(完整版)菱形基础知识点及同步练习、含答案

合集下载

菱形练习题及答案

菱形练习题及答案

菱形练习题及答案一、菱形的定义和特征菱形是指具有四条边长度相等且相互平行的四边形。

其特征包括:1) 所有四个角都是直角;2) 对角线相等,且互相垂直。

在数学中,菱形常被用作练习几何图形的平面几何题目。

二、菱形练习题以下是一些菱形练习题,每个题目后附有解题答案,以帮助学生更好地理解和掌握菱形的性质。

1. 题目:菱形ABCD的对角线AC长度为8cm,角ADC的度数为60°,求菱形的面积。

解答:首先,由于对角线相等,可以得知BD的长度也为8cm。

由菱形的性质可知,对角线相互垂直,故角BDC的度数为90°。

于是,我们可以通过AD和BD的长度以及ADC的度数,计算出三角形ADC 的边长。

根据余弦定理,我们可以得到:AC² = AD² + DC² - 2 * AD * DC * cos(ADC)8² = AD² + AD² - 2 * AD * AD * cos(60°)64 = 2AD² - 2 * AD² * 0.564 = AD²得到 AD = 8cm,同理可得DC = 8cm。

因此,菱形ABCD的面积为1/2 * AD * DC = 1/2 * 8 * 8 = 32cm²。

2. 题目:菱形EFGH的对角线EF长度为10cm,角EFG的度数为120°,求菱形的周长。

解答:由菱形的性质可知,菱形的周长等于4倍对角线的长度。

因此,菱形EFGH的周长为4 * 10 = 40cm。

三、菱形练习题答案1. 菱形ABCD的面积为32cm²。

2. 菱形EFGH的周长为40cm。

通过以上两个练习题,我们可以巩固菱形的定义和性质,掌握计算菱形的面积和周长的方法。

总结:菱形作为一种常见的几何图形,在数学学习中经常出现。

通过练习菱形题目,我们可以巩固菱形的定义和特征,提高解题能力,并运用这些知识解决实际问题。

北师大版初三上册数学菱形的性质与判定同步练习(附解析)

北师大版初三上册数学菱形的性质与判定同步练习(附解析)

北师大版初三上册数学11.1菱形的性质与判定第1课时菱形的性质1.有一组__邻边__相等的平行四边形是菱形.2.菱形是__轴__对称图形,菱形的四边__相等__,菱形的对角线__互相垂直__.知识点一:菱形的定义1.已知四边形ABCD的对角线互相平分,要使它成为菱形,还需要添加一个条件,那个条件是(B)A.AB=CD B.AB=BCC.AD=BC D.AC=BD2.如图,在▱ABCD中,∵∠1=∠2,∴BC=DC.∴▱ABCD是菱形__有一组邻边相等的平行四边形是菱形__.(请在横线上填上理由)知识点二:菱形的性质3.若菱形两条对角线的长分别为6和8,则那个菱形的周长为(A) A.20B.16C.12D.104.(易错题)如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是(B)A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OC,第4题图),第5题图)5.如图,在菱形ABCD中,不一定成立的是(C)A.四边形ABCD是平行四边形B.AC⊥BDC.△ABC是等边三角形D.∠CAB=∠CAD6.在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是( C)A.10 B.12 C.15 D.207.菱形的一个内角为120°,边长为8,那么它较短的对角线长是(C )A.3 B.4 C.8 D.838.如图,菱形ABCD中,对角线AC,BD相交于点O,点H为AD 边中点,菱形ABCD的周长为28,则OH的长等于(A)A.3.5 B.4C.7 D.149.(2021·烟台)如图,在菱形ABCD中,点M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接OB.若∠DAC=28°,则∠OBC 的度数为(C)A.28°B.52°C.62°D.72°10.如图,四边形ABCD是菱形,对角线AC与BD相交于点O,AB =5,AO=4,求BD的长.解:∵四边形ABCD是菱形,∴AC⊥BD且BO=DO.在Rt△AOB 中,∵AB=5,AO=4,由勾股定理,得BO=3,∴BD=611.(2021·上海)如图,已知AC,BD是菱形ABCD的对角线,那么下列结论一定正确的是(B)A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍,第11题图),第12题图) 12.如图,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为-4和1,则BC=__5__.13.如图是依照四边形的不稳固性制作的边长均为15 cm的可活动菱形衣架.若墙上钉子间的距离AB=BC=15 cm,则∠1=__120__°.,第13题图),第14题图)14.(2021·白银)如图,四边形ABCD是菱形,点O是两条对角线的交点,过点O的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__12__.15.(2021·宜宾)菱形的周长为20 cm,两个相邻的内角的度数之比为1∶2,则较长的对角线长度是__53__cm.16.如图,已知四边形ABCD是菱形,点E,F分别是边CD,AD的中点.求证:AE=CF.解:证明:∵四边形ABCD是菱形,∴AD=CD.∵点E,F分别是CD,AD的中点,∴DE=12CD,DF=12AD,∴DE=DF.又∵∠ADE=∠CDF,∴△AED≌△CFD(SAS),∴AE=CF17.如图,在菱形ABCD中,AC为对角线,点E,F分别是边BC,A D的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.解:(1)证明:∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B =∠D,∵点E,F分别是边BC,AD的中点,∴BE=DF,∴△ABE≌△C DF(SAS)(2)易得△ABC是等边三角形,点E为BC的中点,从而AE⊥BC,AE =2318.如图,在菱形ABCD中,点F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.解:(1)证明:连接AC.∵BD是菱形ABCD的对角线,∴BD垂直平分AC.∴AE=EC(2)点F是线段BC的中点.理由:∵ABCD是菱形,∴AB=CB.又∵∠ABC=60°,∴△ABC是等边三角形.∴∠BAC=60°.∵AE=EC,∴∠EAC=∠ACE.∵∠CEF=60°,∴∠EAC=30°.∴AF是△ABC的角平分线.又∵△ABC是等边三角形,∴BF=CF.∴点F是线段BC的中点第2课时菱形的判定对角线__互相垂直__的平行四边形是菱形;__四边相等__的四边形是菱形.知识点:菱形的判定1.小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是菱形.小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是(B)A.小明、小亮都正确B.小明正确,小亮错误C.小明错误,小亮正确D.小明、小亮都错误2.下列命题中正确的是(D)A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形3.如图,下列条件之一能使▱ABCD是菱形的是(D)①AC⊥BD;②∠BAD=90°;③AB=BC;④BD平分∠ABC.A.①③B.②③C.③④D.①③④,第3题图),第4题图)4.如图所示,在△ABC中,AB=AC,∠A<90°,BC,CA,AB的中点分别为点D,F,E,则四边形AFDE是(A)A.菱形B.长方形C.正方形D.以上都不对5.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是(B)A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形,第5题图),第6题图)6.(易错题)如图,下列条件能判定四边形ABCD为菱形的有(C)①AB =BC =CD =DA ;②AC ,BD 互相垂直平分;③平行四边形AB CD ,且AC ⊥BD ;④平行四边形ABCD ,且AC =BD.A .1个B .2个C .3个D .4个7.(2021·淄博)已知▱ABCD ,对角线AC ,BD 相交于点O ,请你添加一个适当的条件,使▱ABCD 成为一个菱形,你添加的条件是__AD =D C(答案不唯独)__.8.如图,ABCD 是对角线互相垂直的四边形,且OB =OD ,请你添加一个适当的条件__OA =OC 或AD =BC 或AD ∥BC 或AB =BC__,使四边形ABCD 成为菱形.(只需添加一个即可)9.(2021·舟山)已知:如图,在▱ABCD 中,点O 为对角线BD 的中点,过点O 的直线EF 分别交AD ,BC 于E ,F 两点,连接BE ,DF.(1)求证:△DOE ≌△BOF ;(2)当∠DOE 等于多少度时,四边形BFDE 为菱形?请说明理由. 解:(1)证明:∵▱ABCD 中,点O 为对角线BD 的中点,∴BO =D O ,∠EDB =∠FBO ,在△EOD 和△FOB 中⎩⎪⎨⎪⎧∠EDO =∠OBF ,DO =BO ,∠EOD =∠FOB ,∴△DOE ≌△BOF(ASA) (2)当∠DOE =90°时,四边形BFDE 为菱形,理由:∵△DOE ≌△BOF ,∴BF =DE ,又∵BF ∥DE ,∴四边形EBFD 是平行四边形,∵BO =DO ,∠EOD =90°,∴EB =DE ,∴四边形BFDE 为菱形 10.(2021·徐州)若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( C )A .长方形B .对角线相等的梯形C .对角线相等的四边形D .对角线互相垂直的四边形11.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于点M ,O ,N ,连接AN ,CM ,则四边形ANCM 是菱形.乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于点E ,F ,连接EF ,则四边形ABEF 是菱形.依照两人的作法可判定( C )A .甲正确,乙错误B .乙正确,甲错误C .甲、乙均正确D .甲、乙均错误12.(2021·十堰)如图,在△ABC 中,点D 是BC 的中点,点E ,F 分别在线段AD 及其延长线上,且DE =DF.给出下列条件:①BE ⊥EC ;②BF ∥CE ;③AB =AC.从中选择一个条件使四边形BECF 是菱形,你认为那个条件是__③__.(只填写序号)13.(2021·新疆)如图,已知△ABC ,按如下步骤作图:①分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧交点P ,Q两点;②作直线PQ ,分别交AB ,AC 于点E ,D ,连接CE ;③过点C 作CF ∥AB 交PQ 于点F ,连接AF.(1)求证:△AED ≌△CFD ;(2)求证:四边形AECF 是菱形.解:(1)由作图知:PQ 为线段AC 的垂直平分线,∴AE =CE ,AD =CD ,∵CF ∥AB ,∴∠EAC =∠FCA ,∠CFD =∠AED ,在△AED 与△CF D 中,⎩⎪⎨⎪⎧∠EAC =∠FCA ,AD =CD ,∠CFD =∠AED ,∴△AED ≌△CFD(2)∵△AED ≌△CFD ,∴AE =CF ,∵EF 为线段AC 的垂直平分线,∴EC =EA ,FC =FA ,∴EC =EA =FC =FA ,∴四边形AECF 为菱形 14.(2021·南京)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,过点E 作EF ∥AB 交BC 于点F.(1)求证:四边形DBFE 是平行四边形;(2)当△ABC 满足什么条件时,四边形DBFE 是菱形?什么缘故? 解:(1)证明:∵点D ,E 分别是AB ,AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,又∵EF ∥AB ,∴四边形DBFE 是平行四边形 (2)当AB =BC 时,四边形是菱形.理由如下:∵点D 是AB 的中点,∴BD =12AB ,∵DE 是△ABC 的中位线,∴DE =12BC ,∵AB =BC ,∴BD =DE ,又∵四边形DBFE 是平行四边形,∴四边形DBFE 是菱形15.某校九年级学习小组在探究学习过程中,用两块完全相同的且含6 0°角的直角三角形ABC与AFE按如图①所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图②,AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°,四边形ABPF是什么样的专门四边形?并说明理由.解:(1)证明:∵α+∠EAC=90°,∠NAF+∠EAC=90°,∴α=∠NAF.又∵∠B=∠F,AB=AF,∴△ABM≌△AFN,∴AM=AN(2)四边形ABPF是菱形.理由:∵α=30°,∠EAF=90°,∴∠BAF=120°.又∵∠B=∠F=60°,∴∠B+∠BAF=60°+120°=180°,∠F+∠B AF=60°+120°=180°.∴AF∥BC,AB∥EF.∴四边形ABPF是平行四边形.又∵AB=AF,∴四边形ABPF是菱形。

初三数学菱形的练习题及答案

初三数学菱形的练习题及答案

初三数学菱形的练习题及答案菱形是初中数学中常见的图形之一,通过练习菱形的题目,学生可以巩固对菱形及其性质的认识,培养解决几何问题的能力。

本文将提供一些初三数学菱形的练习题及答案,帮助学生更好地理解和应用相关知识。

练习题一:根据给定条件,求菱形的周长和面积。

1.已知菱形的对角线长度分别为8cm和12cm,求菱形的周长和面积。

解答:求菱形的周长,需要知道菱形的所有边长。

根据菱形的性质,对角线相交于其垂直平分点,且对角线相等。

设菱形的一个对角线长度为d1=8cm,另一个对角线长度为d2=12cm。

根据性质可知,菱形的边长等于对角线长度的一半。

菱形的周长=4×菱形的边长=4×(d1/2)=4×(8/2)=4×4=16cm菱形的面积= (d1×d2)/2=(8×12)/2=96/2=48cm²所以,该菱形的周长为16cm,面积为48cm²。

练习题二:根据给定条件,判断是否为菱形。

2.在平面直角坐标系中,已知四个点的坐标依次为A(3, 0)、B(0, 2)、C(-3, 0)和D(0, -2),判断四边形ABCD是否为菱形。

解答:要判断四边形ABCD是否为菱形,需要验证以下两个条件:- 对角线互相垂直;- 对角线相等。

首先计算对角线的长度:AC = √((x2 - x1)² + (y2 - y1)²)= √((-3 - 3)² + (0 - 0)²)= √((-6)²)= √36= 6BD = √((x2 - x1)² + (y2 - y1)²)= √((0 - 0)² + (-2 - 2)²)= √((0)² + (-4)²)= √(0 + 16)= √16= 4由上述计算可知,AC=6,BD=4。

接下来验证两个条件:- 对角线互相垂直:计算斜率k1、k2,若k1*k2=-1则两对角线互相垂直。

八年级数学下册菱形基础知识点及同步练习、含答案(含答案)

八年级数学下册菱形基础知识点及同步练习、含答案(含答案)

学科:数学教学内容:菱形【基础知识精讲】定义:有一组邻边相等的平行四边形是菱形.定理1:四边都相等的四边形是菱形.定理2:对角线互相垂直的平行四边形是菱形.【重点难点解析】1.菱形的性质(1)菱形具有平行四边形的一切性质;(2)菱形的四条边都相等;(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角;(4)菱形是轴对称图形.2.菱形的面积=底×高=对角线乘积的一半.A.重点、难点提示1.理解并掌握菱形的概念,性质和判别方法;(这是重点,也是难点,要掌握好)2.经历探索菱形的性质和判别条件的过程,在操作活动和观察、分析过程中发展学生的主动探究习惯和初步的审美意识,进一步了解和体会说理的基本方法;3.了解菱形的现实应用和常用的判别条件;4.体会特殊与一般的关系.B.考点指要菱形是特殊的平行四边形,其性质和判别方法是中考的重要内容之一.一组邻边相等的平行四边形叫做菱形.菱形是特殊的平行四边形,具有平行四边形的一切性质.除具有平行四边形的一切性质外,菱形还具有以下性质:①菱形的四条边都相等;②两条对角线互相垂直平分;(出现了垂直,常与勾股定理联系在一起)③每一条对角线都平分一组内角.(出现了相等的角,常与角平分线联系在一起)菱形是轴对称图形,它的两条对角线所在直线是它的两条对称轴.(不是对角线,而是其所在直线,因为对称轴是直线,而对角线是线段)菱形的判别方法:(学会利用轴对称的方法研究菱形)①一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四条边都相等的四边形是菱形.【难题巧解点拨】例1:如图4-24,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F.求证:四边形AEFG是菱形.思路分析由已知可知,图中有平行线,就可证角相等、线段相等,因此,可先证四边形AEFG 是平行四边形,再证一组邻边相等.证明:∵∠BAC=90°,EF⊥BC,CE平分∠ACB,∴AE=EF,∠CEA=∠CEF.(这是略证,并不是完整的证明过程)∵AD⊥BC,EF⊥BC,∴EF∥AD,(垂直于同一条直线的两条直线互相平行)∴∠CEF=∠AGE,(两直线平行,内错角相等)∴∠CEA=∠AGE,∴AE=AG,∴EF∥AG,且EF=AG,∴四边形AEFG是平行四边形.(一组对边平行且相等的四边形是平行四边形)又∵AE=EF,∴平行四边形AEFG是菱形.例2:已知菱形的周长为20cm,一条对角线长为5cm,求菱形各个角的度数.已知:菱形ABCD中,AB+BC+CD+DA=20cm,对角线AC=5cm.求∠ADC、∠ABC、∠BCD、∠DAB的度数.思路分析利用菱形的四条边相等,可求出各边长,从而得到等边三角形,如图4-25.解:在菱形ABCD中,∵AB=BC=CD=DA,又AB+BC+CD+DA=20cm,∴AB=BC=CD=DA=5cm,又∵AC=5cm,∴AB=BC=AC,CD=DA=AC,∴△ABC和△DAC都是等边三角形,(本题将边之间的长度关系转化为角的关系)∴∠ADC=∠ABC=60°,∠BCD=∠DAB=120°.例3:如图4-26,在平行四边形ABCD中,∠BAE=∠FAE,∠FBA=∠FBE.求证:四边形ABEF是菱形.证法一:∵AF∥BE,∴∠FAE=∠AEB (两直线平行,内错角相等)又∵∠BAE=∠FAE,∴∠BAE=∠AEB,∴AB=BE.(等角对等边)同理,AB=AF,BE=EF,∴AB=BE=EF=AF,∴四边形ABEF是菱形.(四条边都相等的四边形是菱形)证法二:∵AF∥BE,∴∠FAE=∠AEB,又∵∠BAE=∠FAE,∴∠BAE=∠AEB,∴AB=BE.又∵∠FBA=∠FBE,∴AO=OE,AE⊥FB,(等腰三角形三线合一)同理,BO=OF,∴四边形ABEF是菱形.(对角线互相垂直平分的四边形是菱形)(你还有其他的证明方法吗?不妨试一下)例4:菱形的两邻角之比为1:2,边长为2,则菱形的面积为__________.思路分析本题主要考查菱形的性质和面积公式的应用:解法一:如图4-27,∠B:∠A=1:2,∵四边形ABCD 是菱形, ∴AD ∥BC ,∴∠A+∠B=180°,∴∠B=60°,∠A=120°, 过A 作AE ⊥BC 于E , ∴∠BAE=30°,1AB 21BE ==∴,(直角三角形中,30°角所对的直角边等于斜边的一半) 312B E AB AE 2222=-=-=∴,(勾股定理) 32AE BC S ABCD =⋅=∴菱形.(平行四边形的面积计算方法是:底乘以高) 解法二:如图4-28,∠B ∶∠A=1∶2,∵四边形ABCD 是菱形, ∴AD ∥BC ,∴∠A+∠B=180°,∴∠B=60°,∠A=120°,连结AC 、BD 交于点O ,︒=∠=∠∴30B 21ABD ,AC ⊥BD . (菱形的性质:对角线平分一组对角,对角线互相垂直) 在Rt △ABO 中,1AB 21AO ==, 312AO AB B O 2222=-=-=∴,∴AC=2,32BD =, 3232221BD AC 21S ABCD =⨯⨯=⋅=∴菱形. 答:菱形的面积为32.【典型热点考题】例1 如图4-13,已知菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠B=∠EAF=60°,∠BAE=18°,求∠CEF 的度数.点悟:由∠B=60°知,连接AC得等边△ABC与△ACD,从而△ABE≌△ADF,有AE=AF,则△AEF为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF.解:连接AC.∵四边形ABCD为菱形,∴∠B=∠D= 60°,AB=BC=CD=DA,∴△ABC与△CDA为等边三角形.∴ AB=AC,∠B=∠ACD=∠BAC=60°,∵∠EAF=60°,∴∠BAE=∠CAF.∴ AE=AF.又∵∠EAF=60°,∴△EAF为等边三角形.∴∠AEF=60°,∵∠AEC=∠B+∠BAE=∠AEF+∠CEF,∴ 60°+18°=60°+∠CEF,∴∠CEF=18°.例2已知如图4-14,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD 于G,交AB于E,EF⊥BC于F,求证:四边形AEFG为菱形.点悟:可先证四边形AEFG为平行四边形,再证邻边相等(或对角线垂直).证明:∵∠BAC=90°,EF⊥BC,CE平分∠BCA,∴ AE=FE,∠AEC=∠FEC.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠FEC=∠AGE,∴∠AEC=∠AGE∴ AE=AG,∴∴四边形AEFG为平行四边形.又∵ AE=AG.∴四边形AEFG为菱形.点拨:此题还可以用判定菱形的另两种方法来证.例3 已知如图4-15,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE.求证:EB=OA证明:∵四边形ABCD为菱形,∴∠ABC=2∠ABD, AD∥BC,∴∠DAE=∠AEB,∵ AB=AE,∴∠ABC=∠AEB.∴∠DAE=2∠ABD.∵∠DAE=2∠BAE,∴∠ABD=∠BAE,∴ OA=OB.∵∠BOE=∠ABD+∠BAE,∴∠BOE=2∠BAE.∴∠BEA=∠BOE,∴ OB=BE,∴ AO=BE.说明:利用菱形性质证题时,要灵活选用,选不同性质,就会有不同思路.例4已知菱形的一边与两条对角线构成的两角之比为5:4,求菱形的各内角的度数.点悟:先作出菱形ABCD和对角线AC、BD(如图4-16).解:∵四边形ABCD是菱形,∴ AC⊥BD,∴∠1+∠2=90°,又∵∠1:∠2=4:5,∴∠1=40°,∠2=50°,∴∠DCB=∠DAB=2∠2=100°,故∠CBA=∠CDA=2∠1=80°.【同步达纲练习一】 一、选择题1.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为 ( ) (A)45°, 135° (B)60°, 120° (C)90°, 90° (D)30°, 150°2.若菱形的一条对角线长是另一条对角线的2倍,且此菱形的面积为S ,则它的边长为( )(A)S (B)S 21 (c)S 321 (D)S 521二、填空题3.已知:菱形ABCD 中,E 、F 是BC 、CD 上的点,且AE=EF=AF=AB ,则∠B=________. 4.已知:菱形的两条对角线长分别为a 、b ,则此菱形周长为_______,面积为__________.5.菱形具有而矩形不具有的性质是_______.6.已知一个菱形的面积为38平方厘米,且两条对角线的比为1:3,则菱形的边长为_________.三、解答题 7.已知:O 为对角线BD 的中点,MN 过O 且垂直BD ,分别交CD 、AB 于M 、N .求证:四边形DNBM 是菱形.8.如图4-17,已知菱形ABCD 的对角线交于点O ,AC=16cm ,BD=12cm ,求菱形的高.【同步达纲练习二】1.在菱形ABCD 中,若∠ADC=120°,则BD :AC 等于( ) A .2:3B .3:3C .1:2D .1:32.已知菱形的周长为40cm ,两对角线的长度之比为3:4,则两对角线的长分别为( ) A .6cm ,8cm B .3cm ,4cm C .12cm ,16cm D .24cm ,32cm 3.菱形的对角线具有( ) A .互相平分且不垂直B .互相平分且相等C .互相平分且垂直D .互相平分、垂直且相等(掌握菱形对角线的性质,注意不要增加性质)4.已知菱形的面积等于2cm 160,高等于8cm ,则菱形的周长等于____________. 5.已知菱形的两条对角线的长分别是6和8,那么它的边长是______________. 6.菱形的周长是40cm ,两邻角的比是1:2,则较短的对角线长是_________cm . 7.如图4-29,在△ABC 中,∠BAC=90°,BD 平分∠ABC ,AG ⊥BC ,且BD 、AG 相交于点E ,DF ⊥BC 于F .求证:四边形AEFD 是菱形.8.如图4-30,平行四边形ABCD 的对角线AC 的垂直平分线与AD 、BC 、AC 分别交于点E 、F 、O .求证:四边形AFCE 是菱形.参考答案【同步达纲练习一】一、1.B ; 2.D ;二、3.80°;4.222b a +,ab 21;5.对角线互相垂直,各边长相等. 6.4厘米.三、7.由已知MN 为BD 的垂直平分线, 有 DM=BM ,DN=BN ,又由△DOM ≌△BON ,得DM=BN ,∴ DM=BM=BN=DN .∴四边形DNBM 是菱形.8.过点D 作DH ⊥AB 于H ,则DH 为菱形的一条高. 又∵ AC 、BD 互相垂直平分于O ,∴ 821==AB OA 厘米,621==BD OB 厘米. 由勾股定理,得 1022=+=BO AO AB (厘米).又∵OA BD DH AB ⋅=⋅2121, ∴812211021⨯⨯=⨯⨯DH ,DH=9.6厘米.【同步达纲练习二】1.B ; 2.C ; 3.C ; 4.80cm ; 5.5; 6.10; 7.证法一:在Rt △ABD 和Rt △FBD 中,∵BD 为∠ABC 的平分线,∴∠ABD=∠FBD ,∠DAB=∠DFB=90°, 又∵BD=BD ,∴Rt △ABD ≌Rt △FBD ∴AD=DF ,∠ADE=∠EDF又∵DF ⊥BC ,AG ⊥BC ,∴DF//AE ,∴∠EDF=∠DEA ,∴∠ADE=∠DEA ,∴AD=AE , ∴AE=DF ,∴四边形AEFD 是平行四边形. ∵AD=DF ,∴四边形AEFD 为菱形. 证法二:同证法一得DF=DA=AE ,∵Rt △ABD ≌Rt △FBD ,∴AB=BF ,∴△ABE ≌△FBE , ∴AE=EF ,∴DF=DA=AE=EF ,∴四边形AEFD 是菱形. 证法三:同证法一:Rt △ABD ≌Rt △FBD ,∴AB=BF , ∴△ABE ≌△FBE ,∴∠GAB=∠EFB ,又∵∠C+∠ABC=90°,∠GAB+∠ABC=90°, ∴∠C=∠GAB ,∴∠C=∠EFB ,∴EF ∥AC , 又∵DF ∥AG ,∴四边形AEFD 是平行四边形, ∵AD=DF ,∴四边形AEFD 是菱形.8.∵AD ∥BC ,∴∠OAE=∠OCF ,又∵∠AOE=∠COF=90°,AO=CO , ∴△AOE ≌△COF ,∴AE=CF ,又∵AE ∥CF , ∴四边形AFCE 是平行四边形.又∵EF 是AC 的垂直平分线,∴AE=CE .(垂直平分线上的点到线段两端距离相等)∴四边形AFCE是菱形.。

菱形的性质练习题及其详解

菱形的性质练习题及其详解

菱形的性质01 基础题知识点1 菱形的性质1.(2016·莆田)菱形具有而一般平行四边形不具有的性质是(D)A .对边相等B .对角相等C .对角线互相平分D .对角线互相垂直2.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误的是(B )A .∠ADB =∠CDB B .AC =BD C .AC ⊥BD D .AB =AD第2题图 第3题图3.如图,已知菱形ABCD 的边长等于2,∠DAB =60°,则对角线BD 的长为(C ) A .1 B .3 C .2 D .234.菱形的两条对角线长分别是6和8,则此菱形的边长是(D )A .10B .8C .6D .55.如图,菱形ABCD 中,E ,F 分别是AB ,AC 的中点,若EF =2,则菱形ABCD 的周长是16.6.如图,在菱形ABCD 中,E ,F 分别是BC ,CD 的中点,连接AE ,AF.AE 和AF 有什么样的数量关系?说明理由.解:AE =AF.理由:∵四边形ABCD 是菱形, ∴AB =AD ,∠B =∠D ,BC =CD. 又∵E ,F 分别为BC ,CD 的中点, ∴BE =12BC ,DF =12CD.∴BE =DF.∴△ABE ≌△ADF(SAS ). ∴AE =AF.知识点2 菱形的面积7. (2016·宁夏)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为(A)A .2 2 B. 2 C .6 2 D .82第7题图 第8题图8.(2017·宜宾)如图,在菱形ABCD 中,若AC =6,BD =8,则菱形ABCD 的面积是24. 9.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且∠ACD =30°,BD =4,求菱形ABCD 的面积.解:∵四边形ABCD 是菱形,BD =4,∴OA =OC =12AC ,OB =OD =12BD =2,AC ⊥BD.∵在Rt △OCD 中,∠OCD =30°,∴CD =2OD =4,OC =CD 2-OD 2=42-22=2 3. ∴AC =2OC =4 3.∴S 菱形ABCD =12AC·BD =12×43×4=8 3.02 中档题10.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD =60°,则花坛对角线AC 的长等于(A )A .63米B .6米C .33米D .3米第10题图 第11题图11.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,E 为AD 边的中点,菱形ABCD 的周长为28,则OE 的长等于(A )A .3.5B .4C .7D .1412.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO.若∠DAC =28°,则∠OBC 的度数为(C )习题解析A .28°B .52°C .62°D .72°13.(2017·南充)已知菱形的周长为45,两条对角线的和为6,则菱形的面积为(D)A .2 B.5 C .3 D .4 14.(2017·东营)如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P为对角线BD 上一动点,则EP +AP 的最小值为15.如图,在菱形ABCD 中,∠A =60°,AB =4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E.(1)求∠ABD 的度数; (2)求线段BE 的长.解:(1)∵在菱形ABCD 中,AB =AD ,∠A =60°, ∴△ABD 为等边三角形. ∴∠ABD =60°.(2)由(1)可知BD =AB =4,又∵O 为BD 的中点,∴OB =2. 又∵OE ⊥AB ,∠ABD =60°, ∴∠BOE =30°. ∴BE =12OB =1.16.(2016·苏州)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E.(1)求证:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.解:(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD.∴AE∥CD.又∵DE⊥BD,∴DE∥AC.又∵AE∥CD,∴四边形ACDE是平行四边形.(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=AO2+DO2=5.∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴C△ADE=AD+AE+DE=5+5+8=18.03综合题17.在菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.证明:(1)连接AC,∵四边形ABCD是菱形,∴AB=BC=CD.∵∠B=60°,∴△ABC是等边三角形.∵E是BC的中点,∴AE⊥BC.∵∠AEF=60°,∴∠FEC=90°-60°=30°.又∵∠C=180°-∠B=120°,∴∠EFC=30°.∴∠FEC=∠EFC.∴CE=CF.又∵BC=CD,∴BC-CE=CD-CF,即BE=DF.(2)连接AC,由(1),得△ABC是等边三角形,∴AB=AC.∵∠BAE+∠EAC=60°,∠EAF=∠CAF+∠EAC=60°,∴∠BAE=∠CAF.∵四边形ABCD是菱形,∠B=60°,∴∠ACF=12∠BCD=60°=∠B.∴△ABE≌△ACF.∴AE=AF.又∵∠EAF=60°,∴△AEF是等边三角形.。

(完整版)第十八章菱形知识点总结

(完整版)第十八章菱形知识点总结

(完整版)第十八章菱形知识点总结
1. 菱形定义和特性
菱形是一种几何形状,具有以下特性:
- 拥有四条边和四个角,其中每个角都是直角。

- 两条对角线相等且垂直交叉。

- 对角线的交点称为菱形的中心。

2. 菱形的性质
- 对角线相等性质:菱形的两条对角线相等。

- 对角线垂直性质:菱形的两条对角线相互垂直。

- 边长平行性质:菱形的相邻边互相平行。

3. 菱形的周长和面积计算公式
- 周长计算公式:菱形的周长等于边长乘以4,即 `周长 = 4 ×边长`。

- 面积计算公式:菱形的面积等于对角线之积的一半,即 `面积= (对角线1 ×对角线2) / 2`。

4. 菱形的相关图形和实际应用
- 平行四边形:菱形的特殊情况,具有相邻边平行的性质。

- 菱形切割:通过两个垂直相交的菱形切割,可以得到多个边长相等的小菱形。

- 菱形形状的物体:例如球场的中央足球场草坪通常呈现菱形形状。

5. 菱形的重要性和研究价值
- 菱形是几何学中重要的基本形状之一,了解和掌握菱形的定义和性质对进一步研究和理解其他几何形状非常有帮助。

- 菱形相关的计算公式可以应用于解决实际生活中的问题,例如计算球场草坪的总面积等。

- 掌握菱形的切割方法和相关技巧,能够发展和培养几何思维和想象力。

6. 总结
第十八章菱形知识点总结了菱形的定义、特性、性质、周长和面积计算公式,以及菱形的相关图形和实际应用。

菱形作为几何学中的重要形状,掌握其知识和技巧对学习和应用几何学具有重要意义。

希望这份总结能够帮助你更好地理解和掌握菱形的相关知识。

菱形基础知识点及同步练习、含答案汇编

菱形基础知识点及同步练习、含答案汇编

学科:数学菱形【基础知识精讲】定义:有一组邻边相等的平行四边形是菱形.定理1:四边都相等的四边形是菱形.定理2:对角线互相垂直的平行四边形是菱形.【重点难点解析】1.菱形的性质(1)菱形具有平行四边形的一切性质;(2)菱形的四条边都相等;(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角;(4)菱形是轴对称图形.2.菱形的面积=底×高=对角线乘积的一半.A.重点、难点提示1.理解并掌握菱形的概念,性质和判别方法;(这是重点,也是难点,要掌握好)2.经历探索菱形的性质和判别条件的过程,在操作活动和观察、分析过程中发展学生的主动探究习惯和初步的审美意识,进一步了解和体会说理的基本方法;3.了解菱形的现实应用和常用的判别条件;4.体会特殊与一般的关系.B.考点指要菱形是特殊的平行四边形,其性质和判别方法是中考的重要内容之一.一组邻边相等的平行四边形叫做菱形.菱形是特殊的平行四边形,具有平行四边形的一切性质.除具有平行四边形的一切性质外,菱形还具有以下性质:①菱形的四条边都相等;②两条对角线互相垂直平分;(出现了垂直,常与勾股定理联系在一起)③每一条对角线都平分一组内角.(出现了相等的角,常与角平分线联系在一起)菱形是轴对称图形,它的两条对角线所在直线是它的两条对称轴.(不是对角线,而是其所在直线,因为对称轴是直线,而对角线是线段)菱形的判别方法:(学会利用轴对称的方法研究菱形)①一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四条边都相等的四边形是菱形.【难题巧解点拨】例1:如图4-24,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F.求证:四边形AEFG是菱形.思路分析由已知可知,图中有平行线,就可证角相等、线段相等,因此,可先证四边形AEFG 是平行四边形,再证一组邻边相等.证明:∵∠BAC=90°,EF⊥BC,CE平分∠ACB,∴AE=EF,∠CEA=∠CEF.(这是略证,并不是完整的证明过程)∵AD⊥BC,EF⊥BC,∴EF∥AD,(垂直于同一条直线的两条直线互相平行)∴∠CEF=∠AGE,(两直线平行,内错角相等)∴∠CEA=∠AGE,∴AE=AG,∴EF∥AG,且EF=AG,∴四边形AEFG是平行四边形.(一组对边平行且相等的四边形是平行四边形)又∵AE=EF,∴平行四边形AEFG是菱形.例2:已知菱形的周长为20cm,一条对角线长为5cm,求菱形各个角的度数.已知:菱形ABCD中,AB+BC+CD+DA=20cm,对角线AC=5cm.求∠ADC、∠ABC、∠BCD、∠DAB的度数.思路分析利用菱形的四条边相等,可求出各边长,从而得到等边三角形,如图4-25.解:在菱形ABCD中,∵AB=BC=CD=DA,又AB+BC+CD+DA=20cm,∴AB=BC=CD=DA=5cm,又∵AC=5cm,∴AB=BC=AC,CD=DA=AC,∴△ABC和△DAC都是等边三角形,(本题将边之间的长度关系转化为角的关系)∴∠ADC=∠ABC=60°,∠BCD=∠DAB=120°.例3:如图4-26,在平行四边形ABCD中,∠BAE=∠FAE,∠FBA=∠FBE.求证:四边形ABEF是菱形.证法一:∵AF∥BE,∴∠FAE=∠AEB (两直线平行,内错角相等)又∵∠BAE=∠FAE,∴∠BAE=∠AEB,∴AB=BE.(等角对等边)同理,AB=AF,BE=EF,∴AB=BE=EF=AF,∴四边形ABEF是菱形.(四条边都相等的四边形是菱形)证法二:∵AF∥BE,∴∠FAE=∠AEB,又∵∠BAE=∠FAE,∴∠BAE=∠AEB,∴AB=BE.又∵∠FBA=∠FBE,∴AO=OE,AE⊥FB,(等腰三角形三线合一)同理,BO=OF,∴四边形ABEF是菱形.(对角线互相垂直平分的四边形是菱形)(你还有其他的证明方法吗?不妨试一下)例4:菱形的两邻角之比为1:2,边长为2,则菱形的面积为__________.思路分析本题主要考查菱形的性质和面积公式的应用:解法一:如图4-27,∠B:∠A=1:2,∵四边形ABCD 是菱形, ∴AD ∥BC ,∴∠A+∠B=180°,∴∠B=60°,∠A=120°, 过A 作AE ⊥BC 于E ,∴∠BAE=30°,1AB 21BE ==∴,(直角三角形中,30°角所对的直角边等于斜边的一半) 312B E AB AE 2222=-=-=∴,(勾股定理) 32AE BC S ABCD =⋅=∴菱形.(平行四边形的面积计算方法是:底乘以高) 解法二:如图4-28,∠B ∶∠A=1∶2,∵四边形ABCD 是菱形, ∴AD ∥BC ,∴∠A+∠B=180°,∴∠B=60°,∠A=120°,连结AC 、BD 交于点O ,︒=∠=∠∴30B 21ABD ,AC ⊥BD . (菱形的性质:对角线平分一组对角,对角线互相垂直) 在Rt △ABO 中,1AB 21AO ==, 312AO AB B O 2222=-=-=∴,∴AC=2,32BD =, 3232221BD AC 21S ABCD =⨯⨯=⋅=∴菱形. 答:菱形的面积为32.【典型热点考题】例1 如图4-13,已知菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠B=∠EAF=60°,∠BAE=18°,求∠CEF 的度数.点悟:由∠B=60°知,连接AC得等边△ABC与△ACD,从而△ABE≌△ADF,有AE=AF,则△AEF为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF.解:连接AC.∵四边形ABCD为菱形,∴∠B=∠D= 60°,AB=BC=CD=DA,∴△ABC与△CDA为等边三角形.∴ AB=AC,∠B=∠ACD=∠BAC=60°,∵∠EAF=60°,∴∠BAE=∠CAF.∴ AE=AF.又∵∠EAF=60°,∴△EAF为等边三角形.∴∠AEF=60°,∵∠AEC=∠B+∠BAE=∠AEF+∠CEF,∴ 60°+18°=60°+∠CEF,∴∠CEF=18°.例2已知如图4-14,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD 于G,交AB于E,EF⊥BC于F,求证:四边形AEFG为菱形.点悟:可先证四边形AEFG为平行四边形,再证邻边相等(或对角线垂直).证明:∵∠BAC=90°,EF⊥BC,CE平分∠BCA,∴ AE=FE,∠AEC=∠FEC.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠FEC=∠AGE,∴∠AEC=∠AGE∴ AE=AG,∴∴四边形AEFG为平行四边形.又∵ AE=AG.∴四边形AEFG为菱形.点拨:此题还可以用判定菱形的另两种方法来证.例3 已知如图4-15,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE.求证:EB=OA证明:∵四边形ABCD为菱形,∴∠ABC=2∠ABD, AD∥BC,∴∠DAE=∠AEB,∵ AB=AE,∴∠ABC=∠AEB.∴∠DAE=2∠ABD.∵∠DAE=2∠BAE,∴∠ABD=∠BAE,∴ OA=OB.∵∠BOE=∠ABD+∠BAE,∴∠BOE=2∠BAE.∴∠BEA=∠BOE,∴ OB=BE,∴ AO=BE.说明:利用菱形性质证题时,要灵活选用,选不同性质,就会有不同思路.例4已知菱形的一边与两条对角线构成的两角之比为5:4,求菱形的各内角的度数.点悟:先作出菱形ABCD和对角线AC、BD(如图4-16).解:∵四边形ABCD是菱形,∴ AC⊥BD,∴∠1+∠2=90°,又∵∠1:∠2=4:5,∴∠1=40°,∠2=50°,∴∠DCB=∠DAB=2∠2=100°,故∠CBA=∠CDA=2∠1=80°.【同步达纲练习一】 一、选择题1.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为 ( ) (A)45°, 135° (B)60°, 120° (C)90°, 90° (D)30°, 150°2.若菱形的一条对角线长是另一条对角线的2倍,且此菱形的面积为S ,则它的边长为( )(A)S (B)S 21 (c)S 321 (D)S 521二、填空题3.已知:菱形ABCD 中,E 、F 是BC 、CD 上的点,且AE=EF=AF=AB ,则∠B=________. 4.已知:菱形的两条对角线长分别为a 、b ,则此菱形周长为_______,面积为__________.5.菱形具有而矩形不具有的性质是_______.6.已知一个菱形的面积为38平方厘米,且两条对角线的比为1:3,则菱形的边长为_________.三、解答题 7.已知:O 为对角线BD 的中点,MN 过O 且垂直BD ,分别交CD 、AB 于M 、N .求证:四边形DNBM 是菱形.8.如图4-17,已知菱形ABCD 的对角线交于点O ,AC=16cm ,BD=12cm ,求菱形的高.【同步达纲练习二】1.在菱形ABCD 中,若∠ADC=120°,则BD :AC 等于( ) A .2:3B .3:3C .1:2D .1:32.已知菱形的周长为40cm ,两对角线的长度之比为3:4,则两对角线的长分别为( ) A .6cm ,8cm B .3cm ,4cm C .12cm ,16cm D .24cm ,32cm 3.菱形的对角线具有( ) A .互相平分且不垂直B .互相平分且相等C .互相平分且垂直D .互相平分、垂直且相等(掌握菱形对角线的性质,注意不要增加性质)4.已知菱形的面积等于2cm 160,高等于8cm ,则菱形的周长等于____________. 5.已知菱形的两条对角线的长分别是6和8,那么它的边长是______________. 6.菱形的周长是40cm ,两邻角的比是1:2,则较短的对角线长是_________cm . 7.如图4-29,在△ABC 中,∠BAC=90°,BD 平分∠ABC ,AG ⊥BC ,且BD 、AG 相交于点E ,DF ⊥BC 于F .求证:四边形AEFD 是菱形.8.如图4-30,平行四边形ABCD 的对角线AC 的垂直平分线与AD 、BC 、AC 分别交于点E 、F 、O .求证:四边形AFCE 是菱形.参考答案【同步达纲练习一】一、1.B ; 2.D ;二、3.80°;4.222b a ,ab 21;5.对角线互相垂直,各边长相等. 6.4厘米.三、7.由已知MN 为BD 的垂直平分线, 有 DM=BM ,DN=BN ,又由△DOM ≌△BON ,得DM=BN ,∴ DM=BM=BN=DN .∴四边形DNBM 是菱形.8.过点D 作DH ⊥AB 于H ,则DH 为菱形的一条高. 又∵ AC 、BD 互相垂直平分于O , ∴ 821==AB OA 厘米,621==BD OB 厘米. 由勾股定理,得 1022=+=BO AO AB (厘米).又∵OA BD DH AB ⋅=⋅2121, ∴812211021⨯⨯=⨯⨯DH ,DH=9.6厘米.【同步达纲练习二】1.B ; 2.C ; 3.C ; 4.80cm ; 5.5; 6.10;7.证法一:在Rt △ABD 和Rt △FBD 中,∵BD 为∠ABC 的平分线,∴∠ABD=∠FBD ,∠DAB=∠DFB=90°,又∵BD=BD ,∴Rt △ABD ≌Rt △FBD ∴AD=DF ,∠ADE=∠EDF又∵DF ⊥BC ,AG ⊥BC ,∴DF//AE ,∴∠EDF=∠DEA ,∴∠ADE=∠DEA ,∴AD=AE , ∴AE=DF ,∴四边形AEFD 是平行四边形. ∵AD=DF ,∴四边形AEFD 为菱形. 证法二:同证法一得DF=DA=AE ,∵Rt △ABD ≌Rt △FBD ,∴AB=BF ,∴△ABE ≌△FBE , ∴AE=EF ,∴DF=DA=AE=EF ,∴四边形AEFD 是菱形.证法三:同证法一:Rt △ABD ≌Rt △FBD ,∴AB=BF ,∴△ABE ≌△FBE ,∴∠GAB=∠EFB ,又∵∠C+∠ABC=90°,∠GAB+∠ABC=90°, ∴∠C=∠GAB ,∴∠C=∠EFB ,∴EF ∥AC ,又∵DF ∥AG ,∴四边形AEFD 是平行四边形,∵AD=DF ,∴四边形AEFD 是菱形.8.∵AD ∥BC ,∴∠OAE=∠OCF ,又∵∠AOE=∠COF=90°,AO=CO , ∴△AOE ≌△COF ,∴AE=CF ,又∵AE ∥CF , ∴四边形AFCE 是平行四边形.又∵EF是AC的垂直平分线,∴AE=CE.(垂直平分线上的点到线段两端距离相等)∴四边形AFCE是菱形.。

自学初中数学资料-菱形的性质及判定(资料附答案)

自学初中数学资料-菱形的性质及判定(资料附答案)

自学资料一、菱形及其性质【知识探索】1.有一组邻边相等的平行四边形叫做菱形.【说明】菱形的面积还可用对角线乘积除以2求得.2.菱形的性质:(1)菱形的四条边都相等;(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角.【说明】(1)菱形具有平行四边形的所有性质;(2)菱形既是中心对称图形,又是轴对称图形.1个对称中心,对称中心是其对角线的交点;2条对称轴,对称轴是其对角线所在的直线.【错题精练】第1页共16页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训例1.(2002•杭州)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A. 4B. 3C. 2D. 1【解答】C【答案】C【举一反三】1.菱形在平面直角坐标系中的位置如图所示,若,,则点的坐标是__________。

【解答】二、菱形的判定【知识探索】1.菱形的判定:(1)对角线互相垂直的平行四边形是菱形;(2)四条边都相等的四边形是菱形.第2页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【错题精练】例1.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A. AB=CDB. AD=BCC. AB=BCD. AC=BD【解答】C【答案】C例2.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH 是菱形,四边形ABCD还应满足的一个条件是__________.【解答】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.据此四边形ABCD还应满足的一个条件是AD=BC.等.答案不唯一.例3.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.第3页共16页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训【答案】例4.△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.(1)如图(a)所示,当点D在线段BC上时.①求证:△AEB≌△ADC;②探究四边形BCGE是怎样特殊的四边形?并说明理由;(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;第4页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.【解答】此题要熟练多方面的知识,特别是全等三角形和平行四边形和菱形的判定.证明:(1)①∵△ABC和△ADE都是等边三角形,∴AE=AD,AB=AC,∠EAD=∠BAC=60°.(1分)又∵∠EAB=∠EAD-∠BAD,∠DAC=∠BAC-∠BAD,∴∠EAB=∠DAC,∴△AEB≌△ADC(SAS).(3分)②方法一:由①得△AEB≌△ADC,∴∠ABE=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABE=∠BAC,∴EB∥GC.(5分)又∵EG∥BC,∴四边形BCGE是平行四边形.(6分)方法二:证出△AEG≌△ADB,得EG=AB=BC.(5分)∵EG∥BC,∴四边形BCGE是平行四边形.(6分)(2)①②都成立.(8分)(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE是菱形.(9分)理由:方法一:由①得△AEB≌△ADC,∴BE=CD(10分)又∵CD=CB,∴BE=CB.(11分)由②得四边形BCGE是平行四边形,∴四边形BCGE是菱形.(12分)方法二:由①得△AEB≌△ADC,∴BE=CD.(9分)又∵四边形BCGE是菱形,∴BE=CB(11分)∴CD=CB.(12分)方法三:∵四边形BCGE是平行四边形,∴BE∥CG,EG∥BC,∴∠FBE=∠BAC=60°,∠F=∠ABC=60°(9分)∴∠F=∠FBE=60°,∴△BEF是等边三角形.(10分)第5页共16页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训又∵AB=BC,四边形BCGE是菱形,∴AB=BE=BF,∴AE⊥FG(11分)∴∠EAG=30°,∵∠EAD=60°,∴∠CAD=30度.(12分)例5.如图,四边形ABCD中,AD∥BC,AD=DC=BC,过AD的中点E作AC的垂线,交CB的延长线于F.求证:(1)四边形ABCD是菱形.(2)BF=DE.【解答】(1)有一组邻边相等的平行四边形为菱形,AD和BC既平行又相等,所以四边形ABCD为平行四边形,而AD=DC=BC,所以平行四边形ABCD为菱形;(2)要证BF=DE,而在原题中已知AE=DE,所以证明的方向就变为证BF=AE,而证BF=AE则可以通过证△FBM≌△EAM来实现.证明:(1)∵AD∥BC,AD=BC(已知),∴四边形ABCD为平行四边形.又邻边AD=DC,∴四边形ABCD为菱形;(3分)(2)证法一:如图:记EF与AC交点为G,EF与AB的交点为M.由(1)证得四边形ABCD为菱形,所以对角线AC平分∠A,即∠BAC=∠DAC.又∵EF⊥AC,AG=AG,∴△AGM≌△AGE,∴AM=AE.(6分)又∵E为AD的中点,四边形ABCD为菱形,∴AM=BM.∠MAE=∠MBF.又∵∠BMF=∠AME,∴△BMF≌△AME.∴BF=AE.第6页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∴BF=DE.(8分)证法二:如图:连接BD∵四边形ABCD为菱形∴BD⊥AC∵EF⊥AC∴EF∥BD∵BF∥DE∴四边形BDEF是平行四边形∴BF=DE(8分)【举一反三】1.如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A. ①③B. ②③C. ③④D. ①②③【答案】A2.(2002•咸宁)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=1,BC=3,CD=4.梯形的高DH与中位线EF交于点G,则下列结论中:①△DGF≌△EBH;②四边形EHCF是菱形;③以CD为直径的圆与AB相切于点E.正确的有()A. 1个B. 2个C. 3个第7页共16页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训D. 0个【解答】C【答案】C3.如图,在等腰梯形ABCD中,AD∥BC,BD⊥CD,点E是BC的中点且DE∥AB,则∠BCD的度数是__________.【解答】首先根据BD⊥CD,点E是BC的中点可知DE=BE=EC=BC,又知DE∥AB,AD∥BC,可知四边形ABED是菱形,于是可得到AB=DE,再根据四边形ABCD是等腰梯形,可得AB=CD,进而得到DC=BC,然后可求出∠DBC=30°,最后求出∠BCD=60°.4.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是__________.【解答】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.据此四边形ABCD还应满足的一个条件是AD=BC.等.答案不唯一.5.如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.(1)求△ABC所扫过的图形的面积;(2)试判断AF与BE的位置关系,并说明理由;(3)若∠BEC=15°,求AC的长.第8页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【解答】(1)根据题意:易得△ABC≌△EFA,BA∥EF,且BA=EF,进而得出S平行四边形ABFE=2S△EAF,故可求出△ABC扫过图形的面积为S平行四边形ABFE;(2)根据平移的性质,可得四边形ABFE为菱形,故AF与BE互相垂直且平分;(3)根据题意易得:所以∠AEB=∠ABE=15°,BD•AC=3,可得AC•AC=3,进而可得AC的长度.6.如图,在∠ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.【解答】(1)可根据菱形的定义“一组邻边相等的平行四边形是菱形”,先证明四边形BFED是平行四边形,然后再证明四边形的邻边相等即可.(2)F是AB的中点,有了AB的长也就求出了菱形的边长BF的长,那么菱形BDEF的周长也就能求出了.(1)证明:∵D、E、F分别是BC、AC、AB的中点,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,又∵DE=AB,EF=BC,且AB=BC,∴DE=EF,∴四边形BDEF是菱形;(2)7.如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E.DF平分∠ADC交BC于F.第9页共16页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训(1)求证:△ABE≌△CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.【解答】(1)由平行四边形ABCD可得出的条件有:①AB=CD,②∠A=∠C,③∠ABC=∠CDA;已知BE、CD分别是等角∠ABD、∠CDA的平分线,易证得∠ABE=∠CDF④;联立①②④,即可由ASA 判定所求的三角形全等;(2)由(1)的全等三角形,易证得DE=BF,那么DE和BF平行且相等,由此可判定四边形BEDF是平行四边形,根据对角线垂直的平行四边形是菱形即可得出EBFD的形状.(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,∠ABC=∠ADC,∵BE平分∠ABC,DF平分∠ADC,∴∠ABE=∠CDF(2分),∴△ABE≌△CDF(ASA);(4分)(2)1.如图,在菱形ABCD中,BC=3,点是BD的中点,延长BD到点E,使得BD=DE=2,连结CE,点M是CE的中点,则OM=.【答案】√17.22.如图,将矩形ABCD沿对角线BD翻折,点C落在C′处,BC′交AD于点E,DF∥BE交BC于点F.第10页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训(1)求证:四边形BEDF是菱形.(2)若AB=4,AD=8,请求出菱形BEDF的边长.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90∘,AD∥BC,∵DF∥BE,∴四边形BEDF是平行四边形,由折叠,得∠Capos;=∠C,DCapos;=DC,∴∠A=∠Capos;,AB=DCapos;,又∵∠AEB=∠Capos;ED,∴△AEB≌△C′ED(AAS),∴EB=ED,∴四边形BEDF是菱形;(2)解:设AE=x,则BE=8−x,在Rt△ABE中,由勾股定理,得42+x2=(8−x)2,解得x=3,∴BE=8−3=5,即菱形BEDF的边长为5.【答案】(1)略;(2)5.3.如图,菱形ABCD中,∠A是锐角,E为边AD上一点,△ABC沿着BE折叠,使点A的对应点F恰好落在边CD上,连接EF,BF,给出下列结论:①若∠A=70∘,则∠ABC=35∘;②若点F是CD的中点,则S△ABE=1S ABCD3下列判断正确的是()A. ①,②都对;B. ①,②都错;C. ①对,②错;D. ①错,②对.【答案】A4.如图,点E,F分别在▱ABCD的边BC,AD上.(1)若BE=DF,求证:四边形AECF是平行四边形;(2)请在图2中用圆规和直尺画出四边形AECF,使得四边形AECF是菱形.(不写作法,保留作图痕迹)【解答】(1)证明:四边形AECF为平行四边形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=CE,∴四边形AECF为平行四边形;(2)解:如图,四边形AECF就是所求作的菱形.【答案】略.5.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A. 点A;B. 点B;C. 点C;D. 点D.【答案】D6.如图,已知在Rt△ABC中,∠ACB=90∘,AC=6,BC=8,BE平分∠ABC交AC于点E,EF⊥AB,垂足为F.(1)求EF的长度;(2)作CD⊥AB,垂足为D,CD与BE相交于G,试说明:CE=CG;(3)连接FG,试说明:四边形CEFG是菱形.【解答】(1)解:∵BE平分∠ABC,∠ACB=90∘,EF⊥AB,垂足为F,∴EF=CE.在△BFE与△BCE中,∠C=∠BFE=90∘,{BE=BE,EF=EC∴△BFE≌△BCE,∴BF=BC=8.∵在Rt△ABC中,∠ACB=90∘,AC=6,BC=8,∴AB=10,∴AF=AB−BF=2.设EF=x,则CE=x,AE=6−x,在直角△AEF中,由勾股定理,得AE2=EF2+AF2,∴(6−x)2=x2+22,解得x=8;3(2)证明:∵在△BCE中,∠CEB=90∘−∠CBE,∠CGE=∠DGB=90∘−∠DBG,∴∠CEB=∠CGE,∴CE=CG;(3)证明:CD⊥AB,EF⊥AB,∴CD∥EF,∵EF=CE,CE=CG,∴EF=CG,∴四边形CEFG是平行四边形,又∵CE=CG,∴CEFG是菱形.;(2)略;(3)略.【答案】(1)837.如图,已知在Rt△ABC中,∠ACB=90∘,AC=6,BC=8,BE平分∠ABC交AC于点E,EF⊥AB,垂足为F.(1)求EF的长度;(2)作CD⊥AB,垂足为D,CD与BE相交于G,试说明:CE=CG;(3)连接FG,试说明:四边形CEFG是菱形.【解答】(1)解:∵BE平分∠ABC,∠ACB=90∘,EF⊥AB,垂足为F,∴EF=CE.在△BFE与△BCE中,∠C=∠BFE=90∘,{BE=BE,EF=EC∴△BFE≌△BCE,∴BF=BC=8.∵在Rt△ABC中,∠ACB=90∘,AC=6,BC=8,∴AB=10,∴AF=AB−BF=2.设EF=x,则CE=x,AE=6−x,在直角△AEF中,由勾股定理,得AE2=EF2+AF2,∴(6−x)2=x2+22,解得x=8;3(2)证明:∵在△BCE中,∠CEB=90∘−∠CBE,∠CGE=∠DGB=90∘−∠DBG,,∴∠CEB=∠CGE,∴CE=CG;(3)证明:CD⊥AB,EF⊥AB,∴CD∥EF,∵EF=CE,CE=CG,∴EF=CG,∴四边形CEFG是平行四边形,又∵CE=CG,∴CEFG是菱形.【答案】(1)8;(2)略;(3)略.3● 矩形。

人教版初中数学19.2《菱形》同步练习(含答案)

人教版初中数学19.2《菱形》同步练习(含答案)

19.2.1 菱形的性质运用菱形的有关知识进行计算和说理专题练习题1.已知菱形的周长为16 cm,一条对角线长为4 cm,则菱形的4个角分别为()A.30°,150°,30°,150°B.45°,135°,45°,135°C.60°,120°,60°,120°D.以上都不对2.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC相交于点O,连结BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°3.如图,在菱形ABCD中,点E是AB上的一点,连结DE交AC于点O,连结BO,且∠AED=50°,则∠CBO=____度.4.如图,在菱形ABCD中,∠ABC=120°,对角线AC,BD相交于点O,AE平分∠CAD,分别交OD,CD于F,E 两点,求∠AFO的度数.5.如图,在菱形ABCD中,AB=13 cm,BC边上的高AH=5 cm,那么对角线AC的长为____cm.6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.245B.125C .5D .4 7.如图,在菱形ABCD 中,对角线AC =6,BD =10,则菱形ABCD 的面积为____.8.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和4时,则阴影部分的面积为____.9.如图,O 是菱形ABCD 对角线AC 与BD 的交点,CD =5 cm ,OD =3 cm, 过点C 作CE ∥DB ,过点B 作BE ∥AC ,CE 与BE 相交于点E .(1)求OC 的长;(2)求四边形OBEC 的面积.10.如图,在菱形ABCD 中,∠BAD =44°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连结DF ,则∠CDF 等于( )A .112°B .114°C .116°D .118°11.在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为 .12.如图,四边形ABCD 是菱形,CE ⊥AB 交AB 的延长线于点E ,CF ⊥AD 交AD 的延长线于点F ,求证:DF =BE .13.如图,在菱形ABCD中,AB=4,E为BC中点,AE⊥BC,AF⊥CD于点F,CG∥AE,CG交AF于点H,交AD 于点G.(1)求菱形ABCD的面积;(2)求∠CHA的度数.14.如图,在菱形ABCD中,F是BC上任意一点,连结AF交对角线BD于点E,连结EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?请说明理由.15.如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是____.16.如图1,在菱形ABCD中,点E,F分别为AB,AD的中点,连结CE,CF.(1)求证:CE=CF;(2)如图2,若H为AB上一点,连结CH,使∠CHB=2∠ECB,求证:CH=AH+AB.答案:1. C2. C3. 504. ∵在菱形ABCD中,∠ABC=120°,∴∠BAD=60°,∵对角线AC,BD相交于点O,∴∠BAC=∠CAD=30°,∠DOA =90°,∵AE平分∠CAD,∴∠OAF=15°,∴∠AFO的度数为90°-15°=75°5. 266. A7. 308. 109. (1)∵四边形ABCD是菱形,∴AC⊥BD,∴在Rt△OCD中,OC=CD2-OD2=52-32=4 (cm)(2)∵CE∥DB,BE∥AC,∴四边形OBEC为平行四边形,又∵AC⊥BD,即∠COB=90°,∴平行四边形OBEC为矩形,∵OB=OD,∴S四边形OBEC=OB·OC=4×3=12(cm2)10. B11. 45°或105°12. 连结AC ,∵四边形ABCD 是菱形,∴AC 平分∠DAB ,CD =BC ,∵CE ⊥AB ,CF ⊥AD ,∴CE =CF ,∠CFD =∠CEB =90°,∴Rt △CDF ≌Rt △CBE (HL ),∴DF =BE13. (1)连结AC ,BD ,并且AC 和BD 相交于点O ,∵AE ⊥BC ,且AE 平分BC ,∴AB =AC =BC ,∴BE =12BC =2,∴AE =42-22=23,S =BC ·AE =4×23=83, ∴菱形ABCD 的面积是83(2)∵AC =AB =AD =CD ,△ADC 是等边三角形,∵AF ⊥CD , ∴∠DAF =30°,又∵CG ∥AE ,AE ⊥BC , ∴四边形AECG 是矩形,∴∠AGH =90°, ∴∠AHC =∠DAF +∠AGH =120°14. (1)连结AC ,∵BD 也是菱形ABCD 的对角线,∴BD 垂直平分AC ,∴AE =EC(2)点F 是线段BC 的中点.理由:在菱形ABCD 中,AB =BC , 又∵∠ABC =60°,∴△ABC 是等边三角形,∴∠BAC =60°, ∵AE =EC ,∴∠EAC =∠ACE ,∵∠CEF =60°, ∴∠EAC =12∠CEF =30°,∴∠EAC =12∠BAC ,∴AF 是△ABC 的角平分线,∵AF 交BC 于点F ,∴AF 是△ABC 的BC 边上的中线,∴点F 是线段BC 的中点 15.17216.(1)易证△BCE ≌△DCF (SAS ),∴CE =CF(2)延长BA 与CF ,交于点G ,∵四边形ABCD 是菱形,∴∠B =∠D ,AB =BC =CD =AD ,AF ∥BC ,AB ∥CD ,∴∠G =∠FCD ,∵点F 为AD 的中点,且AG ∥CD ,易证△AGF ≌△DCF (AAS ),∴AG =CD ,∵AB =CD ,∴AG =AB ,∵△BCE ≌△DCF ,∴∠ECB =∠DCF =∠G ,∵∠CHB =2∠ECB ,∴∠CHB =2∠G ,∵∠CHB =∠G +∠HCG ,∴∠G =∠HCG ,∴GH =CH ,∴CH =AH +AG =AH +AB。

八年级数学下册菱形知识点总结及典型例题解析(提高)

八年级数学下册菱形知识点总结及典型例题解析(提高)

八年级数学下册菱形知识点总结及典型例题解析(提高)菱形是一种特殊的平行四边形,其定义为具有一组邻边相等的平行四边形。

菱形的性质包括四条边相等、两条对角线互相垂直并平分一组对角、是轴对称图形且有两条对称轴。

菱形可以用来证明线段相等、角相等、直线平行、垂直及有关计算问题。

菱形的面积可以通过平行四边形的面积公式或者两条对角线乘积的一半计算。

菱形的判定方法有三种,包括定义、对角线互相垂直的平行四边形和四条边相等的四边形。

例题:已知菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE=18°,求∠CEF的度数。

由已知∠B=60°,∠BAE=18°,可知∠AEC=78°。

欲求∠XXX的度数,只需求出∠AEF的度数。

由∠EAF=60°,易证△AEF为等边三角形,从而∠AEF=60°。

连接AC,由四边形ABCD 是菱形可知AB=BC,∠ACB=∠ACF。

又∵∠B=60°,∴△ABC是等边三角形,∴∠BAC=∠ACB=60°,AB=AC。

∴∠ACF=∠B=60°,又∵∠EAF=∠BAC=60°,∴∠BAE=∠CAF,∴△ABE≌△ACF,∴AE=AF。

因此,△AEF为等边三角形,∴∠AEF=60°。

2)利用菱形的性质,即对角线相等,结合EF的运动情况列出方程,解得t=2,代入验证即可.答案】(1)证明略.2)当t=2时,四边形ACFE是菱形.解析】1)略.2)设EF与AC的交点为点D,由题意可知:AG∥BC,∠BAC=60°,BC=6。

EF的速度为2cm/s,AE=l。

XXX的方程为:y=2x+l.XXX的中点为M,∴MC=MA=3。

AC的方程为:y=-√3x+3.D为AC的中点,∴D的坐标为(1.5,1.5√3)。

DE的方程为:y=-√3x+3√3.XXX≌CDF。

【复习】:初中数学九年级上册.菱形(基础)知识讲解+练习

【复习】:初中数学九年级上册.菱形(基础)知识讲解+练习

专项训练年度:菱形(基础)【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】【高清课堂特殊的平行四边形(菱形)知识要点】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、(2015•石景山区一模)如图,菱形ABCD中,E,F分别为AD,AB上的点,且AE=AF,连接EF并延长,交CB的延长线于点G,连接BD.(1)求证:四边形EGBD是平行四边形;(2)连接AG,若∠FGB=30°,GB=AE=1,求AG的长.【思路点拨】(1)连接AC,再根据菱形的性质得出EG∥BD,根据对边分别平行证明是平行四边形即可.(2)过点A作AH⊥BC,再根据直角三角形的性质和勾股定理解答即可.【答案与解析】(1)证明:连接AC,如图1:∵四边形ABCD是菱形,∴AC平分∠DAB,且AC⊥BD,∵AF=AE,∴AC⊥EF,∴EG∥BD.又∵菱形ABCD中,ED∥BG,∴四边形EGBD是平行四边形.(2)解:过点A作AH⊥BC于H.∵∠FGB=30°,∴∠DBC=30°,∴∠ABH=2∠DBC=60°,∵GB=AE=1,∴AB=AD=2,在Rt△ABH中,∠AHB=90°,∴AH=,BH=1.∴GH=2,在Rt△AGH中,根据勾股定理得,AG=.【总结升华】本题考查了菱形性质,关键是根据菱形的性质和平行四边形的判定以及直角三角形的性质解题.举一反三:【变式1】(2015•温州模拟)如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO= 度.【答案】50;解:在菱形ABCD 中,AB ∥CD ,∴∠CDO=∠AED=50°, CD=CB ,∠BCO=∠DCO , ∴在△BCO 和△DCO 中,,∴△BCO ≌△DCO (SAS ), ∴∠CBO=∠CDO=50°.【变式2】菱形ABCD 中,∠A ∶∠B =1∶5,若周长为8,则此菱形的高等于( ).A.21B.4C.1D.2【答案】C ;提示:由题意,∠A =30°,边长为2,菱形的高等于12×2=1. 类型二、菱形的判定2、如图所示,在△ABC 中,CD 是∠ACB 的平分线,DE ∥AC ,DF ∥BC ,四边形DECF 是菱形吗?试说明理由.【思路点拨】由菱形的定义去判定图形,由DE ∥AC ,DF ∥BC 知四边形DECF 是平行四边形,再由∠1=∠2=∠3得到邻边相等即可. 【答案与解析】解:四边形DECF 是菱形,理由如下: ∵ DE ∥AC ,DF ∥BC∴ 四边形DECF 是平行四边形. ∵ CD 平分∠ACB ,∴ ∠1=∠2 ∵ DF ∥BC , ∴ ∠2=∠3, ∴ ∠1=∠3.∴ CF =DF ,∴ 四边形DECF 是菱形.【总结升华】在用菱形的定义判定一个四边形是菱形时,首先判定这个四边形是平行四边形,再由一对邻边相等来判定它是菱形.举一反三:【变式】如图所示,AD是△ABC的角平分线,EF垂直平分AD,分别交AB于E,交AC 于F,则四边形AEDF是菱形吗?请说明理由.【答案】解:四边形AEDF是菱形,理由如下:∵EF垂直平分AD,∴△AOF与△DOF关于直线EF成轴对称.∴∠ODF=∠OAF,又∵AD平分∠BAC,即∠OAF=∠OAE,∴∠ODF=∠OAE.∴AE∥DF,同理可得:DE∥AF.∴四边形AEDF是平行四边形,∴EO=OF又∵AEDF的对角线AD、EF互相垂直平分.∴AEDF是菱形.3、如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,CE平分∠ACD,交AD 于点G,交AB于点E,EF⊥BC于点F.求证:四边形AEFG是菱形.【思路点拨】由角平分线性质易知AE=EF,欲证四边形AEFG是菱形,只要再证四边形AEFG是平行四边形或AG=GF=AE即可.【答案与解析】证明:方法一:∵CE平分∠ACB,∠BAC=90°,EF⊥BC,∴AE=EF,∠1+∠3=90°,∠4+∠2=90°.∵∠1=∠2,∴∠3=∠4.∵EF⊥BC,AD⊥BC,∴EF∥AD.∴∠4=∠5.∴∠3=∠5.∴AE=AG.∴EF AG.∴四边形AEFG是平行四边形.又∵AE=AG,∴四边形AEFG是菱形.方法二:∵CE平分∠ACB,∠BAC=90°,EF⊥BC,∴AE=EF,∠1+∠3=90°,∠4+∠2=90°.∴∠3=∠4.∵EF⊥BC,AD⊥BC,∴EF∥AD.∴∠4=∠5.∴∠3=∠5.∴AE=AG.在△AEG和△FEG中,AE=EF,∠3=∠4,EG=EG,∴△AEG≌△FEG.∴AG=FG.∴AE=EF=FG=AG.∴四边形AEFG是菱形.【总结升华】判定一个四边形是菱形,关键是把已知条件转化成判定方法所需要的条件.举一反三:【变式】如图所示,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A 点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证四边形DEBF是菱形.【答案】证明:(1)ABCD中,AB∥CD,AB=CD∵E、F分别为AB、CD的中点∴DF=12DC,BE=12AB∴DF∥BE.DF=BE∴四边形DEBF为平行四边形∴DE∥BF(2)证明:∵AG∥BD∴∠G=∠DBC=90°∴△DBC为直角三角形又∵F为边CD的中点.∴BF=12DC=DF又∵四边形DEBF为平行四边形∴四边形DEBF是菱形类型三、菱形的应用4、如图所示,是一种长0.3m,宽0.2m的矩形瓷砖,E、F、G、H分别为矩形四边BC、CD、DA、AB的中点,阴影部分为淡黄色花纹,中间部分为白色,现有一面长4.2 m,宽2.8m的墙壁准备贴如图所示规格的瓷砖.试问:(1)这面墙最少要贴这种瓷砖多少块?(2)全部贴满后,这面墙壁会出现多少个面积相同的菱形?【答案与解析】解:墙壁长4.2m,宽2.8m,矩形瓷砖长0.3m,宽0.2m,4.2÷0.3=14,2.8÷0.2=14,则可知矩形瓷砖横排14块,竖排14块可毫无空隙地贴满墙面.(1)则至少需要这种瓷砖14×14=196(块).(2)每块瓷砖中间有一个白色菱形,则共有196个白色的菱形,它的面积等于瓷砖面积的一半.另外在同一个顶点处的瓷砖能够拼成一个淡黄色花纹的菱形,它的面积也等于瓷砖面积的一半,有花纹的菱形横排有13个,竖排也有13个,则一共有淡黄色花纹菱形13×13=169个,面积相等的菱形一共有196+169=365(个).【总结升华】菱形可以看作是由直角三角形组成的,因而铺满墙面后,要计算空白菱形的个数和阴影菱形的个数.将相同的图形拼在一起,在顶点周围的几个图形也能拼成一定的图案,不要忽略周围图形的拼接.【巩固练习】一.选择题1.(2015•潍坊模拟)下列说法中,错误的是()A. 平行四边形的对角线互相平分B. 对角线互相平分的四边形是平行四边C.菱形的对角线互相垂直 D. 对角线互相垂直的四边形是菱形2.顺次连结对角线相等的四边形各边中点,所得四边形是( )A.矩形B.平行四边形C.菱形 D.任意四边形3.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD 的周长是( )A.4B.8C.12D.164.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.55.如图,在菱形ABCD中,AC、BD是对角线,若∠BAC=50°,则∠ABC等于()A.40°B.50°C.80°D.100°6.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为( )A.1B. 2C. 2D. 3二.填空题7.已知菱形的周长为40cm,两个相邻角度数之比为1∶2,则较长对角线的长为______cm.8.(2015•南充)如图,菱形ABCD的周长为8cm,高AE长为cm,则对角线AC长和BD长之比为 .9. 已知菱形ABCD两对角线AC =8cm, BD =6cm, 则菱形的高为________.10.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是____cm.11. 如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_____.12.如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则C点的坐标为_______.三.解答题13.如图,在菱形ABCD中,∠ABC=120°,E是AB边的中点,P是AC边上一动点,PB +PE的最小值是3,求AB的值.14.如图,在平行四边形ABCD中,E、F分别为边AB,CD的中点,连接DE、BF、BD.若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.15(2015春•泰安校级期中)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C 作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.【答案与解析】一.选择题 1.【答案】D ; 2.【答案】C ; 3.【答案】D ;【解析】BC =2EF =4,周长等于4BC =16. 4.【答案】B ;【解析】∵∠BCD=120°,∴∠B=60°,又∵ABCD 是菱形,∴BA=BC ,∴△ABC 是等边三角形,故可得△ABC 的周长=3AB=15.5.【答案】C ;【解析】∵四边形ABCD 是菱形,∴∠BAC =12∠BAD ,CB ∥AD ,∵∠BAC =50°,∴∠BAD =100°,∵CB ∥AD ,∴∠ABC +∠BAD =180°,∴∠ABC =180°-100°=80°.6.【答案】D ;【解析】∠DAF =∠FAO =∠OAE =30°,所以2BE =CE =AE ,3BE =3,BC BE =3. 二.填空题7.【答案】【解析】由题意,菱形相邻内角为60°和120°,较长对角线为=8.【答案】1:;【解析】如图,设AC ,BD 相较于点O ,∵菱形ABCD 的周长为8cm , ∴AB=BC=2cm , ∵高AE 长为cm ,∴BE==1(cm ),∴CE=BE=1cm , ∴AC=AB=2cm , ∵OA=1cm ,AC ⊥BD , ∴OB==(cm ),∴BD=2OB=2cm ,∴AC :BD=1:.9.【答案】245cm ; 【解析】菱形的边长为5,面积为168242⨯⨯= ,则高为245cm .10.【答案】4;【解析】在菱形ABCD 中,BD 是∠ABC 的平分线,∵PE ⊥AB 于点E ,PE =4cm ,∴点P 到BC 的距离=PE =4cm .11.【答案】60;【解析】因为菱形的对角线互相垂直及互相平分就可以在Rt △AOB 中利用勾股定理求出OB =12,BD =2OB =24,DE =2OC =10,BE =2BC =26,△BDE 的周长为60.12.【答案】(3,4);【解析】过B 点作BD ⊥OA 于D ,过C 点作CE ⊥OA 于E ,BD =4,OA =x ,AD =8-x ,()22284x x =-+,解得5x =,所以OE =AD =8-5=3,C 点坐标为(3,4).三.解答题13.【解析】解:∵∠ABC =120°∴∠BCD =∠BAD =60°;∵菱形ABCD 中, AB =AD∴△ABD 是等边三角形;又∵E 是AB 边的中点, B 关于AC 的对称点是D ,DE ⊥AB连接DE ,DE 与AC 交于P ,PB =PD ;DE 的长就是PB +PE 的最小值3;设AE =x ,AD =2x ,DE ==1x =,AB =22x =.14.【解析】四边形BFDE 是菱形,证明:∵AD ⊥BD ,∴△ABD 是直角三角形,且AB 是斜边,∵E 为AB 的中点,∴DE =12AB =BE ,∵四边形ABCD 是平行四边形,∴DC ∥AB ,DC =AB ,∵F 为DC 中点,E 为AB 中点,∴DF =12DC ,BE =12AB ,∴DF =BE ,DF ∥BE ,∴四边形DFBE 是平行四边形,∵DE =EB ,∴四边形BFDE 是菱形.15.【解析】证明:∵∠ABC=90°,BD 为AC 的中线,∴BD=AC ,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.。

八年级数学下册《菱形》同步练习题及答案解析

八年级数学下册《菱形》同步练习题及答案解析

八年级数学下册《菱形》同步练习题及答案解析一.选择题1.已知菱形的两条对角线的长分别为6cm和8cm,则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm22.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°3.在小正方形组成网格图中,四边形ABCD的顶点都在格点上,如图所示.则下列结论错误的是()A.AD∥BC B.DC=ABC.四边形ABCD是菱形D.将边AD向右平移3格,再向上平移7格就与边BC重合4.从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边的中点,则菱形的内角中钝角的度数是()A.150°B.135°C.120°D.100°5.如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为()A.45°B.50°C.60°D.70°6.如图,菱形ABCD的两条对角线相交于点O,若AC=6,菱形的面积等于12,则菱形ABCD的周长等于()A.4B.2C.D.47.已知一个菱形的周长为8,有一个内角为120°,则该菱形较短的对角线长为()A.4B.2C.2D.18.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED的度数为()A.15°B.20°C.25°D.30°9.菱形的一个内角是60°,边长是3cm,则这个菱形的较短的对角线长是()A.B.C.3cm D.10.平行四边形ABCD的对角线AC与BD相交于点O,添加以下条件,不能判定平行四边形ABCD为菱形的是()A.AC⊥BD B.∠ABD=∠CBD C.AB=BC D.AC=BD11.如图,在菱形ABCD中,AC与BD相交于点O,AB=AC,点E在BC上,且∠CAE=15°,AE与BD 相交于F,下列结论不正确的是()A.∠EBF=30°B.BE=BF C.F A>EF D.OE⊥BC12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB=3,AC=2,则四边形ABCD的面积为()A.B.C.D.513.下列说法中,错误的是()A.对顶角相等B.对角线互相垂直的平行四边形是菱形C.两直线平行,同位角相等D.两边及一角对应相等的两个三角形全等14.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,以A为圆心,AB 长为半径画弧交AD于F,若BF=12,AB=10,则AE的长为()A.16B.15C.14D.1315.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54°B.64°C.74°D.26°二.填空题(共5小题)16.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是.17.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.18.如图,菱形ABCD和菱形EFGH的面积分别为9cm2和64cm2,CD落在EF上,∠A=∠E,若△BCF 的面积为4cm2,则△BDH的面积是cm2.19.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF ⊥AD于F.则OE+OF=.20.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是.三.解答题(共5小题)21.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形.(2)若BD=30,MN=16,求菱形BNDM的周长.22.如图,平行四边形ABCD中,以A为圆心,DA的长为半径画弧,交BA于点F,作∠DAB的角平分线,交CD于点E,连接EF.(1)求证:四边形AFED是菱形;(2)若AD=4,∠DAB=60°,求四边形AFED的面积.23.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D 作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.24.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,BD=2AB,AE∥BD,OE∥AB.(1)求证:四边形ABOE是菱形;(2)若AO=2,S四边形ABOE=4,求BD的长.25.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.参考答案与解析一.选择题1.解:∵菱形的两条对角线的长分别为6cm和8cm;∴这个菱形的面积=×6×8=24(cm2);故选:B.2.解:∵四边形ABCD是菱形;∴OD=OB,AB∥CD,BD⊥AC;∵DH⊥AB;∴DH⊥CD,∠DHB=90°;∴OH为Rt△DHB的斜边DB上的中线;∴OH=OD=OB;∴∠1=∠DHO;∵DH⊥CD;∴∠1+∠2=90°;∵BD⊥AC;∴∠2+∠DCO=90°;∴∠1=∠DCO;∴∠DHO=∠DCA;∵四边形ABCD是菱形;∴DA=DC;∴∠CAD=∠DCA=20°;∴∠DHO=20°;故选:A.3.解:A、由图形可知:BC和AD是连接7×2的图形的对角线,即AD∥BC,故本选项错误;B、设小正方形的边长是1,由勾股定理得:DC==,AB=,即AB=CD,故本选项错误;C、由图形可知:AD∥BC,CD∥AB,即四边形ABCD是菱形,但BC==≠AB,故本选项正确;D、将边AD向右平移3格,再向上平移7格就与边BC重合,正确,故本选项错误;故选:C.4.解:过A作AE⊥BC;由题意知AE⊥BC,且E为BC的中点;则△ABC为等腰三角形即AB=AC,即AB=AC=BC;∴∠ABC=60°;∴∠BAD=180°﹣∠ABC=180°﹣60°=120°.故选:C.5.解:∵四边形ABCD是菱形;∴AD=AB;∴∠ABD=∠ADB=(180°﹣∠A)=75°;由作图可知,EA=EB;∴∠ABE=∠A=30°;∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°;故选:A.6.解:∵菱形的面积等于12;∴AC•BD=12;∵AC=6;∴BD=4;∵菱形ABCD对角线互相垂直平分;∴BO=OD=2,AO=OC=3;∴AB===;∴菱形的周长为4.故选:D.7.解:如图,∵四边形ABCD是菱形,周长为8;∴AB=BC=CD=AD=2,AD∥BC;∴∠B+∠BAD=180°;∴∠B=180°﹣120°=60°;∴△ABC为等边三角形;∴AC=AB=2;即该菱形较短的对角线长为2;故选:C.8.解:∵四边形ABCD是菱形,∠ABC=140°;∴∠ABD=∠CBD=∠ABC=70°,BO=DO;∵DE⊥BC;∴OE=OD=OB,∠BDE=20°;∴∠ODE=∠OED=20°;故选:B.9.解:如图,∵菱形的一个内角是60°,边长是3cm;∴AB=BC=3cm,△ABC是等边三角形;∴AC=AB=3cm;即这个菱形的较短的对角线长为3cm;故选:C.10.解:A、∵四边形ABCD是平行四边形,AC⊥BD;∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形;∴AB∥CD;∴∠ABD=∠CDB;又∵∠ABD=∠CBD;∴∠CDB=∠CBD;∴BC=DC;∴平行四边形ABCD是菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,AB=BC;∴平行四边形ABCD是菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC=BD;∴平行四边形ABCD是矩形,故选项D不符合题意;故选:D.11.解:如图在菱形ABCD中,AB=CB=AD=CD;∵AB=AC;∴AB=CB=AD=CD=AC;∴△ABC和△ADC都是等边三角形;∴∠ABC=∠BAC=∠ACB=60°;∵BD=BD(公共边)∴△ABD≌△CBD(SSS);∴∠ABD=∠CBD=∠ABC=30°;∴∠EBF=30°.∴A正确;∵∠ABC=∠BAC=60°,∠CAE=15°;∴∠BAE=60°﹣15°=45°;∴∠BEF=180°﹣60°﹣45°=75°;∴∠BFE=180°﹣30°﹣75°=75°;∴∠BEF=∠BFE;∴BE=BF.∴B正确;过点F作FG∥BC,交AD于点G;∵AB=BC>BE;∴F A>EF;∴C正确;假设OE⊥BC正确,则∠BEO=90°;∵∠BEF=75°;∴∠OEA=90°﹣75°=15°=∠CAE;∴OE=OA=OC;∴∠OEC=∠OCE=60°;∵∠OEC=60°与OE⊥BC相矛盾;∴假设不成立;∴OE⊥BC错误;∴D不正确.故选:D.12.解:过点A作AE⊥CD于E,AF⊥BC于F,连接AC,BD交于点O;∵两条纸条宽度相同;∴AE=AF.∵AB∥CD,AD∥BC;∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AF=CD•AE.又∵AE=AF.∴BC=CD;∴四边形ABCD是菱形;∴AO=CO=1,BO=DO,AC⊥BD;∴BO===2;∴BD=4;∴四边形ABCD的面积==4;故选:A.13.解:A、对顶角相等,本选项说法正确,不符合题意;B、对角线互相垂直的平行四边形是菱形,本选项说法正确,不符合题意;C、两直线平行,同位角相等,本选项说法正确,不符合题意;D、两边及其夹角对应相等的两个三角形全等,本选项说法错误,符合题意;故选:D.14.解:连接EF,AE与BF交于点O,如图;∵AO平分∠BAD;∴∠1=∠2;∵四边形ABCD为平行四边形;∴AF∥BE;∴∠1=∠3;∴∠2=∠3;∴AB=EB;同理:AF=BE;又∵AF∥BE;∴四边形ABEF是平行四边形;∴四边形ABEF是菱形;∴AE⊥BF,OB=OF=6,OA=OE;在Rt△AOB中,由勾股定理得:OA===8;∴AE=2OA=16.故选:A.15.解:∵四边形ABCD为菱形;∴AB∥CD,AB=BC;∴∠MAO=∠NCO,∠AMO=∠CNO;在△AMO和△CNO中;;∴△AMO≌△CNO(ASA);∴AO=CO;∵AB=BC;∴BO⊥AC;∴∠BOC=90°;∵∠DAC=26°;∴∠BCA=∠DAC=26°;∴∠OBC=90°﹣26°=64°.故选:B.二.填空题16.解:∵四边形ABCD是菱形;∴AC⊥BD,OA=OC=AC=×4=2,∠BAC=∠BAD=×120°=60°;∴AC=4,∠AOB=90°;∴∠ABO=30°;∴AB=2OA=4,OB=2;∴BD=2OB=4;∴该菱形的面积是:AC•BD=×4×4=8.故答案为:8.17.解:根据作图,AC=BC=OA;∵OA=OB;∴OA=OB=BC=AC;∴四边形OACB是菱形;∵AB=2cm,四边形OACB的面积为4cm2;∴AB•OC=×2×OC=4;解得OC=4cm.故答案为:4.18.解:如图,连接FH;∵四边形ABCD是菱形,四边形EFGH是菱形,∠A=∠E;∴∠ADC=∠EFG,∠BDC=∠ADC=∠EFH=∠EFG,△BDC的面积=×S菱形ABCD=4.5(cm2);∴BD∥FH;∴△BDH的面积=△BDF的面积;∴△BDH的面积=S△BDC+S△BCF=8.5(cm2);故答案为8.5.19.解:如图,连接AC交BD于点G,连接AO;∵四边形ABCD是菱形;∴AC⊥BD,AB=AD=10,BG=BD=8;根据勾股定理得:AG===6;∵S△ABD=S△AOB+S△AOD;即BD•AG=AB•OE+AD•OF;∴16×6=10OE+10OF;∴OE+OF=9.6.故答案为:9.6.20.解:如图,设CD与AB1交于点O;∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高;∴AE=;由折叠易得△ABB1为等腰直角三角形;∴S△ABB1=BA•AB1=2,S△ABE=1;∴CB1=2BE﹣BC=2﹣2;∵AB∥CD;∴∠OCB1=∠B=45°;又由折叠的性质知,∠B1=∠B=45°;∴CO=OB1=2﹣.∴S△COB1=OC•OB1=3﹣2;∴重叠部分的面积为:2﹣1﹣(3﹣2)=2﹣2.三.解答题21.(1)证明:∵AD∥BC;∴∠DMO=∠BNO;∵MN是对角线BD的垂直平分线;∴OB=OD,MN⊥BD;在△MOD和△NOB中;;∴△MOD≌△NOB(AAS);∴OM=ON;∵OB=OD;∴四边形BNDM是平行四边形;∵MN⊥BD;∴平行四边形BNDM是菱形;(2)解:由(1)可知,OB=BD=15,OM=ON=MN=8,四边形BNDM是菱形;∴BN=DN=DM=BM;∵MN⊥BD;∴∠BON=90°;∴BN===17;∴菱形BNDM的周长=4BN=68.22.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD;∴∠DEA=∠F AE;∵AE平分∠BAD;∴∠DAE=∠F AE;∴∠DEA=∠DAE∴AD=ED;∵AD=AF;∴DE=AF;∴四边形AFED是平行四边形;又∵AD=ED;∴平行四边形AFED是菱形;(2)解:过D作DG⊥AF于G,如图所示:∵∠DAB=60°;∴∠ADG=90°﹣60°=30°;∴AG=AD=2;∴DG===2;由(1)得:四边形AFED是菱形;∵AF=AD=4;∴菱形AFED的面积=AF×DG=4×2=8.23.(1)证明:∵AD∥BC;∴∠ADB=∠CBD;∵BD平分∠ABC;∴∠ABD=∠CBD;∴∠ADB=∠ABD;∴AD=AB;∵AB=BC;∴AD=BC;∵AD∥BC;∴四边形ABCD是平行四边形;又∵AB=BC;∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形;∴AC⊥BD,OB=OD,OA=OC=AC=2;在Rt△OCD中,由勾股定理得:OD==4;∴BD=2OD=8;∵DE⊥BC;∴∠DEB=90°;∵OB=OD;∴OE=BD=4.24.(1)证明:∵四边形ABCD是平行四边形;∴OB=OD=BD;∵BD=2AB;∴AB=OB;∵AE∥BD,OE∥AB;∴四边形ABOE是平行四边形;∵AB=OB;∴四边形ABOE是菱形;(2)解:连接BE,交OA于F,如图所示:∵四边形ABOE是菱形;∴OA⊥BE,AF=OF=OA=1,BF=EF=BE;∵S四边形ABOE=4;S四边形ABOE=OA•BE=×2×BE=BE;∴BE=4;∴BF=2;∴OB===;∴BD=2OB=2.25.(1)证明:∵DE∥BC,EC∥AB;∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线;∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°;∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6;∴AD=DB=CD=6.∴AB=12,由勾股定理得.∵四边形DBCE是平行四边形;∴DE=BC=6.∴.。

19.2 菱形 华东师大版八年级下册同步练习(含解析)

19.2 菱形 华东师大版八年级下册同步练习(含解析)

19.2 菱形基础过关全练知识点1 菱形的定义及性质1.【一题多变】(2022四川凉山州会东参鱼中学期中)如图,若四边形ABCD 是菱形,AC =24,BD =10,则菱形ABCD 的边长是( )A.13B.12C.26D.52[变式一](2022河南许昌建安期中)菱形的面积为12 cm 2,一条对角线的长为6 cm,那么菱形的另一条对角线的长为( )A.3 cm B.4 cm C.5 cm D.6 cm[变式二](2022四川眉山期末)如图,在菱形ABCD 中,对角线AC =4,BD =5,则△AOD 的面积为( )A.52B.5C.112D.62.(2022福建福州立志中学期中)如图,在菱形ABCD 中,∠DAC =25°,则∠B =( )A.120°B.125°C.130°D.150°3.(2022江苏宿迁宿城期中)如图,四边形ABCD为菱形,对角线AC,BD 相交于点O,DH⊥AB于H,连结OH,若∠CAD=25°,则∠DHO的度数是( )A.25°B.30°C.35°D.40°4.(2022广东中考)菱形的边长为5,则它的周长为 .5.(2022湖北武汉江岸期中)如图,在菱形ABCD中,过顶点C作CE⊥BC 交对角线BD于点E,若∠A=130°,则∠BEC= °.6.(2022甘肃武威三中期中)如图,在菱形ABCD中,过点D分别作DE⊥AB于点E,DF⊥BC于点F.求证:AE=CF.7.(2022湖南长沙麓山国际实验学校期中)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.8.(2021福建厦门模拟)如图,四边形ABCD是菱形,过AB的中点E作AC 的垂线EF,交AD于点M,交CD的延长线于点F.(1)求证:AM=DM;(2)若DF=3,求菱形ABCD的周长.知识点2 菱形的定义判定法9.【教材变式·P118习题T2变式】如图,已知AD是△ABC的角平分线,DE∥AC交AB于点E,请你添加一个条件: ,使四边形AEDF 是菱形.10.(2022江苏盐城大丰实验初中月考)如图,矩形ABCD的对角线AC,BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是菱形.11.(2022广东湛江雷州模拟)如图,点E、F分别在▱ABCD的边BC、CD 上,BE=DF,∠BAF=∠DAE.求证:四边形ABCD是菱形.12.(2022福建泉州科技中学期中)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)连结AC,过点D作DE∥AC,交BC的延长线于点E,若BC=5,BD=8,求ED的长.知识点3 菱形的判定定理113.(2022湖南郴州中考)如图,四边形ABCD是菱形,E,F是对角线AC 上的两点,且AE=CF,连结BF,FD,DE,EB.求证:四边形DEBF是菱形.14.(2022陕西西安高新区一中期末)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,F在DE上,且AF=CE=AE,试探索当∠B满足什么条件时,四边形ACEF是菱形.15.如图,在四边形ABCD中,AB∥CD,AB=AD,CB=CD,E是CD上一点,连结BE交AC于F,连结DF.(1)求证:四边形ABCD是菱形;(2)试探究BE满足什么条件时,∠EFD=∠BCD,并说明理由.知识点4 菱形的判定定理216.(2022黑龙江齐齐哈尔中考)如图,在四边形ABCD中,AC⊥BD,垂足为O,AB∥CD,要使四边形ABCD为菱形,应添加的条件是 .(只需写出一个条件即可)17.(2022江苏连云港中考改编)如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,且BE⊥DC.求证:四边形DBCE为菱形.18.(2022江苏宿迁宿城期中)如图,在Rt△ABC中,∠B=90°,E是边AC 的中点,∠BAC的平分线AD交BC于点D,作AF∥BC,连结DE并延长交AF于点F,连结FC.(1)求证:△AEF≌△CED.(2)当AB与AC满足什么关系时,四边形ADCF是菱形?并说明理由.能力提升全练19.(2022广西河池中考,8,)如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误的是( )A.AB=ADB.AC⊥BDC.AC=BDD.∠DAC=∠BAC20.(2022四川乐山中考,13,)已知菱形ABCD的两条对角线AC、BD 的长分别是8 cm和6 cm,则菱形的面积为 cm2.21.(2022北京中考,21,)如图,在▱ABCD中,AC,BD交于点O,点E,F 在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.22.(2022浙江舟山中考,18,)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形.”并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.23.(2022湖南岳阳中考,19,)如图,点E,F分别在▱ABCD的边AB,BC 上,AE=CF,连结DE,DF.请从以下三个条件:①∠1=∠2;②DE=DF;③∠3=∠4中,选择一个合适的作为已知条件,使▱ABCD为菱形.(1)你添加的条件是 (填序号);(2)添加了条件后,请证明▱ABCD为菱形.24.(2021山东聊城中考,21,)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,满足∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(2)若AB=BC,CD=5,AC=8,求四边形AECD的面积.素养探究全练25.【推理能力】(2020广东阳江阳西期末)如图,在菱形ABCD 中,AB=6,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连结MD、AN.(1)求证:四边形AMDN是平行四边形.(2)①当AM的值为 时,四边形AMDN是矩形;②若AM=6,求证:四边形AMDN是菱形.答案全解全析基础过关全练1.A ∵四边形ABCD 是菱形,∴OA =OC ,OB =OD ,AC ⊥BD ,∵AC =24,BD =10,∴OA =12,OB =5,在Rt △AOB 中,由勾股定理得,AB =OA 2+OB 2=122+52=13,故菱形ABCD 的边长为13,故选A.[变式一]B 设另一条对角线的长为x cm,则12×6x =12,解得x =4.故选B.[变式二]A ∵四边形ABCD 是菱形,AC =4,BD =5,∴AO =12AC =2,DO =12BD =52,AC ⊥BD ,∴∠AOD =90°,∴S △AOD =12AO ·DO =12×2×52=52.故选A.2.C ∵四边形ABCD 是菱形,∠DAC =25°,∴∠DAB =2∠DAC =50°,AD ∥BC ,∴∠DAB +∠B =180°,∴∠B =130°,故选C.3.A ∵四边形ABCD 是菱形,∠CAD =25°,∴BO =OD ,∠DAO =∠BAO =25°,AC ⊥BD ,∴∠ABD =90°-∠BAO =65°,∵DH ⊥AB ,BO =DO ,∴∠BDH =90°-∠ABD =25°,HO =12BD =DO ,∴∠DHO =∠BDH =25°,故选A.4.答案 20解析 菱形的四条边都相等,故它的周长为4×5=20.5.答案 65解析 ∵四边形ABCD是菱形,∴∠DBC=12∠ABC,AD∥BC,∴∠A+∠ABC=180°,∵∠A=130°,∴∠ABC=180°-130°=50°,∴∠DBC=12×50°=25°,∵CE⊥BC,∴∠BEC=90°-25°=65°.6.证明 ∵四边形ABCD是菱形,∴AD=CD,∠A=∠C,∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°,在△ADE和△CDF中,∠AED=∠CFD,∠A=∠C,AD=CD,∴△ADE≌△CDF(A.A.S.),∴AE=CF.7.解析 (1)证明:∵四边形ABCD是菱形,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,∴四边形BECD是平行四边形,∴BD=EC. (2)∵四边形BECD是平行四边形,∴BD∥CE,∴∠ABO=∠E=50°,∵四边形ABCD是菱形,∴AC⊥BD,∴∠BAO=90°-∠ABO=40°.8.解析 (1)证明:连结BD,如图所示,∵四边形ABCD是菱形,∴BD⊥AC,AB∥CD,∴∠EAM=∠FDM,∵EF⊥AC,∴EF∥BD,∴四边形EFDB是平行四边形,∴DF=EB,∵E是AB的中点,∴AE=EB,∴AE=DF,在△AEM和△DFM中,∠AME=∠DMF,∠EAM=∠FDM,∴△AEM≌△DFM(A.A.S.),AE=DF,∴AM=DM.(2)∵AE=DF,DF=3,∴AE=3,∵E是AB的中点,∴AB=2AE=6,∴菱形ABCD的周长为4×6=24.9.答案 DF∥AB(答案不唯一)解析 添加条件:DF∥AB.∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∴∠ADF=∠FAD,∴FA=FD,∴四边形AEDF是菱形(有一组邻边相等的平行四边形是菱形).(答案不唯一)10.证明 ∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形OBEC是菱形.11.证明 ∵∠BAF=∠DAE,∴∠BAE=∠DAF,∵四边形ABCD是平行四边形,∴∠ABE=∠ADF,在△ABE和△ADF中,∠BAE =∠DAF ,∠ABE =∠ADF ,BE =DF ,∴△ABE ≌△ADF (A.A.S.),∴AB =AD ,∴四边形ABCD 是菱形.12.解析 (1)证明:∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵AD ∥BC ,∴∠ADB =∠CBD ,∴∠ADB =∠ABD ,∴AB =AD ,又∵BA =BC ,∴AD =BC ,∴四边形ABCD 为平行四边形,∵AB =AD ,∴四边形ABCD 为菱形.(2)∵四边形ABCD 是菱形,∴AC ⊥BD ,∵DE ∥AC ,∴DE ⊥BD ,∵AD ∥BC ,DE ∥AC ,∴四边形ACED 为平行四边形,∴CE =AD =BC =5,∴BE =BC +CE =10,在Rt △BDE 中,由勾股定理得,DE =BE 2―BD 2=6.13.证明 ∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∠DAB =∠DCB ,AC 平分∠DAB ,CA 平分∠DCB ,∴∠DAC =∠BAC =12∠DAB ,∠DCA =∠ACB =12∠DCB ,∴∠DAC =∠BAC =∠DCA =∠ACB ,∵AE =CF ,∴△ADE ≌△ABE ≌△CBF ≌△CDF (S.A.S.),∴DE =BE =BF =DF ,∴四边形DEBF是菱形.14.解析 当∠B=30°时,四边形ACEF是菱形.∵∠ACB=90°,∠B=30°,∴∠EAC=60°,∵ED垂直平分BC,∴∠BDE=90°,∴∠BED=60°,∴∠FEA=60°,∵AF=CE=AE,∴△AEF、△EAC都是等边三角形,∴AF=EF=EC=CA,∴四边形ACEF是菱形.15.解析 (1)证明:在△ABC和△ADC中,AB=AD, CB=CD, AC=AC,∴△ABC≌△ADC(S.S.S.),∴∠BAC=∠DAC,∵AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(2)当BE⊥CD时,∠EFD=∠BCD,理由如下:由(1)知四边形ABCD为菱形,∴∠BCF=∠DCF,在△BCF和△DCF中,BC=DC,∠BCF=∠DCF, CF=CF,∴△BCF≌△DCF(S.A.S.),∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=∠EFD+∠CDF=90°,∴∠EFD=∠BCD.16.答案 AB=CD(答案不唯一)解析 若添加AB=CD,因为AB∥CD,AB=CD,所以四边形ABCD为平行四边形.因为AC⊥BD,所以四边形ABCD为菱形.(答案不唯一) 17.证明 ∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∵DE=AD,∴DE=BC.∵点E在AD的延长线上,∴DE∥BC,∴四边形DBCE为平行四边形,又∵BE⊥DC,∴四边形DBCE为菱形.18.解析 (1)证明:∵AF∥BC,∴∠AFE=∠CDE,∵E是AC的中点,∴AE =CE ,在△AEF 和△CED 中,∠AFE =∠CDE ,∠AEF =∠CED ,AE =CE ,∴△AEF ≌△CED (A.A.S.).(2)当AB =12AC 时,四边形ADCF 是菱形.理由:由(1)知,△AEF ≌△CED ,∴AF =CD ,∵AF ∥CD ,∴四边形ADCF 是平行四边形,∵AD 是∠BAC 的平分线,∴∠EAD =∠BAD ,∵AE =12AC ,AB =12AC ,∴AE =AB ,在△AED 和△ABD 中,AE =AB ,∠EAD =∠BAD ,AD =AD ,∴△AED ≌△ABD (S.A.S.),∴∠AED =∠B =90°,即DF ⊥AC.∴四边形ADCF 是菱形.能力提升全练19.C 菱形的四条边相等,对角线互相垂直且平分对角,故A 、B 、D 选项不符合题意;菱形的对角线不一定相等,故C 选项符合题意.20.答案 24解析 ∵菱形ABCD的两条对角线AC、BD的长分别是8 cm和6 cm,=24 cm2.∴菱形的面积为8×6221.证明 (1)∵四边形ABCD是平行四边形,∴AO=CO,BO=DO.∵AE=CF,∴AO-AE=CO-CF,即OE=OF,∴四边形EBFD是平行四边形.(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC,∴四边形ABCD是菱形.∴BD⊥AC,又∵四边形EBFD是平行四边形,∴四边形EBFD是菱形.22.解析 赞成小洁的说法.补充AB=CB(补充的条件不唯一).证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD,∴AB=AD,CB=CD,∵AB=CB,∴AB=AD=CB=CD.∴四边形ABCD是菱形.23.解析 (1)①或③(填一个即可).(2)添加①:证明:∵四边形ABCD是平行四边形,∴∠A=∠C,在△ADE和△CDF中,∠1=∠2,∠A=∠C, AE=CF,∴△ADE≌△CDF(A.A.S.),∴AD=CD,∴四边形ABCD是菱形.添加③:证明:∵四边形ABCD是平行四边形,∴∠A=∠C,在△ADE和△CDF中,∠A=∠C, AE=CF,∠3=∠4,∴△ADE≌△CDF(A.S.A.),∴AD=CD,∴四边形ABCD是菱形.24.解析 (1)证明:在△AOE和△COD中,∠EAO=∠DCO,AO=CO,∠AOE=∠COD,∴△AOE≌△COD(A.S.A.),∴OD=OE.又∵AO=CO,∴四边形AECD 是平行四边形.(2)∵AB =BC ,AO =CO ,∴直线BO 为线段AC 的垂直平分线,∴BO ⊥AC ,∴平行四边形AECD 是菱形.∵AC =8,∴CO =12AC =4,在Rt △COD 中,OD =CD 2―CO 2=52―42=3,∴DE =2OD =6,∴S 菱形AECD =12DE ·AC =12×6×8=24,即四边形AECD 的面积为24.素养探究全练25.解析 (1)证明:∵四边形ABCD 是菱形,∴AB ∥CD ,∴∠DNE =∠AME ,∵点E 是AD 边的中点,∴AE =DE ,在△NDE 和△MAE 中,∠DNE =∠AME ,∠DEN =∠AEM ,DE =AE ,∴△NDE ≌△MAE (A.A.S .),∴NE =ME ,∴四边形AMDN 是平行四边形.(2)①当AM 的值为3时,四边形AMDN 是矩形.详解:∵四边形ABCD 为菱形,∴AB =AD =6,∵点E 是AD 边的中点,∴AE =12AD =3,∴AM =AE ,∵∠DAB =60°,∴△AEM 是等边三角形,∴EM =AE ,MN,∴MN=AD,∵NE=ME=12∴平行四边形AMDN是矩形.②证明:∵AB=AD=6,AM=6,M在AB上,∴点M与点B重合,AD=AM,∵∠DAB=60°,∴△AMD是等边三角形,∴ME⊥AD,∴平行四边形AMDN是菱形.。

九年级上数学1.1菱形知识点总结及习题含答案 Word

九年级上数学1.1菱形知识点总结及习题含答案 Word

菱形性质与判定练习题纯题部分一.选择题(共4小题)1.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A、163B、16C、83D、82.菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2 B.C.1 D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为() 4.5题图A.3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7.5 D.5.如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为()A.2 B. C.4 D.二.填空题(共15小题)6.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________cm2.7.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_________.8.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.7题图8题图9题图10题图9.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_________.10.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO= _________度.11.如图,活动菱形衣架的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=度.11题图13题14题图15题图12.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________.13.如图,两个全等菱形的边长为1米,一机器人由A点开始按A—B—C—D—E—F—C—G—A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_____点.14.如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是_________cm.15.已知:菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为______.16.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_________cm2.17.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________cm2.18.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC 交AB于E,PF∥CD交AD于F,则阴影部分的面积是_________.18题图19题图20题图19.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________.20.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=度.三.解答题21.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?25.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.菱形性质与判定练习题答案部分一.选择题(共4小题)1.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是(C)A、163B、16C、83D、82.菱形的周长为4,一个内角为60°,则较短的对角线长为(C)A.2 B.C.1 D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为(C)A.3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为(A)A.15 B.C.7.5 D.5.如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为( C ) 4.5题图A.2 B. C.4 D.二.填空题(共15小题)6.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是____3_____cm2.7.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_2.4________.8.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD2.7题图8题图9题图10题图9.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_60________.10.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=__65°_______度.11.如图,活动菱形衣架的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1= 120°度.11题图13题14题图15题图12.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为2或6_________.13.如图,两个全等菱形的边长为1米,一机器人由A点开始按A—B—C—D—E—F—C—G—A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_B____点.14.如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是____3_____cm.15.如图:菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_16_____.16.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_96________cm2.17.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是__120_______cm2.18.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__2.5_(示AP与EF交于Q.S厶FQP=S厶EQA_.18题图19题图20题图19.(2003•温州)如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB PE+PB=PE+PD=ED_______.20.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=45度.提示连接AC证厶ABE 厶ACF 得到AE=AF 得出∠AFE=60°三.解答题21.(2011•广安)如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.60°作DF⊥AB则F是AB的中直E是BF的中点BE=123.(2010•宁洱县)如图,四边形ABCD 是菱形,BE ⊥AD 、BF ⊥CD ,垂足分别为E 、F . (1)求证:BE=BF ;(2)当菱形ABCD 的对角线AC=8,BD=6时,求BE 的长.(2)提示: 连接AC. BD 用勾3股4得AB=5再用等积法求BE11528622BE ⨯⋅⋅=⨯⨯24.如图,在菱形ABCD 中,P 是AB 上的一个动点(不与A 、B 重合),连接DP 交对角线AC 于E 连接BE .(1)证明:∠APD=∠CBE ;(2)若∠DAB=60°,试问P 点运动到什么位置时,△ADP 的面积等于菱形ABCD 面积的,为什么?(1) ∆ ∴ ∠ DB 关于AC 对称 ∴∠EDC=∠CBE 而 ∠CDP=∠DPA ∴∠APD=∠CBE(2)当P 点运动到AB 的中点位置时,△ADP 的面积等于菱形ABCD 面积的,因为S ∆APD=APh= .AB h s 囗=ABh25.如图所示,在矩形ABCD 中,AB=4cm ,BC=8cm 、点P 从点D 出发向点A 运动,同时点Q 从点B 出发向点C 运动,点P 、Q 的速度都是1cm/s .(1)在运动过程中,四边形AQCP 可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP 是菱形?(2)分别求出菱形AQCP 的周长、面积.解(1) 设运动了x 秒 则得方程 8x =- 得x=3(2)C=4(8-3)=20cm s=(8-3)4=202cm解法二: 可以建立直角平面BA 为y 轴 BC 为x 轴, 在AC 的中点坐标(4.2) 和AC 的钭率, 求出直线QP, 从而可求出Q.P 的坐标, 找到PD 的长就能求出秒数。

人教版八年级下册数学《菱形的性质与判定》同步练习(含答案)

人教版八年级下册数学《菱形的性质与判定》同步练习(含答案)

菱形的性质与判定一 、填空题(本大题共6小题)1.如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是 .2.如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .3.如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.4.已知菱形的一个内角为60︒,一条对角线的长为23,则另一条对角线的长为________.5.菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为6.已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是二 、解答题(本大题共7小题)DCAB 图21CBAE F DBCA7.如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应 的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.8.如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.9.如图,在四边形ABCD 中,E 为AB 上一点,ADE ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.10.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBAC'DCB A EQEP NMDCBA11.如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH ,相互垂直平分12.已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.13.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBACDH GFEBAGF E DCBAFEDCBA菱形的性质与判定答案解析一 、填空题 1.42.AB AD AC BD =⊥,3.120︒;由题意可知:构成三角形为等边三角形4.2或65.56.150°;如图,过点A 作AE BC ⊥于E ,则12AC BD BC AE ⋅=⋅,又2AC BD AB ⋅=,得1302AE AB ABC =∠=︒,,150BAD ∠=︒二 、解答题7.⑴ 构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠ BAC ≠60°(或A 与F 不重合、△ABC 不为正三角形)(若写出图形为平行四边形时,不给分)当图形为线段时,∠BAC = 60°(或A 与F 重合、△ABC 为正三角形). ⑵ 150︒.8.根据题意可知则. ∵, ∴. ∴, ∴.∴, ∴四边形为菱形. 9.如图,连结AC 、BD .∵PQ 为ABC ∆的中位线EDCBA'CDE C DE ∆≅∆'''CD C D C DE CDE CE C E =∠=∠=,,//AD BC C DE CDE '∠=∠CDE CED ∠=∠CD CE =CD C D C E CE ''===CDC E 'QNMD C∴PQ AC ∥且12PQ AC = 同理MN AC ∥且12MN AC = ∴MN PQ ∥且MN PQ = ∴四边形PQMN 为平行四边形. 在AEC ∆和DEB ∆中AE DE =,EC EB =,60AED CEB ∠=︒=∠即AEC DEB ∠=∠ ∴AEC DEB ∆∆≌ ∴AC BD =∴1122PQ AC BD PN ===. 10.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ ∴18CEF ∠=︒在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.11.连结EG GF FH HE ,,,,根据题意,EG HF ,分别是DAB CAB ∆∆,的中位线,所以12EG HF AB ==,同理可证:12GF EH CD ==,因为AB CD =,所以ABCDEFEG HF GF EH ===,则四边形EGFH 是菱形,所以EF GH ,相互垂直12.当32BC AB =时,四边形ABFC 是菱形.∵AB GF ∥,AG BF ∥ ∴四边形ABFG 是平行四边形 ∵Rt ABE ∆中,60B ∠=︒ ∴30BAE ∠=︒ ∴12BE AB =∵BE CF =,32BC AB = ∴12EF AB = ∴AB BF =∴四边形ABFG 是菱形.13.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ABEFGHD CABCDEF∴18∠=︒CEF分析:在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.。

(完整版)菱形性质经典练习题(详细答案)

(完整版)菱形性质经典练习题(详细答案)

菱形性质经典练习题一.选择题(共4小题)1.(2011•衡阳)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4)D.M(4,0),N(7,4)2.(2010•肇庆)菱形的周长为4,一个内角为60°,则较短的对角线长为()A.2 B.C.1 D.3.(2010•襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:14.(2010•宜昌)如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15 B.C.7.5 D.二.填空题(共15小题)5.(2011•铜仁地区)已知菱形的两条对角线长分别为2cm,3cm,则它的面积是_________cm2.6.(2011•綦江县)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_________.7.(2011•南京)如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.6题图7题图8题图9题图8.(2011•鞍山)如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为_________.9.(2010•嘉兴)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=_________度.10.(2009•江西)如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1= _________度.10题图12题13题图14题图11.(2009•朝阳)已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________.12.(2009•安顺)如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在_________点.13.(2008•长沙)如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是_________cm.14.(2006•云南)已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_________.15.(2005•黄石)已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为_________cm2.16.(2005•新疆)已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是_________cm2.17.(2004•贵阳)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_________.17题图18题图19题图18.(2003•温州)如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________.19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE=_________度.三.解答题(共7小题)20.(2011•南昌)如图,四边形ABCD为菱形,已知A(0,4),B(﹣3,0).(1)求点D的坐标;(2)求经过点C的反比例函数解析式.21.(2011•广安)如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延长线于点E.求证:DE=BE.22.(2010•益阳)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.23.(2010•宁洱县)如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.(2009•贵阳)如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E 连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?25.(2006•大连)已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连接_________;(2)猜想:_________=_________;(3)证明:(说明:写出证明过程的重要依据)26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C 运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.答案与评分标准一.选择题(共4小题)1.(2011•衡阳)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4) D.M(4,0),N(7,4)考点:菱形的性质;坐标与图形性质。

(完整版)菱形知识点及经典题-推荐文档

(完整版)菱形知识点及经典题-推荐文档

菱形【知识梳理】1.定义: 有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形: 一组邻边相等)2.性质: (1)边: 四条边都相等;(2)角: 对角相等、邻角互补;(3)对角线: 对角线互相垂直平分且每条对角线平分每组对角;(4)对称性:既是轴对称图形又是中心对称图形.3.菱形的判定方法:一组邻边相等的平行四边形是菱形对角线互相垂直平分的平行四边形是菱形对角线互相垂直平分的四边形是菱形四条边都相等的四边形是菱形4.识别菱形的常用方法(1)先说明四边形ABCD为平行四边形, 再说明平行四边形ABCD的任一组邻边相等.(2)先说明四边形ABCD为平行四边形, 再说明对角线互相垂直.(3)说明四边形ABCD的四条相等.5、面积:设菱形ABCD的一边长为a, 高为h, 则S菱形=ah;若菱形的两对角线的长分别为a,b, 则S菱形=ab【经典题】一、选择题1.(201.广东省珠海市.边长为3 cm的菱形的周长是.. )A.6 cmB.9 cmC.12 cmD.15 cm3.(201.贵州省毕节地区.如图所示, 菱形ABCD 中, 对角线AC.BD 相交于点O, H 为AD 边的中点, 菱形ABCD 的周长为28, 则OH 的长等于. )A.3.5B.4C.7D.14B C(第8题图)4.(201.湖南省长沙市.如图, 已知菱形ABCD 的边长等于2, ∠DAB=60°,则对角线BD 的长....)A. 1B.C. 2D. 25.(201.江苏省徐州市.若顺次连接四边形的各边中点所得的四边形是菱形, 则该四边形一定是矩形 B.等腰梯形C.对角线相等的四边形D.对角线互相垂直的四边形6.(201.山东省枣庄市.如图, 菱形ABCD的边长为4, 过点A.C作对角线AC的垂线, 分别交CB和AD的延长线于点E, F,AE=3, 则四边形AECF的周长为.. )A. 22B. 18C. 14D. 117.(201.浙江省宁波市.菱形的两条对角线长分别是6和8, 则此菱形的边长...... .. )A.1.......B........C.......D.58.(201.黑龙江省农垦牡丹江管理局.如图, 在菱形ABCD中, E是AB边上一点, 且∠A=∠EDF=60°, 有下列结论: ①AE=BF;②△DEF是等边三角形;③△BEF是等腰三角形;④∠ADE=∠BEF, 其中结论正确的个数是()A. 3B. 4C. 1D. 29.(201.上海市.如图, 已知AC.BD是菱形ABCD的对角线, 那么下列结论一定正确的是.. ).(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的周长相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.10.(201.浙江省台州市.如图, 菱形ABCD的对角线AC=4cm, 把它沿着对角线AC方向平移1cm得到菱形EFGH, 则图中阴影部分图形的面积与四边形EMCN的面积之比为()A.4:3 B.3:2 C.14: 9 D.17: 9二、填空题11.(201.吉林省长春市.如图, 在边长为3的菱形ABCD中, 点E在边CD上, 点F为BE延长线与AD延长线的交点. 若DE=1, 则DF的长为.. .12.(201.福建省莆田市.如图, 菱形ABCD的边长为4, ∠BAD=120°, 点E是AB的中点, 点F是AC上的一动点, 则EF+BF的最小值是2 .13.(201.甘肃省陇南市.如图, 四边形ABCD是菱形, O是两条对角线的交点, 过O点的三条直线将菱形分成阴影和空白部分. 当菱形的两条对角线的长分别为6和8时, 则阴影部分的面积为12.14.(201.甘肃省兰州市.如果菱形的两条对角线的长为a 和b, 且a, b 满足(a ﹣1)2+=0, 那么菱形的面积等于 _________ .15.(201.湖北省十堰市.如图, 在△ABC 中, 点D 是BC 的中点, 点E 、F 分别在线段AD 及其延长线上, 且DE=DF, 给出下列条件: ①BE ⊥EC ;②BF ∥CE ;③AB=AC ;从中选择一个条件使四边形BECF 是菱形, 你认为这个条件.... (只填写序号)DAB C F E16.(201.江苏省宿迁市.如图, 在平面直角坐标系xOy 中, 若菱形ABCD 的顶点A, B 的坐标分别为(-3, 0), (2,0), 点D 在y 轴上, 则点C 的坐标......17.(201.辽宁省大连市.如图, 菱形ABCD 中, AC.BD 相交于点O, 若∠BCO=55°, 则∠ADO=. .18.(201.四川省宜宾市.菱形的周长为20cm, 两个相邻的内角的度数之比为l ∶2, 则较长的对角线长度是cm.19.(201.四川省凉山州.顺次连接矩形四边中点所形成的四边形... , 学校的一块菱形花圃两对角线的长分别是6m 和8m, 则这个花圃的面积......20.(201.四川省泸州市.一个平行四边形的一条边长为3, 两条对角线的长分别为4和, 则它的面积...... .21.(201.福建省漳州市.若菱形的周长为20cm, 则它的边长是 cm .22.(201.重庆市A 卷.如图, 菱形ABCD 中, ∠A=60°, BD=7, 则菱形ABCD 的周长为________.CAB23.(201.辽宁省锦州市.菱形ABCD 的边长为2, ,E 是AD 边中点, 点P 是对角线BD 上的动点, 当AP+PE 的值最小时, PC 的长是__________.24.(201.山东省淄博市.已知□ABCD, 对角线AC, BD 相交于点O, 请你添加一个适当的条件, 使□ABCD 成为一个菱形. 你添加的条件........三、证明题25.(201.福建省厦门市.如图6, 在四边形ABCD.., AD ∥BC, AM ⊥BC, 垂足为M, AN ⊥DC, 垂足为N. 若∠BAD =∠BCD, AM =AN, 求证四边形ABCD 是菱形.B D(第15题图)图626.(201.贵州省贵阳市.如图, 在Rt △ABC 中, ∠ACB=90°, D.E 分别为AB, AC 边上的中点, 连接DE, 将△ADE 绕点E 旋转180°得到△CFE, 连接AF, CD.(1)求证: 四边形ADCF 是菱形;(5分)(2)若BC =8, AC =6, 求四边形ABCF 的周长.(5分)27.(201.江苏省淮安市.如图, 在三角形ABC 中, AD 平分∠BAC, 将△ABC 折叠, 使点A 与点D 重合, 展开后折痕分别交AB.AC 于点E 、F, 连接DE 、DF.求证: 四边形AEDF 是菱形.28.(201.四川省乐山市.如图, 在△ABC 中, AB=AC, 四边形ADEF 是菱形, 求证: BE=CE.29.(201.湖南省张家界市.如图, 在四边形ABCD 中, AB =AD, CB =CD, AC 与BD 相交于O 点, OC=OA, 若E 是CD 上任意一点, 连结BE 交AC 于点F, 连结DF.(1)证明: △CBF ≌△CDF ;(2)若AC=2, BD=2,求四边形ABCD 的周长;(3)请你添加一个条件, 使得∠EFD =∠BAD, 并予以证明.第18题图 E D C A四、猜想、探究题30.(201.四川省攀枝花市.如图, 两个连接在一起的菱形的边长都是1cm, 一只电子甲虫, 从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行, 当电子甲虫爬行2014cm时停下, 则它停的位置是()A.点F B.点E C.点A D.点C。

九年级数学菱形的判定(基础)(含答案)

九年级数学菱形的判定(基础)(含答案)

菱形的判定(基础)一、单选题(共10道,每道10分)1.下列说法中正确的是( )A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的四边形是菱形D.有一个角是直角的平行四边形是菱形答案:B解题思路:对角线相等的平行四边形是矩形,故A错误有一组邻边相等的平行四边形叫做菱形,故B正确对角线相互垂直的平行四边形是菱形,故C错误有一个角是直角的平行四边形是矩形,故D错误试题难度:三颗星知识点:略2.下列四边形中不一定为菱形的是( )A.对角线互相平分的四边形B.每条对角线平分一组对角的平行四边形C.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形答案:A解题思路:对角线互相平分的四边形是平行四边形,并不一定为菱形,故A符合题意每条对角线平分一组对角的平行四边形,对角线相互垂直,则此平行四边形是菱形,故B 不符合题意对角线互相垂直的平行四边形是菱形,故C不符合题意用两个全等的等边三角形拼成的四边形的四条边长相等,所以该四边形是菱形,故D不符合题意试题难度:三颗星知识点:略3.如图,AC=8,分别以A,C为圆心,以长度5为半径作弧,两条弧分别相交于点B和D,依次连接A,B,C,D,可得菱形ABCD,则关于操作依据的原理说法正确的是( )A.四条边相等的四边形是菱形B.对角线互相垂直平分的四边形是菱形C.菱形的四条边相等D.菱形的对角线互相垂直平分答案:A解题思路:由作图可知,AB=AD=CB=CD=5∴此操作依据的原理是四条边相等的四边形是菱形试题难度:三颗星知识点:略4.如图,要使平行四边形ABCD成为菱形,添加一个条件不正确的是( )A.AC⊥BDB.AB=ADC.AC=ABD.∠ABD=∠CBD答案:C解题思路:当AC⊥BD时,平行四边形ABCD是菱形,故A不符合题意当AB=AD时,平行四边形ABCD是菱形,故B不符合题意当AC=AB时,平行四边形ABCD不一定是菱形,故C符合题意当∠ABD=∠CBD时,∵OA=OC∴AB=CB∴平行四边形ABCD是菱形,故D不符合题意试题难度:三颗星知识点:略5.如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是( )A.AC平分∠BADB.BD平分∠ABCC.OA⊥OBD.AC=BD答案:D解题思路:∵四边形ABCD的两条对角线相交于点O,且互相平分∴四边形ABCD是平行四边形当AC平分∠BAD,又∵OB=OD∴AB=AD∴平行四边形ABCD是菱形,故A不符合题意同理可证,当BD平分∠ABC时,平行四边形ABCD是菱形,故B不符合题意当OA⊥OB时,即AC⊥BD,平行四边形ABCD是菱形,故C不符合题意当AC=BD时,平行四边形ABCD是矩形,故D符合题意试题难度:三颗星知识点:略6.如图,在四边形ABCD中,AB=CD,AC,BD是对角线,E,F,G,H分别是AD,BD,BC,AC的中点,连接EF,FG,GH,HE,则四边形EFGH的形状是( )A.平行四边形B.菱形C.长方形D.无法判断答案:B解题思路:∵E,F,G,H分别是AD,BD,BC,AC的中点∴在△ADB中,EF为△ADB的中位线∴EF=AB同理可得,FG=CD,GH=AB,EH=CD,又∵AB=CD∴EF=FG=GH=EH∴四边形EFGH的形状是菱形试题难度:三颗星知识点:略7.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是( )A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°答案:B解题思路:∵将△ABC沿BC方向平移得到△DCE∴AC∥DE且AC=DE,BC=EC∴四边形ACED为平行四边形当AC=BC时,则AC=EC∴平行四边形ACED为菱形试题难度:三颗星知识点:略8.如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD.若从三个条件:①AB=AC;②AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形ADCE为菱形的是( )A.①B.②C.③D.以上都不符合题意答案:B解题思路:∵AE∥CD,CE∥AD∴四边形ADCE为平行四边形要使平行四边形ADCE为菱形,则DA=DC∴∠DAC=∠DCA又∵AD,CD分别平分∠BAC和∠ACB∴∠BAC=∠BCA∴AB=BC故②AB=BC能使四边形ADCE为菱形试题难度:三颗星知识点:略9.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是( )A. B.C. D.答案:C解题思路:A.由作图可知,AC⊥BD且AC平分BD,又∵AD∥BC,可证BD平分AC,即对角线相互平分且垂直的四边形是菱形,故A正确B.由作图可知,AB=BC,AB=AD,则AD=BC,又∵AD∥BC,则四边形ABCD为菱形,故B 正确C.由作图可知,AB∥CD,又∵AD∥BC,只能得出四边形ABCD为平行四边形,故C错误D.由作图可知,∠BAC=∠DAC,∠BCA=∠DCA,又∵AD∥BC,则∠DAC=∠BCA,则AB=BC=CD=DA,则四边形ABCD为菱形,故D正确试题难度:三颗星知识点:略10.如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1),若平移点A到点C,使得以点O,A,B,C为顶点的四边形为菱形,正确的是( )A.向左平移1个单位,再向下平移1个单位B.向右平移1个单位,再向上平移1个单位C.向左平移个单位,再向下平移1个单位D.向右平移个单位,再向上平移1个单位答案:B解题思路:∵B(1,1)∴OB=∴OA=OB=如图,过点B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是菱形,∵A(,0),B(1,1)∴C(,1)∴点A向右平移1个单位,再向上平移1个单位到点C,四边形OACB是菱形试题难度:三颗星知识点:略。

第01讲 菱形的性质与判定(知识解读+真题演练+课后巩固)(原卷版)

第01讲 菱形的性质与判定(知识解读+真题演练+课后巩固)(原卷版)

第1讲 菱形的性质与判定1. 理解菱形的概念;2. 探索并证明菱形的性质定理和判定定理,并能运用它们进行证明和计算;3. 通过经历菱形的性质定理和判定定理的探索过程,丰富学生的数学活动经验和体验,进一步培养和发展学生的合情推理能力;4. 通过菱形的性质定理和判定定理以及相关问题的证明和计算,进一步培养和发展学生的演绎推理能力。

知识点 1:菱形的性质菱形的定义:一组邻边相等的平行四边形叫做菱形。

※菱形的性质:(1)具有平行四边形的性质(2)且四条边都相等(3)两条对角线互相垂直平分,每一条对角线平分一组对角。

注意:菱形是轴对称图形,每条对角线所在的直线都是对称轴。

知识点2:菱形的面积菱形的面积等于两条对角线长的乘积的一半BD AC BD AC S S AOB Rt ABCD •=••⨯==∆2121212144菱形知识点3:菱形的判定※菱形的判别方法:一组邻边相等的平行四边形是菱形。

对角线互相垂直的平行四边形是菱形。

四条边都相等的四边形是菱形。

【题型1菱形的概念和性质】【典例1】如图,在菱形ABCD中,对角线AC,BD相交于点O,已知AC=10cm,BD=24cm,则△ABD的周长为()A.30cm B.36cm C.50cm D.52cm【变式1-1】如图,在菱形ABCD中,∠ABD=30°,则∠A的度数为()A.150°B.140°C.130°D.120°【变式1-2】在菱形ABCD中,对角线AC,BD相交于点O,下列结论中不一定正确的是()A.AB=AD B.AC⊥BD C.∠DAC=∠BAC D.AC=BD 【变式1-3】如图,菱形ABCO中的顶点O,A的坐标分别为(0,0),,点C在x轴的正半轴上,则点B的坐标为()A.B.C.D.【典例2】(2022秋•绥化期末)下列不属于菱形性质的是()A.四条边都相等B.两条对角线相等C.两条对角线互相垂直D.每一条对角线平分一组对角【变式2-1】(2022秋•舞钢市期中)下列说法不正确的是()A.菱形的四条边都相等B.菱形的对角线相等C.菱形是轴对称图形D.菱形的对角线互相垂直【变式2-2】(2022春•兰陵县期末)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=25°,则∠DHO的度数是()A.25°B.30°C.35°D.40°【变式2-3】(2022•赫章县模拟)如图,在平面直角坐标系中,四边形ABCD 为菱形,A,B两点的坐标分别是(4,0),(0,3),点C,D在坐标轴上,则菱形ABCD的周长等于()A.16B.20C.24D.26【典例3-1】(2021秋•榆林期末)如图,在菱形ABCD中,若AB=5,AC=8,则菱形ABCD的面积为()A.24B.20C.16D.12【典例3-2】(2022•文山州模拟)如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=6,DB=8,则点A到BC的距离为()A.B.6C.8D.(2021秋•深圳期末)已知菱形的两条对角线的长分别为6cm和8cm,【变式3-1】则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm2【变式3-2】(2021秋•毕节市期末)如图,在菱形ABCD中,对角线AC与BD 相交于点O,且AC=6,DB=8,AE⊥BC于点E,则AE=()A.6B.8C.D.【题型2:菱形的判定】【典例4】依据所标识的数据,下列平行四边形一定为菱形的是()A.B.C.D.【变式4-1】在下列条件中,能够判定▱ABCD为菱形的是()A.AB=AC B.AC⊥BD C.AC⊥BC D.AC=BD【变式4-2】如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.∠ABC=90°D.AO=BO【变式4-3】要检验一张四边形的纸片是否为菱形,下列方案中可行的是()A.度量四个内角是否相等B.测量两条对角线是否相等C.测量两条对角线的交点到四个顶点的距离是否相等D.将这纸片分别沿两条对角线对折,看对角线两侧的部分是否每次都完全重合【典例5】(2022春•苍溪县期末)如图,在△AFC中,∠F AC=90°,B、E分别是FC、AB的中点,过点A作AD∥FC交FE的延长线于点D.(1)求证:BF=AD;(2)求证:四边形ABCD是菱形.【变式5-1】(2022秋•章丘区校级月考)已知:如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点F,E是AC的中点,过点A作AD∥BC,交FE的延长线于点D.(1)求证:四边形AFCD是平行四边形;(2)给△ABC添加一个条件,使得四边形AFCD是菱形.请证明你的结论.【变式5-2】(2022•天宁区校级一模)如图,在四边形ABCD中,AC与BD相交于点O.且AO=CO,点E在BD上,满足∠EAO=∠DCO.(1)求证:△AOE≌△COD;(2)若AB=BC,求证:四边形AECD是菱形.【题型3:菱形的性质与判定综合】【典例6】(2022•冷水滩区校级开学)如图,在△ABC中,∠BAC=90°,线段AC的垂直平分线交AC于点D,交BC于点E,过点A作BC的平行线交ED于点F,连接AE,AF.(1)求证:四边形AECF是菱形;(2)若AB=10,∠ACB=30°,求菱形AECF的面积.【变式6-1】(2022秋•龙岗区期末)如图,在四边形ABCD中,AB∥CD,AD ∥BC,AC平分∠DAB,连接BD交AC于点O,过点C作CE⊥AB交AB延长线于点E.(1)求证:四边形ABCD为菱形;(2)若OA=4,OB=3,求CE的长.【变式6-2】(2022•新市区校级一模)如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若,∠F AC=30°,∠B=45°,求AB的长.【变式6-3】(2022春•张家港市校级月考)如图,▱ABCD对角线AC,BD相交于点O,过点D作DE∥AC且DE=OC,连接CE,OE,OE=CD.(1)求证:▱ABCD是菱形;(2)若AB=4,∠ABC=60°,求AE的长.1.(2022•河南)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E 为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.48 2.(2022•湘西州)如图,菱形ABCD的对角线AC、BD相交于点O,过点D 作DH⊥AB于点H,连接OH,OH=4,若菱形ABCD的面积为32,则CD的长为()A.4B.4C.8D.8 3.(2022•淄博)如图,在边长为4的菱形ABCD中,E为AD边的中点,连接CE交对角线BD于点F.若∠DEF=∠DFE,则这个菱形的面积为()A.16B.6C.12D.30 4.(2022•甘肃)如图,菱形ABCD中,对角线AC与BD相交于点O,若AB =2cm,AC=4cm,则BD的长为cm.5.(2022•北京)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.6.(2022•岳阳)如图,点E,F分别在▱ABCD的边AB,BC上,AE=CF,连接DE,DF.请从以下三个条件:①∠1=∠2;②DE=DF;③∠3=∠4中,选择一个合适的作为已知条件,使▱ABCD为菱形.(1)你添加的条件是(填序号);(2)添加了条件后,请证明▱ABCD为菱形.7.(2022•大连)如图,四边形ABCD是菱形,点E,F分别在AB,AD上,AE =AF.求证:CE=CF.8.(2022•广元)如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.9.(2022•凉山州)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD 的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:四边形ADBF是菱形;(2)若AB=8,菱形ADBF的面积为40.求AC的长.1.(2022•齐齐哈尔)如图,在四边形ABCD中,AC⊥BD,垂足为O,AB∥CD,要使四边形ABCD为菱形,应添加的条件是.(只需写出一个条件即可)2.(2021春•龙马潭区期末)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是AB的中点,连结EO.若EO=2,则CD的长为()A.2B.3C.4D.5 3.(2022秋•丰城市校级期末)如图,菱形ABCD中对角线相交于点O,AB=AC,则∠ADB的度数是()A.30°B.40°C.50°D.60°4.(2022秋•南海区期中)如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的周长是()A.14cm B.16cm C.18cm D.20cm 5.(2021秋•建平县期末)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=2,则菱形ABCD的周长为()A.6B.8C.12D.16 6.(2022秋•碑林区校级期中)如图,已知菱形的两条对角线AC与BD长分别是12和16,则这个菱形的面积是()A.192B.48C.96D.40 7.(2022秋•三明期中)如图,在菱形ABCD中,AC交BD于点O,DE⊥BC 于点E,连接OE,若∠BCD=50°,则∠OED的度数是()A.25°B.30°C.35°D.20°9.(2022秋•浑南区期中)在下列条件中,能够判定四边形是菱形的是()A.两条对角线相等B.两条对角线互相垂直平分C.两条对角线互相垂直D.两条对角线相等且互相垂直10.(2022秋•二七区校级月考)如图▱ABCD的对角线AC和BD相交于点O,下列说法正确的是()A.若OB=OD,则▱ABCD是菱形B.若AC=BD,则▱ABCD是菱形C.若OA=OD,则▱ABCD是菱形D.若AC⊥BD,则▱ABCD是菱形11.(2022春•铁西区期末)已知:如图,在Rt△ABC中,∠ACB=90°,∠BAC =60°,BC的垂直平分线分别交BC和AB于点D和点E,点F在DE的延长线上,且AF=CE.(1)∠BCE的度数为°.(2)求证:四边形ACEF是菱形.12.(2022春•长乐区期中)如图,▱ABCD的对角线AC,BD相交于点O,且AB=13,AO=12,BO=5.求证:▱ABCD是菱形.13.(2022秋•海淀区期中)如图,在△ABC中,∠ABC=90°,BD为△ABC的中线.BE∥DC,BE=DC,连接CE.(1)求证:四边形BDCE为菱形;(2)连接DE,若∠ACB=60°,BC=4,求DE的长.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科:数学菱形【基础知识精讲】定义:有一组邻边相等的平行四边形是菱形.定理1:四边都相等的四边形是菱形.定理2:对角线互相垂直的平行四边形是菱形.【重点难点解析】1.菱形的性质(1)菱形具有平行四边形的一切性质;(2)菱形的四条边都相等;(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角;(4)菱形是轴对称图形.2.菱形的面积=底×高=对角线乘积的一半.A.重点、难点提示1.理解并掌握菱形的概念,性质和判别方法;(这是重点,也是难点,要掌握好)2.经历探索菱形的性质和判别条件的过程,在操作活动和观察、分析过程中发展学生的主动探究习惯和初步的审美意识,进一步了解和体会说理的基本方法;3.了解菱形的现实应用和常用的判别条件;4.体会特殊与一般的关系.B.考点指要菱形是特殊的平行四边形,其性质和判别方法是中考的重要内容之一.一组邻边相等的平行四边形叫做菱形.菱形是特殊的平行四边形,具有平行四边形的一切性质.除具有平行四边形的一切性质外,菱形还具有以下性质:①菱形的四条边都相等;②两条对角线互相垂直平分;(出现了垂直,常与勾股定理联系在一起)③每一条对角线都平分一组内角.(出现了相等的角,常与角平分线联系在一起)菱形是轴对称图形,它的两条对角线所在直线是它的两条对称轴.(不是对角线,而是其所在直线,因为对称轴是直线,而对角线是线段)菱形的判别方法:(学会利用轴对称的方法研究菱形)①一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四条边都相等的四边形是菱形.【难题巧解点拨】例1:如图4-24,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F.求证:四边形AEFG是菱形.思路分析由已知可知,图中有平行线,就可证角相等、线段相等,因此,可先证四边形AEFG 是平行四边形,再证一组邻边相等.证明:∵∠BAC=90°,EF⊥BC,CE平分∠ACB,∴AE=EF,∠CEA=∠CEF.(这是略证,并不是完整的证明过程)∵AD⊥BC,EF⊥BC,∴EF∥AD,(垂直于同一条直线的两条直线互相平行)∴∠CEF=∠AGE,(两直线平行,内错角相等)∴∠CEA=∠AGE,∴AE=AG,∴EF∥AG,且EF=AG,∴四边形AEFG是平行四边形.(一组对边平行且相等的四边形是平行四边形)又∵AE=EF,∴平行四边形AEFG是菱形.例2:已知菱形的周长为20cm,一条对角线长为5cm,求菱形各个角的度数.已知:菱形ABCD中,AB+BC+CD+DA=20cm,对角线AC=5cm.求∠ADC、∠ABC、∠BCD、∠DAB的度数.思路分析利用菱形的四条边相等,可求出各边长,从而得到等边三角形,如图4-25.解:在菱形ABCD中,∵AB=BC=CD=DA,又AB+BC+CD+DA=20cm,∴AB=BC=CD=DA=5cm,又∵AC=5cm,∴AB=BC=AC,CD=DA=AC,∴△ABC和△DAC都是等边三角形,(本题将边之间的长度关系转化为角的关系)∴∠ADC=∠ABC=60°,∠BCD=∠DAB=120°.例3:如图4-26,在平行四边形ABCD中,∠BAE=∠FAE,∠FBA=∠FBE.求证:四边形ABEF是菱形.证法一:∵AF∥BE,∴∠FAE=∠AEB (两直线平行,内错角相等)又∵∠BAE=∠FAE,∴∠BAE=∠AEB,∴AB=BE.(等角对等边)同理,AB=AF,BE=EF,∴AB=BE=EF=AF,∴四边形ABEF是菱形.(四条边都相等的四边形是菱形)证法二:∵AF∥BE,∴∠FAE=∠AEB,又∵∠BAE=∠FAE,∴∠BAE=∠AEB,∴AB=BE.又∵∠FBA=∠FBE,∴AO=OE,AE⊥FB,(等腰三角形三线合一)同理,BO=OF,∴四边形ABEF是菱形.(对角线互相垂直平分的四边形是菱形)(你还有其他的证明方法吗?不妨试一下)例4:菱形的两邻角之比为1:2,边长为2,则菱形的面积为__________.思路分析本题主要考查菱形的性质和面积公式的应用:解法一:如图4-27,∠B:∠A=1:2,∵四边形ABCD 是菱形, ∴AD ∥BC ,∴∠A+∠B=180°,∴∠B=60°,∠A=120°, 过A 作AE ⊥BC 于E , ∴∠BAE=30°,1AB 21BE ==∴,(直角三角形中,30°角所对的直角边等于斜边的一半) 312B E AB AE 2222=-=-=∴,(勾股定理) 32AE BC S ABCD =⋅=∴菱形.(平行四边形的面积计算方法是:底乘以高) 解法二:如图4-28,∠B ∶∠A=1∶2,∵四边形ABCD 是菱形, ∴AD ∥BC ,∴∠A+∠B=180°,∴∠B=60°,∠A=120°,连结AC 、BD 交于点O ,︒=∠=∠∴30B 21ABD ,AC ⊥BD . (菱形的性质:对角线平分一组对角,对角线互相垂直) 在Rt △ABO 中,1AB 21AO ==, 312AO AB B O 2222=-=-=∴,∴AC=2,32BD =, 3232221BD AC 21S ABCD =⨯⨯=⋅=∴菱形. 答:菱形的面积为32.【典型热点考题】例1 如图4-13,已知菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠B=∠EAF=60°,∠BAE=18°,求∠CEF 的度数.点悟:由∠B=60°知,连接AC得等边△ABC与△ACD,从而△ABE≌△ADF,有AE=AF,则△AEF为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF.解:连接AC.∵四边形ABCD为菱形,∴∠B=∠D= 60°,AB=BC=CD=DA,∴△ABC与△CDA为等边三角形.∴ AB=AC,∠B=∠ACD=∠BAC=60°,∵∠EAF=60°,∴∠BAE=∠CAF.∴ AE=AF.又∵∠EAF=60°,∴△EAF为等边三角形.∴∠AEF=60°,∵∠AEC=∠B+∠BAE=∠AEF+∠CEF,∴ 60°+18°=60°+∠CEF,∴∠CEF=18°.例2已知如图4-14,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD 于G,交AB于E,EF⊥BC于F,求证:四边形AEFG为菱形.点悟:可先证四边形AEFG为平行四边形,再证邻边相等(或对角线垂直).证明:∵∠BAC=90°,EF⊥BC,CE平分∠BCA,∴ AE=FE,∠AEC=∠FEC.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠FEC=∠AGE,∴∠AEC=∠AGE∴ AE=AG,∴∴四边形AEFG为平行四边形.又∵ AE=AG.∴四边形AEFG为菱形.点拨:此题还可以用判定菱形的另两种方法来证.例3 已知如图4-15,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE.求证:EB=OA证明:∵四边形ABCD为菱形,∴∠ABC=2∠ABD, AD∥BC,∴∠DAE=∠AEB,∵ AB=AE,∴∠ABC=∠AEB.∴∠DAE=2∠ABD.∵∠DAE=2∠BAE,∴∠ABD=∠BAE,∴ OA=OB.∵∠BOE=∠ABD+∠BAE,∴∠BOE=2∠BAE.∴∠BEA=∠BOE,∴ OB=BE,∴ AO=BE.说明:利用菱形性质证题时,要灵活选用,选不同性质,就会有不同思路.例4已知菱形的一边与两条对角线构成的两角之比为5:4,求菱形的各内角的度数.点悟:先作出菱形ABCD和对角线AC、BD(如图4-16).解:∵四边形ABCD是菱形,∴ AC⊥BD,∴∠1+∠2=90°,又∵∠1:∠2=4:5,∴∠1=40°,∠2=50°,∴∠DCB=∠DAB=2∠2=100°,故∠CBA=∠CDA=2∠1=80°.【同步达纲练习一】 一、选择题1.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为 ( ) (A)45°, 135° (B)60°, 120° (C)90°, 90° (D)30°, 150°2.若菱形的一条对角线长是另一条对角线的2倍,且此菱形的面积为S ,则它的边长为( )(A)S (B)S 21 (c)S 321 (D)S 521二、填空题3.已知:菱形ABCD 中,E 、F 是BC 、CD 上的点,且AE=EF=AF=AB ,则∠B=________. 4.已知:菱形的两条对角线长分别为a 、b ,则此菱形周长为_______,面积为__________.5.菱形具有而矩形不具有的性质是_______.6.已知一个菱形的面积为38平方厘米,且两条对角线的比为1:3,则菱形的边长为_________.三、解答题 7.已知:O 为对角线BD 的中点,MN 过O 且垂直BD ,分别交CD 、AB 于M 、N .求证:四边形DNBM 是菱形.8.如图4-17,已知菱形ABCD 的对角线交于点O ,AC=16cm ,BD=12cm ,求菱形的高.【同步达纲练习二】1.在菱形ABCD 中,若∠ADC=120°,则BD :AC 等于( ) A .2:3B .3:3C .1:2D .1:32.已知菱形的周长为40cm ,两对角线的长度之比为3:4,则两对角线的长分别为( ) A .6cm ,8cm B .3cm ,4cm C .12cm ,16cm D .24cm ,32cm 3.菱形的对角线具有( ) A .互相平分且不垂直B .互相平分且相等C .互相平分且垂直D .互相平分、垂直且相等(掌握菱形对角线的性质,注意不要增加性质)4.已知菱形的面积等于2cm 160,高等于8cm ,则菱形的周长等于____________. 5.已知菱形的两条对角线的长分别是6和8,那么它的边长是______________. 6.菱形的周长是40cm ,两邻角的比是1:2,则较短的对角线长是_________cm . 7.如图4-29,在△ABC 中,∠BAC=90°,BD 平分∠ABC ,AG ⊥BC ,且BD 、AG 相交于点E ,DF ⊥BC 于F .求证:四边形AEFD 是菱形.8.如图4-30,平行四边形ABCD 的对角线AC 的垂直平分线与AD 、BC 、AC 分别交于点E 、F 、O .求证:四边形AFCE 是菱形.参考答案【同步达纲练习一】一、1.B ; 2.D ;二、3.80°;4.222b a +,ab 21;5.对角线互相垂直,各边长相等. 6.4厘米.三、7.由已知MN 为BD 的垂直平分线, 有 DM=BM ,DN=BN ,又由△DOM ≌△BON ,得DM=BN ,∴ DM=BM=BN=DN .∴四边形DNBM 是菱形.8.过点D 作DH ⊥AB 于H ,则DH 为菱形的一条高. 又∵ AC 、BD 互相垂直平分于O ,∴ 821==AB OA 厘米,621==BD OB 厘米. 由勾股定理,得 1022=+=BO AO AB (厘米).又∵OA BD DH AB ⋅=⋅2121, ∴812211021⨯⨯=⨯⨯DH ,DH=9.6厘米.【同步达纲练习二】1.B ; 2.C ; 3.C ; 4.80cm ; 5.5; 6.10; 7.证法一:在Rt △ABD 和Rt △FBD 中,∵BD 为∠ABC 的平分线,∴∠ABD=∠FBD ,∠DAB=∠DFB=90°, 又∵BD=BD ,∴Rt △ABD ≌Rt △FBD ∴AD=DF ,∠ADE=∠EDF又∵DF ⊥BC ,AG ⊥BC ,∴DF//AE ,∴∠EDF=∠DEA ,∴∠ADE=∠DEA ,∴AD=AE , ∴AE=DF ,∴四边形AEFD 是平行四边形. ∵AD=DF ,∴四边形AEFD 为菱形. 证法二:同证法一得DF=DA=AE ,∵Rt △ABD ≌Rt △FBD ,∴AB=BF ,∴△ABE ≌△FBE , ∴AE=EF ,∴DF=DA=AE=EF ,∴四边形AEFD 是菱形. 证法三:同证法一:Rt △ABD ≌Rt △FBD ,∴AB=BF , ∴△ABE ≌△FBE ,∴∠GAB=∠EFB ,又∵∠C+∠ABC=90°,∠GAB+∠ABC=90°, ∴∠C=∠GAB ,∴∠C=∠EFB ,∴EF ∥AC , 又∵DF ∥AG ,∴四边形AEFD 是平行四边形, ∵AD=DF ,∴四边形AEFD 是菱形.8.∵AD ∥BC ,∴∠OAE=∠OCF ,又∵∠AOE=∠COF=90°,AO=CO , ∴△AOE ≌△COF ,∴AE=CF ,又∵AE ∥CF , ∴四边形AFCE 是平行四边形.又∵EF 是AC 的垂直平分线,∴AE=CE .(垂直平分线上的点到线段两端距离相等)∴四边形AFCE是菱形.。

相关文档
最新文档