) cos2 x6313 sin 2x cos 2xcos2x223sin 2x1cos2x sin(2 x 6 ) . 22(1)令 2xk ( k Z ),则 xk( kZ ),6212所以函数 yf ( x) 的对称中心为 (k,0) k Z ;212(2)由 f (B)b c,得 sin( B ) bc ,即 3 sin B 1cos B b c ,262a6 2a 2 2 2a整理得 3a sin B a cos B b c ,由正弦定理得:3 sin A sin B sin A cos B sin B sin C ,化简得 3 sin A sin B sin B cos Asin B ,又因为 sin B0 ,所以 3 sin A cos A1,即sin( A1 ,6 )2由 0A,得A5 ,6 66所以 A,即 A3 ,6 6又 ABC 的外接圆的半径为3 ,所以 a 2 3 sin A 3 ,由余弦定理得222222232(b c) 2abc2bc cos A bcbc (b c)3bc (b c)(b c)44,即 ,当且仅当 bc 时取等号,所以周长的最大值为 9.2.【河北衡水】 已知函数 f x2a sin x cosx2b cos 2 x c a 0,b 0 ,满足 f 0 ,且当 x0,时, f x 在 x 取得最大值为 5.26 2( 1)求函数 f x 在 x0, 的单调递增区间;( 2)在锐角 △ABC 的三个角 A ,B ,C 所对的边分别为 a ,b ,c ,且2 22 f C3,求a2b 2c 2 的取值范围 .2ab c【解析】(1)易得 f x5sin 2x 5,整体法求出单调递增区间为0, , 2 ,;3 666 3 (2)易得 C,则由余弦定理可得 a2b 2c 2 2a 2 2b 2 ab2 b a 1,3a 2b 2c 2aba bbsin 2 A3 1 1由正弦定理可得sin B 3,所以asin Asin A2tan A2 ,22a 2b 2c 23,4 .a2b2c2rcos x, 1 r( 3 sin x,cos 2x) , xR ,设函数3.【山东青岛】 已知向量 a, b 2r rf ( x) a b .( 1)求 f(x)的最小正周期;( 2)求函数 f(x)的单调递减区间;( 3)求 f(x)在 0,上的最大值和最小值 . 2【解析】f (x) cos x, 1( 3 sin x,cos 2x) 23 cos x sin x 1cos2x 23sin 2 x 1cos 2x2 2cos sin 2x sin cos 2x6 6sin 2x.6(1)f ( x)的最小正周期为T 2 2,即函数f ( x) 的最小正周期为.2(2)函数y sin(2 x ) 单调递减区间:62k 2x 32k , k Z ,2 6 2得:k x 5 k , k Z ,63∴所以单调递减区间是3 k ,5k , k Z .6(3)∵0 x ,2∴2x 5.6 6 6 由正弦函数的性质,当 2x6 2 ,即 x 时, f (x) 取得最大值1.3当x x 0 f (0) 1,即时,,6 6 2当 2x6 5 ,即 x2时, f21 ,6 2∴ f (x) 的最小值为1. 2因此, f (x) 在 0, 上的最大值是1,最小值是1 .2 224.【浙江余姚】已知函数 f ( x) sin x sin x cos( x ) .( 1)求函数 f(x)的最小正周期;( 2)求 f(x)在 0,上的最大值和最小值.2【解析】( 1) 由题意得 f ( x) sin 2 x sin x cos x6sin 2 xsin x( 3 cos x 1sin x)2 23sin 2x3sin x cos x223(1 cos 2x)3sin 2x443 ( 1sin 2x3cos2x)3 2 2243sin( 2x) 32 34f (x) 的最小正周期为( 2) x0, ,22x23 3 3当 2x,即 x0时, f ( x) min0 ;33当 2x5 时, f ( x) max2 3 33,即 x4212综上,得 x0时, f ( x) 取得最小值,为 0;当 x5 2 3 3时, f ( x) 取得最大值,为4125.【山东青岛】 △ABC 的内角 A ,B ,C 的对边分别为a ,b ,c ,已知 b cos A 3a c .3( 1)求 cosB ;( 2)如图, D 为 △ABC 外一点,若在平面四边形ABCD中, D 2 B ,且 AD 1, CD3 , BC 6 ,求 AB 的长.【解析 】解:( 1)在ABC 中,由正弦定理得 sin B cos A3sin Asin C ,3又 C( A B) ,所以 sin B cos A3sin Asin( A B) ,3故 sin B cos A3sin Acos B cos Asin B ,sin A3所以 sin Acos B3sin A ,3又 A(0, ) ,所以 sin A30 ,故 cos B3(2) QD 2 B , cos D2cos 2 B 113又在ACD 中, AD 1, CD 3∴由余弦定理可得 AC2AD2CD22AD CD cosD 19 2 3 ( 1) 12 ,3∴ AC2 3 ,在 ABC 中, BC6 , AC 2 3 , cosB3,3∴由余弦定理可得 AC2AB 2 BC 2 2 AB BCcosB ,即 12 AB 2 6 2 AB63 ,化简得 AB 2 2 2 AB 6 0 ,解得 AB 3 2 .3故 AB 的长为 32 .6. 【江苏泰州】如图,在△ABC 中,ABC,2ACB, BC 1.P 是△ ABC 内一点,且BPC.3 2(1)若ABP,求线段AP的长度;6(2)若APB 2,求△ ABP 的面积 .3【解析】(1)因为PBC ,所以在 Rt PBC 中,6BPC , BC 1,PBC3 ,所以 PB 1 ,2 2在 APB 中,ABP , BP 13 ,所以, AB6 2AP2 AB 2 BP2 2AB BP cos PBA3 1 2 13 37,所以 AP 7 ;4 2 2 4 2(2)设PBA ,则PCB ,在 Rt PBC 中,BPC , BC 1,2PCB ,所以 PB sin ,在 APB 中,ABP , BP sin , AB 3 ,APB 2,3由正弦定理得:sin 3 1sin3cos1sinsin sin 2 2 2 23 3sin 3 cos ,又 sin 2 cos2 1 sin2 32 7SABP 1AB BP sin ABP 1 3 sin 2 3 3 .2 2 148.【辽宁抚顺】已知向量m sin x,1 , n cos x,3, f x m n4 4( 1)求出 f(x)的解析式,并写出f(x)的最小正周期,对称轴,对称中心;( 2)令 h xf x6,求 h(x)的单调递减区间;( 3)若 m // n ,求 f(x)的值.【解析】(1) f xm nsin x4cos x341sin 2 x4 3 1sin 2x231cos2x 3222所以 f x 的最小正周期 T ,对称轴为 xk , kZ2对称中心为k ,3 , kZ42(2) h xf x1 cos2 x 32 36令2k2x32k , kZ 得k x6k ,k Z3所以 h x 的单调减区间为3k ,k ,k Z6(3)若 m // n ,则 3sinxcos x即 tan x13444tan x 2f x1cos2x 3 1sin 2 x231 sin2 x cos 2 xcos x2 sin 2 xcos 2 322 x1 tan2 x 1 332 tan 2 x 31109.【辽宁抚顺】已知函数 f x 2 3 sin x cos x 2cos 2 x 1 , x R .( 1)求函数 f x 的最小正周期及在区间0,2 上的最大值和最小值;( 2)若 f x 06,x 0, 2 ,求 cos 2x 0 的值.54【解析】( 1) 由 f(x)= 2 3 sin xcos x + 2cos 2x - 1,得 f(x)= 3 (2sin xcos x)+(2cos2x-1)= 3 sin 2x+cos 2x=2sin 2x ,6所以函数 f(x)的最小正周期为π0 x , 2 x6 7 , 1 sin 2 x 12 6 6 2 6所以函数 f(x)在区间 0, 上的最大值为2,最小值为- 12( 2)由(1)可知f(x0)=2sin 2 x6又因为 f(x0 )=6,所以 sin 2 x6=3 .5 5由 x0∈, ,得 2x0+∈ 2,74 2 6 3 6从而 cos 2 x0 = 1 sin 2 2 x06 =-46 5所以 cos 2x0= cos 2 x06 6 = cos 2x0 cos + sin 2x06sin6 6 6=3 4 31010.【广西桂林】已知f x 4sin 24 x sin x cosx sin x cosx sin x 1 . 2( 1)求函数 f x 的最小正周期;( 2)常数0 ,若函数 y f x 在区间, 2上是增函数,求的取值2 3范围;( 3)若函数 g x 1 f 2 x af x af x a 1在,的最大值为2 2 4 22,求实数的值 .【解析】(1)f x 2 1 cos x sin x cos2 x sin 2 x 1 22 2sin x sin x 1 2sin 2 x 1 2sin x .∴ T 2 .(2) f x 2sinx .由 2kx 2k2kx2k2 得, k Z ,222 ∴ fx 的递增区间为2k2, 2k, k Z2∵ fx 在,2上是增函数,23∴当 k0 时,有2, 22,.320,∴, 解得 03242 22 ,3∴ 的取值范围是0,3.4(3) gx sin 2x a sin xa cos x 1 a 1.2 令 sin xcos x t ,则 sin 2x1 t2 .112a21 2att2aa∴ y 1 ta 1at2 t4a .222∵ t sin x cos x2 sin x,由x 得x,4 42244∴ 2 t 1 .①当a2 ,即 a2 2 时,在 t2 处 y max2 1 a 2 .22由21 a2 2 ,解得 a8 8 2 2 12 2 (舍去 ).22 2 1 7②当2 a 1,即2 2 a2 时, y maxa 21 a ,由 a 21a 22424 2得 a 2 2a 8 0 解得 a2 或 a 4 (舍去) .③当a1,即a 2 时,在 t 1处y max a 1 ,由a1 2 得a 6.2 2 2综上, a 2 或 a 6 为所求.11.【江苏无锡】如图所示,△ ABC 是临江公园内一个等腰三角形形状的小湖.....(假设湖岸是笔直的),其中两腰CA CB 60 米,cos CAB 2.为了给市民3营造良好的休闲环境,公园管理处决定在湖岸AC,AB 上分别取点E,F(异于线段端点),在湖上修建一条笔直的水上观光通道EF(宽度不计),使得三角形AEF 和四边形 BCEF 的周长相等 .(1)若水上观光通道的端点 E 为线段 AC 的三等分点(靠近点 C),求此时水上观光通道 EF 的长度;(2)当 AE 为多长时,观光通道 EF 的长度最短?并求出其最短长度 .【解析】(1)在等腰ABC 中,过点 C 作 CH AB 于 H ,在 Rt ACH 中,由 cosAH AH 240 , AB 80 ,CAB ,即,∴ AHAC 60 3∴三角形 AEF 和四边形 BCEF 的周长相等.∴ AE AF EF CE BC BF EF ,即 AE AF 60 AE 60 80 AF ,∴AE AF 100.∵ E 为线段 AC 的三等分点(靠近点 C ),∴ AE 40, AF 60,在AEF 中,EF 2 AE 2 AF 2 2 AE AF cos CAB 402 602 2 40 60 2 200 ,3∴ EF 2000 20 5 米.即水上观光通道EF 的长度为20 5米.(2)由( 1)知,AE AF 100 ,设 AE x ,AF y ,在AEF 中,由余弦定理,得EF 2 x2 y2 2x y cos CAB x2 y 24xy x y10xy .23 3∵ xy x y 2 1002 10 502 2 502 .502,∴EF22 3 350 6∴EF,当且仅当x y取得等号,3所以,当 AE 50 米时,水上观光通道EF 的长度取得最小值,最小值为50 6米.312.【江苏苏州】如图,长方形材料ABCD 中,已知AB 2 3 , AD4 .点P为材料ABCD 内部一点,PE AB 于 E , PF AD 于 F ,且 PE1 ,PF 3 .现要在长方形材料ABCD中裁剪出四边形材料AMPN,满足MPN 150 ,点M、N分别在边AB,AD上.( 1)设FPN,试将四边形材料AMPN 的面积表示为的函数,并指明的取值范围;(2)试确定点 N 在 AD 上的位置,使得四边形材料 AMPN 的面积 S 最小,并求出其最小值 .【解析】(1)在直角NFP 中,因为 PF 3 ,FPN ,所以 NF 3 tan ,所以 S NAP 1NA PF 1 1 3 tan 3 ,2 2在直角 MEP 中,因为 PE 1,EPM3,所以MEtan,3所以 S AMP1AM PE 1 3 tan31,2 2所以 SSNAPSAMP3tan1tan33 ,0, .2 23(2)因为S 3 1 tan33 tan3,tan2 33tan2 13 tan22令 t 13 tan,由0, ,得 t1,4,3所以S3 3t24t 4 3 t 43 3 t4 3 23 ,2 3t 2 3t 323t33当且仅当t2 3233 时,即 tan时等号成立,3此时,AN 2 3233,Smin3 ,答:当AN 2 3AMPN 的面积 S 最小,最小值为 233 时,四边形材料.313.【江苏苏州】 如图,在平面四边形ABCD 中, ABC3AD ,, AB4AB=1.uuur uuur3 ,求 △的面积;( 1)若 AB BCABCg( 2)若 BC 2 2 , AD 5 ,求 CD 的长度 .【解析】uuur uuur3 ,所以 uuur uuur,(1)因为 AB BCBAgBC 3guuur uuurABC3 ,即 BA BC cosABC 3 , AB 1 ,所以 1 uuur3 uuur3 2 ,又因为BC cos 3,则 BC44 1 uuur uuur ABC 3所以 S ABC AB BC sin .2 2(2)在 ABC 中,由余弦定理得:AC 2AB 2 BC 2 2 AB BC cos31 8 21 2 22 13 ,42解得: AC 13 ,在ABC 中,由正弦定理得:ACBC2 13sin ABC sin,即sin BAC,BAC13所以 cos CADcosBACsin BAC2 13 ,213在ACD 中,由余弦定理得:CD 2AD 2 AC 2 2AD AC cos CAD ,即 CD3 2 .14.【山东栖霞】 已知函数 f xA sin xA 0,0,的部分图象222如图所示, B , C 分别是图象的最低点和最高点,BC4 .4(1)求函数 f(x)的解析式; (2)将函数y f x 的图象向左平移个单位长度,再把所得图象上各点横坐标伸长到3原来的 2 倍(纵坐标不变)得到函数 yg x 的图象,求函数 yg 2 x 的单调递增区间 .13【解析】(1)由图象可得:3 T 5 ( ) ,所以 f (x) 的周期 T .4 12 3于是2,得2 ,C 524 A 22又 B, A , , A ∴ BC 4 ∴ A 1,12 1224又将 C (5,1) 代入 f (x)sin(2 x) 得, sin(2 5) 1,1212所以 25=2k,即=2k( k R ) ,1223由2 得, ,23∴ f (x)sin(2 x) .3(2)将函数 yf (x) 的图象沿 x 轴方向向左平移个单位长度,3得到的图象对应的解析式为:y sin(2 x) ,3再把所得图象上各点横坐标伸长到原来的 2 倍(纵坐标不变),得到的图象对应的解析式为 g( x)sin( x3 ) ,cos(2x2 )22(x13y g ( x) sin 3 )22由 2k22k, kZ 得, kx k , k Z ,2x336∴函数 yg 2 ( x) 的单调递增区间为 k,k (kZ ) .3615.【山东滕州】 已知函数 f ( x)Asin( x ) ( A 0, 0,) 的部分图象如 2图所示 .( 1)求函数 f (x) 的解析式;( 2)把函数 y f ( x) 图象上点的横坐标扩大到原来的 2 倍(纵坐标不变),再向左平移个单位,得到函数y g (x) 的图象,求611关于 x 的方程 g ( x) m(0 m 2) 在 x [,] 时3 3所有的实数根之和 .【解析】2(1)由图象知,函数 f ( x) 的周期T,故 2 .T点 (, A) 在函数图象上,6∴ Asin(26) A,∴ sin(3) 1,解得:3 2k2, k Z ,即2k6, k Z ,又2 ,从而.6点 (0,1) 在函数图象上,可得:Asin(2 0 ) 1 ,6∴ A 2 .故函数 f (x) 的解析式为: f ( x) 2sin(2 x ) .6 (2)依题意,得g (x) 2sin( x ) .3∵ g( x) 2sin( x ) 的周期T ,3∴ g( x) 2sin( x ) 在 x [11] 内有2个周期. ,3 3 3令x3 k , k Z ,2解得 x k , k Z ,6即函数 g (x) 2sin( x ) 的对称轴为 x k , k Z .3 6又 x [3 ,11 ] ,则 x3[0,4 ] ,3所以 g(x) m(0 m 2) 在 x [ , 11 ] 内有4个实根,3 3不妨从小到大依次设为x i (i 1,2,3, 4) .则x1x2 , x3 x4 13 ,2 6 2 6故 g( x) m(0 m 2) 在x [3 ,11 ] 时所有的实数根之和为:3x1 x2 x3 x4 14. 3。
2019高考数学(文)热点题型:三角函数与解三角形+Word版含解析
![2019高考数学(文)热点题型:三角函数与解三角形+Word版含解析](https://img.taocdn.com/s3/m/0d12b8e4a417866fb84a8ed4.png)
C-1)= 1. (1)求 B 的大小;
33 (2)若 a+c= 2 ,b= 3,求△ ABC的面积 . 【解析】 (1)由 2cosAcos C(tan Atan C-1)=1,
1 得 2(sin Asin C-cos Acos C)= 1,即 cos(A+C)=- 2,
1 ∴ cos B=- cos(A+C)= 2,
【 变式 2】在本例条件下,若 b= 3,求△ ABC面积的最大值 . 【解析】 由余弦定理,得 b2=a2+c2-2accos B=a2+ c2-ac, 则 3=a2+c2- ac≥2ac-ac,所以 ac≤3(当且仅当 a=c= 3时取等号 ).
1
1
π 33
所以 S△ABC=2acsin B≤2×3×sin 3 = 4 .
π 又 0<B<π,∴ B= 3 .
a2+c2- b2 1 (2)由余弦定理得 cos B= 2ac =2,
(a+c) 2-2ac- b2 1
33
∴
2ac
=2,又 a+ c= 2 ,b= 3,
27
5
∴ 4 -2ac-3=ac,即 ac=4,
1
1 5 3 53
∴ S△ABC= 2acsin B=2×4× 2 = 16 .
π = 2sin 2x+ 4 ,
2π ∴函数 f(x)的最小正周期 T= 2 =π.
π (2)由(1)可知, f(x)= 2sin 2x+4 .
ππ ∵x∈ -4,4 ,
π ∴2x+ 4∈
-
π4,
3π 4,
∴sin
π 2x+ 4 ∈
-
2 2 ,1
.
ππ 故函数 f(x)在区间 -4,4 上的最大值和最小值分别为 2,- 1.
2019届高考数学(文)大一轮:第3章 三角函数、解三角形 第3节 两角和与差的正弦、余弦和正切公式
![2019届高考数学(文)大一轮:第3章 三角函数、解三角形 第3节 两角和与差的正弦、余弦和正切公式](https://img.taocdn.com/s3/m/2dffa37a76c66137ee061984.png)
第三节两角和与差的正弦、余弦和正切公式1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).知识点一 两角和与差的正弦、余弦、正切公式 1.基本公式sin(α±β)=________, cos(α±β)=________, tan(α±β)=________. 2.公式变形(1)tan α±tan β=________.(2)函数f(α)=asin α+bcos α(a ,b 为常数),可以化为f(α)=a 2+b 2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a 或f(α)=a 2+b 2·cos(α-φ)⎝⎛⎭⎪⎫其中tan φ=a b .答案1.sin αcos β±cos αsin β cos αcos β∓sin αsin β tan α±tan β1∓tan αtan β2.(1)tan(α±β)(1∓tan αtan β)1.sin75°的值为________.解析:sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30°=22×32+22×12=6+24. 答案:6+242.已知cos α=-35,α∈⎝ ⎛⎭⎪⎫π2,π,则sin ⎝⎛⎭⎪⎫α+π3的值是____. 解析:∵cos α=-35,α∈⎝ ⎛⎭⎪⎫π2,π,∴sin α=45,∴sin ⎝ ⎛⎭⎪⎫α+π3=sin αcos π3+cos αsin π3=45×12+⎝ ⎛⎭⎪⎫-35×32=4-3310.答案:4-33103.tan20°+tan40°+3tan20°tan40°=________. 解析:∵tan60°=tan(20°+40°)=tan20°+tan40°1-tan20°tan40°,∴tan20°+tan40°=tan60°(1-tan20°tan40°) =3-3tan20°tan40°,∴原式=3-3tan20°tan40°+3tan20°tan40°= 3. 答案: 3知识点二 二倍角的正弦、余弦、正切公式 1.基本公式 sin2α=________.cos2α=________=________=________. tan2α=________. 2.有关公式的逆用、变形等(1)cos 2α=________,sin 2α=________. (2)1+sin2α=(sin α+cos α)2, 1-sin2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4. 答案1.2sin αcos α cos 2α-sin 2α 2cos 2α-1 1-2sin 2α 2tan α1-tan 2α 2.(1)1+cos2α2 1-cos2α24.计算:tan7.5°1-tan 27.5°=________. 解析:tan7.5°1-tan 27.5°=12×2tan7.5°1-tan 27.5° =12tan15°=12tan(45°-30°) =12×tan45°-tan30°1+tan45°tan30°=12×1-331+33=2-32. 答案:2-325.(2016·浙江卷)已知2cos 2x +sin2x =Asin(ωx +φ)+b(A>0),则A =________,b =________. 解析:由于2cos 2x +sin2x =1+cos2x +sin2x =2sin(2x +π4)+1,所以A =2,b =1.答案: 2 1热点一 三角公式的正用与逆用【例1】 (1)化简:+sin θ+cos θ⎝⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π);(2)求值:sin50°(1+3tan10°).【解】 (1)由θ∈(0,π),得0<θ2<π2,∴cos θ2>0,∴2+2cos θ=4cos2θ2=2cos θ2. 又(1+sin θ+cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ2=⎝⎛⎭⎪⎫2sin θ2cos θ2+2cos 2θ2⎝ ⎛⎭⎪⎫sin θ2-cos θ2=2cos θ2⎝ ⎛⎭⎪⎫sin 2θ2-cos 2θ2=-2cos θ2cos θ.故原式=-2cos θ2cos θ2cosθ2=-cos θ.(2)sin50°(1+3tan10°) =sin50°(1+tan60°·tan10°)=sin50°·cos60°cos10°+sin60°sin10°cos60°cos10°=sin50°·cos 60°-10°cos60°cos10°=2sin50°cos50°cos10°=sin100°cos10°=cos10°cos10°=1.(1)求sin7°+cos15°sin8°cos7°-sin 15°sin8°的值;(2)求tan20°+4sin20°的值. 解:(1)原式 =-+cos15°sin8°--sin15°sin8°=sin15°cos8°cos15°cos8°=tan15°=tan(45°-30°)=tan45°-tan30°1+tan45°tan30°=1-331+33=3-13+1=2- 3. (2)原式=sin20°cos20°+4sin20°=sin20°+4sin20°cos20°cos20°=sin20°+2sin40°cos20°=-++cos20°=32cos10°+32sin10°cos20°=332cos10°+12sin10°cos20°=3-cos20°= 3.热点二 三角函数式求值 考向1 给值求值【例2】 已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.【解】 (1)∵α,β∈⎝ ⎛⎭⎪⎫0,π2,从而-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×(-1010)=91050.1.在本例条件下,求sin(α-2β)的值. 解:∵sin(α-β)=-1010,cos(α-β)=31010,cos β=91050,sin β=131050.∴sin(α-2β)=sin[(α-β)-β]=sin(α-β)cos β-cos(α-β)sin β=-2425.2.若本例中“sin α=35”变为“tan α=35”,其他条件不变,求tan(2α-β)的值.解:∵tan α=35,tan(α-β)=-13,∴tan(2α-β)=tan[α+(α-β)]=tan α+α-β1-tan αα-β=35-131+35×13=29.考向2 给值求角【例3】 已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.【解】 ∵tan α=tan[(α-β)+β]=α-β+tan β1-α-ββ=12-171+12×17=13>0,∴0<α<π2.又∵tan2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.(1)(2016·新课标全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin2α=( )A.725B.15C .-15D .-725(2)已知cos α=-1213,cos(α+β)=17226,且α∈⎝ ⎛⎭⎪⎫π,3π2,α+β∈⎝ ⎛⎭⎪⎫3π2,2π,求β的值. 解析:(1)因为cos ⎝ ⎛⎭⎪⎫π4-α=cos π4cos α+sin π4sin α=22(sin α+cos α)=35,所以sin α+cos α=325,所以1+sin2α=1825,所以sin2α=-725,故选D. (2)解:∵π<α<3π2,3π2<α+β<2π,∴0<β<π.又cos α=-1213,cos(α+β)=17226,∴sin α=-513,sin(α+β)=-7226.cos β=cos[(α+β)-α]=17226×⎝ ⎛⎭⎪⎫-1213+⎝ ⎛⎭⎪⎫-7226×⎝ ⎛⎭⎪⎫-513=-22,且0<β<π,所以β=3π4.答案:(1)D热点三 三角恒等变换的综合应用 【例4】 (2016·天津卷)已知函数 f(x)=4tanxsin ⎝⎛⎭⎪⎫π2-x cos ⎝⎛⎭⎪⎫x -π3- 3.(Ⅰ)求f(x)的定义域与最小正周期;(Ⅱ)讨论f(x)在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性. 【解】 (Ⅰ)f(x)的定义域为{x|x≠π2+k π,k ∈Z}.f(x)=4tanxcosxcos ⎝⎛⎭⎪⎫x -π3- 3=4sinxcos ⎝ ⎛⎭⎪⎫x -π3-3=4sinx ⎝ ⎛⎭⎪⎫12cosx +32sinx - 3=2sinxcosx +23sin 2x -3=sin2x +3(1-cos2x)- 3 =sin2x -3cos2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.所以,f(x)的最小正周期T =2π2=π.(Ⅱ)令z =2x -π3,函数y =2sinz 的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z. 由-π2+2k π≤2x-π3≤π2+2k π,得-π12+k π≤x≤5π12+k π,k ∈Z.设A =[-π4,π4],B ={x|-π12+k π≤x≤5π12+k π,k ∈Z},易知A∩B=[-π12,π4].所以,当x ∈[-π4,π4]时,f(x)在区间[-π12,π4]上单调递增,在区间[-π4,-π12]上单调递减.已知函数f(x)=2cos 2ωx -1+23sin ωxcos ωx(0<ω<1),直线x =π3是函数f(x)的图象的一条对称轴.(1)求函数f(x)的单调递增区间;(2)已知函数y =g(x)的图象是由y =f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g ⎝ ⎛⎭⎪⎫2α+π3=65,α∈⎝⎛⎭⎪⎫0,π2,求sin α的值. 解:(1)f(x)=cos2ωx +3sin2ωx =2sin ⎝⎛⎭⎪⎫2ωx +π6,由于直线x =π3是函数f(x)=2sin ⎝ ⎛⎭⎪⎫2ωx +π6的图象的一条对称轴,所以sin ⎝ ⎛⎭⎪⎫2π3ω+π6=±1.因此2π3ω+π6=k π+π2(k ∈Z),解得ω=32k +12(k ∈Z),又0<ω<1,所以ω=12,所以f(x)=2sin ⎝⎛⎭⎪⎫x +π6.由2k π-π2≤x+π6≤2k π+π2(k ∈Z),得2k π-2π3≤x≤2k π+π3(k ∈Z),所以函数f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+π3(k ∈Z).(2)由题意可得g(x)=2sin ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫x +2π3+π6,即g(x)=2cos x2,由g ⎝ ⎛⎭⎪⎫2α+π3=2cos ⎣⎢⎡⎦⎥⎤12⎝ ⎛⎭⎪⎫2α+π3=2cos ⎝ ⎛⎭⎪⎫α+π6=65,得cos ⎝ ⎛⎭⎪⎫α+π6=35, 又α∈⎝ ⎛⎭⎪⎫0,π2,故π6<α+π6<2π3,所以sin ⎝⎛⎭⎪⎫α+π6=45, 所以sin α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6=sin ⎝ ⎛⎭⎪⎫α+π6·cos π6-cos ⎝⎛⎭⎪⎫α+π6·sin π6=45×32-35×12=43-310.求值、化简、证明是三角函数中最常见的题型,其解题一般思路为“五遇六想”即:遇切割,想化弦;遇多元,想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.“五遇六想”作为解题经验的总结和概括,操作简便,十分有效.其中蕴含了一个变换思想(找差异,抓联系,促进转化),两种数学思想(转化思想和方程思想),三个追求目标(化为特殊角的三角函数值,使之出现相消项或相约项),三种变换方法(切割化弦法,消元降次法,辅助元素法).三角恒等变换中的解题策略三角恒等变换位于三角函数与数学变换的结合点,其公式多、变法活的特点使不少同学在学习此知识点时感到困难重重,力不从心.本文介绍了几种常用的三角恒等变换中的解题策略,旨在帮助大家全面、系统地了解和掌握三角变换中的常规思路与基本技巧,促进同学们的推理能力和运算能力的提升.策略1 从角入手,寻找关系好解题解有关三角函数的题目时,要特别注意角与角之间的关系,只要明确了其中的关系,解题就完成了一半.【例1】 已知α为锐角,且cos ⎝ ⎛⎭⎪⎫α+π6=35,则sin α=________. 【解析】 解法1:cos ⎝ ⎛⎭⎪⎫α+π6=32cos α-12sin α=35,①又sin 2α+cos 2α=1,② 由①可得cos 2α=13⎝⎛⎭⎪⎫sin α+652,代入②并整理得100sin 2α+60sin α-39=0, 解得sin α=43-310,或sin α=-43+310(舍).解法2:因为α为锐角,即α∈⎝⎛⎭⎪⎫0,π2,所以α+π6∈⎝ ⎛⎭⎪⎫π6,2π3,则sin ⎝⎛⎭⎪⎫α+π6=1-cos 2⎝⎛⎭⎪⎫α+π6=45,所以sin α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6=sin ⎝ ⎛⎭⎪⎫α+π6cos π6-cos ⎝ ⎛⎭⎪⎫α+π6sin π6=43-310.【答案】43-310【点评】 不少同学习惯用解法1,却往往因运算量大而出现了各种问题;解法2抓住了α=⎝ ⎛⎭⎪⎫α+π6-π6这一关系,减少了运算量,使求解轻松简捷. 策略2 从函数名入手,化切为弦助解题在有关三角函数的题目中,当正弦(余弦)与正切“相遇”时,可采用化切为弦的方法,即将正切转化为正弦(余弦).【例2】 求1+cos20°2sin20°-sin10°⎝ ⎛⎭⎪⎫1tan5°-tan5°.【解】 因为1tan5°-tan5°=cos5°sin5°-sin5°cos5°=cos 25°-sin 25°sin5°cos5°=2cos10°sin10°, 所以原式=2cos 210°4sin10°cos10°-sin10°·2co s10°sin10°=cos10°2sin10°-sin20°sin10°=cos10°2sin10°--sin10° =cos10°2sin10°-cos10°-3sin10°2sin10°=3sin10°2sin10°=32. 策略3 从结构入手,存同化异探思路三角恒等变换中的公式较多,每个公式都有其固有的结构.解题时要善于从结构入手,存同化异,寻求结构形式的统一.【例3】 (1)已知3sin β=sin(2α+β),α≠k π+π2,α+β≠k π+π2(k ∈Z).求证:tan(α+β)=2tan α;(2)已知cosxcosy =12,求sinxsiny 的取值范围. 【解】 (1)证明:由3sin β=sin(2α+β)得3sin[(α+β)-α]=sin[(α+β)+α],即3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α,整理可得sin(α+β)cos α=2cos(α+β)·sin α. 因为α≠k π+π2,α+β≠k π+π2(k ∈Z), 所以cos(α+β)·cos α≠0,则有tan(α+β)=2tan α.(2)设p =sinxsiny ,则cos(x -y)=cosxcosy +sinxsiny =12+p ,cos(x +y)=cosxcosy -sinxsiny =12-p. 因为|cos(x±y)|≤1, 所以-1≤12+p≤1,且-1≤12-p≤1, 解得-12≤p≤12. 【点评】 题(1)由条件向结论靠拢,从统一角的结构入手,顺利完成解题;题(2)从结构的相似(部分相似)展开联想,寻找解题突破口,亦成功解题.这两个方法都是值得重视的、从结构入手解题的常用方法.策略4 “先化简后求值”与“先局部后整体”“先化简后求值”本是初中数学中的一种题型,这里将其引申为一种解题策略.这种策略能简化解题过程,有事半功倍之功效;“先局部后整体”,则与之相反,虽其方法略显笨拙,但其逐个“击破”的策略却能降低解题难度,且解题方向明确,也是一个不错的思路.【例4】 已知0<x<π4,sin ⎝ ⎛⎭⎪⎫π4-x =513,求 cos2x cos ⎝ ⎛⎭⎪⎫π4+x 的值. 【解】 解法1(先化简后求值): 原式=cos 2x -sin 2x22-=2(cosx +sinx)=2cos ⎝ ⎛⎭⎪⎫π4-x , ∵0<x<π4,∴0<π4-x<π4, 则原式=21-sin 2⎝ ⎛⎭⎪⎫π4-x =2413. 解法2(先局部后整体):cos ⎝ ⎛⎭⎪⎫π4+x =cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-x =sin ⎝ ⎛⎭⎪⎫π4-x =513. 下面从两个角度求cos2x :角度1:cos2x =sin ⎝⎛⎭⎪⎫π2-2x =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-x =2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x ; 角度2:cos2x =cos 2x -sin 2x =(cosx -sinx)·(cosx+sinx)=2sin ⎝ ⎛⎭⎪⎫π4-x ·2cos ⎝ ⎛⎭⎪⎫π4-x =2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x . ∵0<x<π4,∴0<π4-x<π4, 则cos ⎝ ⎛⎭⎪⎫π4-x =1-sin 2⎝ ⎛⎭⎪⎫π4-x =1213, 故cos2x =2×513×1213=120169. 所以cos2x cos ⎝ ⎛⎭⎪⎫π4+x =120169÷513=2413. 【点评】 采用“先化简后求值”解题简捷流畅,采用“先局部后整体”解题思路简单,条理清晰.两种方法各有千秋,都是值得我们重视的好方法.。
数学一轮复习第4章三角函数解三角形第1讲三角函数的基本概念同角三角函数的基本关系与诱导公式试题1理
![数学一轮复习第4章三角函数解三角形第1讲三角函数的基本概念同角三角函数的基本关系与诱导公式试题1理](https://img.taocdn.com/s3/m/8ae867ae85868762caaedd3383c4bb4cf7ecb7e9.png)
第四章三角函数、解三角形第一讲三角函数的基本概念、同角三角函数的基本关系与诱导公式练好题·考点自测1.已知下列命题:①第二象限角大于第一象限角;②不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;③若sin α=sin β,则α与β的终边相同;④若cos θ<0,则θ是第二或第三象限的角.其中正确的个数是()A.1B.2 C。
3 D。
42。
sin 2·cos 3·tan 4的值()A。
小于0 B。
大于0C。
等于0 D.不存在3.已知点P(cos 300°,sin 300°)是角α终边上一点,则sin α—cos α= ()A.√32+12B。
-√32+12C。
√32−12D。
-√32−124.[2019全国卷Ⅰ,7,5分]tan 255°= ()A.-2—√3B。
—2+√3C。
2—√3 D.2+√35.[2020全国卷Ⅱ,2,5分][理]若α为第四象限角,则 ( ) A 。
cos 2α>0 B 。
cos 2α〈0 C 。
sin 2α>0 D.sin 2α<06。
已知sin α+cos α=12,α∈(0,π),则1-tanα1+tanα= ( )A.—√7B.√7C.√3 D 。
-√3图4-1—17。
[2019北京,8,5分]如图4—1-1,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为 ( ) A 。
4β+4cos β B.4β+4sin β C.2β+2cos β D.2β+2sin β8.[2018全国卷Ⅰ,11,5分]已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( )A.15B .√55C 。
2√55D.1拓展变式1.在一块顶角为120°、腰长为2的等腰三角形厚钢板废料OAB 中用电焊切割成扇形,现有如图4-1—3所示两种方案,既要充分利用废料,又要切割时间更短,则方案更优.2.(1)[2021洛阳市联考]已知角α的顶点为坐标原点,始边与x轴非负半轴重合,终边与直线y=3x重合,且sin α<0,P(m,n)是角α终边上一点,且|OP|=√10(O为坐标原点),则m-n 等于()A.2B.-2C.4 D。
2019年高考数学文真题分项解析:专题04 三角函数与解三角形
![2019年高考数学文真题分项解析:专题04 三角函数与解三角形](https://img.taocdn.com/s3/m/6ba6d3fda26925c52cc5bf9c.png)
第四章 三角函数与三角形1.【2019高考新课标Ⅰ,文7】tan255°= A. -2-3 B. -2+3C. 2-3D. 2+3【答案】D 【解析】 【分析】本题首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式计算求解.题目较易,注重了基础知识、基本计算能力的考查. 【详解】详解:000000tan 255tan(18075)tan 75tan(4530)=+==+=00031tan 45tan 3032 3.1tan 45tan 30313++==+--【点睛】三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力.2.【2019高考新课标Ⅰ,文11】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c =A. 6B. 5C. 4D. 3【答案】A 【解析】 【分析】利用余弦定理推论得出a ,b ,c 关系,在结合正弦定理边角互换列出方程,解出结果. 【详解】详解:由已知及正弦定理可得2224a b c -=,由余弦定理推论可得22222141313cos ,,,464224242b c a c c c b A bc bc b c +---==∴=-∴=∴=⨯=,故选A . 【点睛】本题考查正弦定理及余弦定理推论的应用.3.【2019高考新课标Ⅱ,文8】若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A. 2B.32C. 1D.12【答案】A 【解析】 【分析】从极值点可得函数的周期,结合周期公式可得ω. 【详解】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,得2ω=.故选A . 【点睛】本题考查三角函数的极值、最值和周期,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用方程思想解题.4.【2019高考新课标Ⅱ,文11】已知a ∈(0,π2),2sin2α=cos2α+1,则sinα= A. 15B.55 C.33D.255【答案】B 【解析】 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+Q ,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭Q . sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,5sin 5α∴=,故选B . 【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.5.【2019高考新课标Ⅲ,文5】函数()2sin sin2f x x x =-在[]0,2π的零点个数为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】 【分析】令()0f x =,得sin 0x =或cos 1x =,再根据x 的取值范围可求得零点.【详解】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2x π∈Q ,02x ππ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.采取特殊值法,利用数形结合和方程思想解题.6.【2019高考北京卷,文6】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C 【解析】 【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【详解】0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数; ()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.7.【2019高考北京卷,文8】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A. 4β+4cos βB. 4β+4sin βC. 2β+2cos βD. 2β+2sin β【答案】B 【解析】 【分析】由题意首先确定面积最大时点P 的位置,然后结合扇形面积公式和三角形面积公式可得最大的面积值. 【详解】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π-β, 面积S 的最大值为2222βππ⨯⨯+S △POB + S △POA =4β+1||sin()2OP OB πβ-‖1||sin()2OP OA πβ+-‖ 42sin 2sin 44sin βββββ=++=+⋅.故选:B .【点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键观察分析区域面积最大时的状态,并将面积用边角等表示.8.【2019高考天津卷,文7】已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭( ) A. 2- B. 2-C.2 D. 2【答案】C 【解析】 【分析】只需根据函数性质逐步得出,,A ωϕ值即可。
三角函数与解三角形_测试题(有解析、答案)
![三角函数与解三角形_测试题(有解析、答案)](https://img.taocdn.com/s3/m/efa1aafff242336c1fb95e13.png)
三角函数与解三角形 测试题(时间120分钟,满分150分) 第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一 项是符合题目要求的)1.已知α∈(π2,π),sin α=35,则tan(α+π4)等于 ( )A.17 B .7 C .-17D .-7 2.sin45°·cos15°+cos225°·sin15°的值为 ( )A .-32 B .-12 C.12 D.323.要得到y =sin(2x -π3)的图像,只要将y =sin2x 的图像 ( )A .向左平移π3个单位B .向右平移π3个单位C .向左平移π6个单位D .向右平移π6个单位4.在△ABC 中,若sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3 5.有一种波,其波形为函数y =sin(π2x )的图像,若在区间[0,t ]上至少有2个波峰(图像的最高点),则正整数t 的最小值是 ( ) A .3 B .4 C .5 D .6 6.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为 ( )A .1B .2 C.3+1 D.3+2 7.使奇函数f (x )=sin(2x +θ)+3cos(2x +θ)在[-π4,0]上为减函数的θ 值为 ( )A .-π3B .-π6 C.5π6 D.2π38.若向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)等于 ( )A .-34 B.34 C .-14 D.149.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图像如图,则 ( )A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π2,φ=5π410.设函数f (x )=A sin(ωx +φ),(A ≠0,ω>0,-π2<φ<π2)的图像关于直线x =2π3对称,它的周期是π,则 ( ) A .f (x )的图像过点(0,12)B .f (x )的图像在[5π12,2π3]上递减C .f (x )的最大值为AD .f (x )的一个对称中心是点(5π12,0)二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上) 11.已知α是第二象限角,sin α=12,则sin2a 等于________12.已知函数f (x )=2sin(ωx +φ)的图像如下图所示,则f (7π12)=________.13.计算:cos10°+3sin10°1-cos80°=________.14.设函数y =2sin(2x +π3)的图像关于点P (x 0,0)成中心对称,若x 0∈[-π2,0],则x 0=________.15.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c 且a cos B -b cos A =35c .则tan A tan B的值为________. 答案:4三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分12分)已知:0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45.(1)求sin2β的值;(2)设函数f (x )=cos x -sin x ,试求f (α)的值.17.(本小题满分12分)如图,点A ,B 是单位圆上的两点,A ,B点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB 是正三角形,若点A 的坐标为(35,45),记∠COA =α.(1)求1+sin2α1+cos2α的值;(2)求|BC |2的值.18.(本题满分13分)(2010·黄冈模拟)△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且lg a-lg b =lgcos B -lgcos A ≠0. (1)判断△ABC 的形状;(2)设向量m =(2a ,b ),n =(a ,-3b ),且m ⊥n ,(m +n )·(-m +n )=14,求a ,b ,c .19.(本小题满分12分)已知a =(sin x ,32),b =(cos x ,-1).(1)当a 与b 共线时,求2cos 2x -sin2x 的值; (2)求f (x )=(a +b )·b 在[-π2,0]上的值域.20.(本小题满分13分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(1)根据表格提供的数据求函数f(x)的一个解析式;(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为2π3,当x∈[0,π3]时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.21.(本小题满分13分)已知函数y=|cos x+sin x|.(1)画出函数在x∈[-π4,7π4]上的简图;(2)写出函数的最小正周期和在[-π4,3π4]上的单调递增区间;试问:当x在R上取何值时,函数有最大值?最大值是多少?(3)若x是△ABC的一个内角,且y2=1,试判断△ABC的形状.。
高考大题专项练二 高考中的三角函数与解三角形
![高考大题专项练二 高考中的三角函数与解三角形](https://img.taocdn.com/s3/m/2027346a842458fb770bf78a6529647d26283446.png)
高考大题专项练二高考中的三角函数与解三角形高考大题专项练第4页一、非选择题1.△ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin B sin C.(1)求A;(2)若√2a+b=2c,求sin C.解:(1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc.由余弦定理得cos A=b 2+c2-a22bc=12.因为0°<A<180°,所以A=60°.(2)由(1)知B=120°-C,由题设及正弦定理得√2sin A+sin(120°-C)=2sin C,即√62+√32cos C+12sin C=2sin C,可得cos(C+60°)=-√22.由于0°<C<120°,所以sin(C+60°)=√22,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=√6+√24.2.△ABC的内角A,B,C的对边分别为a,b,c.已知sin A+√3cos A=0,a=2√7,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.解:(1)由已知可得tan A=-√3,所以A=2π3.在△ABC中,由余弦定理得28=4+c2-4c cos2π3,即c2+2c-24=0.解得c=-6(舍去),c=4.(2)由题设可得∠CAD=π2,所以∠BAD=∠BAC-∠CAD=π6.故△ABD面积与△ACD面积的比值为12AB·AD·sinπ612AC·AD=1.又△ABC的面积为12×4×2sin∠BAC=2√3,所以△ABD的面积为√3.3.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若△ABC的面积S=a 24,求角A的大小.答案:(1)证明由正弦定理,得sin B+sin C=2sin A cos B, 故2sin A cos B=sin B+sin(A+B)=sin B+sin A cos B+cos A sin B.于是sin B=sin(A-B).又A,B∈(0,π),故0<A-B<π,所以B=π-(A-B)或B=A-B,因此A=π(舍去)或A=2B,所以A=2B.(2)解由S=a 24,得12ab sin C=a24,故有sin B sin C=12sin 2B=sin B cos B.由sin B≠0,得sin C=cos B.又B,C∈(0,π),所以C=π2±B.当B+C=π2时,A=π2;当C-B=π2时,A=π4.综上,A=π2或A=π4.4.在△ABC中,D是BC上的点,AD平分∠BAC,△ABD的面积是△ADC面积的2倍.(1)求sinBsinC;(2)若AD=1,DC=√22,求BD和AC的长.解:(1)S△ABD=12AB·AD sin∠BAD,S△ADC=12AC·AD sin∠CAD.因为S△ABD=2S△ADC,∠BAD=∠CAD,所以AB=2AC.由正弦定理可得sinBsinC =ACAB=12.(2)因为S△ABD∶S△ADC=BD∶DC,所以BD=√2.在△ABD和△ADC中,由余弦定理知AB2=AD2+BD2-2AD·BD cos∠ADB,AC2=AD2+DC2-2AD·DC cos∠ADC.故AB2+2AC2=3AD2+BD2+2DC2=6.由(1)知AB=2AC,所以AC=1.5.(2020全国Ⅱ,理17)△ABC中,sin2A-sin2B-sin2C=sin B sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.解:(1)由正弦定理和已知条件得BC2-AC2-AB2=AC·AB.①由余弦定理得BC2=AC2+AB2-2AC·AB cos A.②由①②得cos A=-12.因为0<A<π,所以A=2π3.(2)由正弦定理及(1)得ACsinB =ABsinC=BCsinA=2√3,从而AC=2√3sin B,AB=2√3sin(π-A-B)=3cos B-√3sin B.故BC+AC+AB=3+√3sin B+3cos B=3+2√3sin(B+π3).又0<B<π3,所以当B=π6时,△ABC周长取得最大值3+2√3.6.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2√2,求BC.解:(1)在△ABD中,由正弦定理得BDsin∠A =ABsin∠ADB.由题设知,5sin45°=2sin∠ADB,所以sin∠ADB=√25.由题设知,∠ADB<90°,所以cos∠ADB=√1-225=√235.(2)由题设及(1)知,cos∠BDC=sin∠ADB=√25.在△BCD中,由余弦定理得BC2=BD2+DC2-2·BD·DC·cos∠BDC=25+8-2×5×2√2×√25=25.所以BC=5.7.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos 2C-cos 2A=2sin(π3+C)sin(π3-C).(1)求角A的值;(2)若a=√3,且b≥a,求2b-c的取值范围.解:(1)因为cos 2C-cos 2A=2sin(π3+C)sin(π3-C),所以2sin2A-2sin2C=2(34cos2C-14sin2C),化简,得sin A=√32.所以A=π3或A=2π3.(2)因为b≥a,所以A=π3.由正弦定理bsinB =csinC=asinA=2,得b=2sin B,c=2sin C.故2b-c=4sin B-2sin C=4sin B-2sin(2π3-B)=3sin B-√3cos B=2√3sin(B-π6).又因为b≥a,所以π3≤B<2π3,即π6≤B-π6<π2.所以2b-c=2√3sin(B-π6)∈[√3,2√3),即2b-c的取值范围为[√3,2√3).8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B-π6).(1)求角B的大小;(2)设a=2,c=3,求b和sin(2A-B)的值.解:(1)在△ABC中,由正弦定理asinA =bsinB,可得b sin A=a sin B.又由b sin A=a cos(B-π6),得a sin B=a cos(B-π6),即sin B=cos(B-π6),可得tan B=√3.又因为B ∈(0,π),所以B=π3.(2)在△ABC 中,由余弦定理及a=2,c=3,B=π3,有b 2=a 2+c 2-2ac cos B=7,故b=√7. 由b sin A=a cos (B -π6),可得sin A=√3√7. 因为a<c ,故cos A=√7.因此sin 2A=2sin A cos A=4√37,cos 2A=2cos 2A-1=17.所以,sin(2A-B )=sin 2A cos B-cos 2A sin B=4√37×12−17×√32=3√314.。
2019版高考数学复习三角函数解三角形3.6正弦定理和余弦定理学案理
![2019版高考数学复习三角函数解三角形3.6正弦定理和余弦定理学案理](https://img.taocdn.com/s3/m/1ff14770581b6bd97f19ea90.png)
3.6 正弦定理和余弦定理[知识梳理]1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2.在△ABC中,已知a,b和A时,三角形解的情况3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径).4.在△ABC 中,常有的结论 (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边. [诊断自测] 1.概念思辨(1)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( )(2)在△ABC 中,a sin A =a +b -csin A +sin B -sin C.( )(3)若a ,b ,c 是△ABC 的三边,当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )(4)在△ABC 中,若sin A sin B <cos A cos B ,则此三角形是钝角三角形.( ) 答案 (1)√ (2)√ (3)√ (4)√ 2.教材衍化(1)(必修A5P 10A 组T 4)在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin2A sin C =2sin A cos A sin C =2×46×34=1. (2)(必修A5P 20A 组T 11)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________.答案 7解析 因为△ABC 的面积S △ABC =12AB ·AC sin A ,所以103=12×5×8sin A ,解得sin A =32,因为角A 为锐角,所以cos A =12.根据余弦定理,得BC 2=52+82-2×5×8cos A =52+82-2×5×8×12=49,所以BC =7.3.小题热身(1)(2016·天津高考)在△ABC 中,若AB =13,BC =3,∠C =120°,则AC =( ) A .1 B .2 C .3 D .4 答案 A解析 在△ABC 中,设A ,B ,C 所对的边分别为a ,b ,c ,则由c 2=a 2+b 2-2ab cos C ,得13=9+b 2-2×3b ×⎝ ⎛⎭⎪⎫-12,即b 2+3b -4=0,解得b =1(负值舍去),即AC =1.故选A.(2)(2016·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C=513,a =1,则b =________. 答案2113解析 由已知可得sin A =35,sin C =1213,则sin B =sin(A +C )=35×513+45×1213=6365,再由正弦定理可得a sin A =bsin B ⇒b =1×636535=2113.题型1 利用正、余弦定理解三角形典例1 (2018·郑州预测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B=asin A,则cos B =( )A .-12 B.12 C .-32 D.32边角互化法.答案 B解析 由正弦定理知sin B3cos B =sin A sin A=1,即tan B =3,由B ∈(0,π),所以B =π3,所以cos B =cos π3=12,故选B.典例2 (2018·重庆期末)在△ABC 中,已知AB =43,AC =4,∠B =30°,则△ABC 的面积是( )A .4 3B .8 3C .43或8 3D. 3注意本题的多解性.答案 C解析 在△ABC 中,由余弦定理可得AC 2=42=(43)2+BC 2-2×43BC cos30°, 解得BC =4或BC =8.当BC =4时,AC =BC ,∠B =∠A =30°,△ABC 为等腰三角形,∠C =120°, △ABC 的面积为12AB ·BC sin B =12×43×4×12=4 3.当BC =8时,△ABC 的面积为12AB ·BC sin B =12×43×8×12=83,故选C.方法技巧正、余弦定理在解三角形中的应用技巧1.已知两边和一边的对角或已知两角和一边都能用正弦定理解三角形,正弦定理的形式多样,其中a =2R sin A ,b =2R sin B ,c =2R sin C 能够实现边角互化.见典例1.2.已知两边和它们的夹角、已知两边和一边的对角或已知三边都能直接运用余弦定理解三角形.见典例2.3.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.见典例2.冲关针对训练1.(2017·河西五市联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(b -a )sin A =(b -c )(sin B +sin C ),则角C 等于( )A.π3 B.π6 C.π4 D.2π3答案 A解析 由题意,得(b -a )a =(b -c )(b +c ),∴ab =a 2+b 2-c 2,∴cos C =a 2+b 2-c 22ab =12,∴C =π3,故选A.2.(2018·山东师大附中模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知cos2A =-13,c =3,sin A =6sin C .(1)求a 的值;(2)若角A 为锐角,求b 的值及△ABC 的面积.解 (1)在△ABC 中,c =3,sin A =6sin C ,由正弦定理asin A=csin C,得a =6·c=6×3=3 2.(2)由cos2A =1-2sin 2A =-13得,sin 2A =23,由0<A <π2,得sin A =63,则cos A =1-sin 2A =33. 由余弦定理a 2=b 2+c 2-2bc cos A , 化简,得b 2-2b -15=0, 解得b =5(b =-3舍去).所以S △ABC =12bc sin A =12×5×3×63=522.题型2 利用正、余弦定理判断三角形的形状典例 (2017·陕西模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定用边角互化法.答案 B解析 ∵b cos C +c cos B =a sin A ,由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又sin A >0,∴sin A =1,∴A =π2,故△ABC 为直角三角形.故选B.[条件探究1] 将典例条件变为“若2sin A cos B =sin C ”,那么△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等边三角形答案 B解析 解法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .故选B. 解法二:由正弦定理得2a cos B =c ,由余弦定理得2a ·a 2+c 2-b 22ac=c ⇒a 2=b 2⇒a =b .故选B.[条件探究2] 将典例条件变为“若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13”,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 答案 C解析 在△ABC 中,sin A ∶sin B ∶sin C =5∶11∶13, ∴a ∶b ∶c =5∶11∶13,故设a =5k ,b =11k ,c =13k (k >0),由余弦定理可得cos C =a 2+b 2-c 22ab =25k 2+121k 2-169k 22×5×11k 2=-23110<0, 又∵C ∈(0,π),∴C ∈⎝ ⎛⎭⎪⎫π2,π,∴△ABC 为钝角三角形.故选C.[条件探究3] 将典例条件变为“若b cos B +c cos C =a cos A ”,试判断三角形的形状. 解 由已知得b ·a 2+c 2-b 22ac +c ·a 2+b 2-c 22ab =a ·b 2+c 2-a 22bc,∴b 2(a 2+c 2-b 2)+c 2(a 2+b 2-c 2)=a 2(b 2+c 2-a 2). ∴(a 2+c 2-b 2)(b 2+a 2-c 2)=0.∴a 2+c 2=b 2或b 2+a 2=c 2,即B =π2或C =π2.∴△ABC 为直角三角形. 方法技巧判定三角形形状的两种常用途径提醒:“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.冲关针对训练在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状.解 (1)由2a sin A =(2b -c )sin B +(2c -b )sin C 及正弦定理,得2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12,∵0°<A <180°,∴A =60°. (2)∵A +B +C =180°, ∴B +C =180°-60°=120°.由sin B +sin C =3,得sin B +sin(120°-B )=3, ∴sin B +sin120°cos B -cos120°sin B = 3. ∴32sin B +32cos B =3,即sin(B +30°)=1. ∵0°<B <120°,∴30°<B +30°<150°. ∴B +30°=90°,即B =60°.∴A =B =C =60°,∴△ABC 为等边三角形.题型3 与三角形有关的最值角度1 与三角形边长有关的最值典例 (2017·杏花岭区模拟)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =b cos C +33c sin B . (1)求B ;(2)若b =2,求ac 的最大值.本题采用转化法.解 (1)在△ABC 中,∵a =b cos C +33c sin B , ∴sin A =sin B cos C +33sin C sin B , ∴sin A =sin(B +C )=sin B cos C +33sin C sin B , 化为cos B sin C =33sin C sin B ,sin C ≠0, 可得tan B =3,B ∈(0,π),∴B =π3.(2)由正弦定理得b sin B =2R =43,令y =ac =2R sin A ·2R sin C =163sin A sin C=163sin A sin ⎝ ⎛⎭⎪⎫2π3-A =83sin ⎝ ⎛⎭⎪⎫2A -π6+43. ∵0<A <π2,0<2π3-A <π2,∴π6<A <π2.故π6<2A -π6<5π6,∴sin ⎝⎛⎭⎪⎫2A -π6∈⎝ ⎛⎦⎥⎤12,1,∴y ∈⎝ ⎛⎦⎥⎤83,4.∴ac 的最大值为4.角度2 与三角形内角有关的最值典例 (2017·庄河市期末)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2.(1)若f (1)=0,且B -C =π3,求角C 的大小;(2)若f (2)=0,求角C 的取值范围.本题采用重要不等式法.解 (1)由f (1)=0,得a 2-a 2+b 2-4c 2=0, ∴b =2c .又由正弦定理,得sin B =2sin C , ∵B -C =π3,∴sin ⎝ ⎛⎭⎪⎫π3+C =2sin C , 整理得3sin C =cos C ,∴tan C =33. ∵角C 是三角形的内角,∴C =π6.(2)∵f (2)=0,∴4a 2-2a 2+2b 2-4c 2=0,即a 2+b 2-2c 2=0,由余弦定理,得cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12(当且仅当a =b 时取等号).又∵余弦函数在⎝⎛⎭⎪⎫0,π2上递减,C 是锐角, ∴0<C ≤π3.方法技巧求与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角的取值范围、函数值域的求法求解范围即可.冲关针对训练(2018·绵阳检测)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x4,记f (x )=m ·n .(1)若f (x )=1,求cos ⎝⎛⎭⎪⎫2π3-x 的值;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.解 (1)f (x )=m ·n =3sin x 4cos x4+cos 2x4=32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12. 因为f (x )=1,所以sin ⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=-12. (2)因为(2a -c )cos B =b cos C由正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B -sin C cos B =sin B cos C , 所以2sin A cos B =sin(B +C ),因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0, 所以cos B =12,B =π3,所以0<A <2π3,所以π6<A 2+π6<π2,12<sin ⎝ ⎛⎭⎪⎫A 2+π6<1. 又因为f (x )=m ·n =sin ⎝ ⎛⎭⎪⎫x 2+π6+12,所以f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12,故函数f (A )的取值范围是⎝ ⎛⎭⎪⎫1,32.1.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A 答案 A解析 ∵等式右边=sin A cos C +(sin A cos C +cos A sin C )=sin A cos C +sin(A +C )=sin A cos C +sin B ,等式左边=sin B +2sin B cos C , ∴sin B +2sin B cos C =sin A cos C +sin B . 由cos C >0,得sin A =2sin B . 根据正弦定理,得a =2b .故选A.2.(2018·南阳模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =________.答案π6解析 由正弦定理,得sin B (sin A cos C +sin C cos A )=12sin B ,即sin B sin(A +C )=12sin B ,因为sin B ≠0,所以sin B =12,所以B =π6或5π6,又因为a >b ,故B =π6.3.(2018·沈阳模拟)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )·sin C .若a =3,则b 2+c 2的取值范围是________.答案 5<b 2+c 2≤6解析 由正弦定理,可得(a -b )·(a +b )=(c -b )·c ,即b 2+c 2-a 2=bc ,cos A =b 2+c 2-a 22bc =12,又A ∈⎝⎛⎭⎪⎫0,π2,∴A =π3.∵b sin B =c sin C =3sinπ3=2, ∴b 2+c 2=4(sin 2B +sin 2C )=4[sin 2B +sin 2(A +B )]=4⎣⎢⎡⎦⎥⎤1-cos2B 2+1-cos2(A +B )2=3sin2B -cos2B +4=2sin ⎝ ⎛⎭⎪⎫2B -π6+4. ∵△ABC 是锐角三角形,且A =π3,∴B ∈⎝ ⎛⎭⎪⎫π6,π2,即2B -π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴12<sin ⎝⎛⎭⎪⎫2B -π6≤1,∴5<b 2+c 2≤6.4.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解 (1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12,所以B +C =2π3,故A =π3.由题意得12bc sin A =a23sin A ,a =3,所以bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =33. 故△ABC 的周长为3+33.[重点保分 两级优选练]A 级一、选择题1.(2017·长沙模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c =( )A .1B .2C .4D .6 答案 C解析 a 2=c 2+b 2-2cb cos A ⇒13=c 2+9-6c cos60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).故选C.2.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若∠C =120°,c =2a ,则( ) A .a >b B .a <b C .a =bD .a 与b 的大小关系不能确定 答案 A解析 据题意由余弦定理可得a 2+b 2-2ab cos120°=c 2=(2a )2,化简整理得a 2=b 2+ab ,变形得a 2-b 2=(a +b )(a -b )=ab >0,故有a -b >0,即a >b .故选A.3.(2017·湖南长郡中学六模)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin2A =a sin B ,且c =2b ,则a b等于( )A .2B .3 C. 2 D. 3 答案 A解析 由2b sin2A =a sin B ,得4b sin A cos A =a sin B ,由正弦定理得4sin B sin A cos A =sin A sin B ,∵sin A ≠0,且sin B ≠0,∴cos A =14,由余弦定理得a 2=b 2+4b 2-b 2,∴a 2=4b 2,∴a b=2.故选A.4.(2017·衡水中学调研)在△ABC 中,三边之比a ∶b ∶c =2∶3∶4,则sin A -2sin Bsin2C =( )A .1B .2C .-2 D.12答案 B解析 不妨设a =2,b =3,c =4,故cos C =4+9-162×2×3=-14,故sin A -2sin B sin2C =a -2b2c cos C =2-68×⎝ ⎛⎭⎪⎫-14=2,故选B.5.在△ABC 中,A ,B ,C 是三角形的三个内角,a ,b ,c 是三个内角对应的三边,已知b 2+c 2=a 2+bc .若sin B sin C =34,△ABC 的形状( )A .等边三角形B .不含60°的等腰三角形C .钝角三角形D .直角三角形答案 A解析 在△ABC 中,由余弦定理,可得cos A =b 2+c 2-a 22bc,由已知,得b 2+c 2-a 2=bc ,∴cos A =12.∵0<A <π,故A =π3.∵A +B +C =π,A =π3,∴C =2π3-B .由sin B sin C =34,得sin B sin ⎝ ⎛⎭⎪⎫2π3-B =34.即sin B ⎝ ⎛⎭⎪⎫sin 2π3cos B -cos 2π3sin B =34.32sin B cos B +12sin 2B =34, 34sin2B +14(1-cos2B )=34, 32sin2B -12cos2B =1,∴sin ⎝ ⎛⎭⎪⎫2B -π6=1.又∵-π6<2B -π6<7π6,∴2B -π6=π2,即B =π3.∴C =π3,也就是△ABC 为等边三角形.故选A.6.(2014·江西高考)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932 C.332 D .3 3答案 C解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6.① ∵C =π3,∴由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332, 故选C.7.(2018·上海杨浦质量调研)设锐角△ABC 的三内角A ,B ,C 所对边的边长分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( )A .(2,3)B .(1,3)C .(2,2)D .(0,2) 答案 A解析 由a sin A =b sin B =bsin2A ,得b =2cos A .π2<A +B =3A <π,从而π6<A <π3. 又2A <π2,所以A <π4,所以π6<A <π4,22<cos A <32,所以2<b < 3.故选A.8.(2014·全国卷Ⅱ)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1 答案 B解析 S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B=45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.9.(2018·辽宁五校第一次联考)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若直线bx +y cos A +cos B =0与ax +y cos B +cos A =0平行,则△ABC 一定是( )A .锐角三角形B .等腰三角形C .直角三角形D .等腰或者直角三角形 答案 C解析 由两直线平行可得b cos B -a cos A =0,由正弦定理可知sin B cos B -sin A cos A =0,即12sin2A =12sin2B ,又A 、B ∈(0,π),且A +B ∈(0,π),所以2A =2B 或2A +2B =π,即A =B 或A +B =π2.若A =B ,则a =b ,cos A =cos B ,此时两直线重合,不符合题意,舍去,故A +B =π2,则△ABC 是直角三角形,故选C.10.(2017·武昌调研)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2b sin C ,则tan A +tan B +tan C 的最小值是( )A .4B .3 3C .8D .6 3 答案 C解析 a =2b sin C ⇒sin A =2sin B sin C ⇒sin(B +C )=2sin B sin C ⇒tan B +tan C =2tan B tan C ,又根据三角形中的三角恒等式tan A +tan B +tan C =tan A tan B tan C (注:tan A =tan(π-B -C )=-tan(B +C )=-tan B +tan C 1-tan B tan C,即tan A +tan B +tan C =tan A tan B tan C )⇒tan B tan C =tan Atan A -2,∴tan A tan B tan C =tan A ·tan A tan A -2=m 2m -2(tan A =m ),令m -2=t ⇒(t +2)2t =t +4t +4≥8,当且仅当t =4t,即t =2,tan A =4时,取等号.故选C.二、填空题11.(2015·重庆高考)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.答案 4解析 由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4. 12.(2018·河北唐山一模)在△ABC 中,角A ,B ,C 的对边a ,b ,c 成等差数列,且A -C =90°,则cos B =________.答案 34解析 ∵a ,b ,c 成等差数列,∴2b =a +c . ∴2sin B =sin A +sin C .∵A -C =90°,∴2sin B =sin(90°+C )+sin C . ∴2sin B =cos C +sin C . ∴2sin B =2sin(C +45°).①∵A +B +C =180°且A -C =90°,∴C =45°-B2,代入①式中,2sin B =2sin ⎝⎛⎭⎪⎫90°-B 2.∴2sin B =2cos B2.∴4sin B 2cos B 2=2cos B2.∴sin B 2=24.∴cos B =1-2sin 2B 2=1-14=34. 13.(2018·沈阳监测)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________.答案 8解析 由题意得4×12bc sin A =a 2-b 2-c 2+2bc .又a 2=b 2+c 2-2bc cos A ,代入上式得2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ⎝⎛⎭⎪⎫A +π4=1,又0<A <π,∴π4<A +π4<5π4,∴A +π4=3π4,∴A =π2,S =12bc sin A =12bc ,又b +c =8≥2bc ,当且仅当b =c 时取“=”,∴bc ≤16, ∴S 的最大值为8.14.(2017·浙江高考)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示,则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则cos ∠ABC =14,sin ∠ABC =154.所以S △BDC =12BC ·BD ·sin∠DBC=12×2×2×154=152.因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD22BD ·BC=8-CD28,所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104. B 级三、解答题15.(2018·郑州质检)已知△ABC 的外接圆直径为433,角A ,B ,C 所对的边分别为a ,b ,c ,C =60°.(1)求a +b +csin A +sin B +sin C的值;(2)若a +b =ab ,求△ABC 的面积.解 (1)因为a sin A =b sin B =c sin C =2R =433,所以a =433sin A ,b =433sin B ,c =433sin C .所以a +b +c sin A +sin B +sin C =433(sin A +sin B +sin C )sin A +sin B +sin C =433.(2)由c =433sin C ,得c =433×32=2,c 2=a 2+b 2-2ab cos C ,即4=a 2+b 2-ab =(a +b )2-3ab ,又a +b =ab ,所以(ab )2-3ab -4=0,解得ab =4或ab =-1(舍去),所以S △ABC =12ab sin C =12×4×32= 3.16.(2017·湖北四校联考)已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足sin 2A +sin A sinB -6sin 2B =0.(1)求a b的值;(2)若cos C =34,求sin B 的值.解 (1)因为sin 2A +sin A sinB -6sin 2B =0,sin B ≠0, 所以⎝⎛⎭⎪⎫sin A sin B 2+sin A sin B-6=0,得sin A sin B =2或sin A sin B =-3(舍去).由正弦定理得a b =sin Asin B=2.(2)由余弦定理得cos C =a 2+b 2-c 22ab =34.①将a b=2,即a =2b 代入①,得5b 2-c 2=3b 2, 得c =2b .由余弦定理cos B =a 2+c 2-b 22ac,得cos B =(2b )2+(2b )2-b 22×2b ×2b =528,则sin B =1-cos 2B =148. 17.(2018·海淀区模拟)在△ABC 中,角A ,B ,C 所对的边长分别是a ,b ,c .满足2a cos C +c cos A =b .(1)求角C 的大小;(2)求sin A cos B +sin B 的最大值. 解 (1)由正弦定理及2a cos C +c cos A =b , 得2sin A cos C +sin C cos A =sin B . 在△ABC 中,A +B +C =π,∴A +C =π-B ,即sin(A +C )=sin B .∴2sin A cos C +sin C cos A =sin(A +C )+sin A cos C =sin B +sin A cos C =sin B , ∴sin A cos C =0, 又∵0<A <π,0<C <π, ∴sin A >0. ∴cos C =0, ∴C =π2.(2)由(1)得C =π2,∴A +B =π2,即A =π2-B .∵sin A cos B +sin B =cos 2B +sin B =-sin 2B +sin B +1=-⎝ ⎛⎭⎪⎫sin B -122+54.∵0<B <π2,∴当sin B =12,即B =π6时,sin A cos B +sin B 取得最大值54.18.已知等腰三角形ABC 满足AB =AC ,3BC =2AB ,点D 为BC 边上一点且AD =BD . (1)求tan ∠ADB 的值; (2)若CD =33,求S △ABC .解 (1)如图,设AB =AC =a ,AD =BD =b ,由3BC =2AB 得,BC =233a .在△ABC 中,由余弦定理得,cos ∠ABC =AB 2+BC 2-AC22AB ·BC=a 2+⎝⎛⎭⎪⎫23a 32-a 22a ·233a=33, ∴∠ABC 是锐角,则sin ∠ABC =1-cos 2∠ABC =63. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2AB ·BD cos ∠ABD , 得b 2=a 2+b 2-233ab ,解得a =233b .由正弦定理AD sin ∠ABD =AB sin ∠ADB ,得b 63=a sin ∠ADB,解得sin ∠ADB =223,又2b 2>a 2,∴∠ADB 为锐角,∴cos ∠ADB =1-sin 2∠ADB =13,tan ∠ADB =2 2.(2)由已知可得 3⎝ ⎛⎭⎪⎫b +33=2a ,① 由(1)可知a =233b ,②联立①②得a =2,b = 3.过A 作AH ⊥BC 于H ,则H 为BC 的中点,易求得DH =33. 则tan ∠ADB =AH33=2 2.∴AH =263,∴S △ABC =12×433×263=423.。
三角函数与解三角形专题测试及解答
![三角函数与解三角形专题测试及解答](https://img.taocdn.com/s3/m/54506331964bcf84b9d57b43.png)
三角函数、解三角形专题测试(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.cos(-17π4)-sin(-17π4)的值是 ( ) A.2 B .- 2 C .0 D.22解析:原式=cos(-4π-π4)-sin(-4π-π4)=cos(-π4)-sin(-π4)=cos π4+sin π4= 2.答案:A 2.已知sin α=2m -5m +1,cos α=-mm +1,且α为第二象限角,则m 的允许值为( ) A.52<m <6 B .-6<m <52 C .m =4 D .m =4或m =32 解析:由sin 2α+cos 2α=1得,(2m -5m +1)2+(-m m +1)2=1,∴m =4或32,又sin α>0,cos α<0,把m 的值代入检验得,m =4. 答案:C3.已知sin(x +π4)=-35,则sin2x 的值等于 ( )A .-725 B.725 C .-1825 D.1825解析:sin(x +π4)=22(sin x +cos x )=-35,所以sin x +cos x =-325,所以(sin x +cos x )2=1+sin2x =1825,故sin2x =-725.答案:A4.设a =sin15°+cos15°,b =sin17°+cos17°,则下列各式中正确的是 ( ) A .a <a 2+b 22<b B .a <b <a 2+b 22C .b <a 2+b 22<aD .b <a <a 2+b 22解析:a =2sin(15°+45°)=2sin60°, b =2sin(17°+45°)=2sin62°,b >a .a 2+b 22=sin 260°+sin 262°>2sin60°sin62°=3sin62°, ∴a 2+b 22>b >a .答案:B5.(2010·惠州模拟)将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位后,得到函数y =sin(x -π6)的图象,则φ等于 ( )A.π6B.11π6C.7π6D.5π6解析:依题意得y =sin(x -π6)=sin(x -π6+2π)=sin(x +11π6),将y =sin x 的图象向左平移11π6个单位后得到y =sin(x +11π6)的图象,即y =sin(x -π6)的图象. 答案:B6.在△ABC 中,角A ,B 均为锐角,且cos A >sin B ,则△ABC 的形状是 ( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 解析:cos A =sin(π2-A )>sin B ,π2-A ,B 都是锐角,则π2-A >B ,A +B <π2,C >π2.答案:C7.给定性质:①最小正周期为π;②图象关于直线x =π3对称.则下列四个函数中,同时具有性质①②的是 ( ) A .y =sin(x 2+π6) B .y =sin(2x +π6)C .y =sin|x |D .y =sin(2x -π6)解析:∵T =2πω=π,∴ω=2.对于选项D ,又2×π3-π6=π2,所以x =π3为对称轴.答案:D8.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A.922B.924C.928 D .9 2解析:由余弦定理得:三角形第三边长为22+32-2×2×3×13=3,且第三边所对角的正弦值为 211()3=223,所以2R =3223⇒R =928.答案:C9.在△ABC 中,角A ,B 所对的边长为a ,b ,则“a =b ”是“a cos A =b cos B ”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件解析:a =b ⇒A =B ⇒a cos A =b cos B ,条件是充分的;a cos A =b cos B ⇒sin A cos A =sin B cos B ⇒sin2A =sin2B ⇒2A =2B 或2A +2B =π,即A =B 或A +B =π2,故条件是不必要的. 答案:A10.已知函数f (x )=a sin2x +cos2x (a ∈R)图象的一条对称轴方程为x =π12,则a 的值为( )A.12B. 3C.33 D .2 解析:函数y =sin x 的对称轴方程为x =kπ+π2,k ∈Z ,f (x )=a 2+1sin(2x +φ),其中tan φ=1a ,故函数f (x ) 的对称轴方程为2x +φ=kπ+π2,k ∈Z ,而x =π12是其一条对称轴方程,所以2×π12+φ=kπ+π2,k ∈Z ,解得φ=kπ+π3,k ∈Z ,故tan φ=1a =tan(kπ+π3)=3,所以a =33. 答案:C11.已知函数f (x )的部分图象如图所示,则f (x )的解析式可能为 ( )A .f (x )=2cos(x 2-π3)B .f (x )=2cos(4x +π4)C .f (x )=2sin(x 2-π6)D .f (x )=2sin(4x +π4)解析:设函数f (x )=A sin(ωx +φ),由函数的最大值为2知A =2,又由函数图象知该函数的周期T =4×(5π3-2π3)=4π,所以ω=12,将点(0,1)代入得φ=π6,所以f (x )=2sin(12x +π6)=2cos(12x -π3).答案:A12.(2010·抚顺模拟)当0<x <π2时,函数f (x )=1+cos2x +8sin 2x sin2x的最小值为 ( )A .2B .2 3C .4D .4 3解析:f (x )=1+cos2x +8sin 2x sin2x =2cos 2x +8sin 2x 2sin x cos x =cos x sin x +4sin xcos x ≥2cos x sin x ·4sin xcos x=4,当且仅当cos x sin x =4sin x cos x ,即tan x =12时,取“=”,∵0<x <π2,∴存在x 使tan x =12,这时f (x )min =4.答案:C二、填空题(本大题共4小题,每小题4分,共16分,将答案填写在题中的横线上) 13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,C =75°,a =4,则b =________.解析:易知A =45°,由正弦定理a sin A =b sin B 得4sin45°=b sin60°,解得b =2 6.答案:2 6 14.计算:cos10°+3sin10°1-cos80°=________.解析:cos10°+3sin10°1-cos80°=2cos(10°-60°)2sin 240°=2cos50°2sin40°= 2. 答案:215.在△ABC 中,已知tan A =3tan B ,则tan(A -B )的最大值为________,此时角A 的大小为________.解析:由于tan(A -B )=tan A -tan B 1+tan A tan B =3tan B -tan B1+3tan B ·tan B =2tan B 1+3tan 2B ≤33.当且仅当1=3tan B 时取“=”号,则tan B =33⇒tan A =3⇒A =60°. 答案:3360°16.如图是函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π),x ∈R 的部分图象,则下列命题中,正确命题的序号为________. ①函数f (x )的最小正周期为π2;②函数f (x )的振幅为23;③函数f (x )的一条对称轴方程为x =7π12;④函数f (x )的单调递增区间为[π12,7π12];⑤函数的解析式为f (x )=3sin(2x -2π3). 解析:由图象可知,函数f (x )的最小正周期为(5π6-π3)×2=π,故①不正确;函数f (x )的振幅为3,故②不正确;函数f (x )的一条对称轴方程为x =5π6+π32=7π12,故③正确;④不全面,函数f (x )的单调递增区间应为[π12+2kπ,7π12+2kπ],k ∈Z ;由3sin(2×7π12+φ)=3得2×7π12+φ=π2+2kπ,k ∈Z ,即φ=2kπ-2π3,k ∈Z ,∵-π<φ<π,故k 取0,从而φ=-2π3,故f (x )=3sin(2x -2π3).答案:③⑤三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知tan(α+π4)=-3,α∈(0,π2).(1)求tan α的值; (2)求sin(2α-π3)的值.解:(1)由tan(α+π4)=-3可得tan α+11-tan α=-3.解得tan α=2.(2)由tan α=2,α∈(0,π2),可得sin α=255,cos α=55.因此sin2α=2sin αcos α=45,cos2α=1-2sin 2α=-35,sin(2α-π3)=sin2αcos π3-cos2αsin π3=45×12+35×32=4+3310.18.(本小题满分12分)已知函数f (x )=2sin x cos x +3(2cos 2x -1).(1)将函数f (x )化为A sin(ωx +φ)(ω>0,|φ|<π2)的形式,填写下表,并画出函数f (x )在区间[-16π,56π]上的图象;x ωx +φ 0 π2 π 32π 2π f (x )(2)求函数f (x )的单调减区间. 解:(1)f (x )=2sin x cos x +3(2cos 2x -1) =sin2x +3cos2x =2sin(2x +π3).x -π6 π12 π3 7π12 5π6 ωx +φ 0 π2 π 32π 2π f (x )2-2图.(2)由2kπ+π2≤2x +π3≤2kπ+3π2(k ∈Z)得kπ+π12≤x ≤kπ+7π12(k ∈Z),故函数f (x )的单调减区间为[kπ+π12,kπ+7π12](k ∈Z).19.(本小题满分12分)已知函数f (x )=2sin x cos(π2-x )-3sin(π+x )cos x +sin(π2+x )cos x .(1)求函数y =f (x )的最小正周期和最值;(2)指出y =f (x )图象经过怎样的平移变换后得到的图象关于原点对称. 解:(1)f (x )=2sin 2x +3sin x cos x +cos 2x =1+sin 2x +3sin x cos x =1+1-cos2x 2+32sin2x=sin(2x -π6)+32,y =f (x )最小正周期T =π.y =f (x )的最大值为32+1=52,最小值为32-1=12.(2)∵y =32+sin(2x -π6)的图象1232π−−−−−→左移个单位下移个单位y =sin2x 的图象.20.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos A +C 2=33.(1)求cos B 的值;(2)若BC BA ·BC =2,b =22,求a 和c 的值. 解:(1)∵cos A +C 2=33,∴sin B 2=sin(π2-A +C 2)=33,∴cos B =1-2sin 2B 2=13.(2)由BA ·BC =2可得a ·c ·cos B =2,又cos B =13,故ac =6,由b 2=a 2+c 2-2ac cos B 可得a 2+c 2=12, ∴(a -c )2=0,故a =c ,∴a =c = 6.21.(本小题满分12分)如图所示,甲船由A 岛出发向北偏东45°的方向做匀速直线航行,速度为152海里/小时,在甲 船从A 岛出发的同时,乙船从A 岛正南40海里处的B 岛 出发,朝北偏东θ(tan θ=12)的方向作匀速直线航行,速度为105海里/小时.(1)求出发后3小时两船相距多少海里?(2)求两船出发后多长时间距离最近?最近距离为多少海里? 解:以A 为原点,BA 所在直线为y 轴建立如图所示 的平面直角坐标系.设在t 时刻甲、乙两船分别在P (x 1,y 1),Q (x 2,y 2).则⎩⎪⎨⎪⎧x 1=152t cos45°=15t y 1=x 1=15t , 由tan θ=12可得,cos θ=255,sin θ=55, 故⎩⎪⎨⎪⎧x 2=105t sin θ=10t ,y 2=105t cos θ-40=20t -40. (1)令t =3,P 、Q 两点的坐标分别为(45,45),(30,20), |PQ |=(45-30)2+(45-20)2=850=534.即出发后3小时两船相距534海里. (2)由(1)的解法过程易知:|PQ |=(x 2-x 1)2+(y 2-y 1)2=(10t -15t )2+(20t -40-15t )2 =50t 2-400t +1 600 =50(t -4)2+800≥202,∴当且仅当t =4时,|PQ |取得最小值20 2.即两船出发后4小时时,相距202海里为两船的最近距离. 22.(本小题满分14分)已知函数f (x )=2cos x sin(x +π3)-32.(1)求函数f (x )的最小正周期T ;(2)若△ABC 的三边a ,b ,c 满足b 2=ac ,且边b 所对角为B ,试求cos B 的取值范围,并确定此时f (B )的最大值. 解:(1)f (x )=2cos x ·sin(x +π3)-32=2cos x (sin x cos π3+cos x sin π3)-32=2cos x (12sin x +32cos x )-32=sin x cos x +3·cos 2x -32=12sin2x +3· 1+cos2x 2-32 =12sin2x +32cos2x =sin(2x +π3).∴T =2π|ω|=2π2=π. (2)由余弦定理cos B =a 2+c 2-b 22ac 得,cos B =a 2+c 2-ac2ac=a 2+c 22ac -12≥2ac 2ac -12=12,∴12≤cos B <1,而0<B <π,∴0<B ≤π3.函数f (B )=sin(2B +π3),∵π3<2B +π3≤π,当2B +π3=π2,即B=π时,f(B)max=1.12。
2019年中考数学复习第5章图形的相似与解直角三角形第20课时锐角三角函数与解直角三角形精讲试题word版本
![2019年中考数学复习第5章图形的相似与解直角三角形第20课时锐角三角函数与解直角三角形精讲试题word版本](https://img.taocdn.com/s3/m/9554bc60f12d2af90342e61c.png)
第20课时锐角三角函数与解直角三角形题号,30三角形一般与圆综合考查毕节中考真题试做30°,45°,60°角的三角函数值1.(2018·毕节中考)计算:⎝⎛⎭⎪⎫-13-1-12+3 tan 30°-(π-3)0+||1-3.解:原式=(-3)-23+3×33-1+(3-1)=-3-23+3-1+3-1=-5.解直角三角形2.(2017·毕节中考)如图,在▱ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sin D=45,求AF的长.(1)证明:∵四边形ABCD是平行四边形,∴AB ∥CD,AD ∥BC,AD =BC. ∴∠D +∠C =180°,∠ABF =∠BEC. ∵∠AFB +∠AFE =180°,∠AFE =∠D, ∴∠C =∠AFB. ∴△ABF ∽△BEC ; (2)解:∵AE ⊥DC,AB ∥DC, ∴∠AED =∠BAE =90°.在Rt △ADE 中,AE =AD·sin D =5×45=4.在Rt △ABE 中,根据勾股定理,得 BE =AE2+AB2=42+82=4 5. ∵△ABF ∽△BEC, ∴AF BC =AB BE , 即AF 5=845,∴AF =2 5.毕节中考考点梳理锐角三角函数的概念特殊角的三角函数值\ 锐角α α解直角三角形1.(2018·柳州中考)如图,在Rt △ABC 中,∠C =90°,BC =4,AC =3,则sin B =ACAB =( A )A .35B .45C .37D .34(第1题图)(第3题图)2.若∠A+∠B =90°,则下列各式成立的是( D )A .sin A =cos AB .tan A +tan B =1C .sin A =sin BD .sin A =cos B3.(2018·广州中考)如图,旗杆高AB =8 m ,某一时刻,旗杆影子长BC =16 m ,则tan C =__12__.4.(2018·滨州中考)在△ABC 中,∠C =90°,若tan A =12,则sin B =55.(2018·贵阳中考)如图①,在Rt △ABC 中,以下是小亮探究a sin A 与bsin B之间关系的方法:∵sin A =a c ,sin B =bc,∴c =a sin A ,c =bsin B ,∴a sin A =b sin B. 根据你掌握的三角函数知识.在图②的锐角△ABC 中,探究a sin A ,b sin B ,c sin C之间的关系,并写出探究过程.解:a sin A =b sin B =c sin C .证明如下:过A 作AD ⊥BC 于点D,过B 作BE ⊥AC 于点E.在Rt △ABD 中,sin B =ADc ,即AD =c si n B.在Rt △ADC 中,sin C =ADb ,即AD =b sin C.∴c sin B =b sin C,即b sin B =csin C .同理可得a sin A =csin C ,则a sin A =b sin B =csin C.6.(2018·遵义中考)如图,吊车在水平地面上吊起货物时,吊绳BC 与地面保持垂直,吊臂AB 与水平线的夹角为64°,吊臂底部A 距地面1.5 m .(计算结果精确到0.1 m ,参考数据sin 64°≈0.90,cos 64°≈0.44,tan 64°≈2.05)(1)当吊臂底部A 与货物的水平距离AC 为5 m 时,吊臂AB 的长为______m ; (2)如果该吊车吊臂的最大长度AD 为20 m ,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)解:(1)在Rt △ABC 中,∠BAC =64°,AC =5, ∴AB =ACcos 64°≈5÷0.44≈11.4.∴吊臂AB 的长为11.4 m .故应填:11.4; (2)过点D 作DH ⊥地面于点H,交水平线于点E.在Rt △ADE 中,AD =20,∠DAE =64°,EH =1.5,∴DE =sin 64°×AD ≈20×0.90=18.0,即DH =DE +EH ≈18.0+1.5=19.5.答:从地面上吊起货物的最大高度是19.5 m .中考典题精讲精练30°,45°,60°角的三角函数值例1 (2018·广安中考)计算:⎝ ⎛⎭⎪⎫13-2+|3-2|-12+6 cos 30°+(π-3.14)0.【解析】对照30°,45°,60°角的三角函数值表,然后按照实数的运算方法计算出结果.【答案】解:原式=9+2-3-23+6×32+1=12.解直角三角形例2 (2018·潍坊中考)如图,点M 是正方形ABCD 边CD 上一点,连接AM,作DE ⊥AM 于点E,BF ⊥AM 于点F,连接BE.(1)求证:AE =BF ;(2)已知AF =2,四边形ABED 的面积为24,求∠EBF 的正弦值.【解析】(1)由正方形的性质,可得BA =AD,∠BAD =90°.由DE ⊥AM,BF ⊥AM,可得∠ABF =∠DAE.对于△ABF 和△DAE,可由AAS 得到△ABF ≌△DAE,结论可证;(2)设AE =x,由(1)中结论可得BF =x,DE =AF =2.利用S 四边形ABED=S △ABE +S △ADE 可列方程求出x 得到EF 的长.在Rt △BFE 中利用勾股定理可求出BE 的长.最后利用正弦的定义可求结果.【答案】(1)证明:∵四边形ABCD 为正方形, ∴BA =AD,∠BAD =90°. ∵DE ⊥AM 于点E,BF ⊥AM 于点F, ∴∠AFB =∠DEA =90°,∴∠ABF +∠BAF =90°,∠DAE +∠BAF =90°, ∴∠ABF =∠DAE. 在△ABF 和△DAE 中, ⎩⎪⎨⎪⎧∠AFB=∠DEA,∠ABF=∠DAE,AB =DA ,∴△ABF ≌△DAE(AAS ),∴BF =AE ; (2)解:设AE =x,则BF =x,DE =AF =2. ∵四边形ABED 的面积为24, ∴12·x·x +12·x·2=24, 解得x 1=6,x 2=-8(舍去),∴EF =x -2=4. 在Rt △BEF 中,BE =42+62=213, ∴sin ∠EBF =EF BE =4213=21313.解直角三角形的应用例3 (2018·烟台中考)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速.如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40 km /h .数学实践活动小组设计了如下活动:在l 上确定A,B 两点,并在AB 路段进行区间测速.在l 外取一点P,作PC ⊥l,垂足为点C.测得PC =30 m ,∠APC =71°,∠BPC =35°.上午9时测得一汽车从点A 到点B 用时6 s ,请你用所学的数学知识说明该车是否超速.(参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70,sin 71°≈0.95,cos 71°≈0.33,tan 71°≈2.90)【解析】先根据角的正切分别得出AC =PC tan ∠APC,BC =PC tan ∠BPC,再根据线段的和与差得出AB 的长,继而根据速度=路程时间,求得该车通过AB 路段的车速.若该车通过AB 路段的车速超过40 km /h ,则该车超速;否则,该车没有超速.【答案】解:在Rt △APC 中,AC =PC tan ∠APC =30 tan 71°≈30×2.90=87. 在Rt △BPC 中,BC =PC tan ∠BPC =30 tan 35°≈30×0.70=21, 则AB =AC -BC =87-21=66, ∴该汽车的实际速度为666=11(m /s ).又∵40 km /h ≈11.1 m /s ,11<11.1, ∴该车没有超速.1.计算:|-2|-(2 019+2)0+⎝ ⎛⎭⎪⎫12-1+2 cos 30°-27.解:原式=2-1+2+2×32-33=3+3-3 3 =3-2 3.2.如图,在△ABC 中,∠BAC =90°,AB =AC,点D 为边AC 的中点,DE ⊥BC 于点E,连接BD,则tan ∠DBC 的值为( A )A .13B .2-1C .2- 3D .143.(2018·扬州中考)如图,在平行四边形ABCD 中,DB =DA,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E,连接AE.(1)求证:四边形AEBD 是菱形;(2)若DC =10,tan ∠DCB =3,求菱形AEBD 的面积. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥CE,∴∠DAF =∠EBF. ∵∠AFD =∠BFE,AF =FB, ∴△AFD ≌△BFE,∴AD =BE.∵AD ∥EB,∴四边形AEBD 是平行四边形. 又∵DB =DA,∴四边形AEBD 是菱形; (2)解:∵四边形ABCD 是平行四边形, ∴CD =AB =10,AB ∥CD, ∴∠ABE =∠DCB,∴tan ∠ABE =tan ∠DCB =3. ∵四边形AEBD 是菱形, ∴AB ⊥DE,AF =FB,EF =DF, ∴tan ∠ABE =EFBF =3.∵BF =102,∴EF =3102,∴DE =310. ∴S 菱形AEBD =12AB·D E =1210×310=15.4.如图,一块三角形空地上种植草皮绿化,已知AB =20 m ,AC =30 m ,∠A =150°,草皮的售价为a 元/m 2,则购买草皮至少需要( C )A .450a 元B .225a 元C .150a 元D .300a 元(第4题图)(第5题图)5.一个公共房门前的台阶高出地面 1.2 m ,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( B )A .斜坡AB 的坡度是10° B .斜坡AB 的坡度是tan 10°C .AC =1.2 tan 10° mD.AB=1.2cos 10°m6.(2018·重庆中考A卷)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7 m,升旗台坡面CD的坡度i=1∶0.75,坡长CD=2 m,若旗杆底部到坡面CD的水平距离BC=1 m,则旗杆AB的高度约为(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6)( B )A.12.6 mB.13.1 mC.14.7 mD.16.3 m。
2019年高考数学试题分类汇编三角函数附答案详解
![2019年高考数学试题分类汇编三角函数附答案详解](https://img.taocdn.com/s3/m/83d89382c77da26925c5b058.png)
2019年高考数学试题分类汇编三角函数一、选择题.1、(2019年高考全国I 卷文理科5)函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .答案:D解析:因为)()(x f x f -=-,所以)(x f 为奇函数又01)(2>-=πππf ,124412)2(22>+=+=πππππf ,故选D 2、(2019年高考全国I 卷理科11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④C .①④D .①③答案:C解析:由)(|sin |||sin |)sin(|||sin )(x f x x x x x f =+=-+-=-,故①正确;),2(ππ∈x 时,x x x x f sin 2sin sin )(=+=,函数递减,故②错误;],0[π∈x 时,x x x x f sin 2sin sin )(=+=,函数有2个零点,0)()0(==πf f ,而],0[π∈x 时0)()0(=-=πf f ,所以函数有且只有3个零点,故③错误;函数为偶函数,只需讨论0>x ,N k k k x ∈+∈),2,2(πππ时,x x x x f sin 2sin sin )(=+=,最大值为2,N k k k x ∈++∈),22,2(ππππ时,0sin sin )(=-=x x x f ,故函数最大值为2,故④正确。
故选C3、(2019年高考全国I 卷文科7)tan255°= A .-2B .-C .2D .答案:D解析:32)4530tan(75tan )75180tan(255tan +=︒+︒=︒=︒+︒=︒故选D4、(2019年高考全国I 卷文科11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .3答案:A解析:由正弦定理C B b A a sin 4sin sin =-,角化边得2224c b a +=又412)4(cos 2222-=+-+=bc c b c b A ,联立求得6=c b 故选A5、(2019年高考全国II 卷理科4)019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD答案:D 解析:Rr=α则R r α=,代入121223()()M M M R r R r r R +=++得12322)1(1)1(M M ααα+-+=即3254322312)1(33)1(1)1(αααααααα≈+++=+-+=M M所以R M M r 3123=.故答案选D 6、(2019年高考全国II 卷理科9)下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │答案:A解析:将|2cos |)(x x f =的图像变换,“下翻上”,如图可知在区间)2,4(ππ上是增函数.故答案选A 7、(2019年高考全国II 卷理科10,文科11)已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B 5C 3D 5答案:B解析:ααα2cos 212cos 2sin 2=+=,与αααcos sin 22sin =联立求得21tan =α 又)2,0(πα∈,所以55sin =α故答案选B 8、(2019年高考全国II 卷文科8)若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .12答案:A 解析:πππ=-=T T ,4432,又ωπ2=T ,所以2=ω。
全国卷历年高考三角函数及解三角形真题归类分析2019(含答案)
![全国卷历年高考三角函数及解三角形真题归类分析2019(含答案)](https://img.taocdn.com/s3/m/d6a268c0700abb68a982fbd8.png)
全国卷历年高考三角函数及解三角形真题归类分析(2015年-2019年共14套) 三角函数(共20小题)一、三角恒等变换(6题)1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( )(A ) (B (C )12- (D )12【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D.2.(2018年3卷4)若,则A. B. C. D.【解析】,故答案为B.3.(2016年3卷7)若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .4.(2016年2卷9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=( )(A )725 (B )15 (C )15- (D )725-【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .5.(2018年2卷15)已知,,则__________.【解析】:因为,,所以,因此6.(2019年2卷10)已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=( ) A.15B.5C.D.【解析】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin 5α∴=,故选B . 【点评】这类题主要考查三角函数中二倍角公式(几乎必考)、两角和与差公式、诱导公式、同角三角函数基本关系式等三角函数公式,难度以容易、中等为主。
新高考数学(理)之三角函数与解三角形 专题04 三角恒等变换(解析版)
![新高考数学(理)之三角函数与解三角形 专题04 三角恒等变换(解析版)](https://img.taocdn.com/s3/m/122ffd777c1cfad6185fa74d.png)
新高考数学(理)三角函数与平面向量04 三角恒等变换一、具本目标:1.两角和与差的三角函数公式 (1)会用向量的数量积推导出两角差的余弦公式;(2)能利用两角差的余弦公式导出两角差的正弦、正切公式;(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;2.简单的三角恒等变换:能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)3.(1) 已知两角的正余弦,会求和差角的正弦、余弦、正切值. (2) 会求类似于15°,75°,105°等特殊角的正、余弦、正切值. (3) 用和差角的正弦、余弦、正切公式化简求值. (4)逆用和差角的正弦、余弦、正切公式化简求值. (5) 会配凑、变形、拆角等方法进行化简与求值. 二、知识概述:知识点一 两角和与差的正弦、余弦、正切公式两角和与差的正弦公式: ()sin sin cos cos sin α+β=αβ+αβ,()sin sin cos cos sin α-β=αβ-αβ.两角和与差的余弦公式:()cos cos cos sin sin α+β=αβ-αβ, ()cos cos cos sin sin α-β=αβ+αβ. 两角和与差的正切公式:()tan tan tan 1tan tan α+βα+β=-αβ,【考点讲解】()tan tan tan 1tan tan α-βα-β=+αβ.【特别提醒】公式的条件:1. 两角和与差的正弦、余弦公式中的两个角α、β为任意角.2.两角和与差的正切公式中两个角有如下的条件:(),,,.2222k k k k k z ππππα+β≠π+α-β≠π+α≠π+β≠π+∈知识点二 公式的变用1. 两角和与差的正弦公式的逆用与辅助角公式:()22sin cos sin a x b x a b x +=++ϕ(其中φ角所在的象限由a,b 的符号确定,φ的值由tan baϕ=确定),在求最值、化简时起着重要的作用. 2. ()tan tan tan 1tan tan α+βα+β=-αβ变形为()()tan tan tan 1tan tan α+β=α+β-αβ,()tan tan tan 1tan tan α+βα+β=-αβ变形为()tan tan tan tan 1tan α+βαβ=-α+β.()tan tan tan 1tan tan α-βα-β=+αβ变形为()()tan tan tan 1tan tan α-β=α-β+αβ,()tan tan tan 1tan tan α-βα-β=+αβ变形为()tan tan tan tan 1tan α-βαβ=-α-β来使用. 条件为:(),,,.2222k k k k k z ππππα+β≠π+α-β≠π+α≠π+β≠π+∈ 知识点三 二倍角公式: 1.22tan sin 22sin cos 1tan ααααα==+ 2222221tan cos 2cos sin 2cos 112sin 1tan ααααααα-=-=-=-=+ 22tan tan 21tan ααα=-2. 常见变形:(1)22cos 1sin 2αα-=,22cos 1cos 2αα+=(2)()2cos sin 2sin 1ααα+=+,()2cos sin 2sin 1ααα-=-;(3)αα2cos 22cos 1=+,αα2sin 22cos 1=-.3.半角公式:2cos 12sin αα-±=,2cos 12cos αα+±=,αααcos 1cos 12tan+-±=,αααααsin cos 1cos 1sin 2tan-=+=.1.【2019年高考全国Ⅱ卷文理】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=( ) A .15B .55 C .33D .255【解析】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查.2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,5sin 5α∴=,故选B . 【答案】B2.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为( ) A .2B .3C .4D .5【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=,得sin 0x =或cos 1x =,[]0,2πx ∈Q ,0π2πx ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【答案】B3.【2018年高考全国Ⅰ卷文数】已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为 4【真题分析】【解析】本题考查的是二倍角公式及余弦型函数的周期及最值问题.根据题意有()135cos 21(1cos 2)2cos 2222f x x x x =+--+=+,所以函数()f x 的最小正周期为2ππ2T ==,且最大值为()max 35422f x =+=,故选B. 【答案】B4.【2018年高考全国Ⅰ卷】若1sin 3α=,则cos2α=( ) A .89 B .79 C .79- D .89-【解析】本题主要考查二倍角公式及求三角函数的值.2217cos 212sin 12()39αα=-=-⨯=.故选B. 【答案】B5.【2018年高考全国Ⅰ卷文数】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15 B .55 C .255D .1 【解析】本题主要考查任意角的三角函数和三角恒等变換根据条件,可知,,O A B 三点共线,从而得到2b a =,因为22212cos22cos 12131a ⎛⎫=-=⋅-= ⎪+⎝⎭αα,解得215a =,即55a =,所以525a b a a -=-=. 【答案】B6.【2017年高考全国Ⅰ卷文数】已知4sin cos 3αα-=,则sin 2α=( ) A .79-B .29-C .29D .79【解析】()2sin cos 17sin 22sin cos 19ααααα--===--.所以选A. 【答案】A7.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+23172(cos )48x =-++, 1cos 1x -≤≤Q ,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【答案】4-8.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.【解析】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,函数()2sin 2f x x ==1cos 42x -,周期为π2. 【答案】π29.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 . 【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-.πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()2222222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭2222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式22222122==22110⎛⎫⨯+-⨯ ⎪+⎝⎭; 当1tan 3α=-时,上式=22112()1()2233[]=1210()13⨯-+--⨯-+. 综上,π2sin 2.410α⎛⎫+= ⎪⎝⎭ 【答案】21010.【2018年高考全国Ⅰ卷文数】已知5π1tan()45-=α,则tan =α__________. 【解析】本题主要考查三角恒等变换,考查考生的运算求解能力.5πtan tan5πtan 114tan 5π41tan 51tan tan 4ααααα--⎛⎫-=== ⎪+⎝⎭+⋅,解方程得3tan 2=α.故答案为32. 【答案】3211.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【解析】本题主要考查三角恒等变换.因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα所以11sin ,cos 22==αβ, 因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【答案】12-12.【2017年高考江苏卷】若π1tan(),46-=α则tan =α .【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【答案】7513.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+-⎪⎝⎭, 所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数()f x 取得最小值,此时33sin ,sin222x x =-=-, 所以()min 33332222f x ⎛⎫=⨯--=- ⎪ ⎪⎝⎭,故答案是332-.【答案】332-14.【2017年高考全国Ⅱ理数】函数()23sin 3cos 4f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是 . 【解析】本题主要考查的是三角函数式的化简及三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”化简三角函数的解析式的综合考查.()2223131cos 3cos cos 3cos cos 1442f x x x x x x ⎛⎫=-+-=-++=--+ ⎪ ⎪⎝⎭,由自变量的范围:π0,2x ⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,当3cos 2x =时,函数()f x 取得最大值1.【答案】115.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【解析】本题主要考查三角函数及其恒等变换等基础知识.(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=. 又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 2133621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭3π1cos 223x ⎛⎫=-+ ⎪⎝⎭. 因此,函数的值域是33[1,1]22-+. 【答案】(1)π2θ=或3π2;(2)33[1,1]22-+. 16.【2018年高考北京卷文数】已知函数2()sin 3sin cos f x x x x =+.(1)求()f x 的最小正周期; (2)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值. 【解析】本题主要考查二倍角公式、辅助角公式、正弦函数的性质. (1)1cos 23311π1()sin 2sin 2cos 2sin(2)2222262x f x x x x x -=+=-+=-+, 所以()f x 的最小正周期为2ππ2T ==. (2)由(1)知π1()sin(2)62f x x =-+.因为π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--.要使得()f x 在π[,]3m -上的最大值为32,即πsin(2)6x -在π[,]3m -上的最大值为1. 所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.【答案】(1)π;(2)π3.1. sin15°sin105°的值是( ) A .14 B .14-C .34D .34-【解析】本题的考点二倍角的正弦和诱导公式:sin15°sin105°=sin15°cos15°=12sin30°=14,故选A . 【答案】A2.已知sin2α=13,则cos 2(π4α-)=( ) A .34 B .23 C .45 D .56【解析】本题考点二倍角的余弦,三角函数的化简求值.∵sin2α=13,∴cos 2(π4α-)=π11cos 211sin 22232223αα⎛⎫+-+⎪+⎝⎭===.故选B . 【答案】B3.已知sin α=45-,α∈(π,3π2),则tan 2α等于( ) A .-2 B .12 C .12-或2 D .-2或12【解析】∵sin α=45-,α∈(π,3π2),∴cos α=35-,∴tan α=43.∵α∈(π,3π2),∴2α∈(π2,3π4),∴tan 2α<0. tan α=22tan21tan 2αα- =43,即2tan 22α+ 3tan2α-2=0,解得tan2α=-2,或tan2α=12(舍去),故选A .【答案】A【模拟考场】4.设π0,2α⎛⎫∈ ⎪⎝⎭,π0,4β⎛⎫∈ ⎪⎝⎭,且tan α=1sin 2cos 2ββ+,则下列结论中正确的是( ) A .2π4αβ-=B .π24αβ+=C .π4αβ-=D .π4αβ+= 【解析】本题的考点二倍角的余弦,二倍角的正弦..tan α=()222sin cos 1sin 2sin cos 1tan cos 2cos sin cos sin 1tan ββββββββββββ++++===---πtan 4β⎛⎫=+ ⎪⎝⎭ 因为π0,2α⎛⎫∈ ⎪⎝⎭,πππ,442β⎛⎫+∈ ⎪⎝⎭,所以π4αβ-=.故选C . 【答案】C5.已知角αβ,均为锐角,且cos α=35,tan (α−β)=−13,tan β=( ) A .13 B .913 C .139D .3【解析】∵角α,β均为锐角,且cos α=35,∴sin α=21cos α- =45,tan α=43,又tan (α−β)=tan tan 1+tan tan αβαβ-=4tan 341+tan 3ββ-=−13, ∴tan β=3,故选D .【答案】D6.设α为锐角,若π3cos()65α+=,则πsin()12α-=( ) A .210 B .210- C .45 D .45- 【解析】因为α为锐角,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭,因为π3cos()65α+=,所以π4sin()65α+=,故πππππsin()sin sin cos 126464ααα⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππ2432cos sin 6425510α⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭.故选A.【答案】A7.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【解析】本题考查的是二倍角的降幂公式与三角函数的最小正周期,先利用三角恒等变换(降幂公式)化简函数()f x ,再判断b 和c 的取值是否影响函数()f x 的最小正周期.21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而c 不影响周期.故选B . 【答案】B8.已知34cos sin =-αα,则=α2sin ( ) A .97- B .92- C .92 D .97【解析】本题的考点是二倍角的正弦正逆用,将34cos sin =-αα两边平方()2234cos sin ⎪⎭⎫ ⎝⎛=-αα, 化简后可得916cos sin 2cos sin 22=-+αααα即=α2sin 97-.【答案】A 9.函数()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6cos 3sin 51ππx x x f 的最大值为( ) A .56B .1C .53D .51【解析】将()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6cos 3sin 51ππx x x f 化简,利用两角和、差的正余弦公式及辅助角公式,三角函数 最值的性质可以求得函数最大值.由()6sin sin 6cos cos 3sin cos 3cos sin 51ππππx x x x x f ++⎪⎭⎫ ⎝⎛+= x x x x sin 21cos 23cos 103sin 101+++=⎪⎪⎭⎫ ⎝⎛+=+=x x x x cos 23sin 2156cos 533sin 53⎪⎭⎫ ⎝⎛+=3sin 56πx , 因为13sin 1≤⎪⎭⎫ ⎝⎛+≤-πx ,所以函数的最大值为56.【答案】A10.若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( ) A.1 B.2 C.3 D.4【解析】本题考点是两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换. 三角恒等变换的主要是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算.本例应用两角和与差的正弦(余弦)公式化简所求式子,利用同角关系式求出使已知条件可代入的值,然后再化简,求解过程中注意公式的顺用和逆用.3cos()10sin()5παπα-=-33cos cos sin sin 1010sin cos cos sin 55ππααππαα+-33cos tan sin 1010tan cos sin 55ππαππα+=-33cos 2tan sin 105102tan cos sin 555ππππππ+=- 33cos cos 2sin sin 510510sin cos 55ππππππ+==333cos cos sin sin sin sin 510510510sin cos 55ππππππππ++ =333cos cos sin 5101010sin cos 55ππππππ⎛⎫-+ ⎪⎝⎭=13cos sin 1025sin cos 55ππππ+1cos cos 10210sin cos 55ππππ+=1cos cos 1021014sin 210πππ+= 3cos103cos 10ππ==.【答案】C11.已知向量a r =(sin θ,2-),b r =(1,cos θ),且a r ⊥b r ,则sin 2θ+cos 2θ的值为( )A .1B .2C .12D .3 【解析】本题考点是三角函数的恒等变换及化简求值,数量积判断两个平面向量的垂直关系.由题意可得a r ·b r =sin θ-2cos θ=0,即tan θ=2.∴sin 2θ+cos 2θ=2222sin cos +cos cos +sin θθθθθ=22tan +11+tan θθ=1,故选A . 【答案】A12.已知cos θ=-725,θ∈(-π,0),则sin 2θ+cos 2θ=( )A .125B .15±C .15D .15- 【解析】∵cos θ=-725,θ∈(-π,0), ∴cos 22θ-sin 22θ=(cos 2θ+sin 2θ)(cos 2θ-sin 2θ)<0,2θ∈(π2-,0), ∴sin 2θ+cos 2θ<0,cos 2θ-sin 2θ>0,∵(sin 2θ+cos 2θ)2=1+sin θ=1-491625-=125,∴sin 2θ+cos 2θ=15-.故选D .【答案】D13. =+οο75sin 15sin .【解析】本题考查的是三角恒等变换及特殊角的三角函数值的求解. 法一、6sin15sin 75sin15cos152sin(1545)2+=+=+=o o o o o o . 法二、6sin15sin 75sin(4530)sin(4530)2sin 45cos302+=-++==o o o o o o o o . 法三、62626sin15sin 75442-++=+=o o . 【答案】62. 14.在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 .【解析】本题考查的是三角恒等变换及正切的性质,本题要求会利用三角形中隐含的边角关系作为消元依据,同时要记住斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,sin sin(B C)2sin sin tan tan 2tan tan A B C B C B C =+=⇒+=,因此tan tan tan tan tan tan tan 2tan tan 22tan tan tan tan tan tan 8A B C A B C A B C A B C A B C =++=+≥⇒≥,即最小值为8.【答案】8.15.【2018江苏卷16】已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-. (1)求cos2α的值;(2)求tan()αβ-的值.【解析】(1)因为,,所以. 4tan 3α=sin tan cos ααα=4sin cos 3αα=因为,所以, 因此,. (2)因为为锐角,所以.又因为,所以, 因此.因为,所以, 因此,. 16.【2016高考山东理数】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A +=+ (Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值.【解析】试题分析:(Ⅰ)根据两角和的正弦公式、正切公式、正弦定理即可证明;(Ⅱ)根据余弦定理公式表示出cosC ,由基本不等式求cos C 的最小值.试题解析:()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B ⎛⎫+=+ ⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+,即()2sin sin sin A B A B +=+.因为A B C π++=,所以()()sin sin sin A B C C π+=-=.从而sin sin =2sin A B C +.由正弦定理得2a b c +=.()∏由()I 知2a b c +=, 所以 2222222cos 22a b a b a b c C ab ab +⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭, 当且仅当a b =时,等号成立.故 cos C 的最小值为12. 17.已知函数()22sin sin 6f x x x π⎛⎫=-- ⎪⎝⎭,R x ∈ 22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈5cos()5αβ+=-225sin()1cos ()5αβαβ+=-+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+(I)求()f x 最小正周期;(II)求()f x 在区间[,]34p p -上的最大值和最小值. 【解析】本题考点两角和与差的正余弦公式、二倍角的正余弦公式、三角函数的图象与性质.综合运用三角 知识,从正确求函数解析式出发,考查最小正周期的求法与函数单调性的应用,从而求出函数的最大值与最小值,体现数学思想与方法的应用.(I) 由已知,有1cos 21cos211313()cos2sin 2cos2222222x x f x x x x π⎛⎫-- ⎪⎛⎫-⎝⎭=-=+- ⎪⎝⎭ 311sin 2cos2sin 24426x x x π⎛⎫--=- ⎪⎝⎭. 所以()f x 的最小正周期22T ππ==. (II)因为()f x 在区间[,]36p p --上是减函数,在区间[,]64p p -上是增函数, 113(),(),()346244f f f πππ-=--=-=,所以()f x 在区间[,]34p p -上的最大值为34,最小值为12-. 【答案】(I)π; (II) max 3()4f x =,min 1()2f x =-.。
专题 解三角形-2019年高考文数母题题源系列(全国Ⅱ专版)(解析版)
![专题 解三角形-2019年高考文数母题题源系列(全国Ⅱ专版)(解析版)](https://img.taocdn.com/s3/m/b5c40e42f18583d048645942.png)
专题15 解三角形【母题来源一】【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 【答案】3π4【解析】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠∴sin cos 0B B +=,即tan 1B =-,3.4B π∴=【名师点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.本题容易忽视三角形内角的范围致误,三角形内角均在(0,π)范围内,化边为角,结合三角函数的恒等变化求角.【母题来源二】【2018年高考全国Ⅱ卷文数】在ABC △中,cos 2C =,1BC =,5AC =,则AB =A . BCD .【答案】A【解析】因为cos2C =,所以cos C =22cos 2C −1=2×2−1=35-.于是,在△ABC 中,由余弦定理得AB 2=AC 2+BC 2−2AC ×BC ×cos C =52+12−2×5×1×(35-)=32,所以AB =故选A.【名师点睛】本题主要考查二倍角公式、余弦定理,考查考生的运算求解力,考查的数学核心素养是数学运算.解三角形是近几年高考中的高频者点,将解三角形与其他知识巧妙地融合在一起,既体现了试题设计的亮点,又体现了对所学知识的交汇考查.【母题来源三】【2017年高考全国Ⅱ卷文数】ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A=+,则B = .【答案】π3【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=. 故答案为π3. 【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.【命题意图】三角函数解答题主要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题,常与同角三角函数的关系、诱导公式、和差角公式,甚至三角函数的图象和性质等交汇命题,多以解答题的形式出现,属解答题中的低档题.预测今后的高考仍将以正弦定理、余弦定理,尤其是两个定理的综合应用为主要考点,可能与三角函数的图象和性质等交汇命题,重点考查计算能力以及应用数学知识分析和解决问题的能力. 【命题规律】本考点一直是高考的热点,尤其是已知边角求其他边角,判断三角形的形状,求三角形的面积考查比较频繁,既有直接考查两个定理应用的选择题或填空题,也有考查两个定理与和差公式、倍角公式及三角形面积公式综合应用的解答题,解题时要掌握正、余弦定理及灵活运用,注意函数与方程思想、转化与化归思想在解题中的应用. 【应试技巧】在ABC △中,若角A ,B ,C 所对的边分别是a ,b ,c ,则 1.正弦定理:sin sin sin a b c==A B C. 2.常见变形sin sin sin 1,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B b a B b A a C c A b C c B B b A a C c ======()2;sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b c A B C A B A C B C A B C+++++======+++++()3::sin :sin :sin ;a b c A B C =()3.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-, 4.余弦定理的推论从余弦定理,可以得到它的推论222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===5.三角形面积公式(1)三角形的高的公式:h A =b sin C =c sin B ,h B =c sin A =a sin C ,h C =a sin B =b sin A . (2)三角形的面积公式:S =21ab sin C ,S =21bc sin A ,S =21ca sin B. 6.正弦定理可以用来解决两类解三角形的问题:(1)已知两角和任意一边,求其他的边和角;(2)已知两边和其中一边的对角,求其他的边和角.7.三角形解的个数的探究(以已知a b ,和A 解三角形为例) (1)从代数角度来看:①若sin sin 1b AB=a>,则满足条件的三角形的个数为0,即无解;②若sin sin 1b A B=a =,则满足条件的三角形的个数为1;③若sin sin 1b A B=a<,则满足条件的三角形的个数为1或2.注:对于(3),由sin 0sin 1b AB=a<<可知B 可能为锐角,也可能为钝角,此时应由“大边对大角”“三角形内角和等于180°”等进行讨论.(2)从几何角度来看:①当A 为锐角时,一解一解两解无解4===2.sin sin sin a b c R R ABC A B C()正弦定理的推广:,其中为△外接圆的半径②当A为钝角或直角时,一解一解无解无解8.利用余弦定理解三角形的步骤【解题经验分享】1.对三角形中的不等式,要注意利用正弦、余弦的有界性进行适当“放缩”.2.在解实际问题时,需注意的两个问题(1)要注意仰角、俯角、方位角等名词,并能准确地找出这些角;(2)要注意将平面几何中的性质、定理与正、余弦定理结合起来,发现题目中的隐含条件,才能顺利解决.3.利用正弦定理与余弦定理解题时,经常用到转化思想一个是把边转化为角,另一个是把角转化为边,,具体情况应根据题目给定的表达式进行确定,不管哪个途径,最终转化为角的统一或边的统一,也是我们利用正弦定理与余弦定理化简式子的最终目标,对于两个定理都能用的题目,应优先考虑利用正弦定理,会给计算带来相对的简便,根据已知条件中边的大小来确定角的大小,此时利用正弦定理去计算较小边所对的角,可避免分类讨论,利用余弦定理的推论,可根据角的余弦值的正负直接确定所求角是有锐角还是钝角,但计算麻烦.△中,角A,B,C的对边分别为a,1.【陕西省西安市2019届高三第三次质量检测数学试题】在ABCC=︒,则c=b,c,若ABC△的面积和周长分别为20,60A.7B.8C.5D.6【答案】A【解析】由题意可得,11sin sin6022ABC S ab C ab ==︒△,∴1sin602ab ︒=40ab =. ∵20a b c ++=,∴20c a b -=+.由余弦定理可得,()()222222cos60320120c a b ab a b ab c =+-︒=+-=--, 解得7c =.故选A .【名师点睛】本题考查利用余弦定理和面积公式解三角形.在运用余弦定理时常用到()2222a b a b ab +=+-.2.【陕西省汉中市略阳天津高级中学、留坝县中学、勉县二中等12校2019届高三下学期校际联考数学试题】在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,若2b c =,a =7cos 8A =,则ABC △的面积为AB .3C D 【答案】D【解析】在ABC △中,2227cos 28b c a A bc +-==,将2b c =,a =22246748c c c +-=, 解得:2c =,由7cos 8A =得sin A ==,所以,11sin 2422ABC S bc A ∆==⨯⨯=故选D.【名师点睛】三角形的面积公式常见形式有两种:一是12⨯(底⨯高),二是1sin 2bc A .借助12(底⨯高)时,需要将斜三角形的高与相应的底求出来;借助1sin 2bc A 时,需要求出三角形两边及其夹角的正弦值.3.【重庆市2019届高三学业质量调研抽测(第二次)4月二诊数学试题卷】在ABC △中,角,,A B C 的对边分别为,,a b c ,已知3B π=,1cos 3A =,b =,则边c 的长为A. B.C.D.【答案】B【解析】因为1cos 3A =,()0,A ∈π,所以sin 3A =, 在ABC △中()11sin sin 323C A B =+=+=由正弦定理sin sin b c B C=,所以sin sin 6b c C B ===故选B.【名师点睛】本题考查了正弦定理解三角形,属于基础题.4.【辽宁省葫芦岛市普通高中2019届高三第二次模拟考试数学试题】在ABC △中,角,,A B C 的对边分别为,,a b c ,若ABC △为锐角三角形,且满足2sin 2tan (2sin cos 2)C A C C =+-,则等式成立的是 A .2b a = B .2a b =C .2A B =D .2B A =【答案】B【解析】依题意得()2sin 2sin cos 22cos cos 2cos A C C C C A =-+-,2sin sin 12cos cos C AC A=-,()2sin cos cos sin sin A C A C A +=,即sin 2sin A B =,由正弦定理得2a b =,故选B.【名师点睛】本小题主要考查同角三角函数的基本关系式、二倍角公式和两角和的正弦公式,考查三角形内角和定理以及正弦定理边角互化,属于基础题.5.【甘青宁2019届高三3月联考数学试题】在ABC △中,D 为AC 边上一点,若3BD =,4CD =,5AD =,7AB =,则BC =A. BC.D【答案】B【解析】在三角形ABD 中,由余弦定理得254996513cos 2577014A +-===⨯⨯.在三角形ABC 中,由余弦定理得BC ==故选B.【名师点睛】本小题主要考查利用余弦定理计算角的余弦值和边长,属于基础题.6.【宁夏石嘴山市第三中学2019届高三下学期三模考试数学试题】设ABC △的内角,,A B C 的对边分别为,,a b c ,若2,a c A ===且b c <,则b =A .3B .C .2D 【答案】C【解析】因为cos A =,所以1sin 2A ==且6A π=,由正弦定理可得:sin sin a c A C=,即:212=,解得:sin 2C =,所以3C π=或23C π=,当3C π=时,362B πππ=π--=,此时B C >,与b c <矛盾,所以3C π=舍去. 当23C π=时,2366B πππ=π--=,由余弦定理可得:2222cos 4122242b ac ac B =+-=+-⨯⨯=, 所以2b =, 故选C.【名师点睛】本题主要考查了正弦定理及三角函数求值,还考查了余弦定理及分类思想,考查计算能力,属于中档题.7.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)数学试题】ABC △的内角,,A B C 的对边分别为,,a b c ,若1,sin sin ,234A B C a π===,则ABC △的面积为___________.【解析】由正弦定理得sin ,sin sin 3sin 3a ab B Bc C C A A ====,所以164sin sin 33bc B C ==,从而1sin 2ABC S bc A ==△. 【名师点睛】本题考查了正弦定理、面积公式,正确使用公式是解题的关键.8.【辽宁省沈阳市东北育才学校2019届高三第八次模拟数学试题】在ABC △中,内角,,A B C 的对边分别为,,a b c ,若222a b ab c ++=,且ABC △,则ab 的最小值为___________. 【答案】48【解析】在ABC △中222a b ab c ++=,结合余弦定理2222cos a b ab C c +-=, 可得1cos 2C =-,所以sin 2C =,1sin 2ab C =代入化简可得4ab c =, 代入222a b ab c ++=中可得222216a b a b ab +=-,因为222a b ab +≥,当且仅当a =b 时取等号,所以22216a b ab ab -≥,解不等式可得48ab ≥, 所以ab 最小值为48.【名师点睛】本题考查了余弦定理及三角形面积公式,不等式在求最值中的应用,属于中档题. 9.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学试题】在锐角三角形ABC 中,a ,b ,c 分别为角A 、B 、C 所对的边,且2sin c A =,c =ABC △的面积为,则a b +的值为___________. 【答案】52sin c A =2sin sin ,sin 0,sin A C A A C =≠∴=. 在锐角三角形ABC 中,可得3C π=.所以ABC △的面积1sin 2S ab C ===6ab =. 由余弦定理可得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-=, 解得5a b +=. 故答案为5.【名师点睛】本题主要考查了正余弦定理及三角形面积公式的应用,重点考查了计算能力,属于基础题. 10.【甘肃省白银市靖远县2019届高三第四次联考数学试题】在ABC △中,角A ,B ,C 所对的边分别是a ,b ,c ,若1a =,且BC 边上的高等于tan A ,则ABC △的周长的取值范围为___________.【答案】(2,1+ 【解析】由题可知:11tan sin 22ABC S a A bc A ∆==, 故cos 1bc A =222221122b c a b c bc bc +-+-⇒⋅==,即223b c +=,又22222b c b c ++⎛⎫≥ ⎪⎝⎭,则b c +≤当且仅当b c =时,取等号.又1b c a +>=,则21a b c <++≤,所以ABC △的周长的取值范围为(2,1.故填(2,1.【名师点睛】本题考查解三角形中的周长最值问题的求解,关键是能够通过余弦定理建立等量关系,+的最大值,再利用三角形三边关系确定最小值,从而得到取值范围.从而求得b c。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年高三一模理分类---三角函数和解三角形
海淀(理)
(15)(本小题满分13分)
已知函数()cos()cos 4
f x x x a π
=-+
(Ⅱ)求a 的值;
(Ⅱ)求函数()f x 的单调递增区间.
文)已知函数()cos()cos 4
f x x x a π
=-+的图象经过点(O,l),部分图象如图所示.
(I)求a 的值;
(Ⅱ)求图中0x 的值,并直接写出函数()f x 的单调递增区间.
朝阳
(理)15.(本小题满分13分)
在ABC △中,a ,120A ∠=︒,ABC △b c <. (Ⅰ)求b 的值; (Ⅱ)求cos 2B 的值. (文)15.(本小题满分13分)
已知函数2
()cos cos f x x x x =. (Ⅰ)求(
)3
f π
的值及()f x 的最小正周期; (Ⅱ)若函数()f x 在区间[0,]m 上单调递增,求实数m 的最大值.
石景山
(文 理)15. (本小题13分)
在ABC △中,角A B C ,
,的对边分别为a b c ,,
,b=3c =,1
cos 3
B=-. (Ⅰ)求sin C 的值; (Ⅱ)求ABC △的面积.
丰台
(理)15.(本小题13分)
已知函数2()cos(2)2sin ()3f x x x a a π
=--+∈R ,且()03
f π=. (Ⅰ)求a 的值;
(Ⅱ)若()f x 在区间[0,]m 上是单调函数,求m 的最大值.
延庆
(理)15.(本小题满分13分)
如图,在ABC ∆中,点D 在BC
边上,cos ADB ∠=,3cos =5
C ∠,7AC =. sin CA
D ∠(求Ⅰ)的值;
(Ⅱ)若10BD =, 求AD 的长及ABD ∆的面积.
怀柔
15.(本小题满分13分) 在
中,角,,所的对边分别是a ,b ,c ,
,
.
(Ⅰ)求边c 的值; (Ⅱ)若,求
的面积.
门头沟
A
D
B
C
平谷
石景山
15. (本小题13分)
设数列{}n a 的前n 项和为n S ,若12a =且12n n S S n -=+(2n ≥,*n ∈N ). (Ⅰ)求n S ;
(Ⅱ)若数列{}n b 满足2n a n b =,求数列{}n b 的前n 项和n T .
海淀
( 15)(本小题满分13分)
已知等差数列{}n a 的公差2d =,且252a a +=,{}n a 的前n 项和为n S . (I )求{}n a 的通项公式;
(Ⅱ)若915,,m S a a 成等比数列,求m 的值.
朝阳
16. (本小题满分13分) 在等比数列{}n a 中,141
,42
a a =
=,n ∈N *. (I )求数列{}n a 的通项公式;
(II )设6n n b a n =+-,数列{}n b 的前n 项和为n S ,若0n S >,求n 的最小值.
2019年北京期末考试试题汇编
三角函数解三角形
朝阳15.(本小题满分13分)
在ABC △中,已知312
,cos 413
A C π=
=,13.BC =
(Ⅰ)求AB 的长;
(Ⅱ)求BC 边上的中线AD 的长. 海淀(15)(本小题满分13分)
已知函数π
()cos()cos22
f x a x x =--,其中a >0. (Ⅰ)比较ππ()()62
f f ,的大小;
(Ⅱ)求函数()f x 在区间ππ[,]22
-上的最小值. 东城(15)(本小题13分)
在△ABC
sin cos sin .A B a C = (Ⅰ)求B ∠的大小;
2cos ABC a A (Ⅱ)若的面积为△,求的值.
西城15.(本小题满分13分)
在ABC ∆中, 3a =
,b =2B A =. (Ⅰ)求cos A 的值;
(Ⅱ)试比较B ∠与C ∠的大小. 石景山15. (本小题13分)
函数()sin()(0,0,||)2
f x A x A π
=+>><ωϕωϕ的部分图象如图所示. (Ⅰ)求()f x 的最小正周期及解析式;
(Ⅱ)设()()cos g x f x x =-,求函数()g x 在区间[0,]2
π上的最小值.。